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Abstract

This note develops a modelling approach for wireless networks driven by


uid traÆc models. Introducing traÆc sets that follow movement of sub-

scribers, the wireless network with time-varying rates is transformed into a

stationary network at these traÆc sets, which yields that the distribution of

calls over the cells of the network depends on the call length distribution only

through its mean. The result is extended to a network of in�nite server queues

with time-varying arrival rates.

Keywords: Telecommunications, TraÆc, Stochastic processes

1 Introduction

Wireless communications has been a rapidly growing service in the �eld of telecom-

munications. In contrast with this rapid growth, the capacity of wireless networks is

severely restricted causing service degradation due to e.g. blocking or interruption of

calls. Due to the cellular nature of wireless networks, these networks have been mod-

elled using queueing networks; a cell is represented as an Erlang loss queue, where

the limited capacity of the wireless network is represented by the limited number

of servers. Calls moving among the cells (handovers) are modelled as customers

routing among the queues, see Massey & Whitt (1994).

The representation of a wireless network using the queueing network formulation

is only partly valid, since (i) the exact location of a call on e.g. a road is required

for interference, and (ii) in a cellular network the call length is related to the call,

whereas the service time of a customer in a queueing network is related to the

queue. When a call moves from one cell to another, the residual call length must
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be taken into account. Only under the assumption of exponentially distributed call

lengths and holding times in the cells a standard queueing network formulation is

justi�ed as in this case the call length can be resampled upon a handover due to the

memoryless property of the exponential distribution, see Everitt (1994). For general

call lengths this is no longer correct as we have to explicitly deal with the residual

call length of calls entering a cell, and for general holding times in the cells we have

to explicitly take the location of the calls into account. This note investigates the

e�ect of the call length distribution on the transient distribution of calls over the

cells of the network, and presents suÆcient conditions for the call length to a�ect

the distribution of calls over the cells only through its mean.

A queueing model of a wireless network with calls extending over multiple cells

was presented in Boucherie & Van Dijk (2000), where the network was characterized

by the call length distribution and the call holding times in the cells. In equilibrium,

the in
uence of the call length distribution on the distribution of the calls over the

network was investigated. This note extends these results to networks with non-

stationary arrival rates to the cells generated by a non-stationary Poisson process

with rate determined by the density of subscribers in that cell.

First, to determine the exact location of subscribers, a 
uid traÆc model for

subscriber mobility is investigated in detail. Rather than considering the location

of subscribers on the location space 
, e.g. a road or a set of roads, we consider the

volume, �t, under the density curve over this location space at time t. Subscribers

are assumed to be randomly placed at locations inside this volume. Obviously, the

projection of these user locations on 
 results in the distribution of subscribers over


 at time t. We characterize (mobility of) subscribers via (movement of) subsets

� � �t, referred to as traÆc sets. Due to our modelling assumptions, that are shown

to include standard traÆc models, subscribers follow the path of the traÆc sets.

Second, under the realistic assumption that calls follow the mobility of subscribers,

the in
uence of the call length distribution is investigated. Here the traÆc sets play

an important role: due to our transformation, the process counting the number of

active calls in a traÆc set is stochastically equivalent to a stationary in�nite server

queue, which yields insensitivity with respect to the call length distribution. This

insensitivity result is shown to carry over to the distribution of calls over the cells

of the network that obviously do have time-varying arrival rates.

The resulting model is closely related to the Poisson Arrival Location Model

(PALM) introduced in Massey & Whitt (1993). The general PALM is not directly

amenable for performance analysis, and further speci�cation is required to obtain

tractable models. In Massey & Whitt (1994) the PALM is applied to wireless net-

works, and in Leung et al. (1994) a fully Markovian setting is analyzed. In these

references, in accordance with the queueing network approach, the distribution of

the holding times in the cells is taken as the main distribution governing the be-

haviour of the network. In contrast, this note provides an alternative speci�cation of

the PALM investigating the in
uence of the call length distribution on the distribu-

tion of calls over the cells of the network. Via a transformation of the process on the

location space 
 into the traÆc sets, a straightforward analysis of the in
uence of

the call length distribution can be provided. This demonstrates that our modelling

approach is suitable for performance analysis of wireless networks.

