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Abstract

This paper compares the behaviour of a bias-corrected estimator assuming strongly exogenous regres-
sors to the behaviour of a bias-corrected estimator assuming weakly exogenous regressors, when in fact the
marginal model contains a feedback mechanism. To this end, the effects of a feedback mechanism on the
first-order least-squares coefficient estimation bias is examined through large-sample asymptotics in a sta-
ble first-order autoregressive distributed-lag model with weakly exogenous regressors. The derived formulae
show explicitly how the bias of the coefficient estimators of the conditional model depends on the parame-
ters that belong to the marginal model. In addition, an explicit approximation in all the system parameters
is derived for the first-order bias formula based on strongly exogenous regressors. It is found that the two
bias approximations can lead to quite different numerical values. Through a small simulation study, the bias
and efficiency of the two bias-corrected estimators is investigated. It appears that the valid bias-corrected
estimator based on the whole system is somewhat less biased than the invalid bias-corrected estimator. For a
few particular parameter values considered, however, both bias-corrected estimators are inefficient relative to
the uncorrected estimator in terms of mean squared error. Somewhat surprisingly, the invalid bias-corrected
estimator based on only the conditional model is on average just as efficient as the valid bias-corrected esti-
mator based on the whole system.
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1 Introduction

The use of asymptotic expansions in approximating the estimation bias in stable autoregressive (AR) models
has a relatively long history. The early work focused on the least-squares estimator of the serial correlation
coefficient in the first-order autoregressive —AR(1)— model with Gaussian disturbances. In this model, Barlett
(1946) and Hurwicz (1950) obtained a first-order approximation of the estimation bias, while White (1961)
found higher-order approximations in terms of powers of 77!, where 7" is the sample size. For the AR(1)
model including an intercept, Kendall (1954) and Marriot and Pope (1954) gave an approximation to the bias
of the least-squares estimator of the lagged-dependent variable coefficient to the order of 7—'. In the stable
AR(1) model without a constant, the bias of the AR(1)-coefficient estimator to the order O(7~") is given by
E[i — 1] = =24/ T, where 1 denotes the AR(1)-coefficient. When a constant is included, the first-order bias
approximation equals —(1 4+ 31)/T.

More recently, Grubb and Symons (1987) derived the bias to the order 7~! for the lagged-dependent
variable coefficient estimator in a stable first-order dynamic regression model with exogenous regressors, while
Kiviet and Phillips (1993) gave the 7~! approximation of the full coefficient vector. Both papers assume
strongly exogenous regressors, like a constant or (higher-order) trend(s), which does not allow for any feedback
effects between endogenous and explanatory variables. In practice, however, it is unlikely that regressors
related to economic variables do not involve feedback mechanisms from past economic outcomes onto current
decisions. Hence, one would like to allow for weakly exogenous regressors, which may depend on lagged
values of the dependent variable; see Engle ef al. (1983) for the various concepts of exogeneity. Of course, it is
possible to ignore such feedback effects and proceed by assuming that the regressors are strongly exogenous.
In doing so, however, a misspecification error is made which may or may not be serious. The aim of this paper
is to assess the seriousness of this misspecification error in autoregressive distributed-lag (AD) models by
comparing the bias formula that results from ignoring feedback effects to the bias that does take such feedback
effects into account.

More specifically, we consider the bias of the ordinary least-squares (OLS) coefficient estimators in the

stable AD(1,1) model given by
Y = )"yl‘—l +ﬂ0xl +ﬁlxl‘—1 +0 + &, = 17 HE) T7 (1)

where ¢, ~ N (0, Ug), X; is stationary and |1| < 1. Although the AD(1,1) model seems quite specific, virtually
every type of single-equation model in empirical time-series econometrics is a special case of it; see for instance

Hendry et al. (1984). The marginal model for x; is assumed to be
Xg=nmyi—1+yxXi—1+ 1, 2

where #, ~ N (0, cr%). Since {#,} is assumed to be independent of {g,}, x; is weakly exogenous for obtaining
inference on the parameters in the conditional model (1). Moreover, x; is strongly exogenous when 7 = 0.
Weak exogeneity of the regressors implies that asymptotically efficient inference on the model coefficients in

(1) can be obtained from analysis of the conditional model (1) in isolation. In deriving the expressions of the



estimators, one operates as if x; were strongly exogenous. However, the finite-sample bias will certainly be
affected by the joint stochastic behaviour of y; and x;, since it depends on the value of the feedback parameter
7. To date, however, no bias expansions have been derived in the AD(1,1) model when x; is weakly but not
strongly exogenous (r # 0). Since the bias expressions depend on the parameters of the marginal model, a
bias-corrected inference procedure would also require the analysis of this model, despite the weak exogeneity
of x;. Hence, the pros and cons of each procedure should be weighted and it seems interesting to compare
the performance of the bias-corrected coefficient estimator based on the whole system to the bias-corrected
estimator obtained in the conditional model (1) only, which does not need to fully specify and analyse the
marginal model (2).

The paper is organised as follows. Section 2 introduces some notation and decomposes the regressors into a
deterministic and stochastic part. Furthermore, it contains the Nagar-type equation, which is used for deriving
the bias. In Section 3, the actual first-order bias formulae for the AD(1,1) model with or without an intercept
are presented. The results are specialised to the AD(1,0) model in Section 4. The fifth section analyses the bias
formula for the estimator of 4 in the AD(1,0) model based on strongly exogenous regressors when in fact the
marginal model contains a feedback mechanism. Section 6 contains some graphical illustrations and presents

some simulation results. Finally, the main conclusions are summarised in the last section.

2 Notation and Preliminary Analysis
The focus of interest is the bias of the OLS estimator of the regression coefficients in the AD(1,1)-model
y=4y-1+pfox +pix_1+0+e, (©)

where y = (31, ..., y7) isa T x 1 vector of observations on a dependent variable, y_; = (3o, ..., y7—1) is
the vector y lagged one period, x isa 7 x 1 vector of observations on a weakly but not necessarily strongly
exogenous regressor and ¢ ~ N(0,52/7) isa T x 1 Gaussian vector. The marginal model for x in vector

notation is given by
X=my—1+yx—1+1, 4)

where 7 ~ N (0, a%[r) isa T x 1 Gaussian vector independent of &. The value of # determines whether x is

strongly or only weakly exogenous. To facilitate notation, we shall write model (3) as
y=Zo+e, Z=(y-1:x:x_1:17), 5)
where 17 a T x 1 vector of ones and a = (4, B¢, B1,6) . The OLS estimator of « is
a=Z'2)"Zy=a+(Z'2)"' Z, (6)
so that the bias of a is given by

B, =E[(@ —a)] =E[(Z'2)"' Z¢]. (7)



First, we shall derive the conditions for which the whole system is stable. Using the lag-operator L, the

data generation process (DGP) can be written as

(I = 2L)y:

A=yl =

(Bo+ B1L)x; +0 + e, (8a)

Ly, + 7. (8b)
Multiplication of (8a) by (1 — y L) and substitution of (8b) in (8a) gives

(L=pL —yLy =1 =y L)+ 1=y L)e+ Bo+ il ©)
where

p=nho+y +4 and w=rafi—yi (10)

To economize on notation, the parameters ¢ and y are used as much as possible throughout the paper. For x;,

it can be found that
(1—¢L—yLlPx, =m0 +nrLe;+ (1 — L)y, (11)

From formulae (9) and (11), it follows that the time-series {y,} and {x;} can be characterised by an ARMA(2,1)
process contaminated with an independent MA(1) process. The variables y; and x; are stationary if the charac-

teristic polynomial associated with (9) and (11), given by
1 — ¢z —yz? =0, (12)

has all its root outside the unit circle. This leads to three inequalities; see for instance Harvey (1981). For a

particular set of values of the parameters in the conditional model, these inequalities are given by

w<l—¢ = afy—yi<l—afog—y —1, (13a)
w<l+¢ = afy—yi<l+mfog+y+4, (13b)
w > —1 = Tfy—yi>—1 (13¢)

In order to derive the large 7'-bias approximation, the regressors are decomposed into several (independent)

stochastic and deterministic components. To do so, define the 7 x T matrices

0

and Ly =

0
1
0

0
0

1

0

(14)



Let U denote the inverse of I', which for 7 = 5 is equal to

1 0 0 . 0
¢ 1 0
U= P+ ¢ 1 0 : ' (15
P +2py P +y ¢ 1 0
| 3PPy P20y PPy p I

Note that the non-zero elements of the i row of this matrix contain the coefficients ¢;_,, ..., 9y, where (p +
oL+ ¢pyL? 4 ..) = (1 — ¢L — wL?)~! with oy = 1. Hence, the matrix U can be interpreted as the matrix

analogue of the scalar lag-polynomial (1 — ¢L — wL?)~!. An explicit expression for the elements of U is

given by
(= 1) =0y (=741 ()VY—J'+1) _/léi—jﬂ))/ /6> + 4y i> ]
Uy = ] (16)
0 otherwise,
with
_ ¢Vt +ay _—¢—Vei+dy
M=——— and Jp=—m—————— (17)
2y 2y
The scalars 11 and 1, are the roots of the polynomial given by (12). In addition, define the matrices
V:UL]‘ and H:ﬁoU‘I‘ﬁ]V,
W=VLr and C=HLr=pV+5W, (18)
G=U—-yV and J=U-1V,

P=GLr=V—-—yW and S=JLr=V—-W.

