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Abstract

The increasing availability of �nancial market data at intraday frequencies has not only led to

the development of improved ex-post volatility measurements but has also inspired research into

their potential value as an information source for longer horizon volatility forecasts. In this paper

we explore the forecasting value of these high frequency series in conjunction with a variety of

volatility models for returns on the Standard & Poor's 100 stock index. We consider two so-called

realised volatility models in which the cumulative squared intraday returns are modelled directly.

We adopt an unobserved components model where actual volatility is modelled as an autoregressive

moving average process and an autoregressive fractionally integrated moving average model which

allows for long memory in the logarithms of realised volatility. We compare the predictive

abilities of these realised volatility models with those of daily time-varying volatility models,

such as Stochastic Volatility (SV) and Generalised Autoregressive Conditional Heteroskedasticity

(GARCH) models which are both extended to include the intraday volatility measure. For

forecasting horizons ranging from one day to one week the most accurate out-of-sample volatility

forecasts are obtained with the realised volatility and the extended SV models; all these models

contain information inherent in the high frequency returns. In the absence of the intraday volatility

information, we �nd that the SV model outperforms the GARCH model.

JEL classi�cation: C22, C53, G15.

Keywords: ARFIMA, Financial market volatility, GARCH, Realised volatility, Stochastic

volatility, Stock index returns, Unobserved ARMA component.

1 Introduction

Spurred by the initial research of Andersen and Bollerslev (1998) and Barndor�-Nielsen and Shephard

(2001) high frequency intraday returns are increasingly considered for the purpose of approximating

realised volatility. The notion that daily ex-post volatility is better approximated when based on

cumulative squared intraday return data is supported by the theory that the measurement noise con-

tained in daily squared returns prevents the observation of the actual volatility process but is reduced

as the sampling frequency of the return series from which volatility is calculated is increased1. As

such, it therefore theoretically justi�es and extends the earlier work of French, Schwert and Stam-

baugh (1987), amongst others. Andersen and Bollerslev (1998) also showed that daily Generalised

�Corresponding author: Siem Jan Koopman, Department of Econometrics, Free University, De Boelelaan 1105, NL-

1081 HV Amsterdam. Email s.j.koopman@feweb.vu.nl. We would like to thank Marius Ooms for his comments on an

earlier draft.
1See, for example, Andersen, Bollerslev, Diebold and Labys (2001a), Andersen, Bollerslev, Diebold and Labys (2001b),

Barndor�-Nielsen and Shephard (2001) and Barndor�-Nielsen and Shephard (2002).
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Autoregressive Conditional Heteroskedasticity (GARCH) volatility forecasts of exchange rates, when

evaluated against intraday volatility measures, are far more accurate than had been previously as-

sumed. These �ndings were subsequently con�rmed with regard to stock index data by Blair, Poon

and Taylor (2001) and Hol and Koopman (2000) who examined the predictive accuracy of out-of-

sample volatility forecasts based on GARCH and Stochastic Volatility (SV) models, respectively.

As its value with regard to forecasting evaluation appears to have become generally recognised by

now, research attention has shifted more towards the potential gains that might be obtained from using

intraday data as an information source for out-of-sample volatility forecasting. Andersen, Bollerslev

and Lange (1999) examined whether the modelling of intraday returns could improve daily and perhaps

even longer-run volatility forecasts. For forecasting horizons of 1 day, 1 week and 1 month they found

that the most accurate GARCH out-of-sample volatility forecasts were always obtained with a 1-

hour interval series2. Even though their theoretical study had indicated otherwise, empirical results

deteriorated as sampling intervals were shortened beyond this 1-hour mark. Rather than increasing

the sampling frequency, Blair et al. (2001) suggested to incorporate the intraday volatility measure

for stock index returns as an explanatory variable in the variance equation of a daily GARCH model.

Like Andersen, Bollerslev and Lange (1999) they also observed a considerable improvement in the

out-of-sample forecasting performance of the GARCH model. Martens (2001) then compared both

GARCH-based methods for two exchange rates. He found that the most accurate intraday GARCH

model, which proved to be the model with the highest sampling frequency, could not outperform

the daily GARCH model extended with intraday volatility. These studies therefore indicate that

intraday return series contain incremental information for longer-run volatility forecasts when used in

combination with GARCH models, but thus far the issue has not been researched in the context of

SV models. Here we examine whether extension of the SV model with intraday volatility information

leads to similar improvements as observed for the GARCH model.

Alternatively, the intraday volatility process can be modelled directly which is reminiscent of

the methods adopted for monthly volatility in a number of earlier studies such as those by French

et al. (1987) and Poon and Taylor (1992). The forecasting performance of these volatility models

have been studied by Ebens (1999) and Andersen et al. (2001b) who, in order to capture the long

memory presumably present in the logarithms of intraday volatility series, prefer to use autoregressive

fractionally integrated moving average (ARFIMA-RV) models with which they obtain more accurate

forecasts than with daily GARCH models3. Following Barndor�-Nielsen and Shephard (2002) we

de�ne an alternative realised volatility model where volatility is modelled as a continuous time series

process consisting of independent Ornstein-Uhlenbeck (OU) processes. The resulting model for discrete

time intervals is an unobserved components model which consists of independent ARMA components

plus an error term and is estimated by casting it into state space form. We refer to this model as the

Unobserved Components - Realised Volatility model, or, in short, the UC-RV model.

In this paper we explore the forecasting performance of a number of models for the Standard &

Poor's 100 stock index series over the period 6 January 1997 to 29 December 2000. We compare the

UC-RV and the ARFIMA-RV model, which we collectively refer to as realised volatility models, with

the so-called daily time-varying SV and GARCH volatility models which are also extended to include

the intraday volatility measure. Thus far the emphasis in the high frequency volatility literature

has been mainly on GARCH and ARFIMA-RV models. Our contribution is that we implement and

empirically investigate a wide range of methods for the estimation of volatility and compare the out-

of-sample forecasting performance of the various models.

The remainder of this paper is organised as follows. In the next section we introduce the data

2Due to strong periodic intraday patterns the GARCH models are not actually estimated at the higher intraday

level, see e.g. Andersen and Bollerslev (1997). Instead the parameter estimates of the GARCH models at the higher

frequencies are inferred from the temporal aggregation results of Drost and Nijman (1993).
3Fractionally integrated models are also advocated in the context of �nancial market data by, for example, Andersen,

Bollerslev, Diebold and Labys (1999) and Andersen et al. (2001a).
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together with intraday return based volatility measures. In section 3 we give details of the UC-RV

and ARFIMA-RV models and in section 4 the daily time-varying volatility models are described. The

forecasting methodology and the evaluation criteria are discussed in section 5 and in section 6 we

present both the empirical in-sample and out-of-sample forecasting results. In section 7 we provide a

summary and our conclusions.