Here is the organization of this note. Section 2 presents our modelling approach
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Figure 1: (a) TraÆc �t at time t. (b) TraÆc in cell A at time t.

for a network with deterministic subscriber mobility. Section 3 illustrates that this

approach includes standard road traÆc models, and extends the results to networks

of queues with exponential holding times in the queues, but general call length

distribution.

2 Model and main result

Consider a location space 
 � R
m . The distribution of subscribers over 
 is deter-

mined by the summable density k : 
 � R ! [0;1), i.e. k(x; t) gives the mass of

subscribers per unit space on location x 2 
 at time t. The density of subscribers

changes in time according to a 
uid traÆc model. To this end, let

�t := f(x; h); x 2 
; 0 � h � k(x; t)g � 
� R

be the traÆc at time t, i.e. �t denotes the set under the graph of the density curve

k(x; t) at time t (see Fig. 1(a)). Movement of subscribers is modelled by movement

of traÆc sets � � �t. A point � 2 �t represents the in�nitesimal traÆc set including

�. Of particular interest for wireless networks is the behaviour of the traÆc volume

in a cell A � 
. Therefore, for any A � 
 we introduce the traÆc in cell A at time

t,

At := f(x; h); x 2 A; 0 � h � k(x; t)g � �t ,

and the traÆc mass in cell A at time t (see Fig. 1(b))

V (At) =

Z
A

k(x; t)dx.

Similarly, for each � � �t we introduce the mass V (�) as the Euclidean volume of

� :

V (�) =

Z
�t

1[x 2 �]dx;

where 1[E] denotes the indicator function of event E. Movement of subscribers is

determined by the traÆc 
ow function

L : f(t; �; u); t 2 R; � 2 �t; u 2 Rg ! 
� R;
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Figure 2: L(0; �; t) describes the evolution of the traÆc set � � �0.

where L(t; �; u) � �u gives the position at time u of the traÆc set � � �t (see Fig.

2). Assume that the traÆc 
ow function has the following properties, for t; s; u 2 R,

L1. L(t; �; u) : �t ! �u is a bijection,

L2. L(s; L(t; �; s); u) = L(t; �; u) and L(t; �; t) = � for all � � �t,

L3. V (�) = V (L(t; �; u)) for all � � �t, i.e. the traÆc 
ow function is volume

preserving.

The assumptions on the traÆc 
ow function imply that the system is closed,

i.e. external arrivals and departures of subscribers to the system are excluded. In

particular, applying L1, L2 and L3, for each t; u 2 R,Z



k(x; t)dx =

Z



k(x; u)dx.

External arrivals and departures can be included in the model by labelling a subset

of 
 as `outside' and then consider subscribers moving to and from `outside' as

departures and arrivals to the system, respectively.

In this paper we are interested in the distribution of calls over the cells of the net-

work. Subscribers are assumed to generate fresh calls at random times, independent

of their location and movement, and independent of other calls. More subscribers

generate more calls and here it is assumed that this relation is linear. Fresh calls

are generated uniformly over traÆc. For any A � 
, arrival times of fresh calls to

cell A form a Poisson process with non-stationary arrival rate

�A(t) := �

Z
A

k(x; t)dx = �V (At), (1)

which is proportional to the density of subscribers in cell A at time t, where � is the

arrival rate of fresh calls per unit mass of subscribers. For notational convenience

the results below are restricted to a constant unit mass arrival rate �. As is indicated

in Remark 2 below the results can readily be extended to a non-stationary arrival

rate �(t). The Poisson process of call arrivals to cell A corresponds to a Poisson

arrival process to traÆc sets fAt; t 2 Rg in which calls arriving to cell A at time t

are uniformly distributed over At. The fresh call arrival processes for disjoint cells

A;B � 
 are independent.