The matrix G corresponds to the matrix analogue of the scalar lag-polynomial (1 — ¢L — wL?)~'(1 — y L),
while H equals the matrix analogue of (1 — ¢L — wL?)~1 (B, + B L), et cetera. Similarly to (9), the vector

y—1 may be written as
y-1=0Pir + Pe +Cn+ Geiyo + (v Bo + 1) Verxo, (19)

where e¢; = (1,0, ...,0)" denotes a T x 1 unit vector. Although the second-order bias is likely to involve
the starting values yp and xg, see for instance Kiviet and Phillips (1998) for the ARX(1) model with fixed
regressors, the first-order bias does not depend on the starting values (provided that the initial values are finite).
Hence, we shall ignore them in the remainder of the analysis. Apart from the starting values, the other two

regressors can be written as
x=0zVir+raVe+Jy and X1 =0xWir+zWe+ Sy. (20)

In order to distinguish the deterministic and stochastic part of the matrix of regressors Z, decompose Z =

Z + Z, where Z is defined as the mathematical expectation of Z, so that

Z = E[Z]+ (Z-E[Z])
- 7+ 7 Q1)



From equations (19) and (20), it follows that the non-stochastic matrix Z and stochastic matrix Z are given by
Z=OPip :0nVir:0xWir i) (22)

and
Z=(Pe+Cn:aVe+Jn:aWe+Sy:0). (23)

For notational convenience, we shall denote the inverse of E[Z'Z] = Z'Z + E[Z'Z] by O, ie. O = (Z'Z +
E[Z'Z])~!. The Nagar-type expansion, named after Nagar (1959), that is utilised in this paper follows from
the identity

Z2'=0 [1 +(Z'Z+22)0+(Z'Z - ]E[Z’Z])Q]_] , (24)

where the stochastic terms (Z'Z + Z'Z) Q and (Z'Z —E[Z' Z]) O both are O, (T~!/?). The inverse of the form
(I + A) ' with 4 = Op(T_l/z) may be expanded in (/ — 4 + A% — 43...), with successive terms that are of
decreasing order in probability. The two theorems stated in this paper are based on the next lemma, which is

proved in, e.g., Kiviet and Phillips (1998, Appendix B).
Lemma 1 The bias in the AD(1,1) model shown in (5) is given by
B, (T™Y=E[QZ'e — Q(Z'Z + Z'2)QZ'c — Q(Z'Z — EB[Z'Z])QZ'e] + o(T V). (25)

Lemma 1 holds quite general and does not depend on the exogeneity status of the regressors. On the other

hand, the content of the matrices Z and Z does depend on the exogeneity assumption.

3 Bias Approximation in the AD(1,1) Model

The starting point for our analysis can be summarised as follows.

Assumption 1 In the system consisting of the conditional model (3) and marginal model (4), we have
B W<,
(ii) given (L, Po, Po), the parameters (w, y ) satisfy the three inequalities (13a) — (13¢),
(iiily &~ N(0,021r), with0 < o2 < o0,
(iv) n~ N(, 0'%71]‘), with 0 < 0',27 < 0,
(v) e and n are mutually independent,

(vi) o and xq are finite and fixed.

The assumptions (i) and (ii) ensure the stability of the conditional model, while assumption (v) formally
states the weak exogeneity assumption. It turns out that the bias B,(7~!) can be decomposed into a bias
component due to the inclusion of a constant (c), denoted by B (T—"), and another bias component due to the

stochastic regressors (), denoted by B, (T~1). Hence, we have

By (T™YY = BE(T™"Y + BL(TTY), (26)



and the bias of & to O(7~") in the estimation model without intercept is given by the bias component B! (T
only. Using Lemma 1 and tedious but straightforward algebra (done by Mathematica 4.0), the following result
is derived in Appendix B.

Theorem 1 Under Assumption 1, the bias B, of the OLS estimator a in model (5) can be approximated to

first order as

BS(T™hH = o{-(1+2)(=1+y1)}olo;
trol[—x (1 =y i+ 7B)o2+Qpg(1 =y 2 +ap))
B (L +20) (2= 1) =m 2B ), N T~ +o(T7, 27)
Bi(T™Y) = a{-(i-1)( G2 =1) =2l
—nol[m(y + A+ oo
+OB (4 — 6y ) +3npy) —aifF— 2y i —14+1D)Bos N T~ +o(T7h),  (28)
By (T = 0+o(T7h, (29)
By (T = 0+o(T7), (30)
By (T = oil=(1+ 1) A= 1D)Bo+7B)o}0o,
+o [+ DG 2= DBo+yBoy— (i —1—xpy)
x(—x(l+7)or + By +yi—aB)+ Bo(l + 2+ 7))o )} T~ +o(T7),(31)
By (T7Y) = a{—(y (322 =1)=2)(By+ 7 p1)olo?

—no2[(1+y2 =2y i+my By + 310>
—Q(y +20)Bof1 + B1(6y 4 — 1 =3 py) + gL +xp)oy T~ +o(T7), (32)
B(T™") = @{@0;(x*G+y +2=5yi+xfo+5afp)o; — (=1 +7)(=1+72)
X(=1 =304 y(=1+ 2+ 4 +a@p(l + 2=y +xp))
+A(=1 =6 +7Q2+y —=2(=5+7)1 —4(=2+3y)2%)
FaBI(=2 4y =44+ 1292 —4x ) + Bo(rH(=2+ )+ 24 +2) + 7 (2 = 627)

T B1Q+2y +61 =2y L+ T pONTIN T +o(Th (33)

where o1 = {x?a + (=1 + y2)?* —27)By — 2wy if; + nzﬂ%)aga% + (Afy + ﬂl)zat}_l and wy =
(0 =D =1 =z (Bo+ B} 1.

To facilitate the reading of the formulae, the bias expressions (except for the constant) are decomposed in
expressions not involving the feedback parameter z (first line) and expressions that do involve the feedback
parameter 7 (other than first line). So, in the absence of a feedback effect (x = 0), the first-order bias can be
directly read off from the first line of the approximations. Note that the elementary bias formulae given in the

introduction are recovered if the appropriate substitutions are made, i.e. Bj(T 1y = —2)/T + o(T7") and



By(T~"y=—(+32)/T +o(T") for Bo = B =r =y = 0. Furthermore, it turns out that the expressions
for the bias of the stochastic regressors do not depend on the value of the intercept. Hence, they are invariant
with respect to parameter ¢. Finally, it appears that the OLS estimator ﬁo is unbiased to first order, which is in

contrast to the other three coefficient estimators.

4 Bias Approximation in the AD(1,0) Model

In this section, we shall consider the slightly more specific AD(1,0) model, i.e. without the lagged exogenous
variable. To distinguish the AD(1,0) model from the AD(1,1) model, the coefficient f is replaced by S, so

that the estimation model becomes
y=2A_1+px+0+e, (34)
while the marginal model remains unchanged. In matrix notion, we obtain
y=Zo+e, Z=y-1:x:17), (35)

where a = (4, B,60). Although the AD(1,1) model encompasses the AD(1,0) model, the results for the bias
do not result directly from Theorem 1 for (8, f1) = (8, 0), since the matrices (Z’Z) and Q for the AD(1,0)
model are not submatrices of their counterparts in the AD(1,1) model.

Using the results in Lemma 1 and straightforward algebra, the following result can be derived (see Appendix

C for some additional remarks).

Theorem 2 Under Assumption 1 for (B, B1) = (B, 0), the bias By, of the OLS estimator . in model (35) can

be approximated to first order as

B{(T™Y = ws(=(1+2)(=1+y 1) 0r0;

—z(yi—Dokmyor— o T~ +o(T7h, (36)
BT = w3l-(A-D(y B2 —1)—20)0}0,

+rollay(1 =3y Dot +2BQyi— Do} T~ +o(I7), (37)
BT = w3(-py (1 +D)(yA—Dolos

+ay(L+7) i = Do} T™ +o(T7h, (38)
By(T™") = w3{fy(y +2. -3y P)olo,

—myoi((l+aBy +y> =2y Do —Fro} T~ +o(T7h,
By(T™") = wil—Oci(x*y*G+ap+y +1—5y))0}

—@2 By + (1 + )1+ ) (=1 =304y (=1 + 2 +41%))

+rB(=3+7@A+y +82 =674 — 4y IO T~ +o(T 7). (39)

where wy = {m2y 2ot +(2xfy + (=1 +y ) )oior + oy L andwy = (=1 +7f+y + 71—y 2} w3



The bias expressions in Theorem 2 are considerably more simple than in Theorem 1. Moreover, the S
coefficient estimator is biased. Since the results of Theorem 1 continue to hold when the regressor x;_1 is
redundant, i.e. f; = 0, we conclude that f can be estimated unbiasedly up to first order by estimating the
overparameterised AD(1,1) model. So, in this particular model, the finite-sample problems with respect to the
estimation bias of  can be reduced by including a redundant regressor, viz. x;_1.

