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ABSTRACT

In linear-quadratic control (LQC) problems with singular control cost matrix and/or singular
transition matrix, we derive a reduction of the dimension of the Riccati matrix, simplifying iteration
and solution.  Employing a novel transformation, we show that, under a certain rank condition, the
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the technique can also be applied to Kalman filtering problems with a singular measurement error
covariance matrix.                                                             

JEL classification:  C61; C63, D83

Keywords:  Linear-quadratic control; Riccati equation; Riccati reduction; Kalman filtering;
Intertemporal optimization

*  The authors thank Victor Claar for stimulating their interest in the subject material.



Reducing the Dimensionality of 
Linear Quadratic Control Problems

1.  Introduction

The preeminence of computable general equilibrium models has stimulated interest in the

solution procedures for larger-scale models.  Most commonly, linear rational expectations models

are considered which, typically, are derivable from linear-quadratic control (LQC) problems.  The

recent work by Sims (2000), Binder and Pesaran (2000), King and Watson (1997, 1998), Amman

(1997), Amman and Neudecker (1997), Anderson et al. (1997), Anderson and Moore (1985),

Ehlgen (1999), and Klein (2000) concentrates on numerical procedures that (1) allow speedy and

convenient computation of results, and (2) apply as generally as possible, in particular to systems

with non-invertibilities stemming from a singular transition matrix or a singular control cost

matrix.  Generally, objective (2) has been attained at the expense of increasing the dimensionality

of the system.  These papers improve on the work of Vaughan (1970) and Blanchard and Kahn

(1980).

The focus in the current paper is on simplifying the system when singularities occur. 

These simplifications lead to very simple analytical solutions in a substantial class of problems and

in computationally efficient methods in all other cases, for finite or infinite horizon.  We obtain a

simple rank expression that places an upper bound on the effective dimensionality of the system

for analytical and computational purposes:  Prior computation of the rank of a composite matrix

constructed from all coefficient matrices in the problem statement allows the researcher to

establish this bound.  The advantage is that one may readily determine up front whether the

system has a simple explicit solution, or to what extent reformulation of the problem along the

lines delineated here may reduce computation time or improve the transparency of the model.

The approach developed in this paper is aided by the duality between linear-quadratic
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control and Kalman filtering as first described by Kalman (1960).  A key feature of our approach

is the use of the covariance matrices of Kalman filtering and their inverses (the latter being related

to the Bayesian concept of precision).  The Kalman-updated covariance matrix plays an important

role that is not typically exploited in LQC analyses.  

The Kalman approach also provides intuition for why the dimensionality of a particular

system may be reduced.  Consider the following class of Kalman problems, which is exemplified

by Claar’s (2000) model of the cyclical and natural unemployment rates.  An observation depends

linearly on two unobserved state variables following stochastic processes: .  Onewt ' y1 t % y2 t

may describe the uncertainty of the state by considering the conditional variances  of theF2
1 t , F2

2 t

state variables and their conditional covariance  (three numbers, stored in a 2 x 2F12 t ' F2 1 t

covariance matrix).  However, conditional on having observed , it is easy to derive thatwt

 so that one number is sufficient to describe the state uncertainty.  ThisF2
1 t ' F2

2 t ' & F12 t

simplification was employed by Balvers and Cosimano (1994) in reducing the dimensionality of

their active learning model, but the approach has not been systematically investigated.  While the

intuition for simplification here is straightforward, our rank expression implies a potentially

complex interaction between the different singularities in the system that is not always intuitive.

Mitchell (2000) derived explicit analytical solutions to the 2 x 1 linear-quadratic control

problem (two target variables and one uncosted control in the control case, or two state variables

and one perfect observation in the Kalman case), but his results were not obviously generalizable. 

In this paper we significantly extend the class of linear-quadratic models which can be simplified

or solved analytically in simple fashion.

The paper is organized as follows.  Section 2 contains the theoretical approach in which
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we derive theorems that state how the dimensionality of the model can be reduced and by how

much, how under a certain rank condition the optimal feedback control matrix is linearly related

to the reduced Riccati matrix (allowing a simple time-invariant linear transformation to obtain the

feedback matrix once the appropriate reduced Riccati matrix is found), and how the reduced

Riccati iterations can be replaced by linear iteration of a related matrix.  Section 3 discusses

implications for applied optimal control and Kalman filtering and presents some control and

Kalman examples.  In Section 4 we conclude the paper by providing a “how to” summary of our

technique for practical use.

2.  THEORY

2.1  The control problem

In this section we show how to reduce the dimension of the Riccati equation of optimal

control, without assuming the presence of an invertible control cost matrix or invertibility of the

transition matrix.  In so doing we illuminate the underlying structure of the dynamics.  The two

initial lemmas establish the structure of the Riccati matrices, and Theorem 1 gives the reduced

dynamics.  The reduced problem is shown in Theorem 2 to be sometimes amenable to further

simplification of the solution for the control feedback matrix. Then Theorem 3 shows how to

obtain the Riccati sequence by linear iteration of a related matrix, permitting speedy calculation of

the control sequence or its steady state.  Theorems 1* and 3* deal with a further reduction of the

Riccati matrix dimension which is possible under some conditions.

The reduction that we present is unrelated to the concept of reducing a system to

“minimal” form in the sense of obtaining the lowest state vector dimension necessary for optimal

Kalman filtering.  A system is in minimal form if it is both controllable and observable (see

Hannan and Deistler, 1988; note that some authors, especially in the Kalman filtering context, use



1  In this case the reduction in this paper constitutes a net reduction of the Riccati matrix dimension if the
original control cost matrix has less than full rank (or, even if not, often if the transition matrix has less than full
rank).

Discounting and additive uncertainty in the state equation can easily be incorporated by redefining the
transition matrix and the state and control vectors, and appealing to certainty equivalence, respectively.  In
addition, if the original problem statement has cross-product costs between the state vector and the control vector,
these can be removed by redefinition of the state cost matrix and the control vector [see for instance Ljungqvist and
Sargent (2000), p.  640].
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terminology different from ours, which is typically used in the control literature).  In our control

context, we assume that the state cost matrix is nonsingular, so that minimality is equivalent to

controllability.  Our Riccati reduction applies even if the system is controllable and hence minimal. 