2 Stock Return Data and Volatility

2.1 Data

The data for our empirical study consists of Standard & Poor's 100 stock index transaction prices

during the period 6 January 1997 to 29 December 2000. From the original dataset, which includes

prices recorded for every trade, we extract 5-minute interval data as this is the frequency used by

Andersen and Bollerslev (1998) to construct their realised intraday volatility measure4. For the 5-

minute price we take the last transaction price recorded before the relevant time mark and we calculate

the 5-minute returns as the di�erence between successive log prices and express these in percentages,

so

Rt;d = 100(lnPt;d � lnPt;d�1); (1)

where Rt;d denotes the return for intraday period d on trading day t, with d � 1 and t = 1; : : : ; T . The

New York Stock Exchange (NYSE) opens at 9:30 a.m. and closes at 4:00 p.m. EST. A full trading

day therefore consists of 78 intraday returns and one overnight return. The overnight return is then

de�ned in a similar way as the intraday returns, i.e.,

Rt;N = 100(lnPt;0 � lnPt�1;D); (2)

with D = 78, so Pt�1;D is the 4:00 p.m. price on trading day t � 1 and Pt;0 the 9:30 a.m. price on

the following trading day t. For Pt;0 we always select the �rst available trading price after 9:29 a.m.

Not all 1004 trading days in our sample consist of 79 observations and this is partly attributable to

the fact that the NYSE closes early on certain days, such as on Christmas Eve5. Other important

reasons are lapses in trading and in data reporting. For all these intervals without price quotes we

insert zero return values except when the 9:30 a.m. price, which we require for the calculation of the

overnight return, is not available6. In that case we assume that the �rst available price observation

on day t, denoted by Pt;d� with intraday period d� � 2, was observed at 9:30 a.m. and assign a zero

return value to Rt;d� .

The daily return series Rt is de�ned as the �rst di�erence between the 4:00 p.m. closing prices on

consecutive trading days, again expressed in percentage terms, so

Rt = 100(lnPt � lnPt�1); (3)

where Pt and Pt�1 could also be written as Pt;78 and Pt�1;78, respectively. In �gure 1 we graph the

daily return series Rt together with the squared return series R2
t over the full sample period and we

report the summary statistics of both series in the adjacent table 1. From the graphs we can discern

several more volatile periods which occurred towards the end of 1997, during the third quarter of 1998

and at the beginning of 2000. Each of the three largest shocks to the return process took place in

4Provided that the asset is suÆciently liquid, the 5-minute frequency is acknowledged as the highest frequency at

which the e�ects of market microstructure biases, such as bid-ask bounces and discrete price observations, are not too

distorting. Also see: Andersen et al. (2001a), Andersen et al. (1999), Ebens (1999) and Andersen and Bollerslev (1997).
5Three trading days are missing from our data sample: 11 February 1998, 28 August 1998 and 14 January 1999.
6After accounting for early market closures, 559 price notations are "missing" of which 92 are 9:30 a.m. prices.
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Figure 1: The daily (i) return series Rt and (ii) squared

return series R2
t of the Standard & Poor's 100 stock in-

dex over the period 6 January 1997 to 29 December 2000

Table 1: Summary Statistics Rt and R
2
t

Period 1997-2000

T 1004

Series Rt R2
t

Mean 0:063 1:673

Variance 1:670 16:576

Skewness �0:447 10:490

Exc.Kurt. 4:024 164:548

Minimum �8:947 0:000

Maximum 5:427 80:057

�̂1 �0:001 0:254

�̂2 �0:066 0:059

�̂3 �0:037 0:017

�̂4 0:010 0:042

�̂5 �0:040 0:122

Q(12) 21:780 93:224

�̂` is the sample autocorrelation coeÆcient at lag

` with asymptotic standard error 1=
p
T andQ(`)

is the Box-Ljung portmanteau statistic based on

` squared autocorrelations.

one of these periods and was negative. This largely contributed to the negative skewness coeÆcient

of �0:447 reported for the return series and the large positive skewness coeÆcient of 10:490 of the

squared returns. We further observe that Rt exhibits excess kurtosis and that none of its �rst �ve

autocorrelation coeÆcients is signi�cantly di�erent from zero at the 1% signi�cance level. The Box-

Ljung Q(12) statistics indicate that returns are serially uncorrelated, whereas squared returns exhibit

a high degree of serial correlation. The highly signi�cant value for the �rst-order serial correlation

coeÆcient �̂1 can be interpreted as an indication of volatility clustering. However, estimates for the

subsequent three autocorrelation coeÆcients are not signi�cant which might well be attributed to the

fact that R2
t is a noisy estimator of the variance process of Rt.

2.2 Intraday volatility

It has become generally acknowledged that squared daily returns provide a poor approximation of

realised daily volatility. It was �rst pointed out by Andersen and Bollerslev (1998) that more accurate

estimates could be obtained with the sum of squared intraday returns7. More speci�cally, they de�ned

realised volatility in the foreign exchange market as the sum of 288 5-minute squared returns. If we

were to apply this method directly to the stock market, realised volatility would be de�ned as the sum

of the squared overnight and the cumulative squared 5-minute intraday returns, so

~�2t;1 = R2
t;N +

DX
d=1

R2
t;d; (4)

7Theoretically, the volatility estimates become free of measurement noise as the sampling frequency interval becomes

in�nitesimally small; see the references in footnote 1.
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with Rt;d and Rt;N as de�ned in equations (1) and (2) and with D = 78. However, this ignores that

the overnight return is a special case. Stock markets, unlike foreign exchange markets, are not opened

24 hours a day and the changes in the stock index price during the hours that the stock market is

closed are relatively large compared to the 5-minute returns observed during trading hours. In order

to account for the fact that overnight returns are presumably more volatile than intraday 5-minute

returns and that a large value for Rt;N will have a pronounced and distorting e�ect on the realised

volatility estimate ~�2t;1, we also use two alternative realised volatility measures which exclude the

"noisy" overnight returns. The �rst of these is simply calculated as

~�2t;2 =
DX
d=1

R2
t;d; (5)

and therefore only measures the volatility during trading hours as opposed to daily volatility8. It was

suggested by Martens (2002) to use a scaler in order to obtain a daily realised volatility measure based

on intraday returns only. Furthermore, he found that in the absence of intranight returns the most

accurate estimate of daily volatility on Standard & Poor's 500 index futures was obtained with this

scaled sum of squared intraday returns, which he de�ned as

~�2t;3 = (1 + c)
DX
d=1

R2
t;d

=
�2oc + �2co
�2oc

DX
d=1

R2
t;d; (6)

where �2oc and �
2
co are the in-sample open-to-close and close-to-open variances, i.e. var(

PD
d=1Rt;d) and

var(Rt;N ), respectively, which implies c � 0.9 For our full Standard & Poor's 100 stock index sample

we �nd an open-to-close variance of 1:447 and a close-to-open variance of 0:092, resulting in a scaling

value (1 + c) of 1:064 which is considerably lower than the value of 1:205 observed by Martens (2002)

for his Standard & Poor's 500 stock index futures series.