Grubb and Symons (1987) studied the bias of the AR(1) parameter in model (34) without intercept when
there is no feedback effect (z = 0). For z = 0, formula (37) reduces to

- e

—(1 =22y /(= y) =24 -1
= . 40
14+ 4201 — )uy)_za,%a;z I 4ol (40)

which corresponds to formula (18) of Grubb and Symons (1987) for (y, ag, a%) = (p, af,, o2).

&

5 Approximation to the Strong Exogenous Bias Formula

In this section, we shall investigate the behaviour of the bias-correction formula (40) assuming strongly ex-
ogenous regressors, i.e. no feedback mechanism is assumed, when in fact the regressors are only weakly but
not strongly exogenous, i.e. there does exist a feedback mechanism. To this end, the bias formula ignoring
feedback mechanisms, which was first derived by Grubb and Symons (1987), is studied under a DGP that does
involve a feedback mechanism.

Consider the dynamic regression model
y=Iiy-1 +Xp+e, e~ N, 0717), @1

where X isa T x k matrix of fixed regressors, £ denotes here a vector of unknown parameters and |1| < 1. In

model (41), only y_; is a stochastic regressor, which can be decomposed into
y-1=0F+CXp+Ce=yp+Ce, (42)

where F denotes a 7 x 1 vector equal to the first column of matrix U given in (14) for (¢, w) = (1,0) and C
denotes a 7 x T matrix equal to the matrix V' = U Ly for (¢, w) = (4, 0). Kiviet and Phillips (1993) show
that the bias of the vector &’ = (4, f’) under the assumption that the regressors are strongly exogenous can be
approximated by
BEPR(r=Yy = 2D Z'CZD e + Tr(Z'CZD™ Ve
+202e) D7 e  Tr(CC'Cer} + o(T7Y), (43)
where Z =[yp : X]and D = Z'Z + afTr(C’C)ele’].
Since explicit expressions become quickly rather lengthy, we shall focus on the estimation bias in the

AD(1,0) model without intercept

y=Ay_1+px +e, x strongly exogenous, (44)



where S is now a scalar and |1| < 1. Define the scalars G, = 7! Z[T:_]m XtqmXs form = 0,..., T — 1,
where x; denotes the 7-th element of x. G is the sample variance 7' (x'x) of the exogenous variable, while
G (m #£ 0) consist of the m-th order sample autocovariance of x. In addition, let A = Z;;% "G, and
A= Z;;% m)"~'G,,. Grubb and Symons (1987) show that equation (43) for the OLS estimator /. in model

(44) can be written as

92y —1 —1 301 _ 32\
B/?S(T_l):—az((l TGN #2423 -0 )ﬁHleﬁ)T_1+O(T_1)’ @5

¢ (o2 + ' Hyp) (o2 + f Hop)?
where
Hy = Go+2A—2"2(1—2%)2A/Gy, (462)
H = 221—(1—-2*)A/Gy, (46b)
Hy, = A+ A%/Gg—2A. (46¢)

Equation (45) differs slightly from equation (11) of Grubb and Symons (1987), since they omit the effect of o'g
and the second part of their formula appears to have a wrong sign.

Suppose that, contrary to the condition that x is a fixed regressor, the marginal model for x is given by
equation (4), so that the model for x contains a feedback mechanism. Hence, formula (45) is in error since
it was derived under the assumption of no feedback effect. However, it seems interesting to compare the
behaviour of the erroneous bias formula, i.e. st (T, with that of the correct bias formula given in Theorem
2, ie B;(T_l). To this end, closed-form approximations in the underlying parameters (1, 8, y, 7, af, a%)
are obtained for the quantities G, A, A, Hy, H; and Hy under the assumption that x is generated by equation
(4). The approximations for Gy, A and A are derived in Appendix D. Substitution of these expressions in

(46a)-(46¢), lead to the following approximations

0o zt(=1+y22Y02 =272k (—1 + yi3)aga% +x2(—1+ ,12)0?7 +0,(T7'1) (472)
0 = x2(—=1 4y ) (x2(1 —i—y)u)o%—(lc-i-/lﬂﬁ)o'%) p ’
SO (B prios —k@pty A+ @ NEH ey o iy g
“ k(@2(1 +y )o2 — (& + iz f)o3) ! ’

sy oi+a((y —D(=1+y2) + 7B+ pyi)oios —kpoy

H = =) ‘ 0,(T~"%), 47
2 g k(@2(1+ 7202 — (x + iz f)o) + 0T (“470)

H =

where k = —1 4 (¢ + Ay) = —1 + Lz f + y + 2 — y2%). Although it is possible to give a closed-form
approximation to the bias formula B/?S (T~"Y in the underlying parameters, the formula is not shown here since
it is rather lengthy. Of course, this is a result from the fact that the bias formula st (T~ ") is evaluated under a
probability model that differs from regression equation (44) in which it was derived. When there is no feedback
effect, i.e. 7 = 0, the bias formula B/ (T _1) shown in Theorem 2 reduces to B/?S (7! ). In general, however,
the two bias formulae are different. The numerical discrepancy between the two formulae for particular values
of the underlying parameters is illustrated in the next section, which reports some numerical and simulation

results.
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6 Some Numerical and Simulation Results

In this section, the various bias approximations derived in this paper are illustrated and compared for several
values of the population parameters. The focus is on the dependence of the bias formulae on the parameters
(, y), which appear in the marginal model. In addition, the finite-sample performance of two different bias-
corrected estimators is examined through Monte Carlo experiments. Section 6.1 considers the AD(1,0) model,
while Section 6.2 considers the more general AD(1,1) model. In both sections, we chose to focus on just a
few particular but empirically relevant number of parametrisations to keep the number of figures and tables

manageable.

6.1 The AD(1,0) model
The parameters of the AD(1,0) model y = Ay_; 4+ fx + ¢ are chosen as
(4, ) =(0.8,0.2), (48)

so that the long-run multiplier of x with respect to y is equal to 1. For this particular set of values, the three

inequalities given in (13a)-(13c) lead to the triangular admissible region of (x, ) given by

y < l—m, (49a)
y > —-1—-1/9x, (49b)
y < 5/4. (49¢)

Without loss of generality, the variance of the marginal model a% is normalized to 1. To make the outcomes
more comparable when varying 7 and y, we shall control for the signal-to-noise ratio. The population R? of
the conditional model for y,, i.e.

o2

2 1 _ 3
R=1- gt (50)

is set to 0.1 since the bias aggravates as o

2

&

2

< increases. All these restrictions lead to

is set to 0.8. In addition, o

the following relationship between 7 and y

544y
S(4(5—4y —5p2+4y3) +8(=5—y + 59w + (=5 +4y)n?)

0.1. (51)

The graph in Figure 1 illustrates this implicit relationship as 7 is varied over the interval (—11.3, 0.6). Below,

we shall examine the various bias formulae along Line 1 and Line 2; these two lines are shown in Figure 1.
Insert Figure 1 about here.

Figure 2 shows the first-order bias which was derived under the assumption of strong exogeneity, i.e.
-T st (T~1) based on the approximations shown in (47a)-(47c), and the bias which was derived under the

assumption of only weak exogeneity, ie. —T Bj(T ~1) based on the approximation shown in Theorem 2 ,
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along Line 1. From this figure, we observe that — T’ BZ(T_l) varies more widely than — T B;QS(T_1 ). Further-
more, the two functions intersect at several points; one of them being of course # = 0. Moreover, in the area
r € (—11.0, —6.6), 7 is upward biased although 1 is positive. This is in contrast to the simple AR(1) model
where the OLS estimator is downward biased when 1 is positive. Figure 3 shows the two bias formulae along
Line 2. Again the discrepancy between the two formulae can be substantial. For 7 < —0.9, the incorrect bias
formula —7 st (T~ is smaller than the correct formula —7T Bi(T ~1). Hence, the bias formula ignoring a

possible feedback effect is expected to undercorrect for the estimation bias when 7 is sufficiently negative.
Insert Figures 2 and 3 about here.