This reduction can be achieved because the effective dimension of the Riccati matrix is less than

the dimension of the state vector even if the latter is minimal.

A typical statement of the optimal control problem is:

(1a)  ,V( ys , s) '
Min

{ut}
T
s%1

½ (y )

T KT yT) % 'T&1

t' s%1
[ ½ (y )

t K yt )]

(1b) subject to   , yt ' A yt&1 % C ut , t ' s%1 , ... , T , ys given

where the state cost matrices K and KT , and the transition matrix A are n x n , the control

multiplier matrix C is n x k, the state vector yt is n x 1 , and the control vector ut is k x 1.   The

cost matrix K and the terminal cost matrix KT  are positive definite, and C has full column rank;  A

need not have full rank.  If the original problem statement has control costs, one can augment the

state vector with the costed controls [see Chow (1975)], putting all costs on the state vector and

thus giving the problem formulation in equations (1).1  It is well known [Chow (1975)] that the

optimal controls are given by:
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(2)  ,            t # T ,u opt
t ' & ( C ) Ht C )&1 C ) Ht A yt&1 / &Ft yt&1

(3) ,     ,    t # T, Ht&1 ' K % A ) Ht A & A ) Ht C ( C )HtC )&1 C ) Ht A HT ' KT

where the symmetric n x n  matrix  is positive definite.Ht

2.2  The basic reduction

Equation (3) can be written as equations (4) and (5):

(4)  ,            t # T ,Ht&1 ' K % A ) Pt A

(5)  ,            t # T.Pt ' Ht & Ht C ( C )HtC )&1 C ) Ht

The symmetric n x n   matrix is not typically employed in dealing with optimal controlPt

problems, but in the dual Kalman filtering context has the familiar interpretation of the covariance

matrix for the unobserved state variable for the current period conditional on current information

(while  is the covariance matrix conditional on the previous period’s information).Ht

The approach in this paper is to exploit restrictions inherent in the  matrix to simplifyPt

the solution of problem (1).  By equation (5) we have:

(6)  ,            t # T,Pt C /
P1 t P2 t

P3 t P4 t

C1

C2

' 0n , k
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where, defining , we have that  is q x q,   is q x k, , and  is k x k ;q ' n & k P1 t P2 t P3 t ' P )

2 t P4 t

 is q x k, and  is k x k.    and  are symmetric. C1 C2 P1 t P4 t

Since C is of full column rank, there is at least one k x k sub-matrix of C that is invertible.

Proper prior arrangement of the  vector (and concomitant arrangement of C, A, K, and KT ) isyt

thus sufficient to guarantee that C2  is invertible.  We can then derive:

LEMMA 1 (REDUCTION TO THE DYNAMIC CORE OF ).  The n x n matrixPt

 can be written as:Pt

(7)  ,            t # TPt ' M Mt M ) , Mt / P1 t

(8)  ,M /
In&k

& ( C )

2 )&1 C )

1

where M is an n x q matrix, and  is invertible with dimensions q x q.Mt

Proof.  From equations (6) it is straightforward to relate  and  to .  The firstP3 t (' P )

2 t ) P4 t P1 t

equation in (6) gives  .  Transpose (to produce ) and substitute into theP2t ' & P1 t C1 C &1
2 P3 t

second equation (noting the symmetry of  as follows from the symmetry of ) which yields P1 t Pt

.  Then factor out the M and  matrices to produce equation (7). P4 t ' ( C )

2 )&1C )

1 P1 t C1 C &1
2 M )

To show that  is invertible, note from equation (5) that  can be written as the productMt Pt



2 has rank q by Sylvester’s inequality:    Pt rank (X1 ) % rank (X2 ) & n # rank (X1 X2) #

,   where n is the number of rows in X2 .min[ rank(X1) , rank(X2)]

7

, where the matrix in brackets is idempotent with trace equal toHt [In & C (C )Ht C)&1 C ) Ht ]

 and thus rank n - k = q.  Thus, since  has full rank n,  has rank q.2 trace( In ) & trace( Ik ) Ht Pt

Equation (7) then implies that rank ( ) $ q, and since  has dimension q it must have full rank.  Mt Mt

�

It will be important to relate  to the solution of problem (1) – equations (2) and (3) –  Mt

in a meaningful way.  Lemma 2 provides a useful link.

LEMMA 2 (RELATING  AND ).  The q x q matrix  in equation (7) isMt Ht Mt

positive definite and is given by:

(9) ,            t # T.Mt ' (M ) H &1
t M )&1

Proof.  Post-multiply equation (5) by  and then use the transpose of equation (6).  ThisH &1
t Pt

yields  ,  so that , interestingly,  is seen to be a generalized inverse of . Pt ' Pt H &1
t Pt H &1

t Pt

Next  use equation (7) in the right-hand side of this equation and pre-multiply by  andIq 0

post-multiply by  to pick out the upper left block  of the matrix, yielding:Iq 0 ) P1 t / Mt

  (10) ,            t # T.Mt ' Iq 0 M Mt M ) H &1
t M Mt M )

Iq

0



3 Given the matrices X1 , X2 , X3 , and X4 , with X1 and X4 invertible, we have the identity [Söderström
(1994), pp. 156-7]:

.( X1 % X2 X &1
4 X3 )&1 ' X &1

1 & X &1
1 X2 ( X4 % X3 X &1

1 X2 )&1 X3 X &1
1
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Now consider that ,  and post-multiply equation (10) by , toIq 0 M ' Iq M&1
t (M ) H &1

t M )&1

obtain equation (9).  Positive definiteness follows directly from equation (9) given that  isHt

positive definite.   �

Employing Lemmas 1 and 2 we now provide the dynamics of .Mt

THEOREM 1 (DYNAMICS OF ).  For all  t 0 {s+1, T } we have :M&1
t

(11)  ,     ,    M&1
t&1 ' B1 & B )