A call remains active during a generally distributed period of time (the call length)

S with distribution G and �nite �rst moment � := E [S], independent of other calls,

its location and generation time. A call generated in � � �t at time t will move
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along 
 according to the traÆc 
ow function L, independent of its call length and

other active calls: if a call was generated by a certain subscriber, it will follow the

path of this subscriber for the whole period it is active.

For a call generated at time s in x 2 �t we call the point L(t; x; 0) its owner, i.e.

it is the position of x at time 0. Due to L1 and L2, the path of each call through the

system is uniquely determined by its arrival time, its owner and its call length. If

a call is generated at time t with owner x and call length 4t, its path is a function

` : [t; t +4t] ! 
 � [0;1), `(u) = L(0; x; u), t � u � t +4t. For each traÆc set

� � �t, let

L� := f(L(t; �; s); s); s 2 Rg

be its trace through the system. A traÆc set b� such that (b�; u) 2 L� will be called
trace L� at time u. Two important properties of traces are embodied in the following

lemma.

Lemma 1 For � � �t and b� such that (b�; u) 2 L� for some u, L� = L
b�. For

disjoint sets �;  � �t, for each u the sets b� and b such that (b�; u) 2 L� and

(b ; u) 2 L are disjoint.

Proof. For � � �t there is a unique set b� = L(t; �; u) such that (b�; u) 2 L�.

The �rst statement follows from the transitivity property L2. The second property

follows from L1.

Lemma 1 states that each traÆc set de�nes a unique trace and each trace de-

termines at each time a unique traÆc set. Furthermore disjoint traÆc sets de�ne

traces that do not intersect at any time.

Lemma 1 o�ers a ground to de�ne the following process based on a process of calls

in the traÆc. For a traÆc set �, consider the process C� = fC�(s); s 2 Rg counting

the number of calls in trace L�: C�(s) gives the number of active calls present in

trace L� at time s. A call generated by a subscriber in traÆc set � � �t follows

its path, i.e. at time s > t it will be in L(t; �; s) assuming its call length exceeds

s � t. Thus, calls generated in trace L� stay in L� for the whole activity period.

Furthermore, for disjoint sets �;  � �t, calls generated in L� never occur in L .

Due to L3, the volume of traÆc in trace L� is preserved throughout time. Therefore

calls arrive to L� with Poisson rate

b�� = �V (�)

while the period of time a call stays in L� is drawn from the call length distribution

G. These observations lead to the following results for the transient behavior of the

process C�.

Theorem 2 Assume that time t0 exists such that no active calls are present in �t0 .

For � � �t and all s � t0, C�(s) is Poisson distributed with �nite mean

E [C�(s)] = �V (�) � (E [S j S � s� t0]G(s� t0) + (s� t0) (1�G(s� t0))) . (2)

Furthermore, for disjoint sets �;  � �t, the processes C� and C are independent.

5



Proof. The process C� is stochastically equivalent to a process counting the

number of busy servers in anM=G=1 queue with arrival rate b�� = �V (�) and i.i.d.

service time distribution G which implies the Poisson distribution of C�(s), and

E [C�(s)] = E

�Z s

maxfs�S;t0g

b��du
�
= b��E [s�maxfs� S; t0g]

(see e.g. Massey & Whitt (1993) and Keilson & Servi (1994)), hence (2). Lemma

1 argues that for any times s and u, C�(s) and C (u) are independent for disjoint

�;  � �t, which implies that the processes C� and C are independent.

Remark 3 (Initial conditions) The restrictions on the initial condition in The-

orem 2 can be relaxed, see e.g. Keilson & Servi (1994). For example, if at time

t0 a Poisson random number of calls are generated uniformly over traÆc �t0 then

Theorem 2 still holds true with an additional term in (2) depending on the intensity

of initial distribution.