Next, we shall examine the bias and efficiency of two bias-corrected estimators for the AR(1) coefficient
estimator 4. Since these estimators are obtained by replacing population parameters by their estimators, the
analysis is based on Monte Carlo experiments. Theorem 2 can be used to define a bias-corrected (BC) least-

squares estimator for & = (4, #)’ in the AD(1,0) model as follows:
a(T7") = — Bu(T™, (52)

where B, (T ~1Yis B, (T~") with population values replaced by OLS estimators. Hence, the population param-
eters of the conditional model (4, 3, af) are replaced by the OLS estimators (., Zf , sf), the parameters of the
marginal model («, y, a%) are replaced by the OLS estimators (7, 7, s%) and the approximation term o(7 ")
is set to zero. Note that the BC estimator based on Theorem 2 requires the analysis of the full system rather
than the partial conditional model alone. The need to analyse the full system is a serious drawback of this bias-
correction procedure because this makes is more vulnerable to specification errors with respect to the marginal
model. If one only considers the conditional model and is willing to ignore the marginal model, a BC estimator
can also be obtained by the bias approximation Bolf Ph(7=1) derived by Kiviet and Phillips (1993), which is
reproduced in equation (43). This latter procedure is incorrect when the system does contain a feedback mech-
anism, i.e. 7 # 0. Since both bias formulae are derived under the assumption |1| < 1, it seems sensible to
truncate 4 to 0.99 when the event 2 > 0.99 occurs in a particular sample.

The bias and mean squared error of the OLS and BC estimators @ and & are compared by Monte Carlo
experiments. In the simulations, we chose 7 = {—10, =8, ..., 0} and y such that R% = 0.8 and af =0.1,ie
on the two lines shown in Figure 1. The simulation results are based on 10,000 (= N) replications. Since the
first-order bias does not depend upon the starting values, we choose (g, xg) = (0, 0). In each replication, &
and & are estimated on a sample of size 7 = 25. A Monte Carlo estimator of the bias for & is given by

Bias(@) = N7' > 6, —a, (53)
i=1

N
where a; denotes the OLS estimates obtained in the i-th Monte Carlo replication. A Monte Carlo estimator of
the mean squared error (MSE) for a is given by

]v
Mﬁ@:N”m@(

> (@ )@ —a) ). (4)

i=1
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where the function Diag(-) selects the diagonal elements. The bias and MSE for ¢ are defined analogously.

All simulations were carried out on a personal computer using Gauss 2.2.
Insert Tables 1 and 2 about here.

Table 1 shows the simulation results with respect to /. in the AD(1,0) model without intercept. Since A
based on the correct bias approximation is virtually unbiased, it seems that, on average, the bias approximation
derived in Theorem 2 and shown in Figure 2 closely corresponds to the actual bias. As observed before, there is
a region for which the bias is positive; see the results for (7, y) = (—10,0.258) and (7, y) = (—8, —0.033).
In this region, the bias correction ignoring any feedback effects does not seem to pick up the bias correctly but
instead aggravates it. For almost every combination of (z, y), the BC estimator based on the whole system is
more unbiased than the BC estimator based on the conditional model only. Judge by the efficiency criterion,
however, no clear-cut picture emerges from the reported results. Sometimes the BC estimator based on the
whole system is more efficient than the BC estimator based on the partial conditional model, although not
always. More importantly, in just two instances, the BC estimator based on Theorem 2 is more efficient than
the uncorrected estimator. Surprisingly, the BC estimator based on only the conditional model seems to be
more efficient for a larger range of (, y )-values.

Table 2 shows the simulation results when a redundant intercept is added to the estimation model (8 = 0).
Comparing these numbers with the results shown in Table 1, we conclude that the bias has enlarged. With
respect to the (remaining) bias of both BC estimators, the results are qualitatively the same. As before, the
reduction in bias can be very substantial especially for the BC estimator based on the whole system, although
the bias reduction is less successful than in the model without intercept. With respect to the efficiency, we
now observe that there is a larger range for which the BC estimators are more efficient than the uncorrected
estimator. Again, there is no global winner since there are combinations of (7, y) where the BC estimator
based on the whole system is more efficient than the BC based on the conditional model and vice versa.

Overall, we conclude that the BC estimator based on the whole system exhibits the least bias. Somewhat
unexpectedly, the incorrect BC estimator ignoring any feedback effects is comparable to the correct BC esti-
mator taking feedback effects into account in terms of efficiency. These two findings lead us to conclude that
the effectiveness of the highly non-linear bias formula assuming weakly exogenous regressors is limited when
the population parameters are replaced by their estimates. Furthermore, the region in which an efficiency gain

is achieved seems to be limited.

6.2 The AD(1,1) Model

Next, we consider the AD(1,1) model including an intercept with parameters that are chosen to correspond
closely to particular estimates obtained in practice. In accordance with an annual consumption function, cf’

Hendry (1983), we chose

(s Bos B1) = (08,05, -0.3). (55)
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The parametrisation in (55) gives rise to a total multiplier of x with respect to y of 1 = (5 + )/(1 — 2)
and an immediate impact multiplier of 0.5 = ;. For the marginal model, we took a% = | without loss of
generality. Since the bias of the OLS estimators Pa ﬁo and ﬁ 1 are invariant to 6 (see Theorem 1), we took § =0.
The parameter crf is chosen in such a way that the population R* of the conditional model for y, given in (3)
equals 0.8; ¢f. Hendry (1983, eq. 13). By the decomposition given in (19), it follows that the multipliers of the
variance of y, with respect to ag and 0%7 are equal to the leading terms of respectively 7+ (P’ P) and Tr(C'C),
so that

L= dty iy o ZBoHvB —28BB — B+ vBL o
AI+d—p)U+y)(=l+o+y) * A+d—p)U+wy)(=l+d+y) "
Substitution of (56) into R* = 1 — o'g/Var(yt), evaluated and simplified at (1, £, 1,0, R?, a%) = (0.8, 0.5,
—0.3,0.0,0.8, 1) gives

Var(y,) = (56)

2 25— 12z =Ty
: =73 ) 2 2 BYS G7)
(1272 + = (7ly —25)+4x (=23 — 10y +29y°) +8(5 —4y —Sy* +4y°))
For our particular choice of (4, Sy, f1), the system is stable when
y < l—m, (58a)
y > —l1—3nm, (58b)
y < 3-—3m. (58¢)

This triangular region is shown in Figure 4.
Insert Figure 4 about here.

Figure 5 shows — T times the first-order bias for the AR(1) coefficient as function of the parameters of the
marginal model under the additional restriction that |[z| < 1 and |y| < 1. From this figure we observe that
there are indeed regions where the bias of the AR(1)-coefficient estimator depends heavily on the values of
the parameters in the marginal model, i.e. (z,y). The bias seems to be most severe when 7 and y are both

positive.
Insert Figure 5 about here.

In the AD(1,1) model, Theorem 1 can be utilised to obtain a BC estimator for &’ = (4, B, 81, ) which is
valid in case the regressors are weakly exogenous. A first-order BC estimator for o based on strongly exogenous
regressors can be obtained by utilising the formula B{f Ph(T=1) as shown in (43). As in the previous subsection,
the Monte Carlo results are based on 10,000 (= N) replications. To examine the effect of the number of

observations, two sample sizes 7' = 25 and 7' = 50 are considered.

Insert Tables 3-6 about here.
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Tables 3—6 show the simulation results obtained in the Monte Carlo experiments; the first two tables refer
to A, while the last two tables refer to ;. Since the first-order bias of Bo is zero, we have that the BC estimator
equals the uncorrected estimator, i.e. Z’)o = Z’)o- Hence, the results with respect to the coefficient S, are not
reported. From Tables 3-6, we observe that 2 is negatively biased, while Z?I is positively biased. The bias of
7. seems to be twice as large in magnitude than the bias of /3’1. The bias of 4 for 7 = 25 lies in the range
(-0.171,-0.088), while for 7" = 50 it lies in the range (—0.081, —0.050). On average, the BC estimator based
on the whole system is slightly less biased than the BC estimator based on the conditional model only. In
contrast to the AD(1,0) model, both BC estimators are uniformly more efficient than the uncorrected estimator
7. Comparing this to the results obtained in Section 6.1, the efficiency gain seems to be a consequence of
the particular model and parameter values we consider. Surprisingly again, the two BC procedures perform
equally well in terms of efficiency, although in 5 out of 17 values for (z, y) the BC estimator based on the
whole system achieves a slightly lower MSE than the BC estimator based on the conditional model only. On
average, the reduction in the MSE for both BC estimators seems to be approximately 25%, which is quite high.
When the sample size is doubled, the efficiency gain is only slightly less. The bias of ﬁ’l for T = 25 lies in
the range (0.061, 0.108), while for 7 = 50 it lies in the range (0.029, 0.053). As before, the BC estimators are
more efficient than the OLS estimator for all the values of (z, y) considered in the Monte Carlo experiments.
The average reduction in the MSE achieved by the BC estimators equals approximately 15%, which is less
than the reduction in MSE achieved by /. In the majority of the considered (z, y) values, the BC taking
the feedback mechanism into account exhibits less bias than the BC estimator ignoring any feedback effects.
Overall, the first-order BC estimators substantially reduce the bias and are more efficient than OLS, at least in

the parametrisations we examined.