2 ( M&1
t % B3 )&1 B2 M&1

T ' M )K &1
T M

with  .B1 ' M ) K &1 M , B2 ' M ) A K &1 M , B3 ' M ) A K &1 A ) M

Proof.  Substitute  from Lemma 1 into equation (4):Pt ' M Mt M )

(12) ,            t # T.Ht&1 ' K % A ) M Mt M ) A

A standard inversion identity (used later on further occasions) gives:3

(13) .H &1
t&1 ' K &1 & K &1 A ) M (M&1

t % M ) A K &1 A ) M )&1 M ) A K &1
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Post-multiplying by M and pre-multiplying by  yields after applying Lemma 2:M )

(14) ,M&1
t&1 ' M ) K &1 M & M ) K &1 A ) M ( M&1

t % M ) A K &1 A ) M)&1 M ) A K &1 M

which is equation (11).   follows from equation (9) using  from (3).  �M&1
T ' M )K &1

T M HT ' KT

By employing the matrix inversion identity of footnote 3 to equation (11), we obtain the

following dynamics for :Mt

COROLLARY 1.1 (DYNAMICS OF ).  For all  t 0 {s+1, T } we haveMt

(15) .Mt&1 ' B &1
1 % B &1

1 B )

2 [ M&1
t % ( B3 & B2 B &1

1 B )

2 )]&1 B2 B &1
1

2.3  The case of nonsingular B2 

Note that the Bi matrices in Theorem 1 are all q x q and that only B2 is not symmetric.  B1

is positive definite and B3 is positive semi-definite.  By Sylvester’s inequality (see footnote 2), B2

(= ) can be of full or less than full rank regardless of whether A has full rank. M ) A K &1 M

(However, if rank (A) < q  then B2 is certainly singular.)  If  B2 is invertible we obtain additional

results; if  B2 is singular, further reduction is shown to be possible and results analogous to some

of those for the case of nonsingular  B2 are obtained.

COROLLARY 1.2 (REVERSIBILITY).  If B2 is invertible, the time direction

of the recursion for  in equation (11) can be reversed:{M&1
t }
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(16) ,            t # T.M&1
t ' B2 ( B1 &M&1

t&1 )&1 B )

2 & B3

Thus, using equation (7) in equation (4) to get  in terms of , the recursion for  isHt&1 Mt {Ht }

reversible as well, implying that there is a one-to-one correspondence between  and  for anyHt HT

t.  In contrast the reversibility is not at all clear in the standard Riccati equation (3). 

The sequence of reduced Riccati matrices obtained in Theorem 1 can be used with

equations (2), (4), and (7) to obtain the sequence of optimal controls.  However, given the{u opt
t }

transformations employed here there is a more convenient way of calculating the optimal controls

when  has full rank (=q), as in this case the feedback matrix can be shown to be linear in :B2 Mt

THEOREM 2 (LINEAR CALCULATION OF FEEDBACK MATRIX).  Given

, if ,  then the feedback matrix  is linear inu opt
t ' &Ft yt&1 rank (B2 ) ' q Ft

  for all t # T - 1 :Mt

(17)  ,   Ft ' &W M Mt M ) A % W K A , t # T & 1

with .W ' (C )C)&1 C )K &1 [ I & A )M (M )K &1 A )M )&1 M )K &1 ]

Proof.  From equations (2) and (5) we obtain

(18)  ,      t # T ,CFt ' ( In & H &1
t Pt ) A ' ( In & H &1

t M Mt M ) ) A
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where the second equality follows from Lemma 1.  To obtain the term  appearing on theH &1
t M

right-hand side of equation (18), we first use equation (13) and the definitions in Theorem 1:

(19) ,       t # T .H &1
t&1 M ' K &1 M & K &1 A ) M ( M&1

t % B3 )&1 B2

Use the solution of equation (11) for in equation (19):( M&1
t % B3 )&1

(20) ,      t # T .H &1
t&1 M ' K &1 M & ( K &1 A ) M ) B &1)

2 ( B1 & M&1
t&1 )

Update equation (20) by one period (making it valid for t # T - 1) and substitute into the right side

of (18).  Pre-multiplying the left and right sides of equation (18) by  yields equation(C )C)&1 C )

(17).   �

Thus computation of the sequence  of control feedback matrices involves first{Ft}

computing  from equation (2) with ,  next iterating equationsFT ' ( C )KT C)&1 C )KT A HT ' KT

(11) or (15) to get , and then using equation (17) to obtain the remainder of the feedback{Mt }

matrix sequence.

Comparing to the solution of Problem (1) in equations (2) and (3), the solution proposed

here in Theorem 1 [equation (11)] and Theorem 2 [equation (17)] is computationally

advantageous.  The size of the  matrix is , whereas the size of  is n.  And theMt q ' n & k Ht

iterations in this approach require fewer matrix multiplications – two in equation (11) and two in

equation (17) (aside from the fixed cost of initial matrix calculations) –  while the traditional
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approach requires seven multiplications in equation (3) and no additional multiplications in

equation (2). 

The nonlinear recursive equation (11) for  can be replaced by a linear equation of largerMt

dimension by using a power method [see for instance Martin and Ammar (1991)]:  

THEOREM 3 (LINEAR  ITERATION).  For any we have for thet 0 {s , T}

case of  rank (B2) = q :  

(21) ,    Mt ' Nt D &1
t

with

(22)      ,
Nt&1

Dt&1

' B
Nt

Dt

, NT ' Iq , DT ' M )K &1
T M

and hence

(23)  ,
Nt

Dt

' (B) T& t
Iq

M )K &1
T M

where

(24)  .B '

B &1
2 B3 B &1

2

B1 B &1
2 B3 & B )

2 B1 B &1
2

Here the  are defined in Theorem 1, and  Nt and Dt  are q x q.Bi
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Proof.  For B2 invertible, we can post-multiply both sides of equation (11) by  the inverse of

  and then pre-multiply through by  and post-multiply through by  to( M&1
t % B3 )&1 B2 Mt&1 Mt

produce:

(25) ,            t # T .B &1
2 & Mt&1 B1 B &1

2 % B &1
2 B3 Mt % Mt&1 (B )

