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Abstract

In a Bayesian analysis, different models can be compared on the basis of the expected or

marginal likelihood they attain. Many methods have been devised to compute the marginal

likelihood, but simplicity is not the strongest point of most methods. At the same time, the

precision of methods is often questionable.

In this paper several methods are presented in a common framework. The explanation of

the differences is followed by an application, in which the precision of the methods is tested

on a simple regression model where a comparison with analytical results is possible.

JEL classification: C11, C52, C63
Keywords: Marginal likelihood, Bayesian analysis

1 Introduction

In Bayesian inference, there has always been a time gap between the development of new methods
and the implementation. The Metropolis-Hastings sampling method dates back to Metropolis,
Rosenbluth, Rosenbluth, Teller and Teller (1953), but only since Chib and Greenberg (1995) is it
well understood, and in use, in the econometric society. Likewise when Kloek and Van Dijk (1978)
introduced the Importance sampling algorithm, implementation was still rather hard because of
the lack of computational power, a situation which has drastically improved.
After estimating the parameters of a model in a Bayesian fashion, it is often of interest to

contrast the fit of two competing models. In papers by e.g. Aitkin (1991), Kass and Raftery (1995)
and Carlin and Chib (1995), the concepts of marginal likelihood, Bayes factors and posterior odds
are explained. Kass and Raftery (1995) even summarizes a range of computational methods for
obtaining estimates of the Bayes factor, with an indication of the accuracy that can be expected.
The marginal likelihood promises to provide a convenient method of comparing models by their

fit, with less theoretical problems attached to it than encountered when comparing non-nested
models in a classical framework. A number of articles (e.g. McCulloch and Rossi 1992, Koop
and Potter 1999, Koop and Van Dijk 2000) are appearing where the methods are applied, but no
extensive analysis of the practical precision of the methods was performed yet. In this paper, first
an overview of the available estimation methods is given in section 2. For each of the methods an
indication of the precision is obtained in section 3. The precision is evaluated in a small simulation
exercise, on a simple regression model where analytical results are available.

∗Correspondence to Charles S. Bos, Faculty of Economics and Operations Research, Vrije Universiteit Ams-

terdam, De Boelelaan 1105, NL-1081 HV Amsterdam, The Netherlands. Email: cbos@feweb.vu.nl. Numerous
discussions with Herman K. van Dijk, Richard Paap and others are gratefully acknowledged.



2 Marginal likelihood and its computation

2.1 The concept of marginal likelihood and posterior odds

When models are estimated in a classical manner, they can be compared on the basis of the
likelihood they attain. The likelihood function is evaluated in the point indicated by the parameter
estimates, often at the location of maximum likelihood. In a Bayesian framework, there is not one
parameter vector characterizing the fit of the model. Instead, based on the likelihood and the prior,
the full posterior distribution of the parameters is derived. Characteristic for the fit of a model
M is in this case the expected or marginal likelihood m(Y |M), where the expectation is taken
over the likelihood L(Y ; θ |M) with respect to the prior distribution π(θ |M) of the parameters,

m(Y |M) =

∫

θ

L(Y ; θ |M)π(θ |M) ∂θ. (1)

The marginal likelihood is the major ingredient for statistics like the Bayes factor BF= m(Y |M1)/
m(Y |M2), comparing the evidence in favour of two competing models. The posterior odds (PO)
ratio is again based on the BF, with PO= BF×π(M1)/π(M2), and relates the posterior evidence
of the models.
Though other ways exist to compute the Bayes factor or the posterior odds (see e.g. Dickey

(1971) and Verdinelli and Wasserman (1995) for the (generalized) Savage-Dickey density ratio),
the method using the marginal likelihoods is conceptually the simplest. The next section focuses
on the computational methods for the marginal likelihoods.

2.2 Computational methods

Only in very special cases, most notably for the exponential likelihood with conjugate priors, the
marginal likelihood m can be calculated analytically as the integrating constant of the posterior
kernel.1 In other cases, numerical methods are needed. Table 1 summarizes a range of methods.
Details can be found in Kass and Raftery (1995), Chib (1995) and Bos (2001).
The following remarks concerning the methods in table 1 can be made: The brute-force inte-

gration method suffers from the curse of dimensionality. When it is not viable anymore, a simu-
lation method may help. The method mIS is not operational without a choice for the importance
sampling density π∗(θ), approximating the prior density. Using the prior density as importance
function leads to weights wi ≡ 1 as in mPrior, but many drawings will fall in low-likelihood regions.
Sampling from the posterior density gives more drawings in the correct region, but leads to an
estimate of m which may not have a finite variance (Newton and Raftery 1994). Intermediate
positions, like π∗(θ) = δπ(θ) + (1− δ)p(θ|Y ) can be chosen: This gives a consistent estimate with
better convergence behaviour (see also Newton and Raftery 1994). A more recent solution for
stabilizing the harmonic mean estimate, utilizing a technique of lowering the dimension of the
problem, is given in Satagopan, Newton and Raftery (2000), and is not discussed here.

mLP and mKern are special versions of mApp. The first essentially fits a normal density to the
mode of the posterior. The method can be expected to work well in cases where the posterior is
highly peaked, less well in multimodal cases. mKern applies a kernel smoother, and therefore also
suffers to some extent from the curse of dimensionality, as more drawings θ(i) are needed when
the dimension increases, in order to get a good approximation to the posterior density.
Finally, the Gibbs sampling method can be applied in cases where the conditional densities

are available, and may be the only method when data augmentation (Gelfand and Smith 1990)
is used. Implementing may prove to be hard, and for each element of the vector of parameters a
separate Gibbs chain has to be run, leading to a rather hefty computational burden, as compared
to the other methods.

1As we are calculating the marginal likelihood of a specific model M on a fixed data set Y in this section,
dependence of m on these quantities is suppressed in the notation.
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Table 1: Computational methods for marginal likelihoods
mAnal=

∫

L(Y, θ)π(θ)∂θ
The exact solution, available only in special cases.

mNumUsing brute-force numerical integration, m can be computed for low-dimensional prob-
lems.

mPrior= Eπ(θ)L(Y, θ) ≈
1
n

∑

L(Y, θ(i)); θ(i) ∼ π(θ)
Simulating from the prior, m is the average likelihood. A very unstable and inefficient
estimate.

mIS=
1

∑

wi

∑

wiL(Y, θ
(i)); θ(i) ∼ π∗(θ), wi = π(θ(i))/π∗(θ(i))

Sampling from an importance density with higher probability mass around the posterior
mode improves on mPrior.

mHM=
(

1
N

∑

1
L(Y,θ(i))

)−1

; θ(i) ∼ p(θ|Y )

Using the posterior density as importance sampling density in mIS leads to using the
harmonic mean of the likelihood values as estimator.

mApp= L(Y, θ)π(θ)/p(θ|Y )
In general, relating the height of the posterior kernel to the height of an approximating
posterior density in a high density point θ can give an estimate of m.

mLP= (2π)
k/2|Σ̃|

1
2L(Y, θ̃)π(θ̃)

This is mApp using a quadratic expansion of the posterior kernel around the posterior

mode θ̃.
mKern= L(Y, θ)π(θ)/pKern(θ|Y )

This is mApp using a kernel smoother to approximate the posterior density at a high
density point θ.

mGibbs= L(Y, θ)π(θ)/ [p(θ1|Y )
∏

p(θi|θ1, .., θi−1, Y )]
Chib (1995) proposed to use k − 1 samples from separate Gibbs chains to approximate

p(θi|θ1, .., θi−1, Y ) ≈
∑

p(θi|θ1, .., θi−1, θ
(j)
i+1, .., θ

(j)
k , Y )/N , where N samples are drawn

for the missing elements θi+1, .., θk from the conditional densities.

3 Marginal likelihood in practice: A comparison

3.1 Data, model and analytical marginal likelihood

In Brownlee (1965, page 454) a data-set concerning the oxidation of ammonia for producing nitric
acid is examined. Explanatory variables are the air flow in the tower, the temperature of cooling
water and the acid concentration which is produced. The dependent variable is the so-called
stack-loss, which is 10 times the percentage of ammonia which escapes from the process without
having been converted into nitric acid.
This data-set was analysed often (Atkinson 1985, Hoeting, Raftery and Madigan 1996, Justel

and Peña 1996) using regression models, with the focus on recognizing outliers among the 21
observations on the 4 variables. For the purpose of displaying the differences of the computational
methods for marginal likelihoods, it is sufficient to limit ourselves to the pure regression model

y = Xβ + ε, ε = N (0, σ2In). (2)

For simplicity, we assume that the variance σ2 is known, and fix it at its least squares estimate.
With a normal prior π(β), with expectation β0 and covariance matrix Σ0 = σ2

0Ik, the posterior

p(β|Y ) is normal as well, with covariance Σ̃ = (Σ̂−1 + Σ−1
0 )

−1 and expectation β̃ = Σ̃−1(Σ̂−1β̂ +

Σ−1
0 β0), and β̂ and Σ̂ the least squares estimates. Computing the marginal likelihood from the
quotient of the posterior kernel L(Y ; θ)π(θ) and the posterior density p(θ|Y ) gives the expression

mAnal = (2π)
−n

2 σ−n|Σ0|
− 1

2 |Σ̃|
1
2 exp

(

−
1

2

[

y′y

σ2
+ β0Σ

−1
0 β0 − β̃Σ̃−1β̃

])

(3)
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Note how all terms containing β drop out of this equation, as should be the case for the integrand
of the posterior kernel over β.

3.2 Estimation results

Table 2 displays the main estimation results for the regression model on the stack-loss data. For
the prior, an expectation of zero and a large standard deviation of the elements was chosen, such
that the prior hardly influences the results. Indeed, the difference between the least squares and
posterior estimates is minimal.

Table 2: Prior, least squares and posterior moments of the parameters
Prior Least squares Posterior

Variable β0 σ0 β̂ σ̂ β̃ σ̃
Air flow 0 20 0.7968 0.166 0.7969 0.166
Water temperature 0 20 1.1114 0.456 1.1109 0.456
Acid concentration 0 20 −0.6250 0.085 −0.6249 0.085

Note: Non-zero correlations between the LS and posterior parameters are

not reported.

Table 3: Logarithm of the marginal likelihood of the regression model for Stack-loss data
Repeated simulation

Method Log m Mean s.d. Min Max %Time
mAnal −74.271
mNum −74.271
mPrior −110.710 −759.827 558.03 −3141.87 −81.90 11
mHM −61.281 −61.111 0.57 −64.18 −60.16 12
mLP −74.271 −74.280 0.04 −74.38 −74.18 0
mKern −74.166 −74.109 0.08 −74.30 −73.80 1
mGibbs −74.354 −74.304 0.49 −75.30 −72.92 76

Note: Results are reported for one large simulation of 50.000 drawings and for

100 repeated simulations of sample size 1.000. Timings indicate the percentage of

time spent computing the measures in the repeated simulation.

The methods explained in section 2 were used for constructing the figures in table 3. For each
of the methods indicated in the first column, the table reports an estimate of the logarithm of
marginal likelihood in the second column.
With the numerical integration, the result of the analytical computation can be found if enough

time/effort is put into the integration routine. For this model, no difference is found indeed.
However in practice, for more elaborate models, it is often difficult to find sensible bounds for the
integration region, and either the tails of the posterior density might be missed or too much effort
is put into regions with little mass, leading to large computational efforts being wasted.
Both the mPrior and mHM methods are special versions of mIS. They both suffer from instabil-

ity: Even after more than 45.000 drawings,2 the estimates of logmPrior and logmHM can be seen
to change.
The LaPlace method uses a normal density to approximate the normal posterior density: As

the approximation is perfect, the correct solution is found. In general cases the estimate will not
be perfect, but practice indicates that this method works rather well, especially for highly peaked,
unimodal posterior densities.

2For mPrior, 50.000 values are sampled from the prior density. For mHM, and likewise for mKern, a sample of
50.000 accepted drawings from a Metropolis-Hastings chain with a multivariate Student-t candidate with 4 degrees-
of-freedom was collected. At an acceptance rate of 73%, this gave a total sample of size 68.071 from the posterior
density.

4



Approximating the posterior with a kernel smoothing density (a multivariate Gaussian kernel
smoother with automatic bandwidth selection was used) is simple, but gives good results as well.
The Gibbs method gives an answer which is slightly more precise, but is more costly in terms of
computing time and in complications in the estimation procedure.
Columns 3–7 of table 3 report results for replicating the estimation 100 times, using sample

sizes of 1.000. The prior method proves to be totally unreliable, with an enormous standard
deviation in column 4. The harmonic mean method does not converge to the correct estimate
either.3 For the LaPlace method, the estimate was now computed at the mean of the parameters
sampled from the posterior density, with the covariance of the sample as covariance estimate. It
is seen that this very simple method is quite good (at least for this model). Also the kernel and
Gibbs methods perform well, with more variation in results for the latter.
The last column gives an indication of the respective durations of the calculations. The mPrior

and mHM methods use rather costly function evaluations, leading to computation times increasing
with the size of the sample. The method applying Gibbs sampling needs to collect new samples
from the conditional densities, through several runs of the Gibbs chain. In the present imple-
mentation it is taking about 7 times as long as either mPrior or mHM. Depending on the sample
size, the dimension of the problem and the integration method used, it can be quicker than the
brute-force integration method. For the results in column 2, on the larger sample, the Gibbs
computation finished in roughly one third of the time needed for computing the integral using
Gaussian quadrature.

4 Concluding remarks

In this paper, a range of computational methods for obtaining an estimate of the marginal likeli-
hood of a model are reviewed shortly, and applied in a small application. This way, the qualitative
impression of the precision of the methods available until now was checked in a quantitative man-
ner.
The main finding is that both the method of computing the marginal likelihood as the ex-

pectation of the likelihood under the prior, as the method of computing the harmonic mean of
likelihood values when sampling from the posterior, are not trustworthy. Though work is under
way to stabilize mHM (Satagopan et al. 2000), the methods applying either a LaPlace or kernel
approximation to the posterior density in a high-density location prove to be more useful. The
Gibbs sampling method of Chib (1995) can give good results as well, though the computational
costs are high especially with increasing dimension of the vector of parameters.
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