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The Bayesian Score Statistic
Frank Kleibergen∗ Richard Kleijn† Richard Paap‡

April 19, 2000

Abstract

We propose a novel Bayesian test under a (noninformative) Jeffreys’ prior specifica-
tion. We check whether the fixed scalar value of the so-called Bayesian Score Statistic
(BSS) under the null hypothesis is a plausible realization from its known and standard-
ized distribution under the alternative. Unlike highest posterior density regions the BSS
is invariant to reparameterizations. The BSS equals the posterior expectation of the
classical score statistic and it provides an exact test procedure, whereas classical tests
often rely on asymptotic results. Since the statistic is evaluated under the null hypothe-
sis it provides the Bayesian counterpart of diagnostic checking. This result extends the
similarity of classical sampling densities of maximum likelihood estimators and Bayesian
posterior distributions based on Jeffreys’ priors, towards score statistics. We illustrate
the BSS as a diagnostic to test for misspecification in linear and cointegration models.

1 Introduction

In applied statistical fields, like time series analysis and econometrics, models/hypotheses
are typically compared with other competing (encompassing) models/hypotheses. In classical
statistical analysis, it is common to use Wald, likelihood ratio, and score or Lagrange multiplier
statistics for this purpose, see Engle (1984). The score statistic is often used as a diagnostic
device to test for misspecification of a model since the computation of the score test statistic
only requires the estimation of the model parameters under the null hypothesis, while for the
likelihood ratio statistic both the model under the null and the alternative hypothesis have to
be estimated. The Wald statistic can be calculated using the parameter estimates under the
alternative hypothesis. As a consequence, both the score and the likelihood ratio statistic are
invariant under reparameterizations of the model but the Wald statistic is not, see Dagenais
and Dufour (1991).

In Bayesian statistics competing hypotheses are either compared using Bayes factors/posterior
odds ratios, see for example Berger (1985), or tested using Highest Posterior Density (HPD)
region based statistics, see Box and Tiao (1973). Model comparison using Bayes factors is
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quite different from testing using HPD region based statistics, see among others Poirier (1995).
For example, HPD region based statistics do not require the specification of prior probabilities
and proper prior densities for the parameters in the competing hypotheses, while Bayes fac-
tors do. Furthermore, in contrast with HPD region based tests, Bayes factors combine both
testing and prediction criteria in model comparison. Finally, another important difference is
that HPD region based statistics suffer from the same problem as the classical Wald statistic
since they are not invariant with respect to reparameterizations of the model. Bayes factors
however, are invariant with respect to reparameterizations. In this paper we propose a novel
Bayesian test statistic to which we refer as the Bayesian Score Statistic (BSS), which among
others overcomes the latter deficiency of the HPD region based statistics.

The BSS equals the posterior expectation of a quadratic form where the posterior results
from a Jeffreys’ prior and the likelihood. The quadratic form is such that the BSS is a random
variable with a standardized distribution when evaluated under the alternative hypothesis
and just a fixed scalar under the null hypothesis. We evaluate whether the realization of
the BSS under the null hypothesis is a plausible realization from its distribution under the
alternative hypothesis. Although both the posteriors under the null and alternative hypothesis
are involved we only need the posterior under the null hypothesis, which follows from a Jeffreys’
prior specification. The posterior under the alternative hypothesis is constructed such that
the posterior under the null hypothesis is the conditional posterior of the parameters under
the alternative hypothesis evaluated in the null hypothesis of interest, see Kleibergen (2000a).
As the proposed Bayesian test statistic equals the posterior expectation of the classical score
statistic and is computed using the posterior distribution under the null hypothesis, we refer
to it as a Bayesian score statistic. The invariance of the BSS to reparameterizations follows
from the invariance of the classical score statistic and the posterior based on a Jeffreys’ prior
to parameter transformations.

For several models, Jeffreys’ priors lead to posteriors of the parameters that are identical in
functional form to the sampling densities of maximum likelihood estimators, see for example
Kleibergen and Zivot (1998) and Chao and Phillips (1998). It is therefore not surprising
that they also allow for the construction of a Bayesian test statistic that is, in functional
form, closely related to a likelihood based classical test statistic, see also Nicolaou (1993)
and Tibshirani (1989). The interpretation of the classical and Bayesian test statistics is
however quite different. The value of the BSS under the null hypothesis is compared with its
exact distribution under the alternative hypothesis to analyze whether its value is a plausible
realization from this distribution. Loosely speaking, we analyze whether the model under the
null hypothesis is a plausible realization from the posterior under the alternative hypothesis.
The classical score statistic has an asymptotic distribution under the null hypothesis and
we analyze whether its value under the null hypothesis is a plausible realization from this
asymptotic distribution. Hence, the distributions to evaluate the Bayesian and classical score
statistics, stem from different hypotheses and are asymptotic for the classical score statistic
and exact for the Bayesian score statistic.

The outline of the paper is as follows. In section 2, we define the BSS for a leading case,
where we test for a parameter restriction in simple linear model. This model has orthogonal
explanatory variables and normally distributed disturbances with identity covariance matrix.
We define the assumptions and their resulting statistical properties that are needed for the
construction of the BSS. We then extend the leading case to a general case and provide an
expression for the BSS that is straightforward to compute. In section 3, we give examples of the
BSS for some commonly tested hypotheses. These examples are tests for omitted variables in
a standard linear regression model and tests for cointegration in a linear VAR model. Finally,
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the fourth section concludes.1

2 Bayesian Score Statistic

In this section we discuss the different steps involved in the construction of the BSS. The BSS
uses an improper non-informative prior specification for the parameters of the nested model,
that is the Jeffreys’ prior. This prior is proportional to the square root of the determinant of
the information matrix. We introduce the BSS statistic to test a simple nested model against
a linear alternative model. We will call this the leading case. In the second part of this section,
we show that all other representations of the BSS result from this leading case.

2.1 The Leading Case

Consider the model,

y = Xf(ϕ) + ε, (1)

where y is a T×1 vector containing the dependent variables, X is a T×n matrix containing the
non-random explanatory variables for which X ′X = In, and ε is a T×1 vector of disturbances.
The function f(ϕ) is a n×1 known continuous differentiable vector function in the k×1 vector
ϕ, whose parameter region is the Rk, k < n. This model specifies our null hypothesis H0. We
test the model specification under H0 against an alternative hypothesis specification H1 which
encompasses model (1)

y = Xπ + ε, (2)

where π is an unrestricted n × 1 vector of unknown parameters. Hence, the null hypothesis
reads: H0 : π = f(ϕ), and the alternative hypothesis reads: H1 : π 6= f(ϕ). To test H0 against
H1 we make four assumptions.