2 & B1 B &1
2 B3 ) Mt ' 0

[Interestingly, the steady-state version of equation (25) (with time subscripts omitted) is of the

same form as the algebraic Riccati equation of linear-quadratic control in continuous time

(Lancaster and Rodman, 1995)]. Solve equation (25) for :Mt&1

(26) ,            t # T.Mt&1 ' [ B &1
2 % B &1

2 B3 Mt ] [ B1 B &1
2 % ( B1 B &1

2 B3 & B )

2 ) Mt ] &1

Postulate (which is true for t = T  with  for arbitraryMt ' Nt D &1
t NT ' ' , DT ' ( M )K &1

T M ) '

invertible matrix ', which we set to Iq ), use this in equation (26), and post-multiply all four terms

by Dt to get

,            t # T.Mt&1 ' [ B &1
2 Dt % B &1

2 B3 Nt ] [ B1 B &1
2 Dt % ( B1 B &1

2 B3 & B )

2 ) Nt ] &1

Then  are the first and second bracketed terms here, confirming equation (22) byNt&1 and Dt&1

induction.  Equation (23) follows directly from equation (22).    �
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To calculate the steady state or “infinite horizon” value,  ,M
&4 / lim

t 6&4 Nt D &1
t

one may just iterate equation (22).  Note that both Nt and Dt will generally explode but that

 remains finite.  To prevent computational problems it may be advisable to rescaleNt D &1
t

periodically in finding  by multiplying both  Nt and Dt by a common scalar, leaving M
&4 Nt D &1

t

unaffected.  The iterations to the steady state can be speeded by using a doubling algorithm, as in

Anderson and Moore (1979, pp. 159-160).  We successively compute ,B 2 , ( B 2 )2 , .... B 2 m

rescaling as needed.  Then  ,  where a is the rescaling factor.a
NT & 2m

DT & 2m

' a B 2m
NT

DT

2.4  Further reduction when B2 is singular

We now consider the case in which B2 in equation (11) is singular.  This provides the

opportunity for further reduction of the size of the Riccati matrix:  the n x n  Riccati matrix H has

already been reduced to the q x q Riccati matrix M; if the q x q matrix B2 has rank r < q, we can

further reduce M to an r x r matrix to be denoted M*.

First put the q x q matrix B2 in standard form:

 .I q
r ' Q B2 S , where I q

r /
Ir 0

0 0
, S '

S1 S2

S3 S4

Here Q and S are invertible q x q matrices and S1 is r x r.   S must be arranged such that S4  is

invertible (which may require a row and column rearrangement as discussed in footnote 4).   

Then we have:  
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THEOREM  1* (FURTHER REDUCTION OF ).  If B2 has less than full rank,Mt

 the dimension of the time-varying core of the Riccati equation, denoted

,  is r x r, where .   is positive definite, withM(

t r ' rank (B2 ) M(

t

  where Z is defined below, and its dynamics is describedM(&1
t / Z )M&1

t Z

by:

(27)  ,            t # T - 1, M( &1
t&1 ' B (

1 & B2
()

( M( &1
t % B (

3 )&1 B (

2

           ;M(&1
T&1 ' Z ) [ B1 & B )

2 (M&1
T % B3 )&1 B2 ]Z

with B (

1 ' Z ){B1 & B )

2 (B1 % B3 )&1 B2 %B )

2 ( B1 % B3 )&1 @

           ,M ( [M ()

(B1 % B3 )&1 M ( ]&1 M ()

(B1 % B3 )&1 B2 } Z

 ,B (

2 ' [M ()

(B1 % B3 )&1 M ( ]&1 M ()

(B1 % B3 )&1 B2 Z

,B (

3 ' [M ()

(B1 % B3 )&1 M ( ]&1 & Z ) B1 Z

where   and       (so  is q x r).Z '

Ir

0q& r , r

M ( '

Ir

& S &1)

4 S )

2

M (

Proof.  In Appendix A .  

In equation (27), may or may not be invertible.  (Appendix A gives an example inB (

2

which it is not.)  In either case, Theorem 1*  may be combined with equations (2), (4), (7), and
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(A3) to obtain the sequence of optimal controls based on { }.  If  is not invertible, we canM(

t B (

2

further reduce the dimensionality of the problem by repeatedly applying the reduction process of

Theorem 1* until the reduced analog of  either has zero rank or is invertible.  Thus theB (

2

effective dimension of the original problem is less than or equal to the rank of .  B2

Note that the proof of Theorem 1* required that the initial condition be stated as of period

T - 1.  Thus in iterating ,  equals , while for t # T - 1   is used to compute , whichHt HT KT M(

t Mt

in turn is used to compute .  Any further reduction shifts back one more period the time of theHt

initial condition for reduced Riccati iteration. 

There is no counterpart to Theorem 2 for the case in which any reduction beyond that of

Theorem 1 has been applied, because the proof of Theorem 2 rests crucially on invertibility of  B2

and cannot be generalized to rely on invertibility of .  In this case of singular  we can,B (

2 B2

however, obtain linear iteration analogous to that of Theorem 3 for the nonsingular case:

THEOREM  3* (LINEAR  ITERATION OF ).   For any weM(

t t 0 {s , T}

have for the case of  rank (B2) < q , when Theorem 1* has been applied

until  is invertible:B (

2

,    M(

t ' N (

t D (&1
t

with
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(28) ,
N (

t&1

D (

t&1

' B (

N (

t

D (

t

, N (

T ' Ir , D (

T ' Z )M )K &1
T M Z

and hence

(29) ,
N (

t

D (

t

' ( B () T& t
Ir

Z )M )K &1
T M Z

where

(30)  .B ( '

B ( &1
2 B (

3 B ( &1
2

B (

1 B ( &1
2 B (

3 & B (
)

2 B (

1 B ( &1
2

The  are defined in Theorem 1*.B (

i

Proof.  In Appendix B.

This section has shown how to reduce the size of the dynamic Riccati matrices of optimal

control, thereby simplifying computation and revealing the underlying structure of the dynamics.