In table 2 we provide summary statistics for ~�2t;1 and ~�2t;3, together with those of their logarithmic

counterparts. We observe that the mean of ~�2t;1 is slightly higher than that of the scaled trading

hours volatility measure ~�2t;3 with values that translate into annualised standard deviations of 18:6%

and 18:5%, respectively. The variance of ~�2t;1 exceeds that of ~�2t;3 which is explained by the fact

that the latter does not include the noisy overnight return. Comparing the summary statistics of

the intraday volatility measures with those of the daily squared return series in table 1 we �nd that

R2
t has an average annualised standard deviation of 20:5% combined with a much higher degree of

variation and larger skewness and excess kurtosis values. In addition, the reported autocorrelation

coeÆcients for the intraday volatility series slowly decay as the lag length increases and they are always

statistically signi�cant, unlike those of the squared return series. As the intraday volatility series are

clearly positively skewed and leptokurtic we also report on the logarithmic intraday volatility measures

ln ~�2t;1 and ln ~�2t;3 as advocated in, for example, Andersen et al. (2001). The resulting four series are

presented in �gure 2 together with their histograms. The ~�2t;1 and ~�2t;3 series are highly correlated and

their distributions are leptokurtic10. The distribution of the logarithmic intraday volatility measures

appears approximately Gaussian, mirroring earlier �ndings for the stock market by Ebens (1999),

Andersen et al. (2001) and Areal and Taylor (2002). These conclusions are further supported by

8Andersen, Bollerslev, Diebold and Ebens (2001) and Andersen and Bollerslev (1997) use this de�nition of realised

volatility in their stock market studies.
9Yet a di�erent method is explored by Areal and Taylor (2002) who suggest assigning di�erent weights to the intraday

squared returns with weights depending on variance proportions which are calculated for each day of the week.
10We �nd corr(~�2t;1; ~�

2

t;3) = 0:973 and corr(ln ~�2t;1; ln ~�
2

t;3) = 0:985.
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Table 2: Summary statistics for the realised volatility measures

Period 1997-2000

Number of observations T 1004

Series ~�2t;1 ~�2t;3 ln ~�2t;1 ln ~�2t;3

Mean 1:372 1:359 0:017 0:020

Variance 2:207 2:053 0:527 0:508

Skewness 5:299 5:185 0:451 0:430

Excess Kurtosis 43:725 40:992 0:559 0:601

Minimum 0:106 0:109 �2:241 �2:215

Maximum 19:164 16:608 2:953 2:810

N 84678 74794 47:154 46:116

�̂1 0:588 0:572 0:622 0:609

�̂2 0:373 0:392 0:541 0:532

�̂3 0:318 0:323 0:502 0:484

�̂4 0:300 0:296 0:460 0:443

�̂5 0:296 0:261 0:427 0:400

Q(12) 1189:1 1155:2 2296:4 2120:8

N is the �2 normality test statistic with 2 degrees of freedom and a critical value of 9:21 at the 1% signi�cance level.

�̂` is the sample autocorrelation coeÆcient at lag ` with asymptotic standard error 1=
p
T and Q(`) is the Box-Ljung

portmanteau statistic based on ` squared autocorrelations. The critical value at the 1% signi�cance level for the Q(12)

statistic is 26.22.

the skewness and excess kurtosis coeÆcients which have standard errors equal to
p
6=T = 0:077 andp

24=T = 0:155, respectively, and are therefore close to normal but still have values which are di�erent

from zero at very high signi�cance levels11. The sample autocorrelation coeÆcients indicate a highly

persistent volatility process and the values for the Q(12) statistic are so high that the hypothesis of

zero autocorrelation is convincingly rejected12.

3 Realised Volatility Models

In this section we discuss the two realised volatility models which are the unobserved compo-

nents (UC-RV) and the ARFIMA (ARFIMA-RV) models where realised volatility is modelled

directly as opposed to the volatility models in the next section which model volatility as the second

moment of returns. Unlike the UC-RV model, the ARFIMA-RV model is de�ned in logarithmic terms.

3.1 Unobserved Components OU type stochastic volatility models

Realised volatility, as de�ned in subsection 2.2 and denoted by ~�2t , can be used as an estimator of

volatility �2t ; see, for example, Andersen and Bollerslev (1998). Barndor�-Nielsen and Shephard (2002)

11The t-statistics for the skewness coeÆcients are 5:83 and 5:56 and those of the excess kurtosis coeÆcients are 3:62

and 3:89 for ln ~�2t;1 and ln ~�2t;3, respectively.
12Also see Ebens (1999) and Andersen et al. (2001) for similar autocorrelation coeÆcients and comparable Q statistic

values.
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Figure 2: Time series and histograms with normal approximations for the Standard & Poor's 100

stock index realised volatility measures (i-a) ~�2t;1 and (ii-a) ~�2t;3 and their logarithmic counterparts

(ii-a) ln ~�2t;1 and (ii-b) ln ~�2t;3 over the period 6 January 1997 to 29 December 2000

provide an excellent discussion of the properties of realised volatility. In particular, they investigate

the statistical properties of the estimation error �2t �~�2t and they argue that a more accurate estimator

can be obtained when a model is considered for �2t . Actual volatility can be modelled as a continuous

time series process consisting of independent Ornstein-Uhlenbeck (OU) processes, that is

�2(t) =
JX

j=1

� j(t); d� j(t) = ��j�
j(t)dt+ dzj(�jt);

where �2(t) is the continuous-time process for actual volatility, zj(t) are independent L�evy processes

with non-negative increments and �j are unknown parameters, for j = 1; : : : ; J and J is typically

a small number in practice (say, 3 or 4). Developments of this approach, with special attention to

statistical and probabilistic aspects, are reported by Barndor�-Nielsen and Shephard (2001, 2002).