Assumptions:

1. The disturbances ε are conditional on σ2 normally distributed, ε|σ2 ∼ N(0, σ2IT ), and
σ2 = 1.

2. The prior on the parameters ϕ under H0 is a Jeffreys’ prior, that is proportional to the
square root of the determinant of the conditional information matrix given σ2 = 1, such
that

pH0(ϕ|σ2 = 1) ∝
∣∣IH0(ϕ|σ2 = 1)

∣∣ 1
2 ∝

∣∣∣∣( ∂f∂ϕ′
)′

∂f

∂ϕ′

∣∣∣∣
1
2

. (3)

3. A parameterization of the model under H1 exists such that,

π = f(ϕ) + g(ϕ)λ, (4)

1To save on space, we often refer to the posterior of the parameters of the model under the null/alternative
hypothesis as the posterior under the null/alternative hypothesis.
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with λ a m × 1 vector of unknown parameters, n = k + m, and g(ϕ) a continuous
differentiable n×m matrix function in the k × 1 vector ϕ which is such that

f(ϕ)′g(ϕ) ≡ 0,(
∂f

∂ϕ′

)′
g(ϕ) ≡ 0, (5)

g(ϕ)′g(ϕ) ≡ Im,

and the relationship between π and (ϕ, λ) is invertible. Note that the number of restric-
tions on g(ϕ), k(m+ 1), exceeds the number of elements of g(ϕ), km. As a consequence
there exist models for which we cannot construct a function g(ϕ) that satisfies all the
conditions in (5).

4. The posterior pH0(ϕ|σ2 = 1, Y ) is a proper density.

These assumptions are needed to define the BSS and to derive its distribution under H1.
The last assumption essentially results from the first two assumptions. Assumption 2 specifies
the Jeffreys’ prior for the parameter ϕ conditional on the nuisance parameter σ2, which is equal
to one in the leading case. Assumptions 2 and 3 allow us to use nesting arguments to derive
specific statistical results to define the BSS. Assumption 3 implies that (i.) the transformation
from π to (ϕ, λ) is properly defined, and (ii.) for a given ϕ, λ is the coordinate vector of g(ϕ)λ
relative to the ordered basis consisting of the columns of g(ϕ), and (iii.) for any ϕ, the vector

g(ϕ)λ lies in the null (orthogonal) space of both f(ϕ)′ and
(
∂f
∂ϕ′

)′
. Although the conditional

Jeffreys’ prior (3) is zero when f(ϕ) is degenerate, that is when it has identical values for
different values of ϕ and g(ϕ), assumptions 2 and 3 do not coincide. The conditions imposed
by assumption 3 are stronger than the properties that result from the use of the Jeffreys’
prior which can be constructed for any kind of model. Therefore, there exist nested models
that result from restrictions on the parameters of linear models for which we cannot construct
a parameter λ that coordinatizes the space orthogonal to f(ϕ) and ∂f

∂ϕ′
, and for which the

transformation from π to (ϕ, λ) is properly defined. We can construct for these models a
conditional Jeffreys’ prior H1 as for any model, but assumption 3 is violated.

The BSS results from the expectation of a quadratic form of random variables. It is based
on several statistical properties that result from the above assumptions and the specification
of H0 and H1. Before we define the BSS, we discuss each of the statistical properties that are
involved. These properties are:

A. The posterior under H0 equals the conditional posterior under H1 in λ = 0.

B. The posterior under H1 can be specified as the product of the conditional density of λ
given ϕ and the marginal density of ϕ.

C. Given the conditional density from B, under H1, we can construct a quadratic form in
λ. This quadratic form is stochastic independent from ϕ and has a standardized density
such that also its expectation over ϕ has this density.

We will now discuss each property in detail.
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A. Priors, Posteriors as Conditional Priors, Posteriors Assumptions 1 and 2 are such
that the posterior of ϕ under H0 is specified by

pH0(ϕ|σ2 = 1, Y ) ∝
∣∣∣∣( ∂f∂ϕ′

)′
∂f

∂ϕ′

∣∣∣∣
1
2

exp
[
−1

2
(y −Xf(ϕ))′ (y −Xf(ϕ))

]
. (6)

The Jacobian of the transformation from π to (ϕ, λ) is determined by assumption 3

J(π, (ϕ, λ)) =
(

∂π
∂ϕ′

∂π
∂λ′

)
=
(

∂f
∂ϕ′

+ (λ′ ⊗ In) ∂vec(g(ϕ))
∂ϕ′

g(ϕ)
)
, (7)

where vec(g(ϕ)) is a vector that consists of the stacked columns of g(ϕ). As g(ϕ)′g(ϕ) ≡ Im,

∂
∂ϕ′

(g(ϕ)′g(ϕ)) = 0⇔
(g(ϕ)′ ⊗ Im)

(
∂vec(g(ϕ)′)

∂ϕ′

)
+ (Im ⊗ g(ϕ)′) ∂vec(g(ϕ))

∂ϕ′
= 0⇔

[(Im ⊗ g(ϕ)′) + (g(ϕ)′ ⊗ Im)Kk,m] ∂vec(g(ϕ))
∂ϕ′

= 0⇔
[Im2 +Km,m] (Im ⊗ g(ϕ)′) ∂vec(g(ϕ))

∂ϕ′
= 0

(8)

where Kk,m is the km× km dimensional commutation matrix which is such that when A is a
k ×m matrix vec(A′) = Kk,mvec(A), and therefore

(Im ⊗ g(ϕ)′)
∂vec(g(ϕ))

∂ϕ′
= 0. (9)

The Jacobian of the transformation from π to (ϕ, λ) can as a consequence be specified as

|J(π, (ϕ, λ))| = |J(π, (ϕ, λ))′J(π, (ϕ, λ))|
1
2

=

∣∣∣∣∣∣
 (

∂f
∂ϕ′

+ (λ′ ⊗ In)∂vec(g(ϕ))
∂ϕ′

)′ (
∂f
∂ϕ′

+ (λ′ ⊗ In)∂vec(g(ϕ))
∂ϕ′

)
g(ϕ)′

(
∂f
∂ϕ′

+ (λ′ ⊗ In)∂vec(g(ϕ))
∂ϕ′

)
(
∂f
∂ϕ′

+ (λ′ ⊗ In)∂vec(g(ϕ))
∂ϕ′

)′
g(ϕ)

Im

)∣∣∣∣∣
1
2

=

∣∣∣∣∣
( (

∂f
∂ϕ′

+ (λ′ ⊗ In) ∂vec(g(ϕ))
∂ϕ′

)′ (
∂f
∂ϕ′

+ (λ′ ⊗ In) ∂vec(g(ϕ))
∂ϕ′

)
0

0 Im

)∣∣∣∣∣
1
2

=
∣∣∣∣( ∂f

∂ϕ′
+ (λ′ ⊗ In) ∂vec(g(ϕ))

∂ϕ′

)′ (
∂f
∂ϕ′

+ (λ′ ⊗ In) ∂vec(g(ϕ))
∂ϕ′

)∣∣∣∣ 1
2

.