To obtain these results we did not require invertibility either of the matrix of control costs or of

the transition matrix A.  In addition we have provided simple linear dynamics.  The usefulness of

these results will be demonstrated in the applications section to follow.
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3.  Implications and Applications

3.1  Effective dimension of the system

By Theorem 1*, the upper bound on the effective dimension of the system  (the size of M(

t

or of  if B2 has full rank) is given by the rank of   with M defined in equationMt B2 / M )A K &1 M

(8).  This bound may be determined in advance – that is, before theoretical appraisal, estimation,

or numerical analysis, or explicit solution of the model.  A general indication of the rank of  B2 is

obtained by repeated application of Sylvester’s inequality (presented in footnote 2) to the

definition of  B2  given in Theorem 1.  Recalling that n represents the dimension of the state vector

and k the number of controls, Sylvester’s inequality yields:

(31) .rank( A ) & 2k # rank (B2 ) # min[ n & k , rank( A )]

Scalar Riccati dynamics will be guaranteed if  n - k (the size of B2) = 1  (or, of course, if rank (A)

= 1).  This case will be discussed in the next sub-section. 

Before we discuss the scalar case, we present a simple example to illustrate the bounds

implied by equation (31).  Consider a case with  n = 3 ,  k = 1 ,  . C ) ' [0 0 1] , and K ' I3

The 3 x 3 matrix A is unrestricted.  (Note that it is always possible, starting from any like-sized

problem with any C, to transform the control and state vectors so that .)  Then, B2C ) ' [0 0 1]

= A1 , where  is the 2 x 2  upper left block of A.  Consequently, there is an infinitude of AA1

matrices for which:  (a)   = n - k = 2 , when the two 1 x 2 rows of  arerank (B2 ) ' rank (A1 ) A1

independent, with  equaling either three or two;  (b)   =rank (A ) rank (B2 ) ' rank (A1 )
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 = 1 , when  has rank one, two, or three and the two 1 x 2 rows of  arerank (A ) & 2 k A A1

dependent;  and (c)   =  = 0 , when all four elements of rank (B2 ) ' rank (A1 ) rank (A ) & 2 k A1

are zero so that  must be singular with either rank one or two.A

3.2  Analytical solution when rank (B2 ) # 1 

When   has rank equal to or less than one, the LQC problem allowsB2 ' M ) A K &1 M

scalar-based analytical solution.  When the rank of  is equal to zero because , TheoremB2 B2 ' 0

1 directly shows that  does not evolve.  When the rank of  is equal to one, Theorem 1Mt B2

applies if  (so  has full rank) and Theorem 1* applies if   (so  has less thann&k ' 1 B2 n&k > 1 B2

full rank).  In what follows we discuss the case , but if the rank of B2 is less than full andn&k ' 1

equals 1, Theorem 1* applies and the results below all continue to hold if we replace the  byBi

.  Equation (11) implies the scalar equation:B (

i

(32) ,            t # T,Mt&1 ' [1 % B3 Mt] / [B1 % ( B1 B3 & B 2
2 ) Mt ]

where Theorem 1 defines , which are scalar in this case (and if Theorem 1* appliesB1 , B2 , and B3

then  are scalar). B (

1 , B (

2 , and B (

3

Mitchell (2000) shows how to find the solution to a scalar equation of the form of

equation (32) as follows.  Consider first the case of , so that  evolvesB1 B3 & B 2
2 … 0 Mt

nonlinearly (unless = 0).  Let  and hence  ,  where B2 xt ' 1 /( c %Mt) Mt ' (1 & cxt ) /xt
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 and  .  Then usec ' (B1 & B3 % r ) / [ 2( B1 B3 & B 2
2 ) ] r ' [ ( B1 & B3 )2 % 4 ( B1 B3 & B 2

2 ) ]1 /2

 on both sides of equation (32) to obtain a linear equation of evolution for :Mt ' (1 & cxt ) /xt xt

(33)  ,             t # T,xt&1 '
2( B1 B3 & B 2

2 )

B1 % B3 % r
%

B1 % B3 & r

B1 % B3 % r
xt

with solution

(34) ,            t # T.xt '
B1 B3 & B 2

2

r
% xT &

B1 B3 & B 2
2

r

B1 % B3 & r

B1 % B3 % r

T& t

Then the solution for  is found by putting equation (34) into .Mt Mt ' (1 & cxt ) /xt

It is also possible for equation (32) to give linear evolution of .  This occurs if and onlyMt

if  .  In this linear case the solution of equation (32) for  is obvious and theB1 B3 & B 2
2 ' 0 Mt

eigenvalue is , which [as Mitchell (2000) shows] may or may not be less than one inB3 /B1

magnitude so the linear case may or may not be stabilizable.

To examine the nature of the scalar dynamics, first derive from equation (32):

(35) .dMt&1 / d Mt ' B 2
2 / [ B1 % (B1 B3 & B 2

2 ) Mt ]2 $ 0

Equation (35) suggests several different cases:
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        Case 1:  .  This case is covered equally well by Theorem 1 or Theorem 1*.  EquationB2 ' 0

(32) collapses to  which is constant and equal to the endpoint value MT if  KT  = K . Mt&1 ' 1/B1

Figure 1(a) shows the dynamics of  and hence  if KT  … K so :  the steady state isMt Ht MT … 1/B1

reached in one iteration.

          Case 2:   and  .  Note that  cannot be negative: we knowB2 … 0 B1 B3 & B 2
2 … 0 B1 B3 & B 2

2

 ,  B3 & B2 B &1
1 B )

2 ' M )AK &1 [ K & M ( M )K &1 M )&1 M ) ] K &1 A )M ' M )A C( C )KC)&1 C )A )M

where the last equality follows from substituting equation (9) into equation (7) and the result into

equation (5), evaluating the resulting identity at , subtracting K  from both sides, and pre-Ht ' K

and post-multiplying both sides by .   Hence,  is positive semi-definite, and soK &1 B3 & B2 B &1
1 B )

2

in this scalar case multiplying this expression by the positive scalar establishes . B1 B1 B3 & B 2
2 $ 0

Then in this case 2 equation (35) implies that  and  ; and asdMt&1 / d Mt > 0 d 2Mt&1 / d M2
t < 0

 we have .  Thus, the time path is monotonic and convergent as displayedMt 6 4 dMt&1 / d Mt 6 0

in Figure 1(b).