The formulation of the continuous time model for �2(t) implies that actual volatility in discrete

time intervals of length � can be modelled as

�2t =
JX

j=1

�
j
t ; t = 1; : : : ; T;

where each �
j
t represents an ARMA(1,1) model with the autoregressive and moving average coeÆcients

determined by exp(�j�); see Barndor�-Nielsen and Shephard (2002) for further details. A model for

realised volatility is then simply given by

~�2t = �2t + ut; t = 1; : : : ; T;

7



where ut is white noise, with mean zero and variance depending on �, and is uncorrelated with

�2j for j = 1; : : : ; T . The resulting model is an unobserved components model which consists of J

independent ARMA components plus an error component. Linear optimal estimators of this model

can be obtained by casting the model into state space form. The Kalman �lter can be applied to

construct the Gaussian likelihood function. Quasi-maximum likelihood estimates of �j are obtained

by numerically maximising the Gaussian likelihood with respect �1; : : : ; �J .

In this paper we adopt this model for realised volatility ~�2t with J = 1. The resulting ARMA(1,1)

plus error model will be referred to as the Unobserved Components - Realised Volatility, or UC-RV,

model and is given by

~�2t = �2t + ut;

�2t = �+ �(�2t�1 � �) + ��t�1 + �t:

Note that we take the variance of ut as implied by � but we do estimate the variance of �t, that is

�2�. This leads to a model with four unknown parameters: �, �, � and ��. The state space form of

this model can be written as

~�2t = Z�t + ut;

�t+1 = T�t +R�t;
(7)

where

Z = (1 0 0); T =

2
64 � 1 1

0 0 0

0 0 1

3
75 ; R0 = (1 � 0);

and �, � and �u are the parameters of the ARMA(1,1) process. The �rst element of the 3 � 1 state

vector �t is ~�
2
t � � and its last element is �.

Estimation

When the ARMA(1,1) plus error model is casted in the state space model (7), the Kalman �lter can

be used to compute the Gaussian likelihood function and parameter estimates can be obtained by

numerically optimising the resulting quasi-likelihood function. We estimate the parameters of the

ARMA process without taking allowance for its dependence on �, as described in Barndor�-Nielsen

and Shephard (2001), in order to get a better �t of the data. However, all four parameters of the

unrestricted ARMA(1,1) plus error model are not identi�ed. By restricting the standard deviation �u
of the unobserved ARMA(1,1) process to unity, the remaining three parameters are identi�ed and can

be estimated by maximum likelihood. More details on the identi�cation and estimation of unobserved

ARMA components models are given by Harvey (1989, section 4.4).

Forecasting

Forecasting for linear time series models in state space form is relatively straightforward. Firstly, the

realised volatility series is arti�cially extended with missing values at the end. Secondly, the Kalman

�lter can deal with missing observations and is therefore applied to the new extended series. The

estimates of the signal �2t , corresponding to the missing values at t = T + 1; T + 2; : : :, are taken as

the forecasts of actual volatility �2T+j, for j = 1; 2; : : :. The mean squared errors of the forecasts are

also provided by the Kalman �lter. Details of this approach to forecasting are discussed in Harvey

(1989, section 3.5)

8



3.2 ARFIMA models

In empirical work on realised volatility it is pointed out that the realised volatility series ~�2t can

be regarded as being generated by a Gaussian process after it is transformed by taking logarithms.

The dynamic properties of log realised volatility exhibit features known as long memory, that is, the

correlogram of such a series decays less than exponentially as the lag length increases. An appropriate

model framework to deal with such speci�c dynamic properties is based on the ARFIMA model.

The ARFIMA(1; d; 1) model with mean � is given by

(1� �L)(1� L)d(yt � �) = (1 + �L)"t;

where L is the lag operator (Lyt = yt�1), coeÆcients d, � and � are �xed and unknown and "t is

Gaussian white noise with mean zero and variance �2. The following restrictions on the parameters

apply,

0 < d < 0:5; j�j < 1; j�j < 1; �2 > 0:

In the context of volatility modelling, the ARFIMA model for the logs of realised volatility is empiri-

cally investigated by Ebens (1999), Andersen et al. (2001b) and Oomen (2001).

Estimation

The parameters of the ARFIMA model, including mean �, can be estimated by the method of maxi-

mum likelihood; for details, see, for example, Sowell (1992). It is, for example, pointed out by Brodsky

and Hurvich (1999) and Bos, Franses and Ooms (2002) that standard ARMA(1,1) models can also

capture long memory features and that, depending on the sample spectrum of the data, not all pa-

rameters of an ARFIMA(1,d,1) can be identi�ed from the data. This usually applies to the case of

realised volatility. In empirical studies one may �x the d parameter to a certain value and estimate the

remaining parameters. However, we rather concentrate on the estimation of the crucial d parameter in

an ARFIMA(1,d,0), ARFIMA(0,d,1) or ARFIMA(0,d,0) model. Although in prior analyses the three

ARFIMA models produced rather similar results, we will consider the ARFIMA(1,d,0) model in our

empirical study. The required computations are implemented using the ARFIMA package of Doornik

and Ooms (2001) within the programming environment of Ox; see Doornik (1998).

Forecasting

Forecasting can be carried out by extrapolating the series in which the correlation structure implied

by the estimated ARFIMA model is taken into account. Details of how these computations can be

implemented elegantly for ARFIMA models are given by Doornik and Ooms (2001).
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4 Daily Time-Varying Volatility Models

In this section we discuss the daily time-varying volatility models where volatility is explicitly

modelled as the second moment of daily returns. This rather well-established range of volatility

models includes the SV and GARCH classes of models. In addition to standard formulations we

also consider extensions for both models with intraday volatility incorporated in the variance equation.

4.1 Daily SV model

The daily Stochastic Volatility (SV) model can be de�ned as

yt = �t"t; "t � NID(0; 1); t = 1; : : : ; T;

�2t = ��2 exp(ht);

ht = �ht�1 + ���t; �t � NID(0; 1);

(8)

where yt denotes the return series of interest which is the daily series Rt as given in equation (3).

The volatility process �2t is de�ned as the product of a scaling factor ��2 > 0 and the exponential

of the stochastic process ht, which in turn is modelled as a �rst order autoregressive process. The

persistence parameter � is restricted to be positive and smaller than one to ensure the stationarity of

�2t . We further assume that "t and �t are mutually uncorrelated, both contemporaneously and at all

lags. For reviews of the SV model we refer to Taylor (1994), Ghysels, Harvey and Renault (1996) and

Shephard (1996).

