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Abstract

Convergence in gross domestic product series of five European countries is empirically identified
using multivariate time series models that are based on unobserved components with dynamic con-
verging properties. We define convergence in terms of a decrease in dispersion over time and model
this decrease via mechanisms that allow for gradual reductions in the ranks of covariance matrices
associated with the disturbance vectors driving the unobserved components of the model. The
inclusion of such convergence mechanisms within the formulation of unobserved components makes
the identification of various types of convergence possible. The common converging component
model is estimated for the per capita gross domestic product of five European countries: Germany,
France, Italy, Spain and the Netherlands. It is found that convergence features in trends and cycles
are present and are associated with some key events in the history of European integration.

Keywords: Common trends and cycles; Dynamic factor model; Economic convergence; Kalman
filter; Multivariate unobserved components time series models.

JEL classification: C13, C32, E32.

1 Introduction

The European economy has become more integrated in the last twenty-five years due to economic,
political and institutional factors. Some key events in the recent history of Europe are the establish-
ment of the Exchange Rate Mechanism in 1979, the entry of Spain to the European Union in 1986,
the opening of the Common Market in 1993 and the introduction of the Euro in 2001. These events,
together with a worldwide increase in trade and financial flows, have led to a closer synchronization
of economic fluctuations across European countries. It is therefore of particular interest to investigate
whether the cyclical components of gross domestic product series, which are closely related to the
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business cycle, are evolving more closely over time as a result. One of the challenges we have set
ourselves is to empirically identify country-specific cycles that are converging to a smaller number
of common factors. This important task is of particular relevance to economic and monetary policy
makers.

To investigate the existence of converging properties in economic time series we adopt unobserved
components time series (UC) models that typically consist of interpretable components such as trend,
cycle, seasonal and irregular components. Each component is separately modelled by an appropriate
dynamic stochastic process which usually depends on normally distributed disturbances. The UC
model with trend and cycle components enables a time series decomposition that is appropriate for
many macroeconomic time series such as consumption, investment and national income. In a univariate
time series analysis this model leads to a trend-cycle decomposition and can be regarded as a model-
based alternative to analyses based on the Hodrick-Prescott filter of Hodrick and Prescott (1980)
and the Beveridge-Nelson decomposition of Beveridge and Nelson (1981). Harvey and Jaeger (1993)
have argued that a model-based trend-cycle decomposition for economic time series is to be preferred
and can avoid the detection of spurious cycles in the time series. Working with UC models has the
additional advantage that they can also be used for producing forecasts.

The multivariate extension of the UC model can be used for simultaneous decompositions of
a group of related time series. As a result the components become vectors defined by stochastic
functions of vector disturbances generated by multivariate distributions. In the case of Gaussian
models, disturbance densities rely on variance matrices rather than scalar variances. The application
of non-diagional variance matrices requires that the time series be modelled simultaneously. The
variance matrices are of interest from an economic standpoint. They determine, for example, whether
the trends are positively correlated with each other, and whether a subset of the time series shares
a common cycle. From an econometric perspective, the multivariate extension of UC models is of
interest because it enables the modeller to identify specific stable relationships between time series.
It is therefore interesting to note that the phenomenon of cointegration can explicitly be modelled
within an UC framework by including common trends.

Some important contributions can be found in the economic literature that study the phenomenon
of convergence in the context of economic growth theory, see, for example, Williamson (1996), Galor
(1996) and Quah (1996). Various definitions of convergence have been suggested and several inference
procedures have been developed for the detection of convergence based on cross-section and time
series data, see, for example, Bernard and Durlauf (1996). Many contributions in the literature use
straightforward techniques for the comparision of two specific time series. In such analyses the focus
is on testing the hypothesis whether the production series of, say, Europe and Japan have converged,
see Cook (2002). In other contributions, distinction is drawn between specific forms of convergence
such as the convergence of growth rates and the convergence of overall variation, see, for example,
Temple (1999) and the references therein.

We will adopt the definitions of convergence introduced by Barro and Sala-Martin (1992). Our
starting point will be the definition of convergence as a reduction of the variation in a cross-section of
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time series. Whether the reduction of variability is due to harmonization in the underlying dynamics
of the growth, the cyclical behaviour, the volatility or a combination of these is to be deducted from
our modelling strategy. This paper does not focus on testing hypotheses of convergence such as is
done in Bernard and Durlauf (1995) and Harvey and Carvalho (2002). In the latter paper the authors
analyse convergence using unobserved components with balanced growth trends and concentrate on
the formulation of convergence tests.

In this paper we introduce multivariate time series models based on unobserved components with
explicit time-varying rank-reduction mechanisms in order to identify convergence features present
in the economic time series. We propose to model convergence via the gradual reduction in the
number of eigenvalues of the covariance matrix associated with the disturbance vector driving the
appropriate unobserved component. This convergence mechanism that we are introducing has not
been used within the multivariate UC framework before. The stochastic process governing a particular
unobserved component can be made subject to the proposed convergence mechanism. This makes the
identification of various types of convergence possible. For example, the short-term business cycle
dynamics of a cyclical process may convergence, while the long-term dynamics of a trend may not. In
general this approach permits the investigation of convergence to be directed towards the identification
of which types of convergence are present. Therefore, while it is possible that both the trend and cycle
components may converge, it may also be the case that only a feature of the trend component, say,
the growth of the trend, may be subject to convergence. In this paper we will present an illustration
with a panel of time series of real gross domestic product (per capita, in logs) from five different
European countries that appear to be subject to convergence in the rate of growth, cyclical behaviour
and the overall variance. In our analysis we are able to identify these different types of convergence
by defining a multivariate UC model with convergence mechanisms and by estimating the parameters
using maximum likelihood methods based on the Kalman filter.

The multivariate unobserved converging component model is considered for the per capita real gross
domestic product of five European countries: Germany, France, Italy, Spain and the Netherlands.
Various UC models both with and without convergence have been fitted and a full account of the
modeling process is given in this paper. We show that the main convergence features in these series
are present in the cyclical pattern and in the overall volatility. For example, it is found that convergence
of the cycle component began following the introduction of the Exchange Rate Mechanism in 1979,
with complete convergence having taken place by the inception of the Common Market in 1993.

The remaining part of the paper is organized as follows. The multivariate unobserved components
time series model with common trend and cycle components is discussed and is estimated for the
European GDP series in section 2. The resulting salient features of the GDP series are presented and
discussed. The multivariate common converging trend-cycle decomposition model is introduced in
section 3. Empirical results of various model specifications for the European GDP series are presented
in section 4 and some final remarks are made in section 5. The details of the convergence mechanism
for a simple multivariate UC model are reviewed in the Appendix.
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2 Trend-cycle decompositions of European GDP series

Many economic time series typically feature a long term trend with cyclical variations around this
trend. Further they are often characterised by trends with different growth rates for different periods
and by cycles with time-varying characteristics. The identification of these unobservable features can
be improved by considering a multiple set of similar time series. Therefore a multivariate unobserved
components time series model is considered.