7 Conclusions

From a practical point of view, it seems interesting to compare the behaviour of a bias-corrected estimator based
on only the conditional model to the behaviour of a bias-corrected estimator which takes the marginal model,
and hence possibly feedback effects, into account. In order to compare these two estimators, we first derive
the least-squares estimation bias in an autoregressive distributed-lag model with weakly exogenous regressors,
i.e. we allow for the presence of a feedback mechanism. In particular, the estimation is carried out in the

AD(1,1)-model
y=Ay_1+Pox +pfix_1+0+e¢, (59)
where the marginal model for x is given by
X=rwy—1+yx—1+n. (60)

From the first-order bias formulae, we observe that the bias of the OLS estimators depends explicitly on

the value of the parameters of the marginal model (7, y). Furthermore, we find that the OLS estimator /3’0 is
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unbiased up to first-order. In the AD(1,0)-model, i.e. the model without x_;, however, the OLS estimator of
Po is not unbiased. Hence, we see that a redundant regressor can sometimes reduce the estimation bias in a
dynamic regression model.

Next, we have derived an approximation to the first-order bias formula based on strongly exogenous regres-
sors when in fact the regressors are only weakly exogenous. The two bias formulae respond quite differently to
changes in the parameters (x, y ). It is found that the sign of the bias formula based on the conditional model
only is sometimes erroneous. The finite-sample behaviour of the two bias-corrected estimators is investigated
through a small-scale simulation study. In the Monte Carlo experiments, it is found that the bias problem can be
rather severe. Fortunately, both bias-corrected estimators reduce the estimation bias considerably. Somewhat
surprisingly, none of the two bias-corrected estimators is uniformly more efficient than the other. It turns out
that in a particular AD(1,0) model, there is not always an efficiency gain for particular values of (z, y). When
there is an efficiency gain, however, both bias-corrected estimators achieve such a gain. In the parametrisation
we consider in the AD(1,1) model, which is designed to mimic situations that are empirically relevant, the
efficiency gain can be as large as 25% for the AR(1) coefficient. Judge by the mean squared error criterion,
it seems that (on average) the error committed by an practitioner who ignores any possibly feedback effects is
small.

Although the bias formulae based on the whole system do not easily generalise to higher-order AD models,
one could always obtain a bootstrap approximation of the estimation bias in practice by resampling the whole
system. In fact, one could even compare the two bias-corrected estimators by employing different resampling
schemes; see Giersbergen and Kiviet (1996) for details. Of course, adoption of the bootstrap approach does not
lead to explicit expressions for the bias in the underlying system parameters and is therefore less suitable for

the analysis given in this paper.
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Appendix A: Some auxiliary results

Let A be a symmetric 7 x 7 matrix and B and B arbitrary 7 x T matrices. In addition, let the 7" x 1 random
vectors ¢ and # be such that & ~ N(0, o2 17) and 5 ~ N(0, a%[r). The following results will be frequently
used in Appendix B (here 7 (-) denotes the trace operator):

Ele'Bie] = 02Tr(By);
Ele' Ae &' Bie] = o*[Tr(4) Tr(By) 42 Tr(4B))];
Ele'Bie & Bye] = o2 [Tr(By) Tr(By) + Tr(B) By) + Tr(B| By));
Eln Bie ¢ Bon) = o0, Tr(B1Ba);

E[# Bie ' Bre] = aga%Tr(BiBz).

Next, we state a number of trace results. To economize on notation, define

1
I+ —p)A+y)(-1+d+y)

Although the results can be obtained by using the properties of geometric series, we have used the computer
algebra system Mathematica 4.0 for computation; see Wolfram (1991).

First, we consider the traces involving two matrices, viz. Tr(P’P), Tr(C'C), Tr(P'V), Tr(C'J), Tr(P'W),
Tr(C'S), Tr(V'V), Tr(J'J), Tr(V'W), Tr(J'S), Tr(W' W) and Tr(S’S). All these traces can be calculated
from the following three basic ones

w =

Tr(U'U) = o{—1 + y)T + O(1), (A1)
Tr(U'V) = —wpT + O(1), (A2)
and
Tr(U'W) = yTr(U'U)+¢TrU'V). (A3)
For example,
TrC'J) = Tr((BoV +BWY (U = iV))

= BoTr(V'U) = BoiTr(V'Vy+ B Tr(WU) = iB,Tr(W'V)
= BoTr(U'V) = BodTr(U'U) + By Tr(U'W) — 28, Tr(U'V) + O(1),

where the last line follows from the fact that

Tr(V'V)y=Tr(ULyLrU) =Tr(U'U)+ O(1)
and

Tr(W'V)=Tr(V'LyLyU) = Tr(V'U) + O(1),

since V=LrU=ULyp, W=LrV =VLyand

Iir— — 07—
1Ly = la-oxa-n 0a-nxi )
rer (le(r—l) 011
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Note that the leading term of (A.1) can be interpreted as the unconditional variance of the AR(2) process
Vi = Pyi—1 + wy—2 + & with g, ~ N (0, 1), while the leading terms of respectively (A.2) and (A.3) are the
first and second-order covariances of such a process.

Secondly, we consider traces involving three matrices like 7r (P’ P P’). All these traces can be calculated
from the following ones

Tr(V'UUy = Tr(W' VU + O(1) = —a?p(y — 1)(1 + )T + O(1), (A4)
Tr(V'UV'y = o (¢2 ty—2p% + y/3) T+ 0(1), (A.5)
TrW' WU’y = Tr(V'VU) + O(1) = o (1 2y + 4ty + yﬂ) T+ o), (A.6)
Tr(W'UU’) = o (¢2 Fy—2u+ 1//3) T+ 0(1), (A7)
TrWUV'y = Tr(V'UW') + O(1) = o? (¢3 2y — 2¢¢/2) T+ 0(l), (A.8)
Tr(W' VU') = w? (¢3 2y — 2451//2) T+ 0(1), (A.9)
Tr(WUW') = o (¢4 1302y 4yt — 207yt — 293 + w4) T+ 0(l), (A.10)
and

Tr(V' WU’y = —? (¢3 —2¢+2¢y/)T+0(1). (A.11)

For example,

Tr(P'CSy = Tr((V—yWY BV + W)V —iWY)
= BoTr(V'VV"Y=IBeTr(V' VW )+ B Tr(VWV')y =2, Tr(VWW') —y BoTr(W'V V')
—y 2B Tr(W' VW'Y —y BiTr(W WV + y i, Tr(WWW')
= BeTr(V'UU"Y = 2By Tr(V'UV'y + By Tr(V' VU'y — 2B, Tr(V'UU") = y B Tr(W'UU")
AP THW'UVY = 3 By TE(W' VU') + 3 2, THW'UU) + O(1).

Appendix B: Proof of Theorem 1
First, we focus on the matrix D = Z’'Z + E[Z’Z]. Using Z=0Pir:0xVir 0xWir: 17), we have

Qzl’TP’PlT n@zt’TP’ Vip 7r92t’TP’WlT 01, Py
7r021’T V'Pir 7r2921/T V'Var 7r2921’T V'Wir w0V
n@zt’TW’Plr 717921/TW/VIT 7r2t921’TW’WtT T Whr

0y Pir Oty Vi On 'y Wiy Ui

7'7 =

To evaluate Z’'Z, we need to obtain a first-order approximation of the following quantities

X'y and 5 X'Yir,
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where the T x T matrices X, Y € {P, V, W}. It appears that the matrix P contributes a multiplicative factor
of (1 —y)/(1 — w — ¢), while the matrices V" and W both contribute a factor of 1/(1 — y — ¢). For example,

(1=7)
(1-w—9)

U'pPlip =

Hence, we obtain

where

(1—y)0

T+ 0()

and

(1=7)
(1-wv—-9)

P Vir =

7’7 =ww' T+ 0(1),

V47

70 ¢
w_[(1—¢—w)’(1—¢—w)’(1—¢—w)’1}'

Using Z = (Pe +Cy:nVe+ Jn:xWe+ Sn:0), we obtain

(Pe+Cn)(Pe+Cn)

E[Z'Z] =
0

o2Tr(P'P)+0.Tr(C'C)
xa2Tr(V'P) +o2Tr(J'C)

7ro*§Tr(W’P)—i—0',£7
0
= K-T+0(®).

(Pe+Cn)(xVe+ Jn)
xVe+Jn)(Pe+Cy) @Ve+Jn)(@Ve+Jn)
(xWe+ Sn)(Pe+Cn) @We+Sy)(xVe+Jny) @We+Sn)xWe+Sn) 0

nolTr(P'V)+02Tr(C'J)
gTr(V’ VY4 02Tr(J'J) nzag

n°o y
Tr(S'C) m2a2Tr(W'V)+a

2

0

n
0

5T+ 0(1).

0

Tr(VW)+o

Tr(S'J) m2c2Tr(W'W)+ O'Z

0

(Pe+Cn)(xWe + Sn)
(xVe+Jn)(xWe+Sn) 0

2

n

0

0

xolTr(P'W)+olTr(C'S)

Tr(J'S)
Tr(S'S)

Although the 4 x 4 matrix K can be given explicitly using formulae (A.1)-(A.3), this will not be pursued. The
(symmetric) inverse of D, denoted by Q, is given by

qii
q12
q13
q14

1
Il

q12
q22
q23
q24

q13
q23
q33
q34

q14
q24
q34
qa4

=(Z'Z+E[Z'Z])~".

Again, formulae (A.1)-(A.3) can be used to find explicit expressions for the elements of Q, for instance

g = {((@0; + U+ D1 +7y D) +7i(=Bo+ 1))
(20 + (1 + ) (=1+y2) =7 2(Bo + B1))o2)/
(w?otoy + (=147 2)* =2mAfo +7b1(=2y 2+ ap)otoy + o+ fPo T~ +o(T7h,

and

Next, we have to calculate

T _
Q12=—§T " 4o(r7h).

n

B,(T7") = E[QZ]
~B[Q(Z'Z+ 7'2)QZ ¢]
—E[Q(Z'Z —B[Z'Z)QZ'e]l + o(T 7).

When there is no constant, Z = 0 and the bias formula reduces to

ghoconstant =1y — {10 7'l —B[Q(Z'Z —B[Z'Z)OZ'e] + o(T ™).
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Due to the special structure of the 4 x 4 matrices Z'Z and E[Z/Z], the 3 x 3 submatrix Q1x3,1x3 equals the
inverse of the 3 x 3 submatrix (E[Z’Z])]_i3 1x3 e

1
E34QEé4 = E34(E[2/Z])_1 E§4, where E3z=| 0
0

O = O

0
0
1

O O O

Since the last column of Z equals zero, the bias formula o constant 7 ~1) only depends on elements of the
3 x 3 submatrix Q1x3,1x3, i.e. E34 QE§4. Hence, the bias due to the regressors denoted by B/, (T _1) equals
formula (B.2), so that

BE(T™"Y=—EB[O(Z'Z +7'2)QZ'¢] + o(T™")
and
B(T™Y =E[QZ'c] —B[Q(Z'Z —EB[Z'Z)QZ ] + o(T ™).

Below, we shall calculate each of the components of B, separately. The first component (B.1a) is equal to

&Pe+nCe a2Tr(P")
= ne'Ve+n'Je | a2xTr(V) |
E[QZ 8] - QE ﬂE/W/S + 7’]/5/8 - Q O'gﬂ'Tl’(W/) - 07
0 0

since the diagonal elements of the matrices P’, V' and W’ are zero. Next, we turn to the expectation of
Q(Z'Z + Z'Z)QZ's. By direct calculation it can be verified that the first part is also zero up to first order, i.e.

E[QZ'ZQZ'e] =0+ o(T™").

The expectation of 0Z'Z(QZ'¢ is calculated as follows. First, we have

(Pe+Cny)0P 1y  (Pe+Cn)OP1y (Pe+Cnp)Y0xWir  (Pe+Cn)ir
xVe+dn)0Pir (@Ve+Jn)OPir (@Ve+Jn)0xWir @Ve+ Jn)ir

7! 7 7!
2207 xWe+Sn)0Piy (We+Sn)0Pir (aWe+ Sn)0xWir (xWe+ Sn)ir
0 0 0 0
01, P'e
0y P
Q Oty W'e
ipe

Denoting B[Z'ZQZ'e] = I, where | = (I} : [ : I3 : I3)’, then the first element of the 4 x 1 vector / is given by
L = 03{921} P'P'Pirqi + n@zz’T V'P'Pipqia + n@zz/r W'P'Pireqi3 + 01y P’ Pirqa
+7r02/TP’P’Vqu21 + 7r2921’T V'P'Virgn + ”2921} W P'Virgs
+7 00 P'Virgos + n@zz’TP’P’erqm + 7r2921’T V'P'Wirgs
+720% W P Wirqss + m0ty P'Wirqss + 01y P/ Plipqa
+x 0 V' Plirqay + w0y W P'irqas + 1y Plirqasl.

Analogous expressions can be derived for /> and /3, while /4 = 0.
To evaluate the vector /, we need to obtain a first-order approximation of the following quantities

1 X1y, 1 XYy and XY Zir,

where the 7 x T matrices X, Y, Z € {P, V, W}. As before, the matrix P contributes a multiplicative factor of
(1—=19)/( —w — ¢), while the matrices J and W both contribute a factor of 1/(1 — w — ¢). For example,

1— 1—y)2
a-y) ST+0()  and PPV = a-y) T+ 0(1).

TPV = — 7 - 7
R s (I—y—¢
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Hence, the first element of the vector / is given by

P s y>3q131 Lm0 V)2q312 Lm0 y)2q313 L oa- ”2“2
(I-¢—-y) (I—¢—-w) (I=¢—-y) (I=¢—-w)
702 —y)qn 7202 =y)gn 72020 = y)gs 700 =y
(I=¢—p)  A=¢p-p)  (U-¢-y)  (A-¢-y)
r02(1—y)qs | 72021 —y)gn | 720°( —y)gss 701 —y)gs
I=—¢—w)P  (U=¢-y) (U=¢-—p)P (U-¢-y)
00 —pien 700 —p)an 200 —pas (0 =p)asyr o
(I=¢—w) (A=¢-—w) U-¢-—y)y 1-¢-vy
The non-zero elements /5 and /3 can be calculated analogously. Substitution of ¢ =z fog+y +4, v =z 11—y 2
and the expressions for the elements of the matrix Q into /1, /> and /5 gives

-1 2
I = ( + V)Ua _{_0(1)’
—1l+y+i—yi+apfy+ap
no?
h=hL+o()=- £ + o(1).

—1+V —I—)V—V)u—{-ﬂ'ﬁo-i-ﬂ'ﬁ]

The bias due to the intercept is found by multiplying the appropriate row of Q with the vector /, e.g.
B{(T™Y = —quil — g — qusls + o(T™").

The expectation of the term QZ’ZQZ'¢ is calculated as follows

(Pe +Cn)(Pe+Cn) (Pe+Cnp)(@mVe+Jy) (Pe+Cn)(xWe+ Sn)
#@Ve+Jdn)(Pe+Cn) @Ve+Jn)@Ve+Jy) @Ve+JIn)(@xWe+ Sn)
(xWe+Sn)/(Pe+Cn) @We+Sn)Y@Ve+Jn) @We+ Sn)(xWe + Sn)
0 0 0
gPe+1nCe
re'Vie+n'Je
Q re'We+n'Se
0

7207 =

S O OO

Denoting B[Z'ZQZ'¢] = k, where k = (k1 : ko : k3 : ky)/, then the first element of the 4 x 1 vector & is
given by
ki = 2Tr(P'PP)qiiot +2xTr(P' PV )qi20t + 22 Tr(P' PW')q130% +
x[Tr(P'VPy+ Tr(V' PP lgnot + 2[Tr(P'VV'y + Tr(V PV )lgnot +
a2 [Tr(P'VW') + Tr(V' PW)|quot + z[Tr(P'WP') + Tr(W' P P)g310% +
a2 [Tr(P'WV'y+ Tr(W PV')gsao* + a2 [Tr(P’WW') + Tr(W' PW')gs3ot +
2Tr(P'CChqy 10'%0%7 + 2TV(P/CJ/)L]]20'§O'%7 + 2TI’(P/CS/)L]]3O'gO',27 +
Tr(P'JCquoior +xTr(V'CCquotor + Tr(P'JJ Ynoioy +
xTr(V'CJ) ool + Tr(P'JSquolo? + n Tr(V'CS )gsolol +
Tr(P'SC\gs10005 + a Tr(W' CCqzi0i0, + Tr(P'SS Ygnoioy +
aTr(WCJgnoios + Tr(P'SS)gnoios +a Tr(W'CSgzoior.

Similar expressions can be derived for k> and k3, while k4 = 0.
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Using formulae (A.4)-(A.11), the elements of k are given explicitly by

ki = (=14 D)=y =22+ 3y ) + 22y f§ +2x (1 + 3y D)1,
—3x%y 3 —2x Bo(1 — y? =2y A+ 7 B1))o?)/
(=1 +y2 =2 B)(=1+ ) (=1 +2) —aBo—aBp)(A+y +1+yl+apy—ap)+o(l),

B =2y + 2 +7rﬁ0)0'§
Sy ity ritaBy—ap) =14ty +i—yi+taBy+rp)

k2 +0(1)9

and
=@+t 22 =392 427 (y + DBo+ 2R+ 2w +3ny ) — 372 Bod)
Ay =21y D) —wfo—af)A+y + A4yl afy—npy)

Since E[NQNZ/S]N: 0and E[QE[Z'Z]10Z'¢] = QO~ ' OE[Z’¢] = 0, the bias due to the regressors only depends
on E[QZ'Z Q7 ¢], which can be calculated by multiplying the appropriate row of Q with the vector £, e.g.

+o(1).

k3

BY(T™YY = —quki — qiaka — qi3ks + o(T ™).

Appendix C: Some remarks on proving Theorem 2

For the AD(1,0)-model, the parameter vector a equals (1, £, )’. Furthermore, the matrices Z, Z and 7 are
given by

Z=U-1:x:17), Z=OPir :0xVir 17), Z=(Pe+Cn:aVe+Jy:0),

where the matrices P, V, C, J are all functions of the matrix U given in (11) with the following modified
parameters

p=naf+y+21 and w=—yi (C.1)

Now, Theorem 2 follows from the results in Appendix B keeping in mind the two definitions given in (C.1),
(Bo> B1) = (B, 0) and the fact that the size of the matrices Z, Z, Z, and hence O, have changed.

Appendix D: Approximation to the Bias Formula BfS (T7h
Recall that x; can be written as an ARMA(2,1) process; see (9). Defining

X =¢xi_ | +yx;_,+me

and
xl=¢x! | +yx! 5+ —n_y, (D.1)
we have
cov(xy, x;—;) = cov(xf, x;_;) + cov(x,, xt"_j), jeN.
If

(=) QI(=C +E(P+ wiD) + 24 = Eb + wia)))
I+ =)L+ y)(—1+ ¢+ yp)V/p* + 4y

D(j’ 67 C) =

23



then
cov(x;, x;’_j) = nzv(j, w—1, —qﬁ)af
and
covx/, x[ ) = v, (142w = 1) + 20,k — ¢ — 2¢ + 24" — AyP)a). (D.2)

The second argument of o(-) in (D.2) can be interpreted as the unconditional variance of the ARMA process
given in (D.1) with 5, ~ N(0, 1), while the third argument equals the first-order covariance of the ARMA
process.

Approximating sample quantities by their population values, we obtain in the stable AD(1,0) model

Go = cov(xf,x?) +cov(x], x,) + 0,(T™/?)

B —r2(L+y o2+ (=1 —yi+22@p+y +2) = 221 +y)os Lo,
- A=y (=1+zf+y+2—y DA +af+y +1+72) p '

From

—M¢+ 2¢y)
I+ =)+ )1+ +w)(=1+ (@ +ly))

> Mo, ¢, ) =
m=1

(which is related to the autocovariance-generation function evaluated at 1), it follows that

[o.@]
A = D "G+ Op(T™7)

m=1
= 2 i/lmv(m, y—1,—p)o> + i;f"u(m, A+ 2y = 1) +24p, h— ¢ — 27¢ + i¢” — dy)oy + Op(T™'/7)
m= m=1
2@ p+ 2 —y (2 4y23 = 1)o?
(n,b’-l—V 2=yl =DGr=DA+ap+y +24+9D)Q@p+y +2—=yiH) =1
") @B+y =y HAEB+7y +24—721)— o3
@B+y +i—yi=DOGi=DU+zB+y +2+y)A@Bp+y +i—yiH)—1)

+ 0,(T71?),

Using

—H+ LA+ EQ - APy
A+ —p)T+p)(=1+¢+y)(=14+ A+ Ay))*’

o0
Z m)"m_lv(m7 57 {) =
m=1
we obtain after some algebra (carried out by Mathematica)

A= D mi" G+ 0,(T712)
m=1
(@2 +2 =29 22+ p34 + 9223 (=2 + 72 + (B + By 2iH))o?
(l+zB4+y++—y A +af+y +:—yD)(=14+y)@pl—(y 1 —1D(* —1))?
(14+2@p+y +2—=922N@ B+ Py +y (1 =222 +)%)0?

_ i —1/2
(14+72B+y+2—y ) +af+y +r—y)(=14+y)(@pl—(y 1 — D(* —1))? +Op(T.

The quantity A can be interpreted as the derivative of A with respect to / assuming G, does not depend on 1.
This assumption is only valid when x; is strongly exogenous, i.e. x, does not depend on lagged values of y;,.
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Table 1: Simulation results concerning 7 in the AD(1,0) model without intercept y = Ay_1 + fx + ¢ at
(4, p) = (0.8, 0.2) for various values of (z, y) and 7" = 25.

OLS BC (weak exog.) BC (strong exog.)
(,y) Bias(4) MSE(/) Bias(4) Rel.Eff. Bias(4) Rel.Eff.
(-10, 0.258) 0.042  0.440 0.006 1.026 0.058 1.029
( -8,-0.033) 0.046  0.554 0.002  0.995 0.062 1.027
( —6,-0.287) —0.009 0.425 -0.001 1.014 0.010 1.030
( —4,-0.526) -0.031  0.291 0.001  1.046 —0.005  1.030
( —2,-0.755) —0.037  0.201 0.001  1.067 —0.002 1.033
( 0,-0.968) -0.044  0.142 0.001  1.048 -0.001 1.037
( 0, 0.345) -0.041  0.125 -0.003 0.979 -0.002 0.974
( -2, 0.958) -0.023 0.118 0.004 1.011 —0.005  0.953
( -4, 0.992) —0.029  0.128 0.005 1.040 -0.016 0.972
( -6, 0.980) -0.032  0.136 0.005 1.052 -0.021 0991
( -8, 0.944) -0.033  0.149 0.004 1.062 -0.022  1.006
(-10, 0.867) -0.031 0.170 0.004 1.071 -0.019  1.020

Remarks:

(1) The columns under BC (weak exog.) are based on the bias formula B} (7~ 1Y given in Theorem 2, while the
columns under BC (strong exog.) are based on the bias formula BX” h(T=1) given in (43).

(2) Rel Eff =MSE(/.)/MSE(/.).

(3) First 6 rows are based on the smallest solution (Line 1 in Figure 1) for y of equation (51), while the last 6
rows are based on the largest solution (Line 2 in Figure 1) for y .

Table 2: Simulation results concerning /. in the AD(1,0) model with intercept y = Ay_1 4+ fx + 0 + ¢ at
(2, B,60) = (0.8, 0.2, 0.0) for various values of (x, y) and T = 25.

OLS BC (weak exog.) BC (strong exog.)
(,y) Bias(4) MSE(/) Bias(4) Rel.Eff. Bias(4) Rel.Eff.
(-10, 0.258) 0.079  0.451 0.009 1.019 0.131 1.061
( -8,-0.033) 0.034  0.570 -0.002  0.988 0.084 1.042
( —6,-0.287) -0.075  0.446 -0.010  1.008 -0.019 1.030
( —4,-0.526) -0.108  0.323 -0.013 1.017 —0.040  1.002
( —2,-0.755) -0.115 0.244 -0.020  0.992 —0.034  0.960
( 0,-0.968) -0.127  0.204 -0.033  0.903 -0.040  0.892
( 0, 0.345) -0.101 0.174 -0.027  0.857 -0.027 0.861
( -2, 0.958) -0.022  0.122 0.003  1.003 0.018 0.962
(—4 0.992) -0.023  0.127 0.006 1.062 0.011 0979
( -6, 0.980) -0.023  0.133 0.007 1.087 0.009  1.004
( -8, 0.944) -0.023  0.145 0.007 1.100 0.011 1.028
(-10, 0.867) -0.017 0.165 0.007 1.109 0.020 1.057

Remarks:

(1) The columns under BC (weak exog.) are based on the bias formula B, (7~!) = BS(T™ N+ BY(T~ 1) given
in Theorem 2, while the columns under BC (strong exog.) are based on the bias formula BX” h (T 1) given in
(43).

(2) and (3) see Table 1.
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Table 3: Numerical results concerning 7 in the model Yy =2Ay_1+ Pox + pix—1 + 0 + ¢ for (1, By, B1,0) =
(0.8,0.5,—0.3, 0), various values of (z, y) and T = 25.

OLS BC (weak exog.) BC (strong exog.)
(7, y) Bias(Z) MSE(/) Bias(4) Rel.Eff. Bias(2) Rel.Eff.
(-0.8, 0.8) -0.111  0.049 -0.034  0.775 -0.020 0.785
(-0.4, 0.8) -0.128 0.051 -0.043  0.717 -0.033 0.724
( 0.0, 0.3) -0.174  0.064 -0.067 0.638 —0.070  0.645
(-0.8, 0.4) -0.119  0.050 -0.035  0.802 -0.029  0.802
(-04, 04) -0.131  0.050 —0.041 0.756 —0.038 0.754
( 0.0, 0.4) -0.155  0.056 -0.053  0.699 -0.059  0.697
(-0.8, 0.0) -0.125  0.051 -0.036 0.828 -0.035 0.819
(-0.4, 0.0 -0.133  0.050 -0.040 0.785 -0.042 0.778
( 0.0, 0.0 -0.147  0.052 -0.047  0.739 —0.054  0.733
( 0.4, 0.0 -0.171  0.067 -0.061 0.716 -0.071  0.723
(-0.8,-0.4) -0.129  0.053 —0.037 0.858 —0.039  0.841
(-0.4-0.4) -0.135  0.050 -0.040 0.812 -0.045  0.799
( 0.0,0.4) -0.144  0.050 -0.044  0.771 -0.053  0.761
(04,04 -0.158  0.056 -0.052  0.739 —0.064 0.737
(-0.4,-0.8) -0.136  0.054 —0.041  0.855 —0.046 0.836
( 0.0,0.8) -0.143  0.050 —0.043  0.798 —0.053 0.784
( 0.4,-0.8) -0.151  0.052 -0.048 0.771 —0.060  0.765

Remarks:

(1) The columns under BC (weak exog.) are based on the bias formula B, (T~") = B;‘j(T_') + BE(T_l) given
in Theorem 1, while the columns under BC (strong exog.) are based on the bias formula Bf Ph(T=1) given in
(43). 5 .

(2) Rel. Eff=MSE(1)/MSE(A).

Table 4: Numerical results concerning J in the model y=2y-1+ Pox + pi1x—1 +0 +¢for (2, fo, f1,0) =
(0.8,0.5,—0.3, 0), various values of (z, y) and 7" = 50.

OLS BC (weak exog.) BC (strong exog.)
(m,y) Bias(4) MSE(1) Bias(4) Rel.Eff. Bias(l) Rel.Eff.
(0.8, 0.8) -0.050 0.016 -0.008  0.827 0.000 0.843
(-0.4, 0.8) -0.057  0.015 -0.011  0.770 —0.003  0.784
( 0.0, 0.8) —0.080 0.017 -0.019  0.674 -0.020 0.676
(-0.8, 0.4) -0.056 0.016 -0.009 0.842 -0.004  0.849
(-04, 0.4) -0.060 0.015 -0.011  0.799 -0.007  0.805
(0.0, 0.4) -0.072  0.016 -0.014  0.739 -0.016  0.738
(0.8, 0.0) —0.060  0.017 -0.010 0.856 -0.007  0.855
(-0.4, 0.0) -0.063  0.016 -0.011  0.820 -0.010 0.820
( 0.0, 0.0) -0.069 0.016 -0.013  0.777 -0.015 0.774
(04, 0.0) -0.081 0.021 -0.018 0.761 -0.020 0.777
(-0.8,-0.4) -0.063  0.018 -0.011 0.874 -0.008 0.867
(-0.4,-0.4) -0.065 0.016 -0.011  0.836 -0.011  0.832
( 0.0,-0.4) -0.069 0.016 -0.012  0.801 -0.015  0.796
(04,04 -0.075 0.017 -0.015 0.776 -0.019 0.779
(-0.4,-0.8) -0.066 0.018 -0.012  0.865 -0.011  0.860
( 0.0,-0.8) -0.069 0.016 -0.012 0.818 -0.015 0.811
(04,-0.8) -0.072  0.017 -0.014  0.800 -0.017  0.800

Remarks: see Table 3.
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Table 5: Numerical results concerning /3’1 inthe model y = 2y_1 + fox + B1x—1 + 0 + ¢ for (4, By, f1,0) =
(0.8,0.5,—0.3, 0), various values of (z, y) and T = 25.

OLS BC (weak exog.) BC (strong exog.)
(m,y) Bias(f;) MSE(S;) Bias($;) Rel.Eff. Bias($;) Rel.Eff.
(-0.8, 0.8) 0.065 0.016 0.019 0.845 0.016 0.839
(0.4, 0.8) 0.079 0.021 0.026 0.823 0.025 0.814
( 0.0, 0.8) 0.108 0.037 0.041 0.806 0.043 0.801
(-0.8, 0.4) 0.062 0.013 0.017 0.851 0.018 0.829
(-04, 04) 0.069 0.015 0.021 0.834 0.023 0.813
( 0.0, 0.4) 0.082 0.021 0.027 0.827 0.031 0.811
(-0.8, 0.0) 0.061 0.012 0.017 0.859 0.020 0.831
(0.4, 0.0 0.065 0.013 0.019 0.848 0.022 0.823
( 0.0, 0.0 0.072 0.016 0.022 0.845 0.026 0.826
( 0.4, 0.0 0.065 0.043 0.026 0.939 0.011 0.928
(-0.8,-0.4) 0.063 0.013 0.017 0.868 0.023 0.840
(04,04 0.064 0.013 0.018 0.867 0.023 0.841
( 0.0-0.4) 0.067 0.015 0.020 0.868 0.025 0.849
(04,04 0.069 0.025 0.023 0.908 0.022 0.899
(-0.4,-0.8) 0.071 0.031 0.017 0.929 0.033 0.907
( 0.0,-0.8) 0.065 0.019 0.019 0913 0.024 0.898
( 0.4,-0.8) 0.065 0.023 0.021 0.931 0.022 0.920

Remarks:

(1) The columns under BC (weak exog.) are based on the bias formula Bg, (177" = B/Ch (T7hH + BZH (T

given in Theorem 1, while the columns under BC (strong exog.) are based on the bias formula B

given in (43).

(2) Rel. Eff=MSE(S,)MSE(£)).

KPh
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Table 6: Numerical results concerning B, in the model y = Ay_1 + Box + f1x—1 + 0 +¢ for (4, By, f1,0) =
(0.8,0.5,—0.3, 0), various values of (r, y) and T = 50.

OLS BC (weak exog.) BC (strong exog.)
(m,y) Bias(f,) MSE(S,) Bias(f;) Rel.Eff. Bias(f;) Rel.Eff.
(0.8, 0.8) 0.030 0.006 0.005 0.895 0.002 0.902
(-0.4, 0.8) 0.036 0.007 0.007 0.880 0.005 0.882
( 0.0, 0.8) 0.053 0.013 0.012 0.859 0.013 0.855
(-0.8, 0.4) 0.029 0.004 0.005 0.893 0.004 0.887
(-04, 04) 0.033 0.005 0.006 0.881 0.005 0.873
( 0.0, 0.4) 0.039 0.008 0.008 0.876 0.009 0.868
(-0.8, 0.0) 0.029 0.004 0.004 0.897 0.005 0.885
(0.4, 0.0 0.031 0.005 0.005 0.890 0.006 0.878
( 0.0, 0.0 0.034 0.006 0.006 0.889 0.007 0.880
( 0.4, 0.0 0.031 0.018 0.008 0.953 —0.002 0.951
(-0.8,-0.4) 0.030 0.005 0.004 0.901 0.006 0.888
(-0.4,04) 0.030 0.005 0.005 0.904 0.006 0.892
( 0.0-0.4) 0.032 0.006 0.005 0.908 0.006 0.900
(04,04 0.033 0.010 0.006 0.938 0.005 0.938
(-0.4,-0.8) 0.034 0.013 0.005 0.948 0.010 0.927
( 0.0,-0.8) 0.030 0.007 0.005 0.940 0.006 0.935
( 0.4,-0.8) 0.030 0.009 0.005 0.955 0.004 0.954

Remarks: see Table 5.
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Figure 1: Region where R> = 0.8 and 62 = 0.1 in the AD(1,0) model for (2, ) = (0.8,0.2) and 7 €
(—11.3, 0.6). In the main text, the solid line will be referred to as Line 1, while the dotted line will be referred
to as Line 2.

Line 1
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Figure 2: —T xbias in the AD(1,0) model for (z, y) along Line 1 in Figure 1. Solid line refers to the correct
bias approximation —7T" B/ (T~ and the dashed line refers to the incorrect bias approximation — 7T st (T7N.
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Figure 3: —T xbias in the AD(1,0) model for (z, y) along Line 2 in Figure 1. Solid line refers to the correct
bias approximation —7T" B/ (T~ and the dashed line refers to the incorrect bias approximation — 7T st (T7N.
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Figure 4: Admissible region of (z, y) in the AD(1,1) model for (1, S, £1,6) = (0.8,0.5, —0.3, 0.0).
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Figure 5: —T x B,(T~'") in the AD(1,1) model at various values of (z,y) for (1, Sy, f1.0) =
(0.8,0.5,—0.3,0.0), a% =1and og such that the population R?=0.28.
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