Estimation

The parameters of the SV model are estimated by exact maximum likelihood methods using Monte

Carlo importance sampling techniques. The likelihood function for the SV model can be constructed

using simulation methods developed by Shephard and Pitt (1997) and Durbin and Koopman (1997).

We start by considering the standard SV model of equation (8). The non-linear relation between

log-volatility ht and the observation equation of yt does not allow the computation of the likelihood

by linear methods such as the Kalman �lter. For the SV model we can express the likelihood function

as

L( ) = p(yj ) =

Z
p(y; �j )d� =

Z
p(yj�;  )p(�j )d�; (9)

where

 = (�; ��; �")
0; � = (h1; : : : ; hT )

0:

An eÆcient way of evaluating such expressions is by using importance sampling; see Ripley (1987,

Chapter 5). A simulation device is required to sample from an importance density ~p(�jy;  ) which we

prefer to be as close as possible to the true density p(�jy;  ). An obvious choice for the importance

density is the conditional Gaussian density since in this case it is relatively straightforward to sample

from ~p(�jy;  ) = g(�jy;  ) using simulation smoothers such as the ones developed by de Jong and

Shephard (1995) and Durbin and Koopman (2002). Guidelines for the construction of an importance

model and the likelihood function for the SV model using this approach are given by Hol and Koopman

(2000). The SV models are estimated using programs written in the Ox language of Doornik (1998)

using SsfPack by Koopman, Shephard and Doornik (1999). The Ox programs can be obtained from

www.econ.vu.nl/koopman/sv/.
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Forecasting

For the case that forecasting horizon is one day, the daily volatility forecast for the SV model can be

written as

E(�
2
T+1jT ) = �̂�2 exp(ĥT+1jT + 0:5pT+1jT ); (10)

where �̂�2 is the maximum likelihood estimate of ��2, ĥT+1jT is the estimator of hT+1 given all T

observations and pT+1jT is its mean square error. When the forecasting horizon spans N days, we

have

E(�
2
T+1;T+N jT ) = �̂�2

NX
j=1

exp(ĥT+jjT + 0:5pT+jjT ); (11)

The estimator of hT+1 given all T observations, and its mean square error pT+1jT are computed with

the simulation methods developed by Durbin and Koopman (2000); for j � 2 the values for ĥT+jjT

and pT+jjT are given by

ĥT+jjT = �̂
j�1

ĥT+1jT ;

pT+jjT = �̂
2(j�1)

pT+1jT +
N�2X
i=0

�̂
2i
�̂2�;

where �̂ and �̂2� are the maximum likelihood estimates of � and �2�, respectively. When these de�nitions

of ĥT+jjT and pT+jjT are considered in conjunction with equation (11) it becomes apparent that as N

increases E(�2T+N jT
) will converge to a value which is identical to the unconditional variance given by

�̂�2 exp

 
0:5

�̂2�

1 � �̂
2

!
;

where the rate of convergence depends on the value for the volatility persistence parameter estimate

�̂ which tends to be close to unity for the type of daily �nancial time series we are studying here.

Volatility forecasts for small values of N are therefore mainly determined by the values for ĥT+1jT and

pT+1jT .

4.2 Daily SV model with intraday volatility

The daily SV model with intraday volatility as explanatory variable in the variance equation is an

extension of the SV model as de�ned in equation (8) where the stochastic process ht is given by

ht = �ht�1 + xt�1 + ���t (12)

and where xt denotes ln ~�
2
t as de�ned in subsection 2.2. The value of � we restrict to be smaller

than one in absolute terms, so �1 < � < 1. Alternative formulations for the ht process are possible,

for example, one could consider the inclusion of a persistence adjustment term. However, we have

chosen this one as it is most closely related to other models used in the intraday volatility literature13.

The SV model with intraday volatility is identical to the SVX model discussed by Hol and Koopman

(2000) who used implied volatility instead of intraday volatility as explanatory variable in the variance

equation.

13See e.g. Martens (2001) and Blair et al. (2001).
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Estimation

The inclusion of realised volatility in the equation of ht does not a�ect the non-linear relationship

between observation yt and the unobserved volatility component ht. Therefore the estimation and

forecasting methods for the SV model as described in subsection 4.1 can be applied straightforwardly.

More details of maximum likelihood estimation using importance sampling techniques for the model

in equation (12) are given by Hol and Koopman (2000).

Forecasting

The daily forecast for the SV model with intraday volatility is obtained with similar methods as the

daily forecast for the SV model de�ned in equation (10) but requires in addition the availability of

xT for the calculation of ĥT+1jT and pT+1jT . Because intraday volatility values are not known beyond

time T we cannot calculate ĥT+jjT and pT+jjT for j � 2 as we did in the case of the SV model.

We therefore assume that these values do not change during subsequent trading days and de�ne the

equivalent of equation (11) as the one-day ahead volatility forecast multiplied by the length of the

forecasting horizon N , so

E(�
2
T+1;T+N jT ) = N�̂�2 exp(hT+1jT + 0:5pT+1jT )

= N E(�
2
T+1jT ): (13)

4.3 Daily GARCH(1,1) model

The second class of daily time-varying volatility models we consider is the GARCH(1,1) model as

given by

yt = �t"t "t � NID(0; 1); t = 1; : : : ; T;

�2t = ! + �(�t�1"t�1)
2 + ��2t�1; (14)

with yt as de�ned above in subsection 4.1 and parameter restrictions ! > 0, � � 0, � � 0 and

�+ � < 1.

Estimation

Maximum likelihood methods for GARCH models are well established; the procedures developed by

Bollerslev (1986) have been implemented in many standard econometric software packages such as

PcGive and EViews14. Hence we do not give estimation details and refer to GARCH surveys, such

as those by Bollerslev, Chou and Kroner (1992), Bera and Higgens (1993) and Bollerslev, Engle and

Nelson (1994).

Forecasting

As all information for the one-day ahead volatility forecast is available at time T the daily GARCH(1,1)

forecast can be directly calculated as

E(�
2
T+1jT ) = !̂ + �̂�2T "

2
T + �̂�2T ; (15)

14More speci�cally, the parameters in the GARCH model were estimated using the G@RCH package of Laurent and

Peters (2002).
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where !̂, �̂ and �̂ denote the maximum likelihood estimates of !, � and �, respectively. The N -period

ahead GARCH(1,1) forecast is then obtained by applying the law of iterated expectations and this

forecast can be expressed as

E(�
2
T+1;T+N jT ) =

NX
j=1

!̂

1� �̂� �̂
+ (�̂ + �̂)j�1

 
E(�

2
T+1jT )�

!̂

1� �̂� �̂

!
: (16)

From this equation we can deduce that E(�2T+N jT
) converges to the unconditional variance value

!̂

1� �̂� �̂

as N increases and that the rate of convergence is governed by the sum of �̂ and �̂, which measures

the degree of volatility persistence.