2.1 Trend and cycle components

A general unobserved components model for a multiple set of non-seasonal economic time series can
be expressed as

yt = µt + ψt + εt, t = 1, . . . , n, (1)

where yt represents the actual time series, and the unobserved components consist of the trend µt,
cycle ψt and irregular εt, all of which are vectors. These unobserved vectors are modelled as stochastic
processes. For example, a simple model for the trend µt is given as part of the local level model (13)
in the Appendix. However, the long-term trends of the GDP series are subject to positive growths
which can be incorporated in the trend specification as follows,

µt+1 = µt + βt + ηt, βt+1 = βt + ζt, ηt ∼ N (0, σ2Ση), ζt ∼ N (0, σ2Σζ), (2)

for t = 1, . . . , n and σ2 > 0 where βt is the p× 1 vector of growth terms. This trend model is known
as the local linear trend model. If Ση = Σζ = 0, then βt+1 = βt = β, and µt+1 = µt + β, so that
the trend model (2) reduces to a deterministic linear trend. If Ση = 0 and Σζ 6= 0, the growth vector
βt is stochastically time-varying and the trend vector µt has become a cumulator function of growth
terms which will result in a smooth trend component. Deficient ranks of variance matrices Ση and
Σζ imply common trend and growth components; see the discussion in Harvey (1989) and Harvey
and Koopman (1997). The presence of common trends implies what is known as cointegration in the
econometric literature; see Stock and Watson (1988). In short, it assumes that a (p− rη)× p matrix
of cointegrating vectors G exists such that Gyt is stationary. This requires that GA = 0.

Various specifications for a cycle component ψt may be considered. For example, we may wish to
generate multiple cycles by vector autoregressive processes. Alternatively we can represent the cyclical
processes by a set of trigonometric terms with time-varying coefficients. A stochastic cyclical process
can be incorporated in a multivariate time series model. The multiple cycle component is given by(

ψt+1

ψ+
t+1

)
= ρ

([
c s

−s c

]
⊗ IN

)(
ψt

ψ+
t

)
+

(
κt

κ+
t

)
, (3)

where c = cosλc, s = sinλc and Ik is the k × k identity matrix. The p × 1 vector ψt consists of
similar cycles that have a common frequency λc and a common autoregressive coefficient |ρ| < 1. The
disturbance vectors are serially and mutually uncorrelated, and are normally distributed with mean
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zero and variance matrix

Var

(
κt

κ+
t

)
= I2 ⊗ σ2Σκ,

such that κt and κ+
t have a common variance matrix Σκ. This specification generates a stationary

multiple cyclical process with a period of fc = 2π/λc. The individual cycles in ψt have similar
properties due to the common damping factor ρ and the cycle period λc. More details on similar
cycles can be found in Harvey and Koopman (1997).

The model is completed by taking the irregular component εt as a normally distributed random
vector with mean zero and variance matrix σ2Σε. The irregular and other disturbances associated
with the various components are mutually uncorrelated, both contemporaneously and between different
time periods. We finally note that the constant σ2 > 0 is the variance scalar that is common to all
components of the model. It can be estimated when one of the non-zero elements in the variance
matrices Ση, Σζ , Σκ and Σε is set to one. The common variance is introduced because we will allow
it to vary over time in the next section in order to model variance convergence.

The unknown parameters in the trend plus cycle model are the variance matrices Σε, Ση, Σζ and
Σκ together with the autoregressive coefficient ρ and the cycle frequency λc. These parameters are
estimated by maximum likelihood for which the Kalman filter is employed to compute the loglikelihood
function for a given set of parameters. The fixed common variance can be concentrated out of the
loglikelihood function and can be estimated implicitly by the Kalman filter output; see Harvey (1989).
The resulting concentrated loglikelihood function can be maximised numerically with respect to the
vector of parameters. The variance matrices need to be non-negative definite while the cycle coefficients
are subject to the restriction 0 ≤ ρ < 1 and λc = 2π/fc with a cycle period of fc > 2. The restrictions
are implemented by representing the variance matrices via the Cholesky decompositions

Ση = ADηA
′, Σζ = BDζB

′, Σκ = CDκC
′, Σε = EDεE

′, (4)

where the matrices A, B, C and E have a unity lower triangular structure. Their number of nonzero
columns depends on the number of nonzero diagonal elements in the diagonal matrices Dη, Dζ , Dκ

and Dε. To enforce the restriction that the diagonal matrices have positive values, we take

Da = diag
{
exp(2d∗a,1), . . . exp(2d∗a,ra)

}
, (5)

for a = η, ζ, κ, ε with ra as the rank of the corresponding variance matrix (assuming that the elements
d∗a,1, . . . , d

∗
a,ra do not tend to −∞). Finally, we have ρ = |θρ| (1+ θ2

ρ)
−1/2 and fc = 2+exp θλ where θρ

and θλ are the parameters that are actually estimated together with the matrices from the Cholesky
decomposition of the variance matrices.

The Kalman filter is used for the computation of the loglikelihood function, for more details see,
for example, Durbin and Koopman (2001). This requires the model to be represented as a state
space model. The computations are implemented using the object-oriented matrix programming
environment Ox of Doornik (1999) and using the Ox library of C functions for state space models
SsfPack by Koopman, Shephard, and Doornik (1999). The computations for the basic multivariate
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model of this section can also be carried out by the STAMP package of Koopman, Harvey, Doornik,
and Shephard (2000). The bulk of the parameters are part of the variance matrices of the model.
Initial estimates are obtained via the EM algorithm, see discussion in section 7.3 of Durbin and
Koopman (2001). The convergence UC model introduces two to three additional parameters for each
convergence mechanism which can be estimated simultaneously with the other parameters. Specific
adjustments are required for the EM method and for the evaluation of analytical scores.

2.2 Stylized facts of European GDP series

We consider a multiple time series of real gross domestic production per capita (GDP) for five European
countries: Germany, France, Italy, Spain and the Netherlands. The time series are measured in local
currencies on a quarterly basis and cover the period of the first quarter of 1970 to the first quarter of
2001. We obtained the required population and GDP series from OECD sources1 and calculated the
series after which we standardized each series to the value of 100 in 1970. The rescaling of the data is
justified due to the fact that the series are measured in different currencies, see Knowles (2001) for a
related discussion. We model the logarithm of these time series multiplied by 100. The resulting time
series is denoted by

yt = log GDP


Germany
France
Italy
Spain
Netherlands

 at time t = 1, . . . , n corresponding to 1970Q1, . . . 2001Q1,

with n = 125. The five time series are presented in Figure 1. The typical features of trends and cycles
in the GDP series can be detected. The unobserved components model introduced in the previous
section is estimated using the Kalman filter and numerical optimisation methods. The resulting
estimated transformed parameters of the diagonal variance matrices Dε, Dη, Dζ and Dκ in (4) are
reported in Table 1 in the third row of each panel (sample 1970–2001).

It follows from these results that the estimates of the trend variance matrices Ση and Σζ have
lower ranks. In particular, the estimates imply that r(Ση) = 1 and r(Σζ) = 3, indicating that the five
trends are relatively smooth. This conclusion is confirmed by Figure 2 where the estimated trends are
presented (first column) together with the associated slope components (second column). The growth
rates of the trends vary but the overall growth is high in the beginning of the 1970s and drops to a
slow growth in the beginning of the 1990s. In the course of the 1990s all growth rates increase. These
features are also reflected in the trends themselves. The growth rates for Germany, France and Italy
are similar while the slopes for these three countries in turn is different from the similar pair of slopes
for Spain and the Netherlands. The patterns from 1986 onwards are similar for all five countries.
Finally, the swings in the growth rate of Spain are more dramatic.