(10)

Hence, the Jeffreys’ prior under H0 equals the Jacobian of the transformation from π to (ϕ, λ)
evaluated in λ = 0, |J(π, (ϕ, λ))|λ=0|,

|J(π, (ϕ, λ))|λ=0| =
∣∣∣∣( ∂f∂ϕ′

)′(
∂f

∂ϕ′

)∣∣∣∣
1
2

=
∣∣IH0(ϕ|σ2 = 1)

∣∣ 1
2 , (11)

where |λ=0 stands for evaluated in λ = 0. Note that this is an important consequence of
assumption 3.

The specification of λ is such that it unambiguously reflects the parameter restriction π =
f(ϕ) imposed by H0 and nothing else. We can therefore consider the prior and posterior under
H0 as the unique conditional prior and posterior under H1 given that λ = 0 and consequently
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π = f(ϕ), see Kleibergen (2000a). When we cannot construct a parameter λ that accords with
assumption 3, we cannot interpret the Jeffreys’ prior as a Jacobian of a transformation and
hence we can also not interpret the prior/posterior under H0 as a conditional prior/posterior
under H1.

The Jeffreys’ prior under H0 can be considered to result from the (flat) Jeffreys’ prior
under H1,

pH1(π|σ2 = 1) ∝ |IH1(π|σ2 = 1)|
1
2 ∝ |σ−2X ′X|

1
2 = 1, (12)

as it is proportional to the conditional Jeffreys’ prior under H1 given that λ is equal to 0,

pH0(ϕ|σ2 = 1) ∝ pH1(ϕ, λ|σ2 = 1)|λ=0

∝ pH1(π(ϕ, λ)|σ2 = 1)|λ=0|J(π, (ϕ, λ))|λ=0|
∝ |J(π, (ϕ, λ))|λ=0| = |IH0(ϕ|σ2 = 1)|

1
2 .

(13)

The Jeffreys’ prior (12) for the parameters under H1 leads to a normal posterior under H1,

pH1(π|σ2 = 1, Y ) ∝ exp
[
−1

2 (y −Xπ)′ (y −Xπ)
]

∝ exp
[
−1

2

(
y′MXy + (π − π̂)′ (π − π̂)

)]
,

(14)

where π̂ = (X ′X)−1X ′y = X ′y as X ′X = In, MX = IT −X(X ′X)−1X ′ = IT −XX ′. Thus,
the posterior under H0 equals the conditional posterior under H1 given that λ = 0,

pH0(ϕ|σ2 = 1, Y ) ∝ pH1(ϕ, λ|σ2 = 1, Y )|λ=0

∝ pH1(π(ϕ, λ)|σ2 = 1, Y )|λ=0|J(π, (ϕ, λ))|λ=0|

∝
∣∣∣∣( ∂f

∂ϕ′

)′ (
∂f
∂ϕ′

)∣∣∣∣ 1
2

exp
[
−1

2 (y −Xf(ϕ))′ (y −Xf(ϕ))
]
.

(15)

B. Posterior H1 as product of a conditional and marginal density The posterior of
(ϕ, λ) under H1 can be specified as

pH1(ϕ, λ|σ2 = 1, Y ) ∝ pH1(π(ϕ, λ)|σ2 = 1, Y )|J(π, (ϕ, λ))|

∝
∣∣∣∣( ∂f

∂ϕ′
+ (λ′ ⊗ In)∂vec(g(ϕ))

∂ϕ′

)′ (
∂f
∂ϕ′

+ (λ′ ⊗ In)∂vec(g(ϕ))
∂ϕ′

)∣∣∣∣ 1
2

exp
[
−1

2 (y −X [f(ϕ) + g(ϕ)λ])′ (y −X [f(ϕ) + g(ϕ)λ])
]
.

(16)

The orthogonality conditions (5) imply that we can also directly solve ϕ from π without the
involvement of λ since, see Kleibergen (2000b),(

∂f

∂ϕ′

)′
π =

(
∂f

∂ϕ′

)′
(f(ϕ) + g(ϕ)λ) =

(
∂f

∂ϕ′

)′
f(ϕ) =

(
∂f

∂ϕ′

)′
π(ϕ, λ)|λ=0. (17)

As a consequence, we can solve for ϕ from π by using(
∂f

∂ϕ′

)′
π =

(
∂f

∂ϕ′

)′
f(ϕ), (18)

which, given a value of π, are k equations with the k elements of ϕ as the only unknown
elements such that ϕ is exactly identified. We can solve for ϕ from (18) as it results from the
first two orthogonality conditions from (5) that f(ϕ) is spanned by ∂f

∂ϕ′
, i.e. f(ϕ) =

(
∂f
∂ϕ′

)
q(ϕ)
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with q(ϕ) a k-dimensional continuous differentiable function of ϕ, such that (18) has a unique
solution ϕ. Equation (17) shows that when we solve for ϕ from π(ϕ, λ), we first map π(ϕ, λ)
onto π(ϕ, λ)|λ=0, which is equal to f(ϕ), and then solve for ϕ from π(ϕ, λ)|λ=0. The projection
of π(ϕ, λ) onto π(ϕ, λ)|λ=0 is an orthogonal projection as the difference between π(ϕ, λ) and
π(ϕ, λ)|λ=0, i.e. g(ϕ)λ, is orthogonal to π(ϕ, λ)|λ=0. Only the projection onto π(ϕ, λ)|λ=0 is
an orthogonal projection as projections onto other values of λ, say λ0 6= 0, do not have the
property that the difference between the original value and the projected value is orthogonal
to the projected value, (π(ϕ, λ)− π(ϕ, λ)|λ=λ0)′π(ϕ, λ)|λ=λ0 6= 0. When we have obtained the
value of ϕ from π using (18), we can construct λ as

λ = g(ϕ)′π. (19)

Equation (18) allows us to construct the marginal density of ϕ directly from the marginal
density of π as λ is not involved when we solve ϕ from π. This is also reflected in (19)

as (19) shows that, by construction, λ is stochastic independent of
(
∂f
∂ϕ′

)′
π, as

(
∂f
∂ϕ′

)
and

g(ϕ) are orthogonal and π has a normal distribution with an identity covariance matrix,

while
(
∂f
∂ϕ′

)′
π is the random variable from which we obtain ϕ. All implicit values of λ in

π(ϕ, λ) in (18) lead to the same value of ϕ. This shows that λ operates in the space orthog-
onal to

(
∂f
∂ϕ′

)
and doesnot influence the solution of ϕ from (18). Equation (18) therefore

conducts an orthogonal projection of π(ϕ, λ) onto π(ϕ, λ)|λ=0 = f(ϕ) for all values of λ since
(π(ϕ, λ) − π(ϕ, λ)|λ=0)′π(ϕ, λ)|λ=0 = 0. We can obtain the value of λ from π(ϕ, λ) by using
(19). Integrating the joint density of (ϕ, λ) over λ to obtain the marginal density of ϕ is thus
identical to conditioning on the value of λ where all values of λ are mapped on using the
orthogonal projection that we use to solve for ϕ, i.e. λ = 0. The marginal density of ϕ is
therefore equal to the conditional density of ϕ given that λ is equal to zero, see Kleibergen
(2000a,2000b),

pH1(ϕ|σ2 = 1, Y ) ∝
∫
Rm pH1(ϕ, λ|σ2 = 1, Y )dλ

∝
∫
Rm pH1(π(ϕ, λ)|σ2 = 1, Y )|J(π, (ϕ, λ))|dλ

∝
∫
Rm [pH1(π(ϕ, λ)|σ2 = 1, Y )|λ=0|J(π, (ϕ, λ))|λ=0|] pH1(λ|ϕ, σ2 = 1, Y )dλ

∝ [pH1(π(ϕ, λ)|σ2 = 1, Y )|λ=0|J(π, (ϕ, λ))|λ=0|]
∫
Rm pH1(λ|ϕ, σ2 = 1, Y )dλ

∝ pH1(π(ϕ, λ)|σ2 = 1, Y )|λ=0|J(π, (ϕ, λ))|λ=0|
∝ pH1(ϕ, λ|σ2 = 1, Y )|λ=0

∝ pH0(ϕ|σ2 = 1, Y ),
(20)

which is again identical to the marginal posterior of ϕ under H0.
Since we can solve for ϕ from π in a way that doesnot involve λ, and therefore obtain the

marginal posterior of ϕ, we can also construct the conditional posterior of λ given ϕ. Using
(19), this conditional posterior of λ given ϕ results as

pH1(λ|ϕ, σ2 = 1, Y ) ∝ exp
[
−1

2
(λ− λ̂)′(λ− λ̂)

]
, (21)

where λ̂ = g(ϕ)′π̂ = g(ϕ)′X ′y, and is a normal density. The joint posterior of (ϕ, λ) (16) can
thus also be represented by

pH1(ϕ, λ|σ2 = 1, Y ) ∝ pH1(λ|ϕ, σ2 = 1, Y )pH1(ϕ|σ2 = 1, Y )
∝ pH1(λ|ϕ, σ2 = 1, Y ) [pH1(ϕ, λ|σ2 = 1, Y )|λ=0] . (22)
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C. Quadratic form in λ that is stochastic independent from ϕ The specification of
the density pH1(λ|ϕ, σ2 = 1, Y ) (21) is such that the random m× 1 vector τ , which we define
as

τ = λ− λ̂, (23)

is stochastic independent from ϕ and has a normal distribution with mean zero and covariance
matrix Im,

τ ∼ N(0, Im). (24)

The quadratic form of a normally distributed m×1 random vector with mean zero and identity
covariance matrix has a χ2(m) distribution,

τ ′τ ∼ χ2(m). (25)

Because τ is stochastic independent from ϕ, also τ ′τ is stochastic independent from ϕ and the
distribution of τ ′τ does not change when we take the expectation over ϕ,

Eϕ,σ2=1 [τ ′τ |H1] =
∫
Rk [τ ′τ ] pH1(ϕ|σ2 = 1, Y )dϕ

=
∫
Rk
[
(λ− λ̂)′(λ− λ̂)

]
pH1(ϕ|σ2 = 1, Y )dϕ ∼ χ2(m). (26)

The BSS results from the expectation of a quadratic form in random variables and uses
the property derived above.

2.2 The Bayesian Score Statistic

Equation (26) shows that the posterior expectation, with respect to the marginal posterior of
ϕ, of the quadratic form of τ has a χ2(m) distribution that does not depend on any additional
parameters. The marginal posterior in (26) is equal to the marginal posterior under H0. When
we want to evaluate the posterior expectation (26) under H0, λ is equal to 0. As the marginal
posteriors under H0 and H1 are identical, evaluating the posterior expectation (26) under H0

only affects the expression of τ in (26),

Eϕ,σ2=1 [τ ′τ |H0] =
∫
Rk [τ ′τ |λ=0] pH1(ϕ|σ2 = 1, Y )dϕ

=
∫
Rk [τ ′τ |λ=0] {pH1(ϕ, λ|σ2 = 1, Y )|λ=0} dϕ

=
∫
Rk [λ̂

′λ̂]pH0(ϕ|σ2 = 1, Y )dϕ.
(27)

We can now analyze whether the resulting value of the expectation is plausible to have been
generated by its distribution under H1, i.e. a χ2(m) distribution. We use these expectations
to define the Bayesian Score Statistic.

Definition 1 Given assumptions 1-4 and the models under H0 (1) and H1 (2), the Bayesian
Score Statistic (BSS) for testing the model under H0 against the model under H1, is under H0

equal to

BSS(H0|H1) = Eϕ,σ2=1

[
λ̂′λ̂|H0

]
(28)

=
∫
Rk

[λ̂′λ̂]pH0(ϕ|σ2 = 1, Y )dϕ,
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and under H1 equal to

BSS(H1|H1) = Eϕ,σ2=1

[
(λ− λ̂)′(λ− λ̂)|H1

]
(29)

=
∫
Rk

[τ ′τ ] pH1(ϕ|σ2 = 1, Y )dϕ

∼ χ2(m).

BSS(H0|H1) can be compared with a χ2(m) distribution to analyze whether BSS(H0|H1)
is a plausible realization of BSS(H1|H1). It therefore analyzes whether the model under H0 is
a plausible realization from the posterior of the parameters of the model under H1. Because of
the orthogonality conditions (5), λ̂ is equal to the score (= ∂L

∂λ
|H0 , where L is the log-likelihood)

under H0 evaluated in (ϕ, σ2 = 1). The BSS thus equals the posterior expectation under a
Jeffreys’ prior specification of the quadratic form of the score which explains its name. Since
both the quadratic form of the score and the posterior using the Jeffreys’ prior are invariant
to parameter transformations, the BSS is an invariant test statistic.

In Nicolaou (1993) and Tibshirani (1989), it is shown that the use of Jeffreys’ priors for
globally orthogonal parameters, as defined by Cox and Reid (1987) and which corresponds
with the last two conditions from (5), leads to highest posterior density regions of the resulting
marginal posteriors with similar properties as classical confidence regions. For the class of
models and hypotheses that we analyze, the BSS extends these results in several ways. First,
the BSS shows how a highest posterior density region of a marginal posterior can be evaluated
using a statistic that shows whether a certain parameter value lies in the highest posterior
density region or not. Second, the BSS shows that by using unique conditional densities,
the results of Nicolaou (1993) and Tibshirani (1989) can also be obtained by solely working
from the perspective of the null hypothesis. These two extensions allow us to generalize the
univariate results of Nicolaou (1993) and Tibshirani (1989) to a multivariate setting. Fourth,
the BSS is based on exact finite sample arguments while the results of Nicolaou (1993) and
Tibshirani (1989) are obtained in an asymptotic setting but their results therefore hold for a
larger class of models and hypotheses then the linear models analyzed here.

The BSS constructed above is for the stylized case of orthogonal explanatory variables,
unit variance and a parameter λ that coordinatizes the space orthogonal to ϕ and for which
it holds that an invertible relationship between (λ, ϕ) and π exists. As the BSS equals the
expectation of the classical score statistic with respect to the posterior that uses the Jeffreys’
prior, it can straightforwardly be generalized to more complicated models and hypotheses
when a (hypothetical) parameter λ exists that satisfies the above mentioned properties as
both the classical score statistic as the posterior using the Jeffreys’ prior are invariant with
respect to parameter transformations.

2.3 The General Case

In the general case, the BSS can be used to test the model under H0,

W (θ) = Z(θ)H(ϕ) + U, (30)

where θ is a l × 1 vector of unobserved components defined on the region Bθ conditional on
which the model is linear, W (θ) is a T × p matrix of dependent variables that can depend on
θ, Z(θ) is a T × n matrix of explanatory variables that can depend on θ, U is a T × p matrix
of disturbances, H(ϕ) is a continuous differentiable n × p dimensional function in the k × 1
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vector ϕ whose parameter region is the Rk, k < np. The linear model under the alternative
hypothesis H1 reads,

W (θ) = Z(θ)Γ + U, (31)

with Γ a n × p matrix of unknown parameters. The assumptions under which the BSS is
constructed now become.

Assumptions:

1. The disturbances U are conditional on θ normally distributed, vec(U)|θ ∼ N(0,Σ(θ)⊗
Ω(θ)) with Σ(θ) and Ω(θ) p× p and T × T positive definite symmetric matrix functions
of θ, respectively.

2. The conditional prior on ϕ given θ is a Jeffreys’ prior,

pH0(ϕ|θ) ∝
∣∣∣∣(∂vec(H(ϕ))

∂ϕ′

)′ [
Σ(θ)−1 ⊗ Z(θ)′Ω(θ)−1Z(θ)

] ∂vec(H(ϕ))
∂ϕ′

∣∣∣∣
1
2

. (32)

3. A parameterization of the model under H1 exists such that, for a given θ,

F (ϕ|θ) =
(
Z(θ)′Ω(θ)−1Z(θ)

) 1
2 H(ϕ)Σ(θ)−

1
2 , (33)

Π(Γ|θ) =
(
Z(θ)′Ω(θ)−1Z(θ)

) 1
2 ΓΣ(θ)−

1
2 ,

where Π(Γ|θ) = Π is unrestricted, and a parameterization of Π exists such that

Π = F (ϕ|θ) +G1(ϕ|θ)λG2(ϕ|θ), (34)

with λ a (n − q) × (p − q) matrix of unknown parameters, G1(ϕ|θ) and G2(ϕ|θ) are
n× (n− q) and (p− q)× p dimensional continuous differentiable matrix functions of ϕ,
k + (n− q)(p− q) = pn,

(G2(ϕ|θ)′ ⊗G1(ϕ|θ)) vec(F (ϕ|θ)) ≡ 0,

(G2(ϕ|θ)′ ⊗G1(ϕ|θ)) ∂vec(F (ϕ|θ))
∂ϕ′

≡ 0, (35)

(G2(ϕ|θ)′ ⊗G1(ϕ|θ))′ (G2(ϕ|θ)′ ⊗G1(ϕ|θ)) ≡ Ip−q ⊗ In−q

and an invertible relation between Π and (ϕ, λ) exists.

4. The prior pH0(θ) = pH1(θ) does not depend on ϕ. Furthermore, it is such that the
posterior pH0(ϕ, θ|Y, Z) is a proper density.

The assumptions 1-4 are such that F (ϕ|θ) corresponds with f(ϕ) in (1) and we can then
also, given θ, specify the model under H0 (30) as,

Y (θ) = X(θ)F (ϕ|θ) + ε, (36)

where Y (θ) = Ω(θ)−
1
2W (θ)Σ(θ)−

1
2 , ε = Ω(θ)−

1
2UΣ(θ)−

1
2 , X(θ) = Ω(θ)−

1
2Z(θ)(Z(θ)′Ω(θ)−1

Z(θ))−
1
2 such that X(θ)′X(θ) = In; and under H1 as

Y (θ) = X(θ)Π + ε, (37)
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with Π a n×p matrix of unknown parameters that results from (34). The conditional Jeffreys’
prior (32) then becomes

pH0(ϕ|θ) ∝
∣∣∣∣(∂vec(F (ϕ|θ))

∂ϕ′

)′(
∂vec(F (ϕ|θ))

∂ϕ′

)∣∣∣∣
1
2

. (38)

Given θ, the resulting models under H0 (36) and H1 (37) and the conditional prior (38) satisfy
all assumptions from the leading case which shows that the general model can be translated
to the leading case in a straightforward way. The invariance of both the conditional prior
(38) and the classical score statistic to parameter transformations plays a crucial role in this
respect. From definition 1 and the invariance of both the score statistic and the posterior
using the Jeffreys’ prior we can then define the BSS for the general case to test the model
under H0 (30) against the model under H1 (31).

Definition 2 Given assumptions 1-4 and the models under H0 (30) and H1 (31), the Bayesian
Score Statistic (BSS) for testing the model under H0 against the model under H1, is under H0

equal to

BSS(H0|H1) =
∫
Bθ

∫
Rk [tr(λ̂

′λ̂)]pH0(ϕ, θ|Y )dϕdθ

=
∫
Bθ

∫
Rk
{
vec
(

Ω(θ)−
1
2W (θ)Σ(θ)−

1
2

)′ [
M�

Σ(θ)−
1
2⊗Ω(θ)−

1
2Z(θ)

�
∂vec(H(ϕ))

∂ϕ′

−M�
Σ(θ)−

1
2⊗Ω(θ)−

1
2Z(θ)

�] vec(Ω(θ)−
1
2W (θ)Σ(θ)−

1
2

)}
pH0(ϕ, θ|Y )dϕdθ,

(39)

where MA = IT −A(A′A)−1A′. The BSS is under H1 a χ2((n− q)(p− q)) distributed random
variable.

We directly stated the BSS (39) and have left out all the tedious manipulations that are
needed to show that it corresponds with (28). Although the BSS (39) looks complicated, it is
straightforward to construct when a posterior simulator to sample from the posterior under
H0 is available and can for some models under H0 (linear) even be constructed analytically.
In case of an available posterior simulator, the BSS is a convenient diagnostic tool that can
be used to test the model under H0 against various alternatives in one run of the posterior
simulator as the BSS is constructed under H0 only. Note, however, that we still need to check
whether assumption 3 holds before we use the BSS (39). Models namely exist for which the
BSS (39) can be computed but that do not satisfy assumption 3 and for which the BSS is then
not properly defined. This results as the assumption of a proper transformation from Π to
(ϕ, λ) is a more stringent condition then the computability of the BSS (39). The computability
condition namely only requests that we need to be able to characterize the space orthogonal
to ∂F (ϕ|θ)

∂ϕ′
while it also needs to be orthogonal to F (ϕ) to satisfy assumption 3.

BSS(H0|H1) (39) is equal to the posterior expectation of the classical score statistic for a
given value of θ that tests (30) against (31) when we use the prior (32). The presence of the
unobserved components (nuisance parameters) θ is the main difference between the general
and the leading case. For a given value of θ, it can be shown that, after a transformation, the
leading and general case coincide. The leading case then shows that the distribution of the BSS
under H1 for a given value of θ is the same and stochastic independent from θ for all values of θ.
This distribution does not change when we take the expectation of the BSS with respect to the
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posterior of θ under H1. The only difference between the BSS in the leading and general case is
therefore the unobserved components (nuisance parameters) θ that are integrated out. These
nuisance parameters can take all sorts of forms and can represent, for example, parameters of
other explanatory variables in which the model is linear, covariance parameters, unobserved
components as in state space or probit/tobit models, mixing parameters for the disturbances
when these are mixtures of normal random variables like Student-t random variables etc..

In the next sections we give examples of a linear model and an error correction cointegration
model for which we construct the BSS to test them against alternative linear encompassing
model specifications.

3 Examples

The definition 2 allows us to compute the BSS for some commonly tested hypotheses in a
straightforward way. Although the BSSs can be computed straightforwardly, we still need to
verify whether assumption 3 is satisfied. We therefore discuss two examples of the BSS and
analyze whether assumption 3 is satisfied. In the first example we test for omitted variables
in a standard linear model and in the second example we test for cointegration in an error
correction model.

3.1 Linear Model

Consider the linear model under H0,

y = Xβ + ε, (40)

where y is a T×1 vector of dependent variables, X is a T×k matrix of explanatory variables, β
a k×1 vector of unknown parameters and ε|θ ∼ N(0,Ω(θ)) with Ω(θ) a T ×T positive definite
symmetric matrix. The standard linear model results when Ω(θ) = σ2IT , such that θ = σ2.
The parameter θ may however also contain mixing and degrees of freedom parameters, which
allows us to have independent student t distributed errors, see Geweke (1993). The model
under the alternative hypothesis H1 reads,

y = Xβ + Zγ + ε, (41)

where Z is a T×m matrix of additional explanatory variables and γ a m×1 vector of unknown
elements. Under H0, we specify a Jeffreys’ prior on β given θ,

pH0(β|θ) ∝
∣∣X ′Ω(θ)−1X

∣∣ 1
2 , (42)

and the prior on θ is independent of β. The prior on θ is assumed to be such that pH0(β, θ|y)
is a proper density.

When (X Z) has full rank, the specification of the prior and the models under H0 and H1

are such that they satisfy assumptions 1 to 4 and we can use the BSS to test H0 against H1.
Assumption 1 and 2 are satisfied through the specification of the prior and the distribution
of the disturbances. Later on we show that assumption 3 is satisfied. The specification of
BSS(H0|H1) results from definition 2 (39) when we use Z(θ) = (X Z), W (θ) = y, Σ(θ) = 1,
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and H(ϕ) = (β′ 0)′ such that ∂vec(H(ϕ))
∂ϕ′

= (Ik 0)′,

BSS(H0|H1) = Eβ,θ

[
y′Ω(θ)−

1
2 ′
[
M

Ω(θ)−
1
2X
−M

Ω(θ)−
1
2 (X Z)

]
Ω(θ)−

1
2y|H0

]
=

∫
Bθ

[
y′Ω(θ)−

1
2 ′M

Ω(θ)−
1
2X

Ω(θ)−
1
2Z
(
Z ′Ω(θ)−

1
2 ′M

Ω(θ)−
1
2X

Ω(θ)−
1
2Z
)−1

Z ′Ω(θ)−
1
2 ′M

Ω(θ)−
1
2X

Ω(θ)−
1
2y
]
pH0(θ|Y )dθ,

BSS(H1|H1) ∼ χ2(m).

(43)

When Ω(θ) = σ2IT and we take a flat prior for σ2, that is pH0(σ2) ∝ 1, expression (43)
simplifies to

BSS(H0|H1) = Eβ,σ2

[
1
σ2y
′(MX −M(X Z))y|H0

]
= Eσ2

[
1
σ2y
′MXZ (Z ′MXZ)−1 Z ′MXy|H0

]
=
(
y′MXZ (Z ′MXZ)−1 Z ′MXy

)
Eσ2

[
1
σ2 |H0

]
=
(
y′MXZ (Z ′MXZ)−1 Z ′MXy

) ∫∞
0

1
σ2pH0(σ2|y)dσ2

= (T − 2)y
′MXZ(Z′MXZ)−1Z′MXy

y′MXy
,

BSS(H1|H1) ∼ χ2(m),

(44)

where we use that
∫∞

0
1
σ2pH0(σ2|y)dσ2 = T−2

y′MXy
as the posterior of σ2 reads

pH0(σ2|y) = 2−
1
2 (T−2) 1

Γ(1
2(T − 2))

(y′MXy)
1
2 (T−2)(σ2)−

1
2T exp

[
− 1

2σ2y
′MXy

]
. (45)

The BSSs (43) and (44) differ from classical test statistics in several respects. First, their
distributions result from the alternative hypothesis which is unlike classical test statistics
where the distributions result from the null hypothesis. Second, both BSSs are exact test
statistics and exactly have the specified distribution under H1. Many classical test statistics
only have asymptotic distributions and their distributions are thus essentially only valid in
infinite samples from H0. The distribution of the BSS (44) also differs from the distribution of
the exact classical test statistic for this hypothesis which has a F distribution. This difference
results as the BSS under H1 is stochastic independent from the nuisance parameters. Unlike
exact classical test statistics, the distribution of the BSS therefore does not change when
nuisance parameters are added which explains why the BSSs (43) and (44) have the same
distribution under H1.

The Jeffreys’ prior implies that, conditional on θ, both β and γ are obtained from inde-
pendent random variables, say ϕ and λ, which have a normal distribution with an identity
covariance matrix. To show this in the case when Ω(θ) = σ2IT , consider that(

β
γ

)
=
((

X Z
)′ (

X Z
))− 1

2

(
ϕ
λ

)
σ

=

(
(X ′X)−

1
2 − (X ′X)−1X ′Z (Z ′Z)−

1
2

0 (Z ′Z)−
1
2

)(
ϕ
λ

)
σ

=

(
(X ′X)−

1
2 ϕ− (X ′X)−1X ′Z (Z ′Z)−

1
2 λ

(Z ′Z)−
1
2 λ

)
σ,

(46)
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where (
ϕ
λ

)
∼ N

((
ϕ̂

λ̂

)
, Ik+m

)
, (47)

with
(
ϕ̂

λ̂

)
=
((

X Z
)′ (

X Z
))− 1

2 (
X Z

)′
yσ−1, and we have used that

(
X Z

)′ (
X Z

)
=

(
(X ′X)

1
2 (X ′X)−

1
2 X ′Z

0 (Z ′Z)
1
2

)′(
(X ′X)

1
2 (X ′X)−

1
2 X ′Z

0 (Z ′Z)
1
2

)
(48)

and (
(X ′X)

1
2 (X ′X)−

1
2 X ′Z

0 (Z ′Z)
1
2

)−1

=

(
(X ′X)−

1
2 − (X ′X)−1 X ′Z (Z ′Z)−

1
2

0 (Z ′Z)−
1
2

)
. (49)

This shows that λ = 0 implies both that β is equal to (X ′X)−
1
2 ϕσ and that γ is equal to

zero. As ϕ and λ are stochastic independent, β and γ are therefore, conditional on θ, (locally)
stochastic independent when γ = 0.

To show that assumption 3 is satisfied, we note that (β′ γ′)′ =
((

X Z
)′ (

X Z
))− 1

2
πσ−1,

where

π =
(
Ik
0

)
ϕ+

(
0
Im

)
λ, (50)

such that g(ϕ) = (0 Im)′ is orthonormal and orthogonal to f(ϕ) = (ϕ′ 0)′ and ∂f
∂ϕ

=
(
Ik 0

)′.
3.2 Error Correction Cointegration Model

The error correction cointegration model is defined by, see e.g. Engle and Granger (1987) and
Johansen (1991),

∆yt = α′β′yt−1 + εt, t = 1, . . . , T, (51)

where yt is a k dimensional vector time series, α′ and β are k × r dimensional matrices that
contain the unknown parameters and to identify the parameters we normalize β as β = (Ir
−β′2)′, where β2 is a (k−r)×r dimensional matrix of unknown parameters, εt is a k×1 vector
that contains the disturbances which are independent normal with mean zero and covariance
matrix Σ. For a Bayesian analysis of the error correction cointegration model, we refer to
Kleibergen and Paap (1998).

We can denote the error correction cointegration model (51) in matrix notation by,

∆Y = Y−1βα + ε, (52)

where ∆Y = (∆y1 · · ·∆yT )′, Y−1 = (y0 · · · yT−1)′, ε = (ε1 · · · εT )′. We consider the error
correction model (52) as the model under H0 that we test against the linear model under H1,

∆Y = Y−1Θ + ε, (53)
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where Θ is a unrestricted k×k matrix that contains the unknown parameters. The restriction
imposed by the model under H0 (52) is a reduced rank restriction as the rank of βα is r while
the rank of Θ is k. This restriction satisfies assumption 3 and we can, as we show later on, also
construct the different functions and parameters that are used in assumption 3, see Kleibergen
and Paap (1998). The prior that we specify under H0 is a conditional prior for (α, β) given Σ
and is a Jeffreys’ prior, see Kleibergen and van Dijk (1994),

pH0(α, β2|Σ) ∝ |I(α, β2|Σ)| 12 ∝
∣∣∣∣( ∂vec(βα)

(∂vec(α)′ ∂vec(β2)′)

)′ (
Σ−1 ⊗ Y ′−1Y−1

) ∂vec(βα)
(∂vec(α)′ ∂vec(β2)′)

∣∣∣∣ 1
2

∝
∣∣∣∣( Ik ⊗ β α′ ⊗

(
0
Ik−r

) )′ (
Σ−1 ⊗ Y ′−1Y−1

)(
Ik ⊗ β α′ ⊗

(
0
Ik−r

) )∣∣∣∣
1
2

,

(54)

and the prior on Σ is diffuse and leads to an integrable posterior pH0(α, β,Σ|Y ). It is important
to note here that, as the prior and the posterior have to result from nesting arguments in order
to apply the BSS, see section 2, we do not take the expectation over the data in the Jeffreys’
priors that we use. As a Bayesian we treat the data as fixed and given both in the prior
and the posterior. The involved Jeffreys’ priors thus violate the likelihood principle. Efficient
posterior simulators to generate drawings from the posteriors of the parameters of reduced
rank models are given in Kleibergen and Paap (1998) for general classes of priors, see also
Kleibergen and Zivot (1998).

Assumptions 1 to 4 are satisfied and we can construct the BSS to test H0 (52) against
H1 (53) using the BSS from definition 3 (39) when we use that W (θ) = ∆Y , Z(θ) = Y−1,

Ω(θ) = IT , Σ(θ) = Σ, H(ϕ) = βα such that ∂vec(H(ϕ))
∂ϕ′

=
(
Ik ⊗ β α′ ⊗

(
0
Ik−r

) )
.

After these substitution we obtain that,

BSS(H0|H1)

= Eα,β,Σ

[
vec(∆Y Σ−

1
2 )′
[
M

(Σ−
1
2⊗Y−1) ∂vec(H(ϕ))

∂ϕ′
−M

(Σ−
1
2⊗Y−1)

]
vec(∆Y Σ−

1
2 )|H0

]
= Eα,β,Σ

[
tr
(

Σ−1∆Y ′Y−1
(
Y ′−1Y−1

)−1
Y ′−1∆Y

)
− tr

(
Σ−1∆Y ′Y−1β

(
βY ′−1Y−1β

)−1
βY ′−1∆Y

)
−tr (αΣ−1α′)−1

αΣ−1∆Y ′MY−1βY−1,2
(
Y ′−1,2MY−1βY−1,2

)
Y ′−1,2MY−1β∆Y Σ−1α′|H0

]
= Eα,β,Σ

[
tr
((

Σ−1 − Σ−1α′ (αΣ−1α′)−1
αΣ−1

)
∆Y ′−1MY−1βY−1,2

∆Y ′MY−1βY−1,2
(
Y ′−1,2MY−1βY−1,2

)
Y ′−1,2MY−1β∆Y Σ−1α′

)
|H0
]

= Eα,β,Σ

[
tr
((

Σ−
1
2 ′M

Σ−
1
2 α′

Σ−
1
2

)
∆Y ′

(
MY−1β −MY−1

)
∆Y

)
|H0

]
=

∫
BΣ

∫
Rrk
∫
R(k−r)r

[
tr
((

Σ−
1
2 ′M

Σ−
1
2 α′

Σ−
1
2

)
∆Y ′

(
MY−1β −MY−1

)
∆Y

)]
pH0(α, β2,Σ|Y )dαdβ2dΩ,

BSS(H1|H1) ∼ χ2((k − r)2),
(55)

where Y−1 = (Y−1,1 Y−1,2), Y−1,1 : T×r, Y−1,2 : T×(k−r). The BSS has under H1 a χ2((k−r)2)
distribution as the number of restrictions imposed by H0 on the parameters equals (k − r)2.

The BSS (55) tests the null hypothesis of cointegration against the alternative hypothesis
of a full rank model. In classical statistical analysis, these test statistics have asymptotic
distributions that are functionals of Brownian motions, see e.g. Johansen (1991). Contrary
to the distributions of the classical test statistics, the distribution of the BSS results from the
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alternative hypothesis instead of the null hypothesis. As a consequence, the distribution of the
BSS to test for cointegration differs in two respects from the distributions of the classical test
statistics. First, the distribution of the BSS is exact while the distributions of the classical test
statistics are asymptotic. Second, the distribution of the BSS is a χ2 distribution and not a
function of Brownian motions like the asymptotic distributions of the classical test statistics.
This results since the model under H1 has a normal posterior leading to the χ2 critical values.
In classical statistical analysis, the limiting distributions of the test statistics result from H0

where random walks, which converge to Brownian motions, are the main feature of the model.
To show that the Jeffreys’ prior implies that the parameters which represent the difference

between the models under H0 (52) and H1 (53) satisfy the orthogonality conditions from
assumption 3, we construct the independent random variables where the whole analysis is
based on. We therefore conduct a transformation of random variables from (β2, α) to (γ2,Φ)
such that

(Y ′−1Y−1)
1
2βαΣ−

1
2 = ΓΦ, (56)

where Γ = (Ir −γ′2)′, γ2 : (k − r) × r, Φ : r × k. The Jacobian of this transformation is such
that the Jeffreys’ prior for (γ2,Φ) results as,

pH0(Φ, γ2|Σ) ∝ pH0(α(Φ, γ2), β2(Φ, γ2)|Σ) |J ((α, β2) , (γ2,Φ))|

∝
∣∣∣∣( Ik ⊗ Γ Φ′ ⊗

(
0
Ik−r

) )′(
Ik ⊗ Γ Φ′ ⊗

(
0
Ik−r

) )∣∣∣∣
1
2

,
(57)

since the Jeffreys’ prior is invariant to parameter transformations. The Jeffreys’ prior (57)
equals the Jacobian of the transformation from Π to (γ2,Φ, λ) evaluated in λ = 0, see Kleiber-
gen and Paap (1998),

pH0(Φ, γ2|Σ) ∝ |J (Π, (γ2,Φ, λ)) |λ=0| ∝
∣∣∣∣( Ik ⊗ Γ Φ′ ⊗

(
0
Ik−r

)
Φ′⊥ ⊗ Γ⊥

)∣∣∣∣ , (58)

where Π = (Y ′−1Y−1)
1
2 ΘΣ−

1
2 , λ : (k − r)× (k − r), and

Π = ΓΦ + Γ⊥λΦ⊥, (59)

with Γ′⊥Γ ≡ 0, Γ′⊥Γ⊥ ≡ Ik−r, Φ⊥Φ′ ≡ 0, Φ⊥Φ′⊥ ≡ Ik−r. A singular value decomposition, see
Golub and van Loan (1989), can be used to show the validity of (59) and to obtain the values
of γ2, Φ and λ from Π, see Kleibergen and Paap (1998). As both (Φ′⊥ ⊗ Γ⊥)′ vec(ΓΦ) = 0,
(Φ′⊥ ⊗ Γ⊥)′ vec( ∂(ΓΦ)

∂vec(γ2)′ ∂vec(Φ)′ ) = 0 and (Φ′⊥ ⊗ Γ⊥)′ (Φ′⊥ ⊗ Γ⊥) = (Ik−r ⊗ Ik−r), assumption
3 is satisfied. The specification of the parameters Π, (γ2,Φ) and λ corresponds with the
specification of π, ϕ and λ from Section 2, respectively. The parameter λ unambiguously
reflects the restriction imposed by the null hypothesis on the parameters of the model under
the alternative hypothesis. This implies that the BSS can be constructed.

4 Conclusions

We have constructed a Bayesian statistic that equals the posterior expectation of the classical
score statistic where the posterior results from a Jeffreys’ prior. We refer to this statistic as the
Bayesian Score Statistic (BSS). The BSS can be constructed both under the null hypothesis
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where it is a scalar and under the alternative hypothesis where it is a random variable with
a standardized and known distribution. We consider the BSS under the null hypothesis as
a realization from its distribution under the alternative hypothesis and analyze whether this
realization is plausible. Hence, we consider the model under the null hypothesis as a realization
from the posterior under the alternative hypothesis. We evaluate the plausibility of this
realization by analyzing whether it lies in the tail of this posterior. Unlike classical test
statistics, the distribution of the BSS results from the alternative hypothesis. Other differences
with classical test statistics are that the distribution under the alternative hypothesis is exact
and insensitive to nuisance parameters like unobserved components, mixing parameters and
so forth.

In several models, a similarity between classical statistical analysis and Bayesian analysis
using a Jeffreys’ prior exists with respect to the functional form of the sampling density of
the maximum likelihood estimator and the density of the posterior. The BSS shows that this
similarity further extends to likelihood based test statistics like score statistics.

Since the BSS equals the posterior expectation of the classical score statistic, it is straight-
forward to compute when an efficient posterior simulator is available. It can be used as a
diagnostic tool to test for misspecification in a model of consideration. Furthermore, as the
computation of the BSS that tests against an encompassing linear model only involves the
posterior under the null hypothesis, we can compute several diagnostics in one run of the
posterior simulator.
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