4.4 Daily GARCH(1,1) model with intraday volatility

The daily GARCH(1,1) model is extended to include intraday volatility by incorporating this infor-

mation in the variance equation, so the volatility process �2t in equation (14) can be rewritten as

�2t = ! + �(�t�1"t�1)
2 + ��2t�1 + xt�1; (17)

where xt represents the realised volatility measure ~�2t as de�ned in subsection 2.2. We refer to this

model as the GX model.

Estimation

Standard packages have options to include explanatory variables within the GARCH process as the

estimation of the coeÆcients in equation (17) is relatively straightforward.

Forecasting

As for the standard GARCH model, all information for the calculation of the one-day ahead volatility

forecast E(�2T+1jT ) is available at time T as it is given by

E(�
2
T+1jT ) = !̂ + �̂�2T "

2
T + �̂�2T + ̂xT ; (18)

where ̂ is the maximum likelihood estimate of . Due to the fact that intraday volatility values are not

known beyond time T we de�ne the N -period ahead volatility forecast for the extended GARCH(1,1)

model in a similar manner as for the SVX model, i.e., as

E(�
2
T+1;T+N jT ) = N(!̂ + �̂�2T "

2
T + �̂�2T + ̂xT )

= N E(�
2
T+1jT ): (19)

5 Forecasting Methodology and Evaluation Criteria

5.1 Forecasting methodology

In the second part of the next section we present an out-of-sample forecasting study in which we

compare the relative forecasting performance of the six volatility models described in sections 3 and 4.

Our full sample consists of 1004 trading days and each model is initially estimated over the �rst 800

13



observations of the full sample, i.e., over the period 6 January 1997 to 10 March 2000. As a result,

the out-of-sample period is from 13 March to 29 December 2000 providing 204 daily observations.

The parameter estimates obtained with the data from the initial in-sample period are inserted in the

relevant forecasting formulas given in the same sections and volatility forecasts E(�2T+1;T+N jT
) are

calculated given the information available at time T for horizons ranging from 1 day to 1 week, so for

N = 1; : : : ; 5. The sample is then rolled forward by one trading day keeping the size of the sample

constant at 800 observations and volatility forecasts are obtained for the subsequent N trading days.

This procedure is repeated until we have obtained forecasts for the entire out-of-sample period with

T = 800; : : : ; 1003. As our volatility forecasts are overlapping, we have forecasting samples containing

205 �N volatility forecasts for each of the six models.

5.2 Evaluation criteria

As a measure of realised volatility we use ~�2t;3, which is the scaled intraday volatility measure de�ned

in equation (6). We prefer this realised volatility measure to the highly correlated ~�2t;1 of equation (4)

as the latter includes noisy overnight returns. Realised volatility for forecasting horizons exceeding

one trading day are calculated by summing the realised volatility measures of equation (6) over the

relevant forecasting horizon N , so

~�2(T+1;T+N);3 =
NX
i=1

~�2T+i;3: (20)

In order to assess the predictive abilities of the various volatility models we report on the goodness-

of-�t coeÆcient R2 as calculated from the OLS regression

~�2(T+1;T+N);3 = a+ bE(�
2
T+1;T+N jT ) + �; (21)

where E(�2T+1;T+N jT
) denotes the N -period ahead volatility forecasts obtained with the volatility mod-

els de�ned in sections 3 and 4. If the volatility forecasts are unbiased, then a = 0 and b = 1. We test

these hypotheses using standard regression methods with Newey-West adjustments to account for the

special error covariance structure due to the rolling window construction of the forecasts. In addition

to the regression-based method, which is by far the most popular post-sample evaluation procedure,

we also report on two error statistics which are used by Andersen, Bollerslev and Lange (1999) and

Martens (2002). These are the heteroskedasticity adjusted root mean squared error (HRMSE) and

the mean absolute error (HMAE) which are calculated as

HRMSE =

vuuut 1

205 �N

1004�NX
T=800

(
1�

E(�2T+1;T+N jT
)

~�2(T+1;T+N);3

)2

; (22)

and

HMAE =
1

205�N

1004�NX
T=800

?????1�
E(�2T+1;T+N jT

)

~�2(T+1;T+N);3

????? : (23)
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6 Empirical Results

6.1 In-sample results

In this subsection the results obtained with volatility models described in sections 3 and 4 are presented

for the full in-sample period. More speci�cally, we report on the estimation results of the following

models:

UC-RV Model: ~�2t;3 = �2t + ut;

�2t = �+ �(�2t�1 � �) + ��t�1 + �t

ARFIMA-RV Model: (1� �L)(1� L)d ln ~�2t;3 = �+ ut

SV Model: yt = �t"t;

ln�2t = (1� �) ln��2 + � ln�2t�1 + ���t

SVX Model: yt = �t"t;

ln�2t = (1� �) ln��2 + � ln�2t�1 + i ln ~�
2
t�1;i + ���t

GARCH(1,1) Model: yt = �t"t;

�2t = ! + �(�2t�1"
2
t�1) + ��2t�1

GX Model: yt = �t"t;

�2t = ! + �(�2t�1"
2
t�1) + ��2t�1 + i~�

2
t�1;i;

where the volatility processes of the SV and GARCH classes of models are driven by daily returns with

yt = Rt and "t � NID(0; 1). The SVX and GX models then contain additional intraday information

in the variance de�nition itself with i either equal to 1 or 2, so the realised volatility measures we use

in these models are ~�t;1 and ~�t;2 as given in equations (4) and (5), respectively. The realised volatility

models UC-RV and ARFIMA-RV, on the other hand, directly model the realised volatility measure

~�t;3 as de�ned in equation (6).

Table 3 presents the estimation results for the above speci�ed models over the full sample period 6

January 1997 to 29 December 2000. The fractional integration parameter estimate in the ARFIMA-

RV model has a value of 0:446, exceeding the d estimates found by Ebens (1999) and Andersen et

al. (2001b) who report values in the region of 0:4. It should be noted that these studies either

employ di�erent ARFIMA model speci�cations or di�erent estimation methods15. More importantly

however, the logarithmic volatility process may not be covariance-stationary as the estimate of d is

close to the boundary value of 0:516. For the UC-RV model we observe estimated values for the �rst-

order autoregressive and moving average parameters of 0:747 and �0:160, respectively, which are both

statistically signi�cant.

Volatility persistence estimates for the standard SV and the GARCH models are statistically

signi�cant and close to unity with �̂ = 0:946 and �̂+ �̂ equal to 0:938 which con�rms earlier �ndings

in the literature with regard to daily stock index return series. The SVX and GX models with realised

volatility incorporated in the volatility equations show highly signi�cant estimates for the  regression

parameters with ̂2 slightly higher than ̂1. This is to be expected as ~�t;1 is equal to ~�t;2 plus the

15Ebens (1999), for example, never estimates the autoregressive parameter in his ARFIMAX(p,d,q) model and An-

dersen et al. (2001b) �x the value of the d parameter prior to the estimation of the other parameters in the ARFIMA

model.
16Also see Oomen (2001) who encounters the same problem with regard to a ten-year sample of FTSE-100 index

returns.
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squared overnight return at time t. In addition we observe that the subsequent log-likelihood values

increase compared to those of the SV and the GARCH models. The likelihood ratio statistics for

the null hypotheses 1 = 0 and 2 = 0 are 39:44 and 43:14 for the SV and 76:34 and 83:76 for the

GARCH models, respectively. They clearly indicate that inclusion of the realised volatility measures

~�t;1 or ~�t;2 signi�cantly improves the �t of the models
17. With regards to the other parameters we �nd

that the estimates for � in the GX models are negative and no longer statistically signi�cant but that

the estimates for �2� in the SVX models have increased considerably in value. This suggests that the

SV type models still bene�t from inclusion of both daily and 5-minute returns but that for GARCH

models there is little to no incremental value in the daily returns once the information contained in

the intraday (and overnight) returns is included18. Although we cannot compare the SV and GARCH

models in terms of goodness-of-�t, we can con�rm that the distributional assumptions with regard to

the error term "t are more closely followed by the SV than by the GARCH models.

6.2 Out-of-sample results
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Figure 3: One-day ahead volatility forecasts of the (i) UC-RV and ARFIMA-RV, (ii) SV and GARCH,

and the (iii) SVX and GX models against the realised volatility measure ~�2t;3 (RV) over the period 13

March to 6 June 2000

Out-of-sample volatility forecasts are constructed from the SV, GARCH and realised volatility

models for the evaluation period 13 March 2000 to 29 December 2000 and forecasting horizons range

17Unlike Martens (2002), we �nd a slightly better in-sample �t when the overnight returns are excluded from the

realised volatility measure.
18These GARCH model �ndings con�rm the empirical results of Blair et al. (2001) who examine Standard & Poor's

100 stock index returns over the earlier 1987 to 1992 period and �nd values for  similar to ours. In contrast, Martens

(2002) reports on much smaller and statistically insigni�cant  estimates for returns on Standard & Poor's 500 futures.

Also see: Taylor and Xu (1997).
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Table 4: Out-of-sample forecasting results evaluated against ~�2(T+1;T+N);3 based on the Standard &

Poor's 100 6 January 1997 to 28 December 2000 sample and for the evaluation period 13 March to 29

December 2000

Forecasting Horizon

Forecasting Model N = 1 N = 2 N = 3 N = 4 N = 5

UC-RV Model a 0:5173 1:5421 2:7216 3:8066 4:8179
(1:877) (2:777) (3:076) (3:132) (3:082)

b 0:7727 0:6312 0:5579 0:5377 0:5370
(1:263) (2:250) (2:707) (2:889) (2:881)

R2 0:2140 0:1573 0:1274 0:1187 0:1157

ARFIMA-RV Model a �0:0199 0:0194 0:3667 0:7123 1:0526
(0:585) (0:032) (0:414) (0:638) (0:769)

b 1:1677 1:0498 0:9890 0:9604 0:9461
(0:679) (0:220) (0:051) (0:196) (0:279)

R2 0:2579 0:2352 0:2266 0:2279 0:2310

SV Model a 0:4627 1:4650 2:5123 3:7111 4:7429
(1:073) (2:075) (2:251) (2:202) (2:088)

b 0:7680 0:6181 0:5623 0:5143 0:5059
(0:864) (2:099) (2:723) (2:855) (2:690)

R2 0:0732 0:0580 0:0546 0:0497 0:0501

SVX Model a �0:1991 0:4693 1:4373 2:5186 3:7026
(0:597) (0:929) (2:011) (2:671) (2:998)

b 1:1385 0:8925 0:7553 0:6709 0:6101
(0:597) (0:614) (1:648) (2:623) (3:349)

R2 0:2705 0:2195 0:1934 0:1802 0:1699

GARCH(1,1) Model a 0:5868 1:7942 3:0419 4:4492 5:7337
(1:419) (2:744) (2:991) (2:958) (2:834)

b 0:6346 0:4776 0:4204 0:3722 0:3570
(1:586) (3:583) (4:778) (5:109) (4:841)

R2 0:0894 0:0606 0:0524 0:0439 0:0415

GX Model a 0:5453 1:6964 3:0473 4:3803 5:7157
(2:221) (3:767) (4:398) (4:687) (4:880)

b 0:6061 0:4614 0:3825 0:3450 0:3227
(2:889) (4:969) (6:362) (7:482) (8:285)

R2 0:2323 0:1778 0:1503 0:1444 0:1442

Parameter estimates and goodness-of-�t R2 statistics for the OLS regressions as de�ned in equation (21). The t-statistics
testing for the null hypotheses a = 0 and b = 1 are in parentheses and based on standard errors using Newey-West
heteroskedasticity and autocorrelation consistent covariance estimates. The highest values for R2 are underlined.
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Table 5: Out-of-sample forecasting results evaluated against ~�2(T+1;T+N);3 based on the Standard &

Poor's 100 6 January 1997 to 28 December 2000 sample and for the evaluation period 13 March to 29