Remark 4 (Time dependent fresh call arrivals) Call generation characteristics

can readily be extended to a non-stationary setting as is the case when observing

daily behaviour of subscribers. Subscribers generate less calls during early morning

hours than during the traÆc peak hours. To include this behaviour into our setting,

consider a time dependent arrival rate of fresh calls per unit mass of subscribers

�(t). For any traÆc set �, calls arrive to L� with Poisson rate

b��(t) = �(t)V (�):

The process C� is stochastically equivalent to a process counting the number of

busy servers in an Mt=G=1 queue with arrival rate b��(t) and i.i.d. service time

distribution G which again implies a Poisson distribution for C�(s) with

E [C�(s)] = E

�Z s

maxfs�S;t0g

b��(u)du
�
;

assuming no calls are present in traÆc at time t0.

An important special case is t0 ! �1, indicating that the system has been in

operation long enough for the call characteristics to have reached equilibrium. We

assume this is the case from this point on. Hence, for � � �t and all s, C�(s) is

Poisson distributed with �nite mean

E [C�(s)] = �V (�)E [S].

While the call behaviour in traces under the assumptions above is stationary, the

mobility characteristics of the subscribers make the behaviour of the load o�ered to

the cells time dependent. This behaviour is studied below.

Consider cell A � 
. Let DA = fDA(s); s 2 Rg be the process counting the

number of active calls in cell A. The arrival rate of calls to cell A consists of fresh

call arrivals with time varying arrival rate �A(t) of (1) and of handovers migrating
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into cell A from neighbouring cells due to the mobility of subscribers following the


ow function L. The distribution of DA(t) can now be obtained from the number

of calls in the trace of At and the corresponding process CAt
as is apparent from

relation

DA(t) = CAt
(t):

Corollary 5 For any positive integer k and any disjoint cells A1; :::; Ak, the ran-

dom variables DA1(t); :::; DAk(t) are independent and Poisson distributed with �nite

means

E [DAi (t)] = �Ai(t)E [S]; i = 1; :::; k; t 2 R.

Proof. For disjoint cells A1; :::; Ak the corresponding traÆc sets A1
t ; :::; A

k
t at

time t are disjoint as well. Theorem 2 implies that the distributions of DAi(t);

i = 1; : : : ; k, are independent Poisson with means �Ai(t)E [S].

Observe that while for disjoint cells A;B � 
, the numbers of calls DA(t) and

DB(t) are independent for a �xed t, the processes DA and DB are generally not

independent.

The model studied in this section is a special case of the Poisson-arrival-location

model (PALM) introduced in Massey & Whitt (1993): a Poisson random measure

on R��0�R is determined by the arrival rate �, homogeneity of calls over the traÆc

and the call length distribution. While Massey & Whitt study the distribution of

the number of calls in a cell of the wireless network with call holding time distribu-

tion related only to the cells (the classical queueing network approach), the special

setting of our model enables us to study the in
uence of the call length distribu-

tion. In particular, as an immediate consequence of our modelling approach, we can

conclude that when calls are homogeneously generated in traÆc and subsequently

follow the 
ow of traÆc then the numbers of calls in disjoint traÆc sets (or cells)

are independent (at �xed time) and Poisson distributed with rate proportional to

the mass of traÆc in the sets, depending on the call length distribution only through

its mean.

Remark 6 (Blocking of calls) The model analyzed above does not include block-

ing of calls such as naturally occurring in wireless networks due to their capacity

restrictions. Our model is a step towards obtaining blocking probabilities for such

networks that take into account time-varying rates due to customer mobility, and

general call lengths. For example, the number of calls in the cells of our network

with unlimited capacity is an upper bound on that number in cells with �nite ca-

pacity, where blocked calls are cleared from the network, see e.g. Stoyan (1983).