1See http://www.sourceoecd.org/content/html/index.htm.
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Figure 1: Quarterly seasonal adjusted real gross domestic production (per capita) for Germany, France,
Spain, Italy and the Netherlands for the period 1970Q1 – 2001Q1.
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Figure 2: Estimated trend, slope (or growth rate) and cycle components for common trend-cycle
model are presented column-wise for Germany, France, Spain, Italy and the Netherlands. Estimates
are based on estimation sample 1970–2001.
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Table 1: Estimated diagonal variance matrices of common trend-cycle model

Germany France Italy Spain Netherlands

sample d∗1 d∗2 d∗3 d∗4 d∗5

1970− 1986 −1.86 - - - -
level Dη 1987− 2001 −1.36 - −1.51 - -

1970− 2001 −0.47 - - - -

1970− 1986 −1.52 −2.41 −2.67 −2.11 -
slope Dζ 1987− 2001 −2.42 −2.59 - - -

1970− 2001 −2.30 −3.49 - −2.44 -

1970− 1986 −1.17 −1.77 −2.34 - -
cycle Dκ 1987− 2001 −1.47 −2.38 - - -

1970− 2001 −1.27 −1.51 −1.98 - -

1970− 1986 −0.47 −1.87 −2.01 - -
irregular Dε 1987− 2001 −0.77 −1.80 −1.48 −1.94 -

1970− 2001 −0.70 −1.60 −1.74 - −1.06

The estimates are for the transformed values of the diagonal variance matrices in (4) for three different samples. The

transformed value d∗i is the logarithm of the square root of the ith diagonal element of D. Large negative values produce

therefore variances which are close to zero.

The estimated parameters for the multiple cycle component are given by

θ̂ρ = 2.48 (s.e 0.38), θ̂λ = 2.72 (s.e 0.09),

which imply a similar cycle with an estimated autoregressive coefficient ρ of 0.93 (with a 95% confidence
interval between 0.87 and 0.96) and an estimated cycle period fc of 17.2 quarters (with a 95% confidence
interval between 14.8 and 20.0). The estimate of the variance matrix Σκ, which applies to both
disturbance vectors κt and κ+

t , has a rank of 3 according to the estimate of matrix Dκ reported in
Table 1. The cycles of the five countries can therefore be described by three mutually uncorrelated
common similar cycles. These empirical results alone can be of interest to economists. European policy
decisions on integration can benefit from the empirical confirmation of the existence of common cycles,
especially if the actual dependence of individual European countries on common cyclical movements
can be empirically identified. To be able to adequately address this last point, we would need to report
the estimate of the C matrix in (4). To limit the number of tables in this paper we will only present the
estimates of the matrices A, B, C and E in the discussion of the empirical results for the converging
models. The estimated cycle components presented in Figure 2 show that the oil crises in the 1970s
have clearly induced two or three recessions in Europe. All countries but Spain show recessions in the
beginning of the 1980s corresponding to the double-dip recession in the United States.

According to the diagnostic test statistics reported in Table 4 under the columns denoted byM , the
estimated common components model is not entirely satisfactory. The table presents some standard
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diagnostics based on the residuals of the estimated model. The standardized one-step ahead residuals
are assumed to be standard normally distributed and serially uncorrelated. It follows from the reported
statistics that France and the Netherlands may be subject to some moderate outliers, the dynamics
are not well captured for Spain and for most series the residuals appear to be heteroskedastic. It is of
interest to determine whether these model diagnostics improve when we consider converging models.

The common components model provides a satisfactory overall fit when we compare the sum of
squared residuals with the sum of squared residuals from a model with only a constant and a fixed
time trend. The percentage decrease of the common components model for all five series is at least
82% in relation to the naive model with a maximum decrease for Spain and a minimum decrease for
Germany.

2.3 Preliminary evidence of convergence in European GDP series

We now focuses on the question whether it is reasonable to assume that the rank of a variance matrix
changes over time to a lower rank. If this is the case we will consider this to be an indication of
some converging behaviour by a particular set of components. The full sample is split into the two
roughly equivalent subsamples of 1970–1986 and 1987–2001. The trend-cycle components model is
re-estimated for both of these subsamples. The estimation results of the variance matrices D, which
determine the rank of the variance matrices in (4), are produced in Table 1. It is perhaps not surprising
that we do indeed find evidence that convergence mechanisms play a role within the multiple time
series. The estimated variance matrix of the slope component has a rank of 4 for the first sample,
whereas in the second sample its rank is 2. Similarly, in the case of the cycle variance matrix in the
first sample, the estimate of Dκ indicates a rank of 3 while in the last sample it indicates a rank of 2.
These results provide some evidence of slope and cyclical convergence although any conclusions made
must be tentative ones, because the subsamples consist of five series with at most 68 observations,
representing only a moderate sample size. Furthermore, the cycles have an estimated period of more
than 4 years so that realistically no more than three, or at most four full cycles can be observed within
each subsample.

3 Unobserved common converging components

In this section we introduce the converging mechanism for the growth and cycle components. Details
of the implementation of convergence in an unobserved components time series model are given in
the Appendix. The multivariate trend-cycle decomposition model is represented as a dynamic factor
model for the p× 1 vector of time series yt and is given by

yt = a+Aµ∗t + Cψ∗t + εt, εt ∼ N (0, σ2Σε), (6)

where a is a p× 1 vector with the first rη elements equal to zero, A is a p× p unity lower triangular
matrix and C is a p× rκ unity lower triangular matrix. The matrix A differs somewhat from matrix
A in (14) of the Appendix in that zero rows and zero columns, corresponding to the diagonal zero
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elements in Dη, must be added. All of the diagonal elements of A, however, including those of the
added zero rows and columns, are unity. The specification of common growth rates given below in
subsection 3.1 necessitates the augmentation of the matrix A in this manner. The matrices A and C
are sometimes referred to as factor loading matrices. The unobserved factor µ∗t represents the p × 1
vector of underlying trends and factor ψ∗t represents the rκ × 1 vector of cyclical components.

An unobserved component with an activated convergence mechanism that models the gradual rank
reduction over time such as (15) of the Appendix is defined as an unobserved converging component.
From an economic viewpoint, convergence in growth and cycle components can be of major interest
as we will show in the analysis of European GDP series in section 4 where models with unobserved
converging components are estimated. In subsections 3.1 and 3.2 we introduce the convergence mech-
anisms for the trend and cycle component. In subsection 3.3 we turn our attention to the specification
of variance convergence.

3.1 Common converging slope component

The trend component is specified as

µ∗t+1 = µ∗t + b+B∗β∗t + η∗t , η∗t ∼ N (0, σ2Dη),
β∗t+1 = β∗t + ζ∗t , ζ∗t ∼ N (0, σ2Dζ),

(7)

where the rζ×1 vector β∗t consists of the underlying growth terms of the trend µ∗t for t = 1, . . . , n. The
initial values for µ∗1 and β∗1 are treated as being generated from diffuse density functions. The vector b
is a p× 1 vector of unknown constants of which the first rζ are fixed at zero. The p× rζ factor loading
matrix B∗ is unity lower triangular. The disturbance vectors η∗t and ζ∗t are mutually and serially
uncorrelated and have diagonal variance matrices Dη and Dζ , respectively. Note that the matrix B

in 4 is given by B = AB∗, and therefore the matrix Σζ can be expressed as Σζ = AB∗DζB
∗′A′.

When rη = rζ = p and ψt = 0 in (6), the multivariate local linear trend model reduces to a SUTSE
specification in which the variance matrices Ση and Σζ are of full rank. Common trend specifications
are obtained when rη < p or rζ < p or both. Note that common trends imply cointegration.

In the application of this paper, the convergence of the trend takes place in the growth rate. We
will therefore give the details of convergence for the slope component. A gradual change of a non-zero
value for a particular element of Dζ to a zero value can be accomplished by the logit function

dζ,t,i = exp(2d∗ζ,i) exp(sζ,t,i)/{1 + exp(sζ,t,i)}, i = 1, . . . , rζ , (8)

where dζ,t,i is the ith element of the time-varying variance matrix Dζ,t that replaces Dζ in (7). The
size of the logarithm of the standard deviation of the ith element of Dζ,t is d∗ζ,i for i = 1, . . . , rζ . The
variable sζ,t,i is specified as

sζ,t,i = s∗ζ,i × (t− τζ,i), i = 1, . . . , rζ ,

where s∗ζ,i is typically negative and determines how quickly the function sζ,t,i approaches zero and τζ,i
determines the mid-point of this change over time. Further details of the converging mechanism are
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discussed in the Appendix. A similar logit-converging mechanism can be introduced for the variance
matrix of the trend component itself, Dη,t, which is then also time-varying and replaces Dη in (7).
The details of this convergence mechanism are the same as for the slope component and are discussed
in the Appendix.

3.2 Common converging cycle component

The cycle component ψ∗t is defined in a similar way as in equation (3) with ψt = Cψ∗t and ψ+
t = Cψ∗+t

where (
ψ∗t+1

ψ∗+t+1

)
= ρ

([
c s

−s c

]
⊗ Irκ

)(
ψ∗t
ψ∗+t

)
+ κ×t , κ×t ∼ N (0, I2 ⊗ σ2Dκ), (9)

for t = 1, . . . , n. The cycle vectors ψ∗t and ψ∗+t have dimension rκ × 1 and the vector of disturbances
κ×t has dimension 2rκ × 1. The fact that ψt = Cψ∗t such that Σκ = CDκC

′ is only valid for similar
cycles; see Harvey and Koopman (1997) for the technical details.

The convergence mechanism introduced for the trend component in the previous subsection can
also be incorporated in the diagonal variance matrix of the cycle disturbances Dκ. It implies that
matrix Dκ becomes time-varying and its i-th element will be modelled in the same manner defined in
(8) for i = 1, . . . , rκ.

3.3 Common converging variance component

The specification of a common converging variance component as a formalization of convergence in
the overall variance requires three parameters. Unlike the other forms of convergence for the trend,
slope, and cycle components, the common variance σ2 cannot be allowed to converge to zero unless we
are willing to entertain the idea of convergence to a deterministic system of non-stochastic equations.
To ensure that we retain some volatility after the convergence of the common variance, we introduce a
third constant parameter into the convergence specification. This leads to the following specification
for variance convergence,

σ2
t = exp(2dσ) + exp(2d∗σ) exp(sσ,t)/{1 + exp(sσ,t)}. (10)

According to (10), the total volatility before convergence sets in is given by exp(2dσ) + exp(2d∗σ),
while only the constant term exp(2dσ) remains after convergence has occurred. Both dσ and d∗σ are
the logarithm of a standard deviation. The size of the constant component of the total volatility is
determined by dσ, while d∗σ determines by how much volatility declines due to variance convergence.
In an analogous fashion to the definition of sη,t,i in (16), the variable sσ,t is specified as

sσ,t = s∗σ × (t− τσ)

where s∗σ < 0 determines the rate at which the function sσ,t approaches zero and τσ determines the
mid-point of the change over time.
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4 Convergence in European GDP series

We now turn our attention to the question of how the various types of covergence presented in the
previous section can be applied in practice to develop an appropriate statistical model. We demostrate
this by generalizing the trend-cycle model presented in section 2 to include the three different types
of convergence.

4.1 Specification and estimation of converging trend-cycle model

To apply the convergence mechanisms, we first determine which diagonal elements da,i from the
matrices Da for i = 1, . . . , ra and a = η, ζ, κ, are candidates to converge to zero. Given the structure
of the Cholesky decompositions of the variance matrices in (4), it is possible to infer a number of
simple rules that will hold in most situations. We illustrate these rules via a discussion of Dζ .

Generally, it will not be the case that the first diagonal element dζ,1 will converge to zero. Although
technically possible, the result of such convergence is that the variance of the disturbance driving the
slope component for the first series degenerates to zero. In other words, the element dζ,1 represents the
sole source of variability for the slope component of the first series. This can be verified directly via
(4). In the case of our model, dζ,1 corresponds to the variance of the slope component for Germany.
Examination of the estimated values given in Table 1 for dζ,1 suggests that this parameter is not
subject to the convergence mechanism, given that its value is the largest one in the Dζ matrices for
each sample. The same can be said of the values for dη,1 and dκ,1.

The second diagonal element dζ,2 represents the marginal contribution to the variance of the
slope disturbance for the second series, France, after accounting for the contribution made by dζ,1.
The contribution of dζ,1 is the result of the correlation between the slope disturbances for the first,
Germany, and second series, France. In general, the structure of the Cholesky decomposition implies
that the variance of the slope disturbance for series j is only affected by dζ,1, . . . , dζ,j . The elements dζ,i
for i > j make no contribution to the variances of the slope disturbances for the series j. Therefore,
in the case of the second series, France, it is also less likely that dζ,2 is subject to the convergence
mechanism, because this would imply that the slope disturbances of Germany and France become
perfectly negatively or positively correlated after convergence has taken place. We wish to point out
that it is a relatively strong statement about slope convergence for these two series. This is, of course,
not to suggest that this could not have happened, but it is unlikely. In any case, the results in Table
1 indicate that the estimated value of dζ,2 remains roughly constant over the entire sample period.
This also applies to the estimates shown for dκ,2, while in the case of dη,2 all estimates indicate that
France does not have its own variance for the trend disturbance in any of the sample periods.

For the series i for i > 2, the convergence of dζ,i to zero implies that the variance of the slope
disturbance for the series i becomes a linear combination of slope disturbances of the first i− 1 series.
For this reason the correlations between the slope disturbance for the series i with those for the first
i−1 series will still typically be less than one in absolute value after convergence. We therefore regard
the last element dζ,rζ as the most likely candidate for convergence. This is a consequence of the fact
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that the variance of the slope disturbance for the series rζ becomes a linear combination of all other
values of dζ,i in the case that this element converges. Generally it is the case that the larger the
number of elements that are involved in a linear combination, the greater the chance one element will
converge. We therefore conclude for a = ζ, κ that the most likely candidate for convergence is da,i for
the largest available value of i, that is i = ra. Inspection of the estimates in Table 1 supports this
conclusion as well. Where there is evidence of da,i dropping out of the model in the latter part of the
sample period for a = η, ζ, κ, it is for values of i of either 3 or 4. In the case of dη,i, the estimates show
no evidence of convergence. In fact the estimates obtained for the entire sample period indicate that
only one value dη,1 is responsible for the trend volatility for all five countries in Ση. For this reason
we do not apply the convergence mechanism to Dη and restrict our attention to model specifications
in which rη = 1. This has the advantage of resulting in more parsimonious models, which, given the
number of model parameters, is an important advantage.

Returning to the example of the slope component, we note that a further consequence of the
Cholesky decomposition of Σζ is that the variances and correlations among the slope disturbances
for the first i− 1 series are not influenced by the existence of a convergence mechanism on dζ,i. The
variances of the slope disturbances for the series j, where j ≥ i, can be altered by this convergence. The
correlations between the slope disturbances for the series j, where j ≥ i, with the slope disturbances
from all other series can also be changed by convergence. For this reason we also consider it to be
important, in the case of our example of GDP, to place the largest, most dominating and stable
economies first in the observation vector, with the smaller, more dependent, and less stable economies
last, because the latter economies are more likely to have been effected by convergence towards the
economies of the more dominating countries of the European Union (EU). Although this rule does
not lead to a unique ordering of the countries in the observation vector yt, it does in any case seems
reasonable to have Germany and France, two of the orginal member of the EU, as the first two elements
of yt, given the economic dominance of these countries. Italy too is one of the original members of
the EU and also has a larger economy than either Spain or the Netherlands, although smaller than
that of either Germany or France. For these reasons we opted to place Italy third in the observation
vector. We chose to place Spain fourth in the vector, reflecting the fact that Spain only joined the EU
in 1986. Although the Netherlands has been a member of the EU since its inception, it is a smaller
country with little power to influence the larger economies in the EU, and as a result, the Netherlands
is the last series.

In summary, based on the estimates for the common trend-cycle model without convergence mecha-
nisms reported in Table 1, as well as on the model structure implied by the combination of the Cholesky
decomposition parameterization of the variance matrices together with the convergence mechanism, we
have opted to produce estimates for the trend-cycle model of the previous section with the incorpora-
tion of converging mechanisms for the slope βt, the cycle ψt and the common variance σt components.
At first the convergence mechanism is introduced to element 4 of the diagonal variance matrix of
the common slope component βt and the resulting model is indicated by Mβ. In the same way, the
convergence mechanism is placed on the third element of the diagonal matrix Dκ to investigate cycle
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convergence only. This model is indicated by Mψ. The trend-cycle model without any convergence
mechanism is indicated by M and the model with only the convergence mechanism for σ2 is indicated
by Mσ. Although we have also investigated employing the convergence mechanism on other elements
of Dζ and Dκ, no other specification produced significant results based on the loglikelihood values
and standard information criteria such as the Akaike information criterion (AIC). In the discussion
of the results below we only consider the models with convergence mechanisms that are estimated
significantly. Finally, the model with convergence considered for all components will be indicated by
Mβψσ.

The full modelling and estimation process is as follows. First the non-converging model M is
estimated for which some of the results for the European GDP series are reported and discussed in
section 2. The estimated parameters of the M model act as the starting values for the parameters
of the models Mβ , Mψ and Mσ. In particular, we maintain the restrictions of rη = 1 and rε = 4 in
all model specifications in the interests of parsimony. Initial values for τ and s∗ of the convergence
mechanisms are chosen so that the original values of Dζ , Dκ or σ remain almost fixed throughout. We
then explore the possibility that convergence can take place at various points in time. This amounts to
setting s∗ close to zero. We typically started with a value of τ = n/2, but we also thoroughly explored
values corresponding to the start date for the European Exchange Rate Mechanism in 1979Q1 and
Spanish entry to the EU in 1986Q1. The initial values used in the maximum likelihood optimization
routine for the converging models are similar to the values for M , some of which are reported in Table
1. The estimates for the models Mβ , Mψ and Mσ are then used to initialize the maximum likelihood
routines for the models employing two type of convergence: Mβψ, Mβσ and Mψσ. Finally, estimates
obtained for the the latter more complex converging models serve in turn as starting values for the
final and most complex model of interest Mβψσ.

All models, including the converging trend-cycle models, are estimated by maximum likelihood for
which the Kalman filter is used for the evaluation of the loglikelihood function. The Kalman filter
can handle time-varying state space models which we require for representing the converging model
in state space form since the variance matrices are time-varying due to the convergence mechanisms
defined in (8) and (10).

4.2 Estimation results for European GDP series

The estimation results for model M are discussed in section 2 and the estimated elements of the
diagonal variance matrices of the common components are reported in Table 1. The parameters in
Table 1 correspond to the d∗ parameters of the converging mechanism defined in (8) and (10) and
their estimates for the three single convergence models are reported in Table 2 together with the
convergence rate parameter s∗ and the timing parameter τ . Estimates of the same parameters for
the final model Mβψσ are also reported. The models Mσ and Mβψσ incorporate variance convergence
which requires a third convergence parameter dσ. This parameter is also reported in Table 2.

Since the variance matrix Ση for the level disturbance ηt is estimated to have rank one in model
M , we have used this restriction for all converging models. The estimated value of d∗η,1 is around
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−0.5 for most models except for Mσ. In fact, the estimated d∗ values in Dζ and Dε for the various
convergence models do not vary a great deal. This indicates that a large number of parameters in
the convergence models are estimated in a numerically stable manner. Of particular interest are the
estimates of the parameters s∗ and τ of the converging mechanisms. The actual values of s∗ and τ are
not straightforward to interpret and therefore we graphically present in Figure 3 the three different
convergence mechanisms for the slope, cycle and common variance components which are estimated
simultaneously for model Mβψσ. The graphs clearly show two different converging patterns. By the
end of the sample period the slope and cycle convergence processes have taken place, while the common
variance is still in the process of converging. It is estimated that the standard deviation of the variance
will eventually converge to the value of 0.037. We note, however, that the final converged value of this
variance is difficult to estimate accurately given that both the starting and converged values lie well
outside the sample period. The midpoints of convergence for the slope is aproximately 1981Q2 and
for the cycle it is approximately 1983Q3, or about two years later. This fact will be discussed further
below.

The log-likelihood values of the various estimated models, denoted by log(L), are reported in
Table 3 together with the number of parameters, np, that are present in the model and the Akaike
information criterion (AIC) that we have computed as

AIC = −2 log(L) + 2np. (11)

We use the minimum of the AIC to determine the “best” model within the class of converging trend-
cycle models in terms of fit relative to the number of parameters required for the estimation. The
minimum value of the AIC is found for the model Mψσ. This may indicate that cycle and common
variance convergence is most relevant for the European GDP series. Although the slope convergence
is strong, it is only relevant for the GDP of Spain and it has a lesser impact on the multiple GDP
time series as a whole. However, for the illustrative purposes of this paper we will mainly discuss the
estimation results of the full converging model Mβψσ because it considers all aspects of the converging
trend-cycle model.

The factor loading matrices A, B, C and E of the model Mβψσ are estimated as

Â =


1 0 0 0 0
0.08 1 0 0 0
−0.42∗ 0 1 0 0
−0.02 0 0 1 0
0.51∗ 0 0 0 1

 , B̂ =


1 0 0
1.48∗∗ 1 0
1.03∗ 0.14 0
1.91∗∗ 1.39∗∗∗ 1
0.94∗ 1.33∗ 0.27∗



Ĉ =


1 0 0
0.48∗ 1 0
1.20∗∗ 0.49 1
0.77∗∗ −0.17 −0.28∗

0.32∗ −0.31 1.52∗

 , Ê =


1 0 0
0.18∗ 1 0
0.05 −0.27 1
−0.06 −0.16 −1.04∗∗∗

−0.24 1.37∗∗ −0.46∗


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where ∗, ∗∗ and ∗∗∗ indicate that the t-statistic is estimated as being greater than 1, 2 and 3, respec-
tively. Zero values in the loading matrice A are the result of the fact that the corresponding values of
di are 0. This causes these parameters to drop out of the model, hence the reported values of 0. There
are some restrictions which could be applied by assigning various parameters a value of 0, particularly
in the matrix E. This will not be explored further.

It can be inferred from the factor loadings of the converging element of the slope component (that
is the third column of B) that the slope convergence is strongest for Spain. The mid-point of the
convergence is in the year 1982. Around this year the import and export activity of Spain with
Europe increases exponentially while imports and exports with the countries of South America, for
which tradionally strong trade links existed, hardly increases in this period. For example, European
Union (EU) imports were five times higher in 1992 than it was in 1980 (for exports it was four times).
This has heavily influenced the development of GDP in Spain and its dependence on the EU member
countries’ economies. Therefore it may not be surprising that Spanish growth converges during this
period toward the growth pattern followed by the EU member countries. This mainly explains the
fact that the slope component converges from three factors to two factors. There is also some weak
evidence of the Dutch growth rate converging. This may partly be explained by the fact that Dutch
GDP heavily depends on trade figures and more trade within Europe therefore likely leads to a stronger
dependence on EU GDP growth. Finally it is noted that the fact that the factor loading matrices are
restricted to be lower triangular and the fact that the fourth common slope component is converging,
rather than the third, is evidence that the GDP growth of Germany, France and Italy converge before
the beginning of the sample, that is before 1970. The GDP of these three countries can be described
by two common slope factors for the whole sample. The GDP growth of Spain and the Netherlands
roughly converges to these two factors by 1986, the year in which Spain officially joined the EU.

The characteristics of the cyclical convergence are more complex, because more countries are
involved. In fact we can distinguish two main GDP cycles in mainland Europe: one for Germany and
one for France. The GDP cycles of the other three countries considered in our study converge towards
these two cycles with full convergence taking place by the beginning of the 1990s. Based on the
estimated C matrix we can conclude that the five countries have the first common cycle component
in common. The second common cycle is only significant for France since the factor loadings for
the second cycle are not significant for Italy, Spain, or the Netherlands. Further, the converging
cycle (the third column of C) is significant for Italy and the Netherlands, and to a lesser extent, for
Spain. The empirical findings of cyclical convergence for Italy may well correspond to the inception of
the Exchange Rate Mechanism. Arguably, stable economic conditions were required for entering the
Exchange Rate Mechanism in 1979, as well for the later participation in the Euro, and as a result Italy
was forced to follow the two dominating EU business cycles more closely. Given the discipline required
by the goal of monetary union, it is even surprising that France deviates from the economic European
cycle. However, the variation of the specific cycle for France (after correction for the European cycle)
is moderate given its logged standard deviation estimated as −1.39 compared to the one of ”Europe”,
that is −0.97, for model Mβψσ.
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Figure 3: The converging mechanisms for slope (β), cycle (ψ) and variance (σ) convergence in model
Mβψσ.
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Finally, the estimated Cholesky matrix E of the irregular variance matrix in (4) is not of any
significant interest. However, it is worth mentioning that the irregular series of Italy and Spain are
strongly negatively correlated implied by the highly significant value of −1.04 in E, element (3, 4). This
may well be explained by the competitive nature of the trade of both countries within Europe. When
Spain is doing well in terms of GDP, Italy may have done less well as a result, and vice-versa. Casual
observation would certainly seem to suggest that various products and services traded in Europe come
from both Italy and Spain, for example, wine and tourism.

Table 2: Estimated diagonal variance matrices of converging trend-cycle model

Ger Fr It Sp Neth

UC model d∗1 d∗2 d∗3 d∗4 d∗5 i s∗i τi time

Lvl Dη Mβ −0.53 - - - - - - - -
Mψ −0.50 - - - - - - - -
Mσ −0.33 - - - - - - - -
Mβψσ −0.45 - - - - - - - -

Slp Dζ Mβ −2.30 −3.66 - −1.47 - 4 −0.43 48.2 1982Q1
Mψ −2.18 −2.80 - −2.34 - - - - -
Mσ −2.18 −2.92 - −2.33 - - - - -
Mβψσ −2.30 −2.93 - −1.45 - 4 −0.29 45.2 1981Q2

Cyc Dκ Mβ −1.17 −1.48 −1.87 - - - - - -
Mψ −1.19 −1.46 −3.22 - - 3 −0.50 66.2 1986Q3
Mσ −0.99 −1.42 −3.23 - - - - - -
Mβψσ −0.97 −1.39 −0.86 - - 3 −0.21 54.1 1983Q3

Irr Dε Mβ −0.69 −1.61 −1.74 - −1.01 - - - -
Mψ −0.65 −1.63 −1.95 - - - - - -
Mσ −0.60 −1.41 −1.52 - −0.99 - - - -
Mβψσ −0.54 −1.49 −1.34 - −0.87 - - - -

σ2
t Mσ dσ = −3.16 d∗σ,t = −0.60 - −0.055 93.3 1993Q2

Mβψσ dσ = −3.29 d∗σ,t = −0.54 - −0.055 100.4 1995Q1

The estimates are for the transformed values of the diagonal variance matrices in (4) for four different models of conver-

gence. See Table 3 for the definition of the four models. The transformed value di is the logarithm of the square root of

the ith diagonal element of D. Large negative values produce therefore variances which are close to zero. To facilitate

the comparison of the results for the various models, the values for di obtained for models with variance convergence

are from the first quarter of 1970 and are reported after re-scaling the values to reflect the contribution due to σ2. This

amounts to the rescaling of the variance so that σ2
1 = 1.
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Table 3: Log-likelihood values of estimated models

model description log(L) np AIC

M : UC, 1970− 2001 -634.69 43 1355.37
M70−86 : UC, 1970− 1986 -371.22 45 -
M87−01 : UC, 1987− 2001 -184.80 42 -

Mβ : UCC, slope convergence -628.42 45 1346.85
Mψ : UCC, cycle convergence -616.72 45 1323.45
Mσ : UCC, variance convergence -604.28 46 1300.57
Mβψ : UCC, slope and cycle convergence -609.62 47 1315.24
Mβσ : UCC, slope and variance convergence -602.08 48 1300.15
Mψσ : UCC, cycle and variance convergence -595.78 48 1287.57
Mβψσ : UCC, slope, cycle, and variance convergence -595.31 50 1290.63

The log-likelihood values are computed via the Kalman filter that is adapted for the diffuse initialisations of the trend

and slope (nonstationary) components.

4.3 Diagnostic checking

The diagnostics of the standardised residuals (obtained for the estimated converging trend-cycle model
Mβψσ for normality, heteroskedasticity and serial correlation are presented in Table 4. They are for
the most part satisfactory for the five residual series. In fact when they are compared with the
diagnostics of the estimated non-converging model M they have generally improved. In particular,
the heteroskedasticity tests and the normality tests are all satisfactory except for Spain. The residual
series of Spain indicate that a more modest decline in the variance may be required for the observations
after 1986.

Figure 4 presents the cumulative sum of squared residuals for all standardised prediction residuals,
that is

Cj = cj/cn, cj =
j∑
t=1

v′tF
−1
t vt,

for j = 1, . . . , n, where vt is the vector of one-step ahead prediction errors and Ft is its variance matrix
at time t. Both vt and Ft are computed by the Kalman filter. Relative large deviations of Cj from j,
whether they are positive or negative, indicate some structural break in the variance. It is clearly seen
from Figure 4 that for the non-converging model M such breaks occur right from the beginning of
our sample. This is the main reason for including the common variance converging mechanism of (10)
in the final model Mβψσ. The graph of Cj for the estimated model Mβψσ in Figure 4 shows that the
inclusion of variance convergence in the model has been effective in dealing with the heteroscedasticity
in the time series due to breaks and other irregularities.
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Figure 4: Cumulative sum of squared residuals Cj for common trend-cycle (M , broken line) and
converging trend-cycle model (Mβψσ, solid line) together with the diagonal reference line (dotted
line).
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Table 4: Diagnostic checking for residuals of common converging trend-cycle model

NDH Q(10, 7) H(40) DW

M Mβψσ M Mβψσ M Mβψσ M Mβψσ

Germany 1.24 0.34 7.58 8.72 0.28∗∗ 0.56∗ 1.86 1.89
France 7.85∗ 2.79 11.7 14.1 0.33∗∗ 0.72 1.79 2.00
Italy 0.37 1.63 11.2 5.09 0.32∗∗ 0.96 1.48∗∗ 1.62∗

Spain 3.03 5.66 23.9∗∗ 14.3∗ 0.88 3.03∗∗ 1.91 1.86
Netherlands 6.25∗ 3.97 8.22 9.82 0.24∗∗ 0.89 1.93 1.75

M is the common trend-cycle model without convergence and Mβψσ is the common converging trend-cycle model

for the slope, cycle and variance components. The statistics are computed for the five standardized one-step ahead

residuals obtained from the Kalman filter. NDH is the asymptotic χ2
2 normality test of Doornik and Hansen (1994).

Q(p, q) is the Box-Ljung test for the first p autocorrelations and is asymptotically χ2
q distributed. H(k) is the standard

heteroskedasticity test computed as the ratio of the sum of the first k and the sum of the last k squared residuals and

is asymptotically F (k, k) distributed. DW is the Durbin-Waston test which we use here as a diagnostic. The notation ∗

indicates significance at the 5% level and ∗∗ indicates significance at the 1% level.

4.4 Multivariate decomposition into trends and cycles

Given that the model diagnostics are satisfactory for the Mβψσ model, we now present the estimated
trend, slope and cycle components based on all observations (smoothed estimates of elements of the
state vector). In Figure 2 we present the estimated vector components for the common trend-cycle
model M and in Figure 5 the same smoothed estimates of the components are presented for the
converging model Mβψσ. Comparison of the two figures indicates that they are similar as may be
expected. In the case of the similar cycle component, the estimated parameters for the Mβψσ model
are also close to those reported for the M model in section 2. For the Mβψσ model, we obtained the
following maximum likelihood estimates,

θ̂ρ = 2.09 (s.e 0.29), θ̂λ = 2.75 (s.e 0.10).

These values imply an estimated autoregressive coefficient ρ of 0.90 (with a 95% confidence interval
between 0.83 and 0.94) and an estimated cycle period fc of 17.7 quarters (with a 95% confidence
interval between 14.9 and 21.1).

There are, however, some subtle differences in the estimated components obtained with the two
models. The estimates of the slope and cycle components in the last ten years of the sample look more
similar for the model Mβψσ than those from the model M . This is to be expected because the slope
and cycle components are both linear functions of only two underlying factors for the model Mβψσ

whereas for the model M they remain functions of three factors.
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Figure 5: Trend, slope and cycle components for converging trend-cycle model.
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4.5 Time-varying correlations for converging common components

A quantity of particular interest for converging trend-cycle models is the correlation between the
individual elements of the converging component. Let us define the time-varying level correlations by

%η,t,i,j = σtΣη,t(i, j)/
√
{σtΣη,t(i, i)σtΣη,t(j, j)}, (12)

where Ση,t = ADη,tA
′, the diagonal variance matrix Dη,t being time-varying due to the convergence

mechanism introduced in (15) of the Appendix. Further, Ση,t(i, j) refers to the (i, j) element of variance
matrix Ση,t. These time-varying correlations can be presented as graphs and they provide information
about which two countries are converging to each other in terms of level dynamics. Similar quantities
to those defined in (12) can be introduced for the slope (%ζ,t,i,j) and cycle (%κ,t,i,j) components. Note
that the correlations are not affected by variance convergence since the common variance σt cancels
out in the computation of %η,t,i,j and in the other correlations.

In Figure 6 we present a selection of the time-varying correlations for the slope and cycle compo-
nents that in our view are of most interest. The slope correlations are presented for Germany, France,
Italy, and Spain against Spain and the Netherlands. As pointed out earlier, the slope convergence is
mainly due to Spain as the graphs make clear. The correlation in the slope disturbance between Spain
and Germany is 0.62 at the beginning of the 1970s and it becomes 0.94 at the end of the 1980s which
is a remarkable increase in about 15 years. Similar increases can be observed for the correlations
of the slope disturbances with France and Italy. Slope correlation increases are also found for the
Netherlands but on a smaller scale.

The correlation increases in the cyclical component are due to various countries as we have men-
tioned earlier. It is interesting to see that the cyclical correlations between Germany and the Nether-
lands increases in the 1980s from 0.2 to 0.8, between France and Italy from 0.57 to 0.79 and between
Italy and Spain from 0.4 to 0.9. The most dramatic increase, however, is due to the change in the
correlation between Spain and the Netherlands: from −0.18 to 0.91. A closer economic investigation
may be required to provide some explanation for these particular changes in the cycle correlations.
However, the figures clearly show that a closer integration of the dynamics of the GDP cycle can be
identified beginning around the time of the start of the European Exchange Rate Mechanism in March
of 1979, and in the case of the slope convergence, ending around January 1986 when Spain became a
member of the EU. The cycle component converges more slowly, but still before the opening of the
EU’s Common Market in January of 1993. That the cycle component converges more slowly is also
evidenced by the fact that the parameter governing the rate of convergence for the cycle, s∗κ,3 = −0.21
is closer to 0 than the rate for the slope convergence, s∗ζ,4 = −0.29, as can be seen in Table 2. Finally,
however, we wish to sound a note of caution about the exact interpretation of these rates of conver-
gence. Our experience with estimating differing model specifications and differing sample periods has
demonstrated that the estimates of these rates can vary as can been seen in Table 2 where the reported
rate s∗κ,3 for the model Mκ is further from 0 than the one for s∗ζ,4 = −0.29 estimated for the model
Mζ . Nonetheless, both the slope and cycle components are consistently estimated as converging in
the period around the early to mid 1980’s.

24



1970 1980 1990 2000

0.7

0.8

0.9

ζ Germany

1970 1980 1990 2000

0.25

0.50

0.75

1.00 κ Germany

1970 1980 1990 2000

0.7

0.8

0.9

1.0 ζ France

1970 1980 1990 2000

0.60

0.65

0.70

0.75

κ France

1970 1980 1990 2000

0.7

0.8

0.9

ζ Italy

1970 1980 1990 2000

0.4

0.6

0.8

κ Italy

1970 1980 1990 2000

0.92

0.93

0.94

0.95

0.96

ζ Spain

1970 1980 1990 2000

0.00

0.25

0.50

0.75

κ Spain

Figure 6: Some time-varying correlations %ζ,t,i,j and %κ,t,i,j implied by the slope variance matrix Σζ,t

and the cycle variance matrix Σκ,t, respectively, for Spain (solid line), Netherlands (dotted line) and
Italy (dashed line).
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5 Conclusions

In this paper we have considered a multivariate unobserved components model for quarterly GDP
series of five European countries from 1970 to 2001. The model decomposes the p × 1 observation
vector, for p = 5, into unobserved trend, cycle and irregular components. We refer to this model as the
trend-cycle decomposition model. Each component depends linearly on r ≤ p independent common
factors. Multiple time series with r < p common trends imply cointegrating relationships within the
set of time series. Common cycles can be introduced into the model in a similar fashion. This leads to
a model framework that can incorporate stable relationships between economic variables for the long
term (trends) and the middle term (business cycles or other stationary components).

The main contribution of this paper is the introduction of convergence mechanisms into the com-
mon trend-cycle model. At the beginning of the time series, for example, the vector cycle component is
a linear function of three factors, and subsequently converges to being dependent on only two factors.
The process of rank-reduction is modelled as a smooth logistic function of time that depends on a
shape parameter and a parameter that determines the mid-point of the convergence process. Such a
convergence mechanism is introduced not only for the slope and cycle components, but also for the
overall variance of the model in an adjusted form. The multivariate converging trend-cycle model is
estimated by maximum likelihood via the Kalman filter and the results are discussed in detail.

On the basis of the empirical results, we draw the following three main conclusions.

1. Both the slope and cycle components begin converging following the introduction of the Exchange
Rate Mechanism for EU countries in 1979.

2. Spanish GDP growth converges to the common growth components of the other European coun-
tries by 1986 when Spain joined the EU.

3. The cyclical variations of the GDP series for Italy, Netherlands and Spain converge to the cycle
processes of Germany and France by the beginning of the 1990’s, before the inception of the
Common Market in 1993.

The convergence of the Spanish growth rate coincides with the huge increase in Spanish imports from
and exports to other EU countries during the 1980s as Spain prepared for entry to the EU, which
occurred on 1 January 1986. The cycle convergence is consistent with the introduction of the Exchange
Rate Mechanism in 1979 which demanded strong monetary coordination between participating EU
countries, as well as with the necessary macroeconomic adjustments required by the EU member
countries for the sucessful implementation of the Common Market in 1993, and the introduction of
the Euro which followed. The convergence of the cycle by the beginning of the 1990’s can therefore
be taken to be a consequence of the economic discipline required for the creation of the European
Common Market. Although the estimated convergence of the common variance is significant, it had
not fully converged by the end of the sample period in 2001, and according to our estimates is still in
the process of converging.
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Appendix: The converging local level model

The concept of unobserved converging components is illustrated for the multivariate local level (LL)
model which is the simplest multivariate unobserved components time series model. The LL model is
given by

yt = µt + εt, µt+1 = µt + ηt, t = 1, . . . , n, (13)

where yt is a p×1 vector of observed time series that is decomposed into the unobserved level component
µt and the irregular vector εt. The level is modelled as a multivariate random walk process and the
irregular is a vector white noise process. Further we assume Gaussian densities for the disturbance
vectors

εt ∼ N (0,Σε), ηt ∼ N (0,Ση), t = 1, . . . , n,

and both disturbance vectors are serially and mutually uncorrelated. The time series characteristics
and properties of model (13) are discussed in detail in Harvey (1989). The level variance matrix Ση

plays an important role in the interpretation of the LL model. When Ση is positive definite the model
represents a set of seemingly unrelated time series equations (SUTSE). In the case of Ση with rank
r < p, the model can be represented by the common level model

yt = a+Aµ∗t + εt, µ∗t+1 = µ∗t + η∗t , t = 1, . . . , n, (14)

where a is a p × 1 vector with the first r elements equal to zero, A is a p × r unity lower triangular
matrix and level µ∗t is a r×1 vector that represents a multivariate random walk process as in (13) with
innovation vector η∗t ∼ N (0, Dη) and r × r diagonal matrix Dη. It can be shown that µt = a + Aµ∗t
and Ση = ADηA

′ with rank(Ση) = r. The variance matrices Ση and Σε are unknown and need to
be estimated by maximum likelihood. The evaluation of the likelihood function can be based on the
output of the Kalman filter; see Durbin and Koopman (2001) for a recent overview of such state space
methods. The likelihood function is numerically maximised with respect to the variance matrices.
The matrices are typically decomposed so that Ση = ADηA

′. The elements in A and Dη are then
estimated, thereby ensuring that the restriction that Ση is non-negative definite holds. The elements
of Dη are estimated in logs to make sure that they are always non-negative.

System convergence in this paper is modelled by a gradual reduction in the rank of the variance
matrices associated with the disturbances driving the unobserved components. For example, when
the rank of Ση is r1 at the beginning of the sample and r2 < r1 at the end of the sample, the local
level model is said to be subject to system covergence in levels. This feature of convergence can
be modelled in various ways. It can be introduced as a “structural” break within the rank of the
variance matrix. A more realistic alternative, however, is to allow for a smooth transition towards
a lower rank regime. In this paper we introduce a convergence mechanism that is parsimonious and
elementary. Similar mechanisms are used in the context of so-called smooth transition autoregressive
(STAR) models which are reviewed in van Dijk, Terasvirta, and Franses (2002). Other convergence
specifications can also be considered within our framework.
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The convergence mechanism for the ith element of Dη is specified by the deterministically time-
varying logit function

dη,t,i = exp(2d∗η,i) exp(sη,t,i)/{1 + exp(sη,t,i)}, (15)

where d∗η,i represents the logarithm of a standard deviation and therefore determines the size of the
variance. The variable sη,t,i is given by

sη,t,i = s∗η,i × (t− τη,i), (16)

where s∗η,i determines the rate of the variance change and τη,i determines the mid-timepoint of the
change. According to the specification in (15), the variance matrix Dη, now Dη,t, is time-varying, as
is the variance matrix Ση, which is replaced by

Ση,t = ADη,tA
′, t = 1, . . . , n.

In this specification the variance dη,t,i will converge to zero as t→∞ for any finite d∗η,i, s
∗
η,i < 0 and

1 ≤ τη,i ≤ n. For the case s∗ζ,i < 0 and t << τζ,i, we have dζ,t,i close to exp(2d∗ζ,i). For the case
s∗ζ,i < 0 and t >> τζ,i, the value of dζ,t,i approaches zero. Nonlinear smooth transition autoregressive
models adopt a similar type of logit function but with the argument t in sζ,t,i replaced by the difference
yt − yt−1, for more details see, for example, van Dijk, Terasvirta, and Franses (2002). Whether the
convergence of dη,t,i to zero takes place within the sample range of t = 1, . . . , n depends on the values
of s∗η,i and τη,i. If a particular element of the time-varying variance matrix Dη,t converges to (virtually)
zero via the convergence mechanism (15) with t < n, the rank of Ση,n will be one less than the rank
of Ση,1.

The convergence mechanism can be introduced for every diagonal element of Dη,t. The estimation
of the variance parameters, including the additional coefficients s∗η,i and τη,i for i = 1, . . . , r, can take
place simultaneously. However, the introduction of convergence mechanisms should take place after
some prior analysis of the data in empirical work. The evaluation of the likelihood function can still
be based on the Kalman filter although the converging model requires a state space representation
with time-varying variances.
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