          Case 3:  and . Now by equation (32),B2 … 0 B1 B3 & B 2
2 ' 0

 so evolution is linear.  This permits the stable case of Mt&1 ' (1 /B1 ) % ( B3 /B1 ) Mt B3 < B1

shown in Figure 1(c)  (noting that both  must beB1 (' M )K &1 M ) , and B3 (' M )A K &1 A )M )

nonnegative given positive definite K) as well as the unstable case of  , also shown inB3 $ B1

Figure 1(c).

We have shown here how to solve the case of  n - k = 1 analytically, which was heretofore 
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done only for the n = 2,  k = 1 case by Mitchell (2000).  In addition, we have shown how, due to

potential singularities in the transition matrix and its interactions with the cost matrix, other

apparently more complex problems can also be solved analytically if the effective dimensionality is

1.

3.3  The Amman and Neudecker example

An example of Amman and Neudecker (1997) can be translated into the framework of

equations (1) by moving their control cost matrix into an augmented state cost matrix,

augmenting the controls into the state vector, augmenting the transition matrix A with a row and

column of zeroes, and augmenting the C matrix with a one to equate identically the new state

variable to the control variable.  Thus

.A '

0.8 0 0 0 &0.8 0

0.8 0 0 0 &0.8 0

0 0 0 0 0 0

0 0 0 0 0 0

0.25 0 0 0 0 0

0 0 0 0 0 0

, K ' I6 , C '

1

0

0

1

0

1

In this case, the B2 matrix can be seen to equal the principal 5 x 5 minor of the A matrix, which is

the original transition matrix in Amman and Neudecker.  The rank of  B2 is equal to 2; since B (

2

turns out to have full rank, the effective dimensionality of the problem is 2. 

Theorem 1* can be applied to produce the sequence  and hence  and .  {M(

t } M(

&4 M
&4

Equations (4) and (7) then give , of which the upper left 5 x 5 block is identical to the steadyH
&4
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state Riccati matrix in Amman and Neudecker (1997).  While both our method and that of

Amman and Neudecker converge very quickly, ours has the advantage of simultaneously yielding

the non-steady-state iterates of the system.

3.4  Kalman filtering

The duality between LQC problems and Kalman filtering was first noted by Kalman

(1960).  Accordingly, our theoretical results apply in the Kalman filtering context as well. 

Consider the following class of state space models:

(36a)            yJ&1 ' A ) yJ % 0J , 0J - N (0 , K) ,

(36b)  ,        J # T ,  wJ ' C ) yJ

where  represents a  k x 1 vector of observations and  is an  n x 1  vector of unobservablewJ yJ

state variables.  The interpretation of  J  here is “periods left until the last observation.”  The

disturbances in the state equations are serially uncorrelated and multivariate normal, with

covariance matrix K.  The dimensions of the coefficient matrices are as in the LQC problem.  

Note that the omission of measurement error in equation (36b) is analogous to the

omission of control costs in the LQC model.  Measurement error in some of the observations may

be incorporated by extending the state vector.  The possibility for reducing the dimensionality of

the Riccati matrix is quite intuitive here and generalizes the approach of Balvers and Cosimano

(1994) in a related case with two state variables and one observation.  In their model

.  While the Riccati matrix has dimension 2 x 2, containing the variances ofw1J ' y1J % cy2J

 on the diagonal and their covariance off the diagonal, the single scalar  y1J and y2J MJ / P1J
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contains all variance-covariance information since, given that the observation is known with

certainty, the observation equation implies:  .  This is theP1J ' c 2 P4J ' &c P2J ' &c P3J

intuition for equation (6).

The solution to the Kalman filtering problem modeled in equations (36) consists of a

sequence of conditional expectations of the state variables and their conditional{EJ yJ&1}

covariance matrices , for given priors in the initial period T.   The iterative solution for{HJ}

 is  [see for instance Harvey (1989)]:{EJ yJ&1}

(37)  ,      J # T ,  EJ yJ&1 ' A ) EJ%1 yJ % F )

J ,J , ,J / wJ & C ) EJ%1 yJ

where FJ is given in equation (17), which is linear in , with evolution as in equation (11).  TheMJ

sequence  is given by equation (3), but may be found more easily from equation (11) with{HJ }

use of equations (4), (7), and (8).

Our reduction results therefore directly apply to problem (36).  Accordingly, rank (B2 )

provides an upper bound on the relevant dimension of the problem for solution and (typically

maximum likelihood) estimation purposes.

3.5  A specific Kalman filtering example when  rank (B2) # 1 

The example below contains the models in Claar (2000) and Balvers and Wu (2000) as

special cases.  Claar considers the observed unemployment rate as consisting of the unobserved

natural and cyclical unemployment rates.  Balvers and Wu consider observed stock return indices

in 18 countries as having a common unobserved world component and an unobserved
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idiosyncratic component.  Here, the Riccati matrix would be 19 x 19, including all idiosyncratic

components plus the common component.  But there are 18 observations so that the dimension of

B2 is unity, and so rank (B2 ) # 1.

Problem (36) is now specialized to the following coefficient matrices:

(38)   .A '

a0 0 ... 0

0 a1 ... 0

: : :

0 0 ... an&1

, K '

k0 0 ... 0

0 k1 ... 0

: : :

0 0 ... kn&1

, C '

1 ... 1

&& && &&

1 ... 0

: " :

0 ... 1

Note that both A and K are n x n, whereas C is n x (n-1).  Thus, for the Balvers and Wu example

the first row of each of the coefficient matrices refers to the “common” component;  there are 

n-1 idiosyncratic components, one for each observation.  For the Claar example, n = 2 and so

.C '
1

1

From equation (8) we can obtain the M  matrix with dimension n x 1:

(39) .M ' [1 &1 &1 ... &1])

From equations (38) and (39) we straightforwardly calculate the scalar coefficients of the MJ

recursion of equation (11):
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(40) B1 ' 'n&1

i ' 0
k &1

i , B2 ' 'n&1

i ' 0
ai k &1

i , B3 ' 'n&1

i ' 0
a 2

i k &1
i .