Alternatively, approximations such as the modi�ed o�ered load approximation, and

the pointwise stationary approximation might be generalized to take into account

the general call length distribution. These approximations use the relation in equi-

librium between the in�nite server queue and the Erlang loss queue as the basis for

the approximation of the network of Erlang loss queues with time-varying rates via

a truncation of the state distribution of the network with unlimited capacity. For

details see Massey & Whitt (1993).
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3 Examples and extensions

Section 3.1 demonstrates that the traÆc 
ow model incorporates most of the stan-

dard traÆc models and Section 3.2 considers superposition of 
ows. Finally, Section

3.3 extends the result to a queueing network setting with random holding times in

the queues, which allows us to model road traÆc systems with random 
uctuations

in the velocity of subscribers.

3.1 Standard highway model

Consider a single lane road with cars that cannot overtake, see e.g. Lighthill &

Whitham (1955) and Newell (1993) for a complete description. For some reference

car let A(x; t) be the cumulative number of vehicles to pass some location x by

time t starting from the passage of some reference car. Then, smoothing the curve

of A(x; t) such that it is twice di�erentiable, A(x; t) determines the 
ow of traÆc

q(x; t) through location x at time t, and the density of traÆc k(x; t) on location x

at time t:

q(x; t) =
@A(x; t)

@t
; k(x; t) = �

@A(x; t)

@x
.

The velocity v(x; t) on location x at time t is obtained from

q(x; t) = k(x; t)v(x; t) (3)

while di�erentiation of A yields the traÆc mass conservation principle when there

are no external departing or arriving 
ows,

@k(x; t)

@t
+
@q(x; t)

@x
= 0. (4)

For a subscriber on location x at time t, its trajectory �(t; x; �) is determined by a

solution of the di�erential equation

dy

du
= v(y; u); y(t) = x:

Assuming v is continuous and di�erentiable, there is a unique solution for any pair

(x; t) 2 
�R. Hence for any times t and u, �(t; �; u) is bijective and transitive. The

mass preservation propertyZ
U

k(x; t)dx =

Z
�(t;U;u)

k(y; u)dy;

for any cell U � R and any times t; u can be shown by applying conservation

principle (4). The 
ow function L� corresponding to this setting is

L�(t; (x; h); u) :=

�
�(t; x; u) ; h �

k(�(t; x; u); u)

k(x; t)

�
;

for any times u; t 2 R, and any position (x; h) 2 �t, i.e. any location x 2 
 and any

h with 0 � h � k(x; t). It can readily be shown that this 
ow function satis�es L1,

L2 and L3.
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Location independent velocity �eld

Consider the special case with all subscribers travelling at equal velocity, v(x; t) �
v(t); t 2 R. Then

�(t; x; u) := x +

Z u

t

v(s)ds.

The density now satis�es the relation

k(x; u) = k

�
x�

uR
t

v(s)ds ; t

�
.

The corresponding 
ow function is of a similar simple form,

L�(t; (x; h); u) :=

�
x+

uR
t

v(s)ds ; h

�
;

for any u; t 2 R, and any position (x; h) 2 �t.

3.2 Superposition of 
ows

Consider two independent traÆc streams on the same location space 
 with densities

k1(x; t) and k2(x; t) and 
ow functions L1 and L2. The total traÆc is then obtained

as the superposition of these 
ows. The joint traÆc 
ow is determined by the joint

traÆc density k(x; t) = k1(x; t) + k2(x; t), and the joint 
ow function L can be

de�ned as

L(t; (x; h); u) :=

�
L1(t; (x; h); u) h � k1(x; t);

L2(t; (x; h� k1(x; t)); u) + (0; k1(x; u)) h > k1(x; t);

for any times u; t 2 R, and any position (x; h) 2 �t.

Flows on multi-lane roads, two-way highways and road junctions can be straight-

forwardly modelled by a superposition of 
ows. A single car can be described by a

single 
ow with density having a limited support that keeps its shape throughout

time. A superposition of a number of such traÆc 
ows would describe traÆc in

detail. Further examples of a superposition of 
ows extend the model to general

traÆc networks. Another extension incorporating nondeterministic holding times is

the queueing network in Section 3.3 below.

3.3 Networks of in�nite server queues

This section considers networks of in�nite server queues with customers that have

service times extending over multiple queues. For simplicity of notation we will

restrict our attention to the case of exponential holding times in the queues, but

general call length distribution.

Consider a tandem network of in�nite server queues, labelled j = :::;�1; 0; 1; :::.
Customers arrive to queue j according to a non-homogeneous Poisson arrival process

with arrival rate �j(t). Assume that the arrival rate �j(t) of customers is determined

by a virtual traÆc 
ow of subscribers moving among the queues. If this virtual 
ow

9



travels with rate �j through queue j, then the arrival rate of customers in queue j

changes according to

d�j(t)

dt
= �j�1�j�1(t)� �j�j(t). (5)

We say that the queueing network admits service mass preservation (SMP) when

(5) holds for each queue j and each time t.

The holding times Hj of customers in queue j are i.i.d. exponentially distributed

with mean ��1j (naturally corresponding to the movement of the virtual traÆc 
ow),

independent of holding times in other queues and of the arrival process. The service

requests S of customers extend over multiple queues and are i.i.d. with general

distributionG, independent of the arrival process and of holding times in the queues:

a customer stays in the network until his service is over, but might traverse a number

of queues during his stay. A customer in queue j leaves this queue when either

1. his remaining service time is shorter than his holding time (he leaves the system

at the end of his service), or

2. his holding time is shorter than his remaining service time (he routes to queue

j + 1, there drawing a new exponentially distributed holding time with mean

��1j+1).

Theorem 7 shows that the queue length process in the queueing network under

SMP with random holding times in the queues satis�es a relation similar to that

obtained in Corollary 5 for the cellular network. To this end, let Kj(t) denote the

number of customers in queue j at time t. Assume that ��1j � � > 0 for all j; and

that �j(t) � M for all j and all t. For simplicity we assume the network started

empty at t = �1.

Theorem 7 Consider the queueing network above satisfying service mass preserva-

tion (5). The distribution of number of customers in queue j at time t is Poisson

with mean

E [Kj (t)] = �j(t)E [S].

Proof. As the arrival process is Poisson with rates in (5) and customers move

independently the analysis of Massey & Whitt (1993) applies and it remains to

compute the mean E [Kj (t)]. An explicit expression will be obtained similar to the

proof of Corollary 5 by backward tracing of customers.

Let Hn
j denote the total random holding time of a customer from queue j � n up

to queue j � 1:

Hn
j :=

j�1X
i=j�n

Hi;

with distribution F n
j (y) and H0

j = 0. Let P n
j (y) denote the probability that a

customer originating in queue j � n at some time u will be in queue j at time u+ y

providing it has not yet terminated, that is

P n
j (y) := P[Hn

j +Hj � y ; Hn
j � y] = F n

j (y)� F n+1
j+1 (y); (6)
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where P 0
j (y) = 1 � Fj(y); and P�1j (y) = 0. Notice that P n

j (0) = 0, n � 1; and

P 0
j (0) = 1. F n

j (y) and P n
j (y) are continuous and continuously di�erentiable on

[0;1).

We will �rst show that for each j and n � 0,

�j�nP
n
j (y)� �j�nP

n�1
j (y) +

d

dy
P n
j (y) = 0: (7)

This is clear for n = 0. For n � 1; let 'nj (s) = E [e�sH
n
j ], which exists for Re(s) � 0.

As Hn
j is a sum of independent exponentially distributed random variables,

'nj (s) =

j�1Y
i=j�n

�i

s+ �i
; Re(s) � 0. (8)

Taking the Laplace-Stieltjes transform in (7), using (6), we arrive at

�j�n
�
'nj (s)� 'n+1j+1 (s)

�
� �j�n

�
'n�1j (s)� 'nj+1(s)

�
+ s

�
'nj (s)� 'n+1j+1 (s)

�
= 0,

for all s, Re(s) � 0. Inserting (8) into this expression allows us to conclude (7).

Now consider the arrival rate of customers from other queues into queue j,

�j(t; u) :=

1X
n=0

�j�n(t� u)P n
j (u);

for some j and t; which is clearly �nite since �j(t� u) � M for every j for each u.

The rate �j(t; u) is constant in u. To this end, observe that, using (5),

d

du
�j(t; u) =

1X
n=0

�
��j�n�1�j�n�1(t� u) + �j�n�j�n(t� u)

�
� P n

j (u) +

+

1X
n=0

�j�n(t� u) �
d

du
P n
j (u)

=

1X
n=0

�j�n(t� u)

�
�j�nP

n
j (u)� �j�nP

n�1
j (u) +

d

du
P n
j (u)

�
= 0,

where the last equality follows from (7) and we have used that all the sums are

uniformly convergent, since �j � � for each i. Thus, for all j and any u; t,

1X
n=0

�j�n(t� u)P n
j (u) = �j(t; 0) = �j(t). (9)

We are now ready to calculate E [Kj (t)]. With a random service time extending

over multiple queues, P[Hn
j +Hj � u;Hn

j � u; S � u] gives the probability that a

customer arriving to the system in queue j � n is present in queue j after the time

period of u. Therefore, the expected number of customers arriving to the system in

queue j � n and present in cell j at time t isZ 1

0

�j�n(t� u)P[Hn
j +Hj � u;Hn

j � u; S � u]du =

=

Z 1

0

�j�n(t� u)P n
j (u)P[S � u]du.

11



Summing this expression over all n � 0 yields the expected number of customers in

queue j at time t. Thus, using (9),

E [Kj (t)] =

1X
n=0

Z 1

0

�j�n(t� u)P n
j (u)P[S � u]du

= �j(t)

Z 1

0

P[S � u]du = �j(t)E [S].

The result of Theorem 7 can readily be extended to a network of N in�nite server

queues labelled j = 1; 2; :::; N , with exponential holding times Hj with mean ��1j
in queue j and general service time S extending over multiple queues where arrival

process, holding times and service times are independent. A customer leaving queue

j with positive remaining service time routes to queue i with probability pji in

accordance with the mean virtual traÆc 
ow, where
PN

i=1 pji = 1. A customer

leaving queue j due to completition of his service leaves the network.

Service mass preservation is expressed as

d�j(t)

dt
=

NX
i=1

�i�i(t)pij � �j�j(t); j = 1; : : : ; N . (10)

Theorem 7 applies for any deterministic path through this network. Superposition

of di�erent paths can be extended to this setting which allows us to conclude the

following result.

Theorem 8 Consider the queueing network satisfying service mass preservation

(10). The distribution of number of customers in queue j at time t is Poisson with

mean

E [Kj (t)] = �j(t)E [S].

Remark 9 Insensitivity results for in�nite server queues in equilibrium are well-

established. In contrast, the queue length distribution of in�nite server queues

with time-varying arrival rates depends in general on the service time distribution

through all its moments, see e.g. Massey & Whitt (1993). Theorems 7 and 8 provide

insensitivity results for a network with time-varying arrival rates. These results are

due to the service mass preservation properties (5) and (10) describing the movement

of subscribers among the queues. Service mass preservation mimics the properties of

the traÆc 
ow function, that allow for a transformation of the network with time-

varying rates into a stationary setting, which shows that our network with time-

varying arrival rates operates on the edge between transient networks and networks

in equilibrium.

4 Conclusion

This paper has developed a modelling approach for wireless networks with sub-

scriber movement driven by a 
uid traÆc that includes standard road traÆc models.

12



Through a transformation of the network characteristics to properties of the traÆc

sets, the distribution of calls over the cells of the network is shown to be a multi

dimensional Poisson distribution with time-varying mean that depends on the call

length distribution (that extends over multiple cells) only through its mean. This

result ignores capacity constraints and blocking of calls, and is a step towards de-

veloping o�ered load approximations for wireless networks with time-varying arrival

rates (such as e.g. due to a traÆc jam moving along a road), and general call length

distribution, which is our aim for further research.
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