December 2000

Forecasting Horizon

Forecasting Model N = 1 N = 2 N = 3 N = 4 N = 5

UC-RV Model HRMSE 0:6546 2 0:6326 3 0:6394 3 0:6108 3 0:6040 3

HMAE 0:4853 2 0:4572 2 0:4606 3 0:4488 3 0:4511 3

ARFIMA-RV Model HRMSE 0:6401 1 0:5613 1 0:5383 1 0:5144 1 0:5058 1

HMAE 0:4807 1 0:4406 1 0:4264 1 0:4146 1 0:4100 1

SV Model HRMSE 0:8583 4 0:7503 4 0:7070 4 0:6823 4 0:6648 4

HMAE 0:6561 5 0:5989 5 0:5614 4 0:5402 4 0:5232 4

SVX Model HRMSE 0:6684 3 0:5984 2 0:5842 2 0:5555 2 0:5432 2

HMAE 0:5134 3 0:4699 3 0:4530 2 0:4346 2 0:4238 2

GARCH(1,1) Model HRMSE 1:0093 6 0:8835 6 0:8374 5 0:8154 5 0:7999 6

HMAE 0:7600 6 0:6997 6 0:6576 6 0:6331 6 0:6166 6

GX Model HRMSE 0:9031 5 0:8659 5 0:8787 6 0:8248 6 0:7954 5

HMAE 0:6446 4 0:5951 4 0:5820 5 0:5552 5 0:5419 5

Error statistics HRMSE and HMAE as de�ned in equations (22) and (23), respectively, together with model rankings

for the relevant forecasting horizon to the right of these error statistics.
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from one day to one week19. Tables 4 and 5 present the forecasting performance results of these

models with scaled intraday volatility in equation (6) as the measure of realised volatility and forecasts

evaluated by means of the regression in equation (21) and the error statistics in equations (22) and

(23).

The regression-based results in table 4 show that those models which use intraday information

produce more accurate out-of-sample volatility forecasts than those that do not. The SV and the

GARCH(1,1) model have the lowest coeÆcients of determination R2 and as these daily models depend

solely on closing prices, extreme price movements during the trading day do not necessarily show up.

For illustrative purposes we plot in �gure 3 the one-day ahead volatility forecasts of all six models

for the �rst 60 trading days of our out-of-sample forecasting period during which three so-called high

volatility days can be observed. The �rst of these occurs on 4 April 2000 (out-of-sample day 17) but

is not recognised as such by the daily volatility models in graph 3-ii because daily closing prices only

showed a relatively moderate drop of 1%. The other four models incorporate the intraday returns and

their volatility forecasts therefore increase after 4 April as can be seen in graph 3-i for the realised

volatility models and in graph 3-iii for the SVX and GX models. The GX model then reacts the most

strongly of the four. The second higher volatility period, on the other hand, which is that of 14 to

17 April 2000 (out-of-sample days 25 and 26) also leads to higher volatility forecasts for the SV and

GARCH model as daily returns do change considerably for this period. On the whole it appears from

the graphs in �gure 3 that the volatility forecasts of the models with intraday return information follow

the realised volatility measure much more closely than those without, con�rming the regression based

results of table 4. More speci�cally, the goodness-of-�t statistics indicate that the SVX model gives

the most accurate one trading day ahead volatility forecasts, whereas the ARFIMA model outperforms

the other �ve models for forecasting horizons N � 2. Further it has to be noted that the forecasts of

the SVX and the ARFIMA-RV model are the least biased for N = 1 and N � 2, respectively. What

is more, the hypotheses that the parameter estimates for a and b are equal to 0 and 1, respectively,

can never be rejected at the 5% signi�cance level for the ARFIMA-RV model. The worst performing

model in this respect is the GX model which has t-statistics that always exceed the critical 5% value

of 1:96.

Results change marginally when we evaluate the volatility forecasts against the error statistics

in table 5. In terms of the HRMSE and HMAE statistics the ARFIMA-RV model now consistently

appears to have the most accurate out-of-sample volatility forecasts, followed by the UC-RV for the

shorter and the SVX model for the longer forecasting horizons. The worst performing volatility mod-

els however are the GARCH models and even though the SV model does not include the intraday

volatility measure it frequently outperforms the GX model. The reason for this appears twofold.

Firstly, GARCH models react very strongly to sharp increases in volatility at time T which leads

to the overestimation of volatility at time T + N as can be seen in �gure 3 for the GX model with

N = 1. Secondly, GARCH models appear to have a volatility level which is in general too high20.

The problem of overestimation is then exacerbated by the choice of error statistics in table 5 as

overestimation is penalised more severely by the heteroskedasticity adjusted error statistics then un-

derestimation. The value for the ratio that appears in equations (22) and (23) lies between zero and

one when E(�2T+1;T+N jT
) < ~�2(T+1;T+N);3, whereas the value of this term is upwardly unbounded when

E(�2T+1;T+N jT
) > ~�2(T+1;T+N);3.

21

We therefore conclude that a relatively simple ARFIMA(1,d,0) model for intraday volatility in

19The SVX and GX models are based on the intraday volatility measure of equation (5). Adding the squared overnight

returns to the intraday volatility measure produces very similar volatility forecasts although they are slightly less accurate;

these results can be obtained from the authors on request.
20Also see: Andersen et al. (2001b) who make the observation that daily GARCHmodels are not very good at assessing

the current volatility level.
21We also calculated the RMSE and MAE error statistics which react symmetrically to under- and overestimations;

in terms of model ranking little changed but relative di�erences between error statistics decreased considerably.
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logarithmic form provides more accurate out-of-sample forecasts than other, more elaborate, volatility

models even though the UC-RV and the SVX model also perform very well. When intraday data

is not available, the SV model is the preferred volatility model as GARCH models perform worse in

terms of error statistics due to overestimation.

7 Summary and Conclusions

In this paper we examine the predictive abilities of six volatility models which we evaluate on the basis

of a realised volatility measure that is de�ned as the scaled sum of squared intraday returns. The

models we consider can be divided into realised volatility and daily time-varying volatility models.

To the �rst group belong the Unobserved Components (UC-RV) and the Autoregressive Fraction-

ally Integrated Moving Average (ARFIMA-RV) models where intraday volatility is modelled directly.

The Stochastic Volatility (SV) and the Generalised Autoregressive Conditional Heteroskedasticity

(GARCH) models, together with their intraday extensions, are de�ned as daily time-varying models.

We empirically investigate the out-of-sample forecasting performance of the various methods for the

Standard & Poor's 100 stock index over the period 13 March to 29 December 2000 and for forecasting

horizons ranging from one day to one week. We conclude that those models which include the intra-

day information perform better than those that are solely based on daily returns. The most accurate

forecasts are then obtained with the ARFIMA-RV model, followed by the SVX and the UC-RV model.

Although the GARCH model extended with intraday volatility appears to perform well when its fore-

casts are evaluated on the basis of regression methods, other evaluation criteria indicate that it tends

to overestimate volatility. As the GARCH(1,1) model also su�ers from this problem we conclude that

in the absence of intraday volatility information the SV model is the preferred model for forecasting

volatility.
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