The cases of Figures 1(a) - 1(c) all arise here.  For brevity we state here only that Case 3 of

Figure 1(c) can be ruled out except for the uninteresting case where all coefficients are equal. 

Case 1 of Figure 1(a) occurs if  B2 = 0.  In this case, all there is to be learned is completed in one

period.   Otherwise, we have Case 2 in Figure 1(b).

To illustrate Theorem 2,  we find the Kalman gain matrix  from equation (17).  SimpleF )

J

but tedious calculation shows that there are three basically different forms of the Kalman gain

coefficients :F )

ji J ' Fi j J

(41)    Fi j J '
M EJ%1 xj&1 J

M ,i J%1

'

&aj&1 zi J , j … 1 , j … i % 1

%a0 zi J , j ' 1

&ai ( zi J & 1) , j ' i % 1 ,

where    .ziJ '
ai k &1

i

B2

% MJ k &1
i 1 &

ai B1

B2

It can be shown that, for proper priors,  is always positive in non-trivial cases.  Thus,ziJ

equation (41) implies that a surprise increase in observation  causes an increase in thewi J % 1

expected value of next period’s common component  and thus a decrease in the expectedy0 J

value of next period’s idiosyncratic components  unless .  In this case,  ,yj&1, J j ' i % 1 yi J
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representing the idiosyncratic component in the observation i itself, may decrease when

uncertainty  is high, but eventually increases as  reaches its steady state.  The intuition isMJ MJ

that, with high uncertainty, the estimate of the common component  may be revisedy0 J

substantially upwards so that the estimate of the idiosyncratic component  could fall evenyi J

though the  observation  increases.wiJ ' y0J % yiJ

4.  Summary and Conclusion

This paper presents a procedure for simplifying and solving LQC models.  The procedure

can be summarized in the following algorithm:

Step 1. If necessary, transform the LQC problem to fit the structure of equations (1).

Step 2. First obtain M from equation (8) and subsequently obtain B1 , B2 , B3 , and as given inM&1
T

Theorem 1.

Step 3. If  B2  has full rank find  from Theorem 1 (or Theorem 3).  Then skip to Step 8.{Mt }

Step 4. If  B2  does not have full rank, find the S matrix by transforming B2  into standard form and

extract .  (If  does not exist consider footnote 4.)S &1
4 and S2 S &1

4

Step 5. Obtain  as given in Theorem 1*.  If is not invertible repeatM (, B (

1 , B (

2 , B (

3 , and M(&1
T&1 B (

2

Steps 4 and 5.

Step 6. Find  from Theorem 1* or 3*.{M(&1
t }

Step 7. Employ equation (A3) to deduce  from .{Mt } {M(&1
t }
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Step 8. Substitute  into equation (7) to find and then use equation (4) to generate{Mt } {Pt }

, if and are needed.  The end matrix  is generated as  , and{Ht } {Pt } {Ht } HT HT ' KT

 is generated from  via equations (4) and (7).HT&1 MT

Step 9. If  B2  has full rank, find the feedback matrix sequence  from equation (2), or, for{Ft }

,  from Theorem 2.  In the LQC problem, the optimal control vector equalst # T & 1 u opt
t

.  In the Kalman problem  is the information filter appearing in equation (37).&Ft yt&1 F )

t

Step 9'. If  B2  is singular, use  from Step 8 and use equation (2) to find the  matrix{Ht } {Ft }

sequence.

This procedure has a series of advantages compared to traditional procedures for solving

the finite horizon and infinite horizon LQC problem, such as Vaughan (1970), and compared to

more recent procedures.  First, it provides a simple calculation (the rank of B2) to establish an

upper bound on the effective dimension of the problem.  It is then possible to find in advance,

without computing the solution, how complicated or simple the dynamics is or how much

computing time may be saved by reformulating the problem.  Second, the procedure leads to

scalar-based analytical solutions when the rank of B2 is zero or one, and to matrix size reductions

in other cases when the transition matrix and the matrix of control costs may be less than full

rank.  Third, in the general n x k problem, iterations can be conducted with matrices that have the

size of the effective dimension of the problem, which, especially for large finite-horizon problems,

may lead to substantially speedier computation.  Fourth, rather than solving the problem of

singular transition and control-cost matrices by increasing the dimension of the state vector as is

the common approach in recent work, our procedure reduces the dimensionality.  Fifth, no

eigenvalue computations or Jordan or Schur decompositions, with possible accompanying
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numerical instabilities, are required for our approach.  

Aside from procedural advantages, the results in the paper provide direct analytical

insights.  For instance, the fact in Theorem 2 that, when B2 has full rank, the optimal feedback

matrix can be obtained as a linear transformation of the dynamic core of the Riccati matrix may be

valuable in theoretical applications.  Some of the results developed in this paper appear to be quite

novel from an applied mathematical perspective and may turn out to be of use in establishing

further results and in other applications.  For instance, the rank of the B2 matrix may be helpful in

dealing with identification problems in the Kalman context.  Or, some of the results may be

applicable to other issues in least squares-based time-series econometrics.



4 If S4 is not invertible we can always rearrange the rows of S by pre-multiplying by some permutation
matrix G such that  with  invertible.  In this case transform all Bi to obtain .  In order forŜ / G S Ŝ4 G ) Bi G

equation (11) to continue to hold we must also transform   to   and in order for the procedure to workM&1
t G )M&1

t G

we must also set .  Then we can proceed as above.  We then obtain  in equation (A3)Q̂ / Q G ) G ) (M&1
t & B1 ) G

but can recover  by inverting the known G matrix.M&1
t
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Appendix A:   Proof of Theorem 1*

Consider a generalized inverse of B2 given as:  .  It is easy to check that  isB I
2 ' S I q

r Q B I
2

indeed a generalized inverse of  since  and since  is anB2 B2 B I
2 B2 ' Q &1 ( I q

r )3 S &1 ' B2 I q
r

idempotent matrix.  Define  .  Then by design   and1 ' ( Iq& B I
2 B2 ) S

0r , q&r

Iq&r

B2 1 ' 0q , q& r

straightforward multiplication shows that:

 (A1)  .1 ' [ Iq& S ( I q
r )2 S &1 ] S

0r , q& r

Iq& r

' S ( Iq& I q
r )

0r , q&r

Iq&r

'

S2

S4

Since  it follows from equation (11) updated one period that: B2 1 ' 0

(A2) , .  ( M&1
t & B1 ) 1 ' ( M&1

t & B1 )
S2

S4

' 0q , q&r t # T & 1

Partition  and B1 according to S  and extract the r x r upper left block of   as  . M&1
t M&1

t Z ) M&1
t Z

Take S4  as invertible4 and solve equations (A2) similarly to equation (6).  This yields:
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(A3)   ,      t # T - 1,M&1
t & B1 ' M ( ( M(&1

t & B1 1 ) M ()

, M ( '

Ir

& S &1)

4 S )

2

where   represents the upper left block of  and M(&1
t / Z )M&1

t Z M&1
t B11 / Z ) B1 Z

represents the upper left block of  .  As and  are positive definite, so are  and .B1 M&1
t B1 M(&1

t B11

To obtain the dynamics of ,  post-multiply equation (11) by Z and pre-M(&1
t / Z ) M&1

t Z

multiply by , and use equation (A3) on the right side to produce:Z )

(A4) ,     t # T - 1.M( &1
t&1 & B11 ' & Z ) B )

2 [M ( (M( &1
t & B1 1 ) M ()

% (B1 % B3 ) ]&1 B2 Z

To manipulate equation (A4), consider that the term in brackets is positive definite (as it equals

the sum of a positive definite matrix and a positive semi-definite matrix ).  Further, M&1
t B3 B2 Z

has full column rank r :   .  Thus  ,B2 Z ' Q &1 I q
r S &1 Z , S &1 /

E1 E2

E3 E4

I q
r S &1 Z '

E1

0

where , so .  From footnote 4 we canrank
E1

0
' rank ( E1 ) rank( B2 Z ) ' rank ( E1 )

assume without loss of generality that  has full rank q - r.  We know thatS4

 [Anderson and Moore (1990), p. 349] because  exists and becauseE1 ' (S1 & S2 S &1
4 S3 )&1 S &1

4
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  so  [Söderström (1994), p. 162].  Thus|S4 | · | S1 & S2 S &1
4 S3 | ' |S | … 0 | S1 & S2 S &1

4 S3 | … 0

 has full rank r, so that  has full column rank.  This fact, together with the positiveE1 B2 Z

definiteness of the term in brackets, establishes that the left-hand side of equation (A4) is negative

definite and thus  is invertible.  We can now use the inversion identity (see footnoteM( &1
t & B11

3) to rewrite the term in brackets, since the relevant inverses exist:

(A5) M( &1
t&1 ' Z ) [ B1 & B )

2 ( B1 % B3 )&1 B2 ]Z % Z ) B )

2 (B1 % B3 )&1 M ( @

      ,      t # T - 1.[M ()

( B1 % B3 )&1 M ( % (M( &1
t & B11 )&1 ]&1 M ()

(B1 % B3 )&1 B2 Z

Again use the inversion identity to reformulate the second expression in brackets:

(A6) M( &1
t&1 ' Z ) [ B1 & B )

2 ( B1 % B3 )&1 B2 ]Z % Z ) B )

2 (B1 % B3 )&1 M ( [M ()

(B1 % B3 )&1 M ( ]&1

    @& [ M ()

( B1 % B3 )&1 M ( ]&1 { M( &1
t & Z )B1 Z % [M ()

(B1 % B3 )&1 M ( ]&1 }&1

 ,      t # T - 1.[ M ()

( B1 % B3 )&1 M ( ]&1 M ()

( B1 % B3 )&1 B2 Z

Note that the inverse of the term in small braces exists by the invertibility of the second term in

brackets in equation (A5), since, when  exists, so does  with[X % Y &1 ]&1 [Y % X &1 ]&1

 and  both invertible.  Y / M( &1
t & B11 X / M ()

(B1 % B3 )&1 M (

Equation (A6) directly yields equation (27) in Theorem 1*.   The initial condition  isM( &1
T&1

obtained from using equation (11) in .    �M(&1
T&1 / Z ) M&1

T&1 Z
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An example in which  is singular (after a single application of the reduction in TheoremB (

2

1*) is as follows: 

 .K ' I4 , C '

02 ,2

I2

, A '

A1 A2

A3 A4

, A1 '
1 2

&0.5 &1
, A2 '

0 0

0 0

Then  and so rank ( ) = 1 and hence is a scalar.  ThenB2 ' A1 B2 B (

2

,  so .  Therefore  Q '
1 0

&2 1
, S '

1 &0.5

0 &1
M ( '

1

&0.5
M ()

( B1 % B3 )&1 B2 Z ' 0

so that ; hence rank  < 1.B (

2 ' 0 B (

2 ' 0

Appendix B:   Proof of Theorem 3*

First note that  exists since  is invertible after repeated application of Theorem 1*.  NoteB ( B (

2

that since   is invertible we can apply to equation (27) the same transformations that wereB (

2

applied to equation (11) in obtaining equation (25), and the result can be solved out to infer: 

,      t # T.M(

t&1 ' [ B ( &1
2 % B ( &1

2 B (

3 M(

t ] [ B (

1 B ( &1
2 % ( B (

1 B ( &1
2 B (

3 & B ()

2 ) M(

t ] &1

Then the proof proceeds as the proof of Theorem 3, with  and N (

T ' ' D (

T ' Z )M )K &1
T MZ '

for arbitrary invertible matrix  (as we know by applying   with' M(&1
t / Z )M&1

t Z

 ) and with all  and  having asterisks attached.    �M&1
T ' M )K &1

T M Mt Bi
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