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Abstract

Root cancellation in Auto Regressive Moving Average (ARMA) models leads to local
non-identification of parameters. When we use diffuse or normal priors on the parameters
of the ARMA model, posteriors in Bayesian analyzes show an a posteriori favor for
this local non-identification. We show that the prior and posterior of the parameters
of an ARMA model are the (unique) conditional density of a prior and posterior of
the parameters of an encompassing AR model. We can therefore specify priors and
posteriors on the parameters of the encompassing AR model and use the prior and
posterior that it implies on the parameters of the ARMA model, and vice versa. The
posteriors of the ARMA parameters that result from standard priors on the parameters
of an encompassing AR model do not lead to an a posteriori favor of root cancellation.
We develop simulators to generate parameters from these priors and posteriors. As
a byproduct, Bayes factors can be computed to compare (non-nested) parsimonious
ARMA models. The procedures are applied to the (extended) Nelson-Plosser data. For
approximately 50% of the series an ARMA model is favored above an AR model.

1 Introduction

Auto Regressive Moving Average (ARMA) models are a cornerstone of time series analysis, see,
e.g., Box et. al. (1994) and Harvey (1981), and are commonly used in applied work. They do,
however, possess some well-known problems. Maybe the best known problem is the problem of
root cancellation, i.e. the autoregressive polynomial and the moving average polynomial have
one or more roots in common. If root cancellation occurs, some AR and MA parameters are
redundant as they do not affect the model and thus also not the likelihood. These parameters
are then said to be locally non-identified. The problem of local non-identification is common
to many models in statistics and econometrics, see, for example, the Simultaneous Equation
Model which is discussed in, e.g., Phillips (1989).

The Bayesian analysis of ARMA models documented in the literature, see e.g., Monahan
(1983), Marriot and Smith (1992), Chib and Greenberg (1994), Marriot et. al. (1995) and Zell-
ner (1971), specifies standard priors, like, for example, a normal prior, on the parameters of the
ARMA model. These analyzes thus do not explicitly account for the local non-identification.
We conduct a different kind of analysis then the one pursued traditionally. We focus on the
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property of the, troublesome, ARMA model that it is nested within a, relatively easy, encom-
passing AR model. The restriction that, when imposed on the parameters of the encompassing
AR model, leads to the nested ARMA model satisfies the sufficient conditions for a unique
expression of the conditional density, see Kleibergen (2000). Hence, the prior and posterior of
the parameters of the ARMA model are conditional densities of a prior and posterior of the
parameters of the encompassing AR model. We can therefore specify a prior on the param-
eters of the encompassing AR model and the prior on the parameters of the nested ARMA
model then results as a (unique) conditional density. In this respect our approach differs from
the earlier Bayesian analyzes of ARMA models since these analyzes directly impose a prior on
the parameters of the ARMA model. As identification in AR models is straightforward, the
local non-identification is not problematic in our approach while the posteriors easily lead to
a favor for local non-identification in the earlier analyzes.

The paper is organized as follows. In section 2, the consequences of the local non-
identification of ARMA parameters in Bayesian analyzes using diffuse and normal priors is
discussed. We show that these analyzes often result in posteriors that have a favor for local
non-identification. In section 3, we show that the prior and posterior of the parameters of an
ARMA model are the unique conditional densities of a prior and posterior of the parameters
of an encompassing AR model given that the parameters, which unambiguously represent the
difference between the encompassing AR and nested ARMA, are equal to zero. In section
4, we discuss Bayes factors for comparing ARMA models. We construct a Bayes factor for
comparing ARMA models with equal summed AR and MA lag lengths where the priors on
the parameters of the compared models result from the same prior on the parameters of the
encompassing AR model. By letting the prior variance converge to infinity, we obtain a Bayes
factor for this case that can be considered to incorporate no prior information. In section
5 we construct an Importance Sampler posterior simulator to compute prior and posterior
moments and Bayes factors. Next to this simulator, we also construct a Metropolis-Hasting
simulator. Section 6 contains an application to the extended Nelson-Plosser data. For almost
50% of the series under consideration an ARMA model is favored above a pure AR model.
In particular for price and interest rate series, there is strong evidence in favor of the ARMA
model. Finally, section 7 summarizes and concludes.

2 Local Non-Identification in ARMA Models

The problem of root cancellation (or common factors) is well-known in the analysis of ARMA
models, see, e.g., Harvey (1981). Root cancellation leads to simplification of the ARMA model
and to local non-identification of redundant AR and MA parameters.

2.1 ARMA(1,1)

To show the local non-identification, consider the “simplest” ARMA model, the ARMA(1, 1)
model,

(1 =pL)y: = (1 — aL)e, (1)

where L is the lag-operator, L’y; = y;—; and ¢, is independently and identically distributed
according to a Normal distribution with mean zero and variance o2, ¢, i.i.d. N(0,02), t =



1,...,T. By considering the implicit AR(0c0) and MA(c0) representations of this model,

t+1

AR(c0) : y = Z o Hp—a)yit+e © (1—al)(y —e) =0y (2)
i=1
1

MA(c0) = m=> pp—ayit+e & (1—pL)(y—e)="be, (3)

i=1

where § = p — «, local non-identification can easily be recognized. In particular, depending
on the specification used, p or o are non-identified when 6 = 0, as in this case the model
reduces to y; = &; independently of the value of either p or a. As a result, the likelihood
function is flat and non-zero in the direction of p or « for zero values of . Use of a flat
or diffuse prior in a Bayesian analysis of the ARMA(1, 1) model, such that the posterior is
proportional to the likelihood, then results in a flat and non-zero conditional posterior of p (or
a) at 6 = 0. Consequently, the integral over this conditional posterior, and therefore also the
marginal posterior of 6, is infinite at # = 0. So, the use of flat priors leads to an a posterior:
favor for the values of the ARMA parameters at which the local non-identification problem
occurs. This is neither a result of information from the prior or from the data but of a model
property, i.e. the local non-identification.

In case of a proper normal prior, as used for example by Chib and Greenberg (1994)
and Monahan (1983), the conditional posterior of p (or a)) given # = 0 is proper but also
proportional to the conditional prior of p (or ) given § = 0. So, at § = 0, the conditional
posterior given 6 is proportional to the conditional prior while at the other values of # it also
depends on the likelihood. The importance of the prior for the posterior thus depends on the
value of the parameters. We would like to have priors that are such that the importance of
the information in the prior for the information in the posterior in an evenly way depends on
the value of the parameters. This is one of the motivations for this paper. In other models
where local non-identification occurs, like cointegration and simultaneous equations models,
the posteriors behave accordingly, see Kleibergen and van Dijk (1994b,1998), but priors with
the desired features can be constructed and then lead to posteriors with convenient properties,
see Kleibergen and Paap (1998) and Kleibergen and Zivot (1999).

2.1.1 Posterior ARMA(1,1) using Diffuse Prior

To illustrate the consequences of the local non-identification for the posterior of the parameters
of the ARMA(1,1) model, we analyze the marginal posteriors of the ARMA parameters for an
artificial time series. This series is generated from an ARMA(1, 1) model, see (1), with param-
eters p = 0.6, « = 0.4, 02 =1, T = 200. The identifying parameter § = p— « thus equals 0.2.
We computed the posteriors of the parameters of an ARMA(1,1) model using a diffuse prior
on (p,a), p(p,a) oc o~ 2. The posteriors are calculated using the analytical expression of the
bivariate posterior of (p, ), which is proportional to the concentrated conditional likelihood
and where we have set y1_(p1qi =€1—; =0, =1,... ;00 (p=1,¢=1).

Figure 1 shows the bivariate marginal posterior of the parameters («a, ) of an ARMA(1,1)
model for the artificially generated time series while figure 2 shows the contour-lines of this
bivariate marginal posterior. Table 1 contains the posterior means and maximum likelihood
estimates of the different parameters. Also the standard deviations are given. Since the
bivariate posterior is proportional to the concentrated likelihood, the location of the posterior
mode and the maximum likelihood estimate coincide which is confirmed by the contourlines



prior \ parameter | p o}

diffuse on (p,cr) |0.32|0.19 | 0.12
049 | 049 | 0.068

ML estimate 0.65 | 0.53 | 0.12
022 | 025 | 0.064

Table 1: Posterior moments and ML estimate ARMA(1,1) parameters artificial time-series

in figure 2. Because of the local non-identification, the existence of the posterior moments
(and even of the posterior distribution) of o and p is doubtful which partly explains the large
difference between the posterior means and the maximum likelihood estimate.

The bivariate posterior in figure 1 reveals the local non-identification of & when 6 = 0 as it
is non-zero and constant in the direction of « at & = 0. The contour-lines further emphasize the
local non-identification of a at § = 0. The marginal posterior of # is obtained by integrating
the bivariate posterior of (a, ), shown in figure 1, over a. At 6 = 0, the bivariate posterior
of (a,#) is constant in the direction of «. Consequently, the marginal posterior of # at = 0
is proportional to the size of the parameter region of o as the integral of a constant function
is proportional to the size of the parameter region. An infinite parameter region for o would
therefore imply an infinite value of the marginal posterior of § at § = 0. We have chosen a
finite parameter region for o, (—1.3,1.3), such that the marginal posterior is finite at § = 0.
Figure 3 contains the marginal posterior of # and shows that it indeed has a secondary (local)
mode at # = 0 which solely results from the local non-identification of o. The posterior has

therefore more probability mass at # = 0 and thus has a favor for § = 0 that solely results
from the local non-identification of « at 6 = 0.
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Figure 1: Bivariate posterior («, 6), artificial time series, diffuse prior on («, p)
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Figure 2: Contourlines bivariate posterior (a, 6), artificial time series, diffuse prior on («, p)
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Figure 3: Marginal posterior 6, artificial time series, diffuse prior on («, p).

2.1.2 Markov Chain Monte Carlo Posterior Simulators

As mentioned previously, p or « is locally non-identified when § = 0. The parameter 6 is,
however, identified for all possible values of either p or a. As a consequence, p or « should
be analyzed conditional on # and not vice versa. We emphasize this point as it is impor-
tant in the construction of Markov Chain Monte Carlo (MC?) procedures for computing the
marginal posteriors. For example, the MC? approach developed in Chib and Greenberg (1994)
suffers from the local non-identification problem. In this algorithm, the conditional posteriors
p(alp,...) and p(p|a,...) are used in a Gibbs sampling framework. As noted in the con-
cluding remarks of Chib and Greenberg (1994), convergence of sample values fails if common
factors are (approximately) present. As discussed above, the natural way of conditioning in
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an ARMA(1, 1) model is to analyze p or a conditional on . Consequently, the Gibbs sampler
using the conditional posteriors p(«alp,...) and p(p|a,...) can lead to a reducible Markov
Chain as the points of local non-identification, & = p, can form an absorbing state in the
Markov Chain. Reducibility of the Markov Chain in Chib and Greenberg (1994) is avoided by
the use of independent informative (Normal) priors for the ARMA parameters. Also a priori
restricting the parameter space, for example to ensure stationarity and invertibility, avoids
reducibility of the Markov Chain. However, in both cases convergence is still affected by the
local non-identification. Furthermore, the use of independent priors for the different parame-
ters does not correspond with the strong dependence of the parameters within the likelihood.
Figure 3 also demonstrates that estimation of the Bayes Factor in favor of the common fac-
tor restriction using the Savage-Dickey Density Ratio, see Dickey (1971) and Verdinelli and
Wasserman (1995), is problematic. This ratio, which equals the ratio of the marginal posterior
and prior of # evaluated in & = 0, depends on the height of the pike at 8 = 0, which itself
depends on the prior and not on the data. In particular, because the likelihood function is
constant when 6§ = 0, using independent normal priors results in proportionality of the prior
and posterior, see Kleibergen (2000).

2.2 ARMA(p,q)

To show the local non-identification problem in the general ARMA (p, q) model,
p(L)y = a(l)e < (4)
I=pL—...—p,LP)yy = (1—0a1—...—agLe,
we again consider the AR(oc0) representation of this model

t+p+q

Yy = Z CilJi—i + E¢. (5)
i=1

The coefficients of the AR(0c0) representation are given by the following set of relations

Co — 1 (6)
G = p1— o (7)
min(k,q)
k. = Z QiCk—i T P, k>1, (8)
i=1

where p, =0, k > pand ag, =0, k > q, see, e.g., Fuller (1976). If there is no MA component,
a; = 0, Vi, such that ¢, = p,, k < pand ¢g =0, k£ > p. As a consequence, we can use the
coefficients ¢, £ > p in order to perform inference on the MA parameters. In particular, it
follows from (8) that the parameters ¢, k > p+ ¢ are functions of the ¢;’s, with ¢ < p+ ¢ only,
such that inference on the p +¢q parameters py, ... ,p,, a1,... ,aq can be based on ¢y, ... , ¢pyq
solely. The relation between these parameters is given by the following matrix equation, which
follows from the set of equations in (7) and (8),

CY = ¢ (9)
where ¥ = (py,...,pp01,...,0q), c=(c1,...,Cpiq)';
I, Cip
C= P 10
< qup 022 ) ( )



with I, the identity matrix of dimension p,

1 0 0
C1 1 .0
C112 = Co C1 1 . 9 (11)
Cp—1 Cp—2 C1 1
and
Cp Cp—1 . Cp—g+1
Cpp=| P 7 = : : (12)
: . . Cp1
Cptq-1  Cpr1 Ops

where ¢g = 1 and ¢, = 0, k < 0. From this relation it follows

aq Cp+1
Tl | T (13)
Qg Cp+q
and
P1 &) o5
Sl I Il R Ee B (14)
Pp Cp Qg

If C55 does not have a full rank value o, and consequently p, can not be determined uniquely.
This is a generalization of the local non-identification problem in the ARMA(1, 1) model. In
order to test rank reduction of Cy, Galbraith and Zinde-Walsh (1995) propose a Wald test
to test the hypothesis Hy : |Co| = 0. In our Bayesian approach, we examine the rank of
Cyy using the following LU decomposition, see Golub and van Loan (1989) (see also Gill and
Lewbel (1992), Cragg and Donald (1996) and Kleibergen and van Dijk (1994a,b), for other
applications of the LU decomposition in econometric and time series models),

022 — (931 932 933 .. 0 0 0 1 ... ¢3q . (15)
O Op O ... 04 o 0 o0 ... 1
The rank of Cyy is now given by the number of non-zero diagonal elements 6;;, + = 1,... | q.

Note that the number of zero 6;;’s only gives an indication of the number of common roots,
and not of the required lag length of the individual AR or MA component. For example, if an
ARMA(1,1) is used to estimate an AR(1) model, 6,1 = p # 0, although the MA component
is redundant.



In a Bayesian analysis of the ARMA(p,q) model, the use of diffuse priors again results
in a posteriori favor for parameter values at which the local non-identification occurs. As
the autocorrelation of a specific order is a function of the parameters of the ARMA model,
see, e.g., Box et. al. (1994) and Harvey (1981), also an a posteriori favor for specific values
of the autocorrelations results which is solely a consequence of the local non-identification.
When using diffuse or normal priors, the posteriors of the parameters of AR models lead to
posteriors of the autocorrelations that do not contain such an a posteriori favor as AR models
do not contain parameters that are locally non-identified. So, when we use diffuse or normal
priors, the posteriors of the autocorrelations of AR and ARMA models are quite different and
strongly depend on the model where they result from. This is quite peculiar as the ARMA
model can be considered as an AR(oo) model. In the next section we therefore explicitly
analyze how an ARMA model is obtained from an AR(oo0) model and show what this implies
for the prior and posterior of its parameters.

Finally, note that the autocorrelations of non-invertible MA models, i.e. models with one
or more roots of the MA polynomial which lie within the unit circle, can not be distinguished
from the autocorrelations of invertible MA models. Consequently, MA parameters have to
be restricted to ‘invertible’ parameter values, to be identifiable from the autocorrelations.
Invertible and non-invertible MA polynomials with identical autocorrelations, however, lead
to different values of the conditional likelihood function (given the first p + g observations).
As a result, they can be identified from the likelihood. As we define identification from a
likelihood perspective, see e.g. Kadane (1993), we allow for non-invertible MA parameters
such that, in principle, the MA and AR parameters range from —oo to oo.

3 AR(MA) as restriction on AR(c0)

The implied AR(c0) specification of an ARMA model, (2) and (5)-(8), shows that the ARMA
model can be considered as an AR(cc0) model with restrictions on its parameters. Also a finite
order AR model can be considered as an AR(0co) model with restrictions on its parameters. We
could consider both the prior and posterior of the parameters of the ARMA and AR model
to be proportional to the conditional prior and posterior of the parameters of the AR(c0)
model given that the parameters of the AR(co) model satisfy the restrictions of either the
ARMA or AR model. In order for such an approach to be feasible, unique expressions for
the priors and posteriors of the parameters of the ARMA and AR model should result. In
Kleibergen (2000) sufficient conditions for the existence of such unique conditional densities
are given. We briefly discuss these kind of conditional densities and apply them to construct
priors and posteriors of the parameters of finite order AR and ARMA models. We show that
the priors that are typically used for the parameters of AR models result as a conditional
density of standard priors on the parameters of the AR(c0). The priors that are typically used
for the parameters of ARMA models, however, result as a conditional density of priors on the
parameters of the AR(cc) model that favor root cancellation. This explains the a posteriori
favor for root cancellation/local non-identification that results from the use of standard priors
on the parameters of the ARMA model. The priors on the parameters of the ARMA model
that result as a conditional density of a standard prior on the parameters of the AR(cc0) model
lead to posteriors that behave in a convenient way and, for example, lead to posteriors of the
autocorrelations that are similar to those that result from AR models.



3.1 Unique Conditional Densities

In Kleibergen (2000), it is shown that when we can uniquely determine the random variable
on which we want to impose a restriction, the (conditional) density of the restricted random
variable is unique and can be obtained by using two sufficient conditions for a unique expression
of the conditional density, which are stated below. The conditional density that results from
these sufficient conditions is the only density that just conditions on the desired restriction
and it is invariant with respect to the specification of the restriction. Hence, these conditional
densities avoid the Borel-Kolmogorov paradox, see e.g., Kolmogorov (1950) and Billingsley
(1986). The sufficient conditions read.

Sufficient conditions for the existence of a unique conditional density for the continuous
random variable ¢ : k x 1; whose space, on which it is defined, is unrestricted, i.e. the RF,
and has a continuous and continuous differentiable pdf p(y) which is such that ¢ is identified
everywhere; that only conditions on the restriction ¢ = g(6) and nothing else; where g(6) :

kEx1,6:mx1,m<k, and g(8) is continuous differentiable and is defined on the whole space
of 6, 1.e. the R™; are:

Condition 1. An invertible relationship between ¢ and (6, \) exists; where A : (k. —m) x 1
and ¢ = f(6,)\) is continuous differentiable; which is such that the set of values of 6
for which ¢ = g(8) is uniquely defined is equivalent to the set of values of & for which
© = f(8,\) is uniquely defined and the latter set does not depend on the value of .

Condition 2. The restriction ¢ = g(6) is equivalent with (6,\) = (6,0) and imposes no
restrictions on 6.

The unique expression of the conditional density of ¢ given that ¢ = ¢(6) is then charac-
terized by the density of 8, see Kleibergen (2000),

pr(6) o< p(8,A)|r=0 (16)
o p(e(6, A))|a=olJ (2, (6, A))|r=o0l,

where r stands for restricted, |\—¢ stands for evaluated in A = 0 and J(¢, (8, A)) is the jacobian
of the transformation from ¢ to (8, A). The conditional density (16) is invariant with respect
to the specification of (6, \) when (6, \) satisfies the sufficient conditions. For more details on
the unique conditional densities we refer to Kleibergen (2000).

A nested model can be considered as a restriction on the parameters of an encompassing
model. Since the parameters are, realizations of, random variables in Bayesian analysis, the
prior and posterior of the parameters of a nested model are therefore unique conditional den-
sities of a prior and posterior of the parameters of the encompassing model. We can use these
unique conditional densities to construct the priors and posteriors of the parameters of low

order AR and ARMA models from priors and posteriors of the parameters of an encompassing
high order AR model.

3.2 Posterior High Order AR

We specify the prior and posterior of the parameters of a high order AR model and use it to
construct conditional densities given specific restrictions that result in the prior and posterior



of the parameters of lower order AR and ARMA models. The high order AR model reads,

Pmax

Y = Z CilYi—i + &, (17)
i=1

where g, i.i.d. N(0,02), ¢t = 1,...,T and py.y is reasonably large but less than T. The
(conditional) likelihood of (17) reads,

_1ir 1
IAR (pue) (0, 07 Jy) < |0®| 2" exp [—T‘Q (y—Y 19) (y — Y130)] (18)

1 1
x |07 éTexp [—7 (YMy_y+(p— @)Y YV 1 (p— Sb))} ’

where p = (c1... ¢ ) 0 = (YL, Y)Yy, My, = Ir =Y (YY) 'Y,y = (v yr)s
Y1 =@ 2 p); Toi = (Y1—i---yr—i), @ = 1,... , Dmax. For illustrative purposes, we
specify a conditional normal prior on ¢ given o? but essentially any other continuous (differ-
entiable) prior can be used as well. Similarly for o2, we specify a diffuse prior, p(o2)  |o?| 7",
such that

pAR(]’max)(@? UQ) X pAR(pmax)(g0|0-2)pAR(pmax) <0-2) (19)

x |0 2Pt oxp {—7 (¢ — o) Ao (¢ — 800)] :

where ¢ : Pmax X 1, is the prior mean and %A, 1Ay : Pmax X Pmax, is the prior covariance
matrix, and we obtain the posterior of (¢, o?),

PAR () (05 T2|Y) ¢ DAR () (95 T2 IAR (prnae) (05 T2 |Y) (20)

(T4 Prmax+2) 1, _ .
A exp {—272(0”(90—90)"/(@—90))]

x |o?|

— (T +pmax+2 1
ox [o? [T xp {—ﬁ (0= o) Ao (0= o) + (y = Yorp) (y — Yw))] :

where V = Ag+Y",Y_1, o = V1 (Ao +Y Y 19), 6% = y'y+ph Avpg— (Ao + Y Y 10)' V1
(Ao + Y'Y 1(). We use the prior (19) and posterior (20) to construct conditional densities
given specific restrictions.

3.2.1 Posterior Low Order AR=Conditional Posterior given Linear Restriction

The prior and posterior of a lower order AR model are proportional to a conditional prior and
posterior of the parameters of the high order AR given that the parameters of the high order
AR equal the parameters of the low order AR. We show this by using the AR(p) model,

p
Y= Zpiyt_i + &, (21)
i=1

where &, 1.i.d. N(0,02),t=1,...,T, p=(p;---p,) and we assume that p < pmax-
We can specify the parameter ¢ in (18)-(20) as ¢ = (&' X')’, where § : p x 1 and A :
(Pmax — p) X 1. The AR(p) model (21) is identical to the AR(pmax) model evaluated at ¢ = (&'
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0...0), with 6 = p. The restriction that is imposed by the AR(p) model on the parameters
of the AR(Pmax) model is therefore ¢ = (&' 0...0). We analyze whether the specification
(6, \) satisfies the sufficient conditions for a unique density of ¢ given that ¢ = (&' 0...0)".
The restriction ¢ = (&' 0...0)" is such that ¢ is uniquely determined by ¢ for all values of &.
The specification ¢ = (§' \')’ is such that ¢ is uniquely determined by (6, \) for all values of
(6, A). Hence the first sufficient condition is satisfied. The second sufficient condition is also
satisfied as p = (§' 0...0) < (&' X') = (§' 0...0). The specification (8§, \) thus satisfies the
sufficient conditions for the existence of a unique conditional density. The prior and posterior
of the parameters of (21) are then a conditional prior and posterior of (§,0?) in (17) given that
A = 0. To further illustrate this, we construct the resulting conditional prior and posterior.

As the joint density of (8, \) is normal, the conditional prior of (§,0?) given A results from
the well-known result that the conditional densities of normal distributed random variables
are also normal. This conditional prior then reads

PAR () (8, 5% A) o |02 720+ exp (( (6= 80) — Ayt Ao 12(A — Ao))' (22)

Ao 11 (((5 — 60) — A, 11 A4012(X — )\0)) + (A= o) Ao 221 (A — )\0))} )

where o5 = (6 Ay)’, 60 :p X 1, Ao : (Pmax — P) X 1, and Ag = ( :30’11 :30’12 ) , Aoa1 :p X p,
021 Ag22

A6,21> Ap12 1 p X (Pmax — D), Ap oo (Pmax — P) X (Pmax — D), Ap2o1 = Ao — Ao,QlAahAo,u-
When we only analyze the nested AR(p) model (21), the prior mean of A equals zero, A\g = 0.
The conditional prior of (§,0?%) given A = 0,
PAR () (85 0%) X DAR (pron) (6,0 | A = 0) (23)
_1 masx — 2 1

where the subscript —r denotes “restricted”, then exactly corresponds with a normal-diffuse
prior on the parameters of (21),

PARE)(P:0°) = PAR(pmae)+(6(p), 07%) (24)
X pAR(pmax)(6<p)7)\7 )|>\ 05

and which shows that the prior for (p,0?) in (21) is a conditional prior for (§,0?) given A = 0
n (17).
In a similar way, we can construct the conditional posterior of (§,0?) given A which reads

_1 1 ~\'/ ~
pAR(pmax)<6702|)\7 Y) |02‘ 2(THPmext2) exp {_ﬁ <&2 + ()\ — )\) Voo ()\ — )\> (25)

#((6-8) =it (- 3)) v ((6-8) ~vitvia (- 9)) )

— 2 (T+Pmax+2 1
ox [ | =T e {—272 (0= o) Ao (0= 00) + (y = Yor9) (y Y_lso))l :

Wheregb:(glj‘l) 5:p><175‘:<pmax_p>><17v:(“;;1 22)7‘/11:pxp7‘/2/17

Viz : DX (Pmax — D)5 Voo : (Pmax — D) X (Pmax — D) Va1 = Vaa — Va1 Vi7'Via. When we analyze the
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AR(p) (21), the prior mean of A, )¢, is again equal to zero such that the posterior of (p,o?)
using the prior (24) equals the conditional posterior of (8,0?) given A = 0 when using the
prior (19),

PAR(p) <p7 0-2 |y) - pAR(pmaX)—r<6(p)7 02 |y) (26)
= PAR(ma) (6(0), 72 A = 0,7)
X PAR (pmax) (5(p>, )‘7 02|y) |/\:0'

This shows that, as the likelihood is continuous in the parameters, the relationship (24) for
the prior extends to the posterior.

It is common practice to specify priors directly on the parameters of the analyzed model and
not to derive them as the conditional prior of the parameters of an encompassing model. The
above results show that it does not matter for the prior and posterior of the parameters of the
AR(p) (21) whether we directly impose a normal prior on its parameters or construct the prior
as the conditional prior that results from a normal prior on the parameters of an encompassing
AR model. This results as the restriction imposed by the AR(p) (21) on the AR(pmax) (17)
is linear and linear combinations of normal random variables and the conditional densities of
normal random variables are normal. This does, however, not extend to non-linear restrictions
that satisfy sufficient conditions 1 and 2. For the nested models that result from these kind
of restrictions on the parameters of an encompassing linear model, normal priors that are
specified directly on the parameters of the nested model do not coincide with the conditional
prior that results from a normal prior on the parameters of an encompassing linear model. An
example of this is the ARMA(1,1) model which we observe next.

3.2.2 Posterior ARMA(1,1)=Conditional Posterior given Exponential Restric-
tion

When the order ppax of the AR(pmax) model (17) is large, the ARMA(1,1) model (1) can be
considered to result from a set of exponential restrictions on the parameters of the AR(pyay)
model (17). These restrictions can be specified as, see Kleibergen (2000),

¢ =a'10, i=1,..., Pmax, (27)

where § = p — a. We introduce a set of additional parameters A = (A; -+ Ay —2) © (Pmax —
2) x 1, to span these restrictions,

N = Ciyo — ' ley, i=1,... Pmax — 2, (28)

such that ¢ can be specified as

C1 0
Co ab
80 — C3 — )\1 + a20 R (29)

Cpmax A —2 + apmaX719

‘Pmax

The specification of the restrictions, imposed by the ARMA(1,1) model on the AR(prmax), (28)-
(29) satisfies the sufficient conditions for the existence of a unique conditional density of ¢
given (27). Condition 1 is satisfied as we can uniquely solve for ¢ from (a, 6, \) when 6 # 0 for
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all values of \. Similarly, (27) also shows that the value of ¢; is uniquely determined by (a, 6)
when 6 # 0. Because the restriction is not imposed on 6, condition 1 is thus satisfied. Condition
2 is satisfied because (29) is equivalent with (27) when A = 0 in (29). To further verify these
conditions we check the invariance property that the conditional density is invariant to the
specification of the parameters that result from the sufficient conditions. To analyze this
invariance property, it is important to note that although « is present in all the elements of
¢ in (29), it can only be obtained as the ratio of % i =1,...  ppax — 1, since square roots

of negative values are not properly defined. Another specification of ¢ in terms of parameters
representing restriction (27) is then, for example,

C1 1y + ,d]fzfy
i 1i + Ly
o ci v J’y ) (30)
Cito 1, + 2y
@ I;‘a" Fpimax—2 T ;Ppma"_i_ly

where 1 <@ < Pmax, v, ¥ 1 1 X 1, = (g -y 2) * (Pmax —2) X 1, and when p = 0, (30)
is equivalent to (27). The jacobian of the transformation from ¢ to (0, a, A), |J(¢p, (0, a, N))|,
is equal to |@|. The jacobian of the transformation from ¢ to (v, v, u), |J(e, (v, %, 1))l is
equal to |y|. Under the restriction (27), A = p = 0, such that § = ™"y and a = 1. The
jacobian of the transformation from (v,v) to (0, «) is then, under the restriction, equal to
| J((7,), (8, )| = [1v"| = | |. Combining these jacobians we obtain that

[ 7(, (8, 0, M)lamol = 1T (0, (7,9, 12)) ol T (v, %), (8, @) = [9[[¢7"| = |00 ]a™| = |9|,(31)

which is the property that is needed to have a conditional density that is invariant with respect
to the specification of the parameters that result from the sufficient conditions.

As the restrictions (27)-(29), that lead from the AR(pmax) model to the ARMA(1,1) model,
satisfy the sufficient conditions for the existence of a unique conditional density, the prior and
posterior of the parameters of the ARMA(1,1) model are a conditional prior and posterior of
the parameters of the AR(pmax) model given that these restrictions hold. Hence, we can specify
a normal prior on the parameters of the AR(pnax) like (19), which is a natural conjugate prior
for that model as the prior has the same specification as the likelihood, see Poirier (1995), and
construct the (conditional) prior that it implies on the parameters of the ARMA(1,1) model.
To illustrate this, we construct such a prior and the resulting posterior.

Normal Prior on AR(pn.,) parameters The prior on («, 0, A, 0%) implied by (19) reads,

PAR (pmax) (a7 97 )‘7 02) = pAR(pmax)<90<a> 07 )‘>7 0-2>|J<907 (a, 07 )‘>>| (32)

2 | - % (pmax+2)

1 /
X |0| |U exXp _F (QO(CY, 07 )‘> - 900) AO (@(OQ 97 )‘) - @O) ’

where p(a, 6, \) results from (29). The proper prior for the parameters of the ARMA(1,1)
model that results from (19) is equal to the conditional prior that results from (32) given that
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Parma(,1 (e, 0, 0%) PAR (pama) (@ 0, A, %) |r=0 (33)
X PAR (pmar) (2(, 0, X), 07) 50| (0, (@, 0, ) [r=o|

— L (pmax+2 1
2‘ v +)exp _ﬁ(ﬂaﬁy)\”,\:o—SOO)IAO(QO(ave’)‘)L\:O_%) ’

x |0]|o
which is a proper prior with a normalizing constant equal to [ [ DaR pmay) (@, 0, A, 02) | r=odadfdo?.
The prior (33) results from a natural conjugate prior that is specified on the parameters of
the AR(pmax) model. It therefore shows the specification of a natural conjugate prior on the
parameters of the ARMA(1,1) model. When we use the prior (33) for the parameters of the
ARMA(1,1) model, the posterior is proportional to the product of the prior and the likelihood,

parma) (@, 0,0%y) o< parmac) (@, 8, 0%) arman (@, 6, 0%|y) (34)
08 pAR,(pmax)<a7 0, A, 0'2) ’,\:OZAR(pmax)(SO(a» 0,)), ‘72|y) | A=0
X PAR(pmae) (9, 05 1), 0%) a0 T (0 (@, 8, A)) =0 /LA R (prna) (1, 8, 1), 72 [y) [ 2=
O PAR () ((0, 8, A), 72 [y) [r=0| T (19, (v, 0, 1)) |r=o
X PAR (Pmax) (04, 0, A, 02|y) ’)\:07

and this posterior of the ARMA(1,1) parameters also equals the conditional posterior of the
parameters of the AR(pmax) using the prior (19) given that the ARMA(1,1) restriction holds.

While p,,.x should be less than T for the analysis of the AR(pmax) model, there is essentially
no restriction on py,., for the analysis of the ARMA(1,1) model such that we set py,., equal to
the number of observations, 7', in which case the likelihood of the ARMA(1,1) model is equal
to the conditional likelihood given the first p + ¢ (= 2) observations. Hence, we set ppax = T’
in the sequel of the paper.

Diffuse Prior on AR(pn.x) parameters Instead of a normal prior on the parameters of
the AR(pPmax) model any other kind of continuous (differentiable) prior can be specified as
well. So, we can also specify an improper diffuse prior on the parameters of the AR(pmax)
model,

—1
pAR(pmax)(QO70'2) X |02| ) (35)

which specification is considered to be a non-informative one in linear models, see Berger
(1985), and construct the implied improper prior on the parameters of the ARMA(1,1) using
(33),

PARMA(1,1) (Oé, 07 UQ) X PAR(Pmax) (QO(OQ 97 )‘)7 02) |>\:O|J<SO7 (Oé, 07 )‘)) |/\:07 (36)

x |02|71 6] .

The specification of this prior is identical to the prior that is advocated by Box et. al. (1994,
p.274-275) as a Jeffreys’ prior for the parameters of an ARMA(1,1) model. The important
difference with the diffuse prior that was used to construct the posterior in section 2.1.2 is the
presence of |6| in the prior. This factor results from the conditional identification of o on 6
and accounts for the local non-identification of o at & = 0. Note that this factor offsets the
asymptote in the marginal posterior of # at § = 0, depicted in Figure 3. The posterior using
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prior \ parameter | p Q@ 0
diffuse on (p,cr) |0.32|0.19 | 0.12

0.49 0.49 0.068

diffuse on ¢ 0.38 | 0.22 | 0.16
0.37 | 0.36 | 0.062
ML estimate 0.65 | 0.53 | 0.12

0.22 0.25 0.064

Table 2: Posterior moments and ML estimate ARMA(1,1) parameters artificial time-series

the prior (36) results directly from (34) and is a conditional density of the posterior using a
diffuse prior of the AR(pnmax) parameters.

Diffuse priors in linear models lead to posteriors that primarily reveal the information in
the data. This then also holds for the posterior of the ARMA(1,1) parameters that results from
prior (36). The resulting posteriors of, for example, the autocorrelations and the parameters
are therefore more in line with the posteriors in AR models than the posteriors that result from
diffuse or normal priors on the parameters of the ARMA(1,1) model. To illustrate this, we
computed the marginal posteriors of the parameters of the ARMA(1,1) model using the prior
(36) for the artificial data-set analyzed in section 2.1.2. For comparison, we also show some of
the posteriors and posterior means that result when we use a diffuse prior on the ARMA(1,1)
parameters as in section 2.1.2. The posteriors are computed using the Importance Sampler
posterior simulator that is constructed in section 5.1.

Figures 4 and 5 show the bivariate posterior of («, ) and its contour-lines when we use
prior (36). These figures show that the local non-identification of a at = 0 no longer leads to
a ridge in the bivariate posterior of (o, 0) at # = 0. Figures 6-8 contain the marginal posteriors
of , a and p and, for comparison, these figures also show the posterior in case of a diffuse
prior on the ARMA(1,1) parameters. Table 2 shows the maximum likelihood estimates and
the posterior moments both in case of the prior (36) and in case of a diffuse prior on the
ARMA(1,1) parameters. Note that the maximum likelihood estimate no longer coincides with
the posterior mode when we specify a diffuse prior on ¢, which can also be concluded from the
contour-lines in figure 5, and that the existence of the posterior means of p and « is doubtful
for both specifications of the prior. The figures show that the a posteriori favor for 6 = 0
compared to the diffuse prior on the ARMA(1,1) parameters has disappeared. The results
using prior (36) are therefore more in line with what we expect when we use a diffuse (non-
informative) prior as it should lead to posteriors that only show the information in the data
and nothing else. A diffuse prior directly specified on the ARMA(1,1) parameters is clearly
informative, given its a posteriori favor for # = 0, and thus not only shows the information in
the data.
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Posterior of (x,®)

Figure 4: Bivariate posterior (o, 6), artificial time series, diffuse prior on ¢.

Posterior of («,®)

o

0.00 004 008 012 016 020 024 028 032 036

Figure 5: Contourlines bivariate posterior («, 6), artificial time series, diffuse prior on .
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Posterior of ©

p.d.f.

10

Figure 6: Marginal posterior 6, artificial time series, diffuse prior on («, p) (- -), on ¢ (—).

Posterior of «

Figure 7: Marginal posterior «, artificial time series, diffuse prior on («, p) (- -), on ¢ (—).
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Posterior of o

Y=}

Figure 8: Marginal posterior p, artificial time series, diffuse prior on (¢, p) (- -), on ¢ (—).

Implied Prior on parameters AR(p..x) Previously, we constructed the prior for the
parameters of the ARMA(1,1) model from a prior that is specified on the parameters of the
AR(pmax) model. It is also possible to construct the class of priors on the parameters of
the AR(pmax) model that is implied by an already specified prior on the parameters of the
ARMA(1,1) model, see Kleibergen (2000). This is convenient because the ARMA(1,1) model
is non-linear in its parameters while the AR(pmax) model is linear. It is therefore not directly
obvious how the information in the prior of the ARMA(1,1) parameters is reflected in the
marginal posteriors. In linear models, it is clear how prior information is updated with the
likelihood to posterior information since all information in the prior is in the same way reflected
in the marginal posteriors.

To show the implications for the ARMA(1,1) model, consider a normal prior on («, p) given
o2, which is frequently used in practice, see, e.g., Chib and Greenberg (1994) and Monahan
(1983),

202 \ a— ap o — o

- 1 _ ! _
paraia (@, plo?) o< o] exp [__< o ) WO( ‘o )] 37

where p, and aq are the prior means and oW, ', W : 2 x 2, is the prior covariance matrix.
This implies the prior

i 1 -0, \ 0—6
Paraiaq (@, 0]0%) o< |o?] " exp {_F ( o ) " < o ay )} ’ o
1 1Y 11

where 0 = p —«, 6y = py — ap, Vo = W

0 1 01
prior (38) is a conditional prior of (6, ) given A = 0. We can then construct the class of priors
on (a, 6, ) that imply (38),

) ,on 0 and a. Just like (33), the

ParMA(L1) (€ 0]0%) 0 PAR (pran) (@ 0 A7) 30 (39)

_ 1 ,
o o] x| e M = 0 V) (08,0 — ).
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—_
[a)
—_
[a)
—_
]

0 07! 0 67! 0 .
where V(0) = | 0 0 Vol 00 : Pmax X Pmax, Po = 0 < a(()) ) , and also
0 0 0 0 0 0

the class of priors on the parameters of the AR(pmax) that imply (38),

cir1=a’l X PAR (pmax) (O{, 97 )‘|0-2) |/\:0|J<<Q7 97 )‘>7 Q0>|,\:0| (40)
o |1 PAR (pma) (@), 0(0), A(0)|0%) [r=0-

pAR(pmax) (SO|O-2)

Although the prior (40) is only specified on values of ¢ for which ¢, 1 = a0, 1 =1,... , pmax—1,
as it can not be determined for the other values of ¢, it reveals the properties of the marginal
posteriors of a, p and 6§ when we use the prior (37). This results as the AR(pmax) model is
linear in ¢ such that all properties that are present in the prior are also present in the marginal
posteriors. Furthermore, since we analyze the ARMA(1,1) model, we are also not interested
in the behavior of the prior at other values of . The implicit prior (40) shows that prior (37)
does not account for the local non-identification of « at § = 0 as (40) is infinite at § = ¢; = 0.
As the AR(pmax) model is linear in ¢, also the marginal posterior of § with prior (37) is infinite
at 6 = 0 which corresponds with section 2.1.2 where the marginal posterior of 6 is shown to
be infinite at # = 0. This shows a convenient feature of the class of priors on the parameters
of the AR(pmax), that implies the already specified prior on the parameters of the ARMA(1,1)
model, as it enables us to verify the plausibility of the prior that is specified on the parameters
of the ARMA(1,1) model without the need to compute the marginal posteriors.

3.2.3 Posterior ARMA (p, ¢)=Conditional Posterior
The ARMA (p, ¢) model (4) also results from a set of restrictions on the AR(pmax) model,

Cp+i—1
Ceri:al y Z:L s Pmax — D, (41)
Cp+i—q
withcg=1,c_; =0,72=1,... ., 00. We can span these restrictions using the parameters,
~ Cp+q+i
Cptq+i—1 Cororiot
)\i:Cp-l-q-l-i_a/ :(1 _O/) pq- ) t=1,... Pmax —P— ¢,
Cpii .
r Cp+i
(42)
where
& = i<p+tgq (43)
Ci—1
= ad | i>p+aq,
Ci—q
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such that we can specify ¢ as ¢ = (¢} ¥y ¢5), o1 = (c1---¢), Yo = (Cpr1- - Cpiq)'s P35 =
(CP+Q+1 R Cpmax)’? With

1 P1 a1
P = : = : + Cio : .

C Pp Qg

Cp+1 a1
Py = : = Cy : (44)
Cp+tq Qq
Cp+qti—1
Cpqri = N+ : ; t=1,...  Pmax =P — ¢,
Cp+i

and where C15 and Coy are defined in (11)-(12). Since the restriction, spanned by A (42), does
not involve any elements of Cyy, the specification of («, p, A) (42)-(44) satisfies the sufficient
conditions for a unique expression of the conditional density. The prior and posterior of the
parameters of the ARMA (p, ¢) model are thus conditional densities of a prior and posterior of
the parameters of the AR(pyay) model.

Normal Prior on AR(pm.x) parameters Analogue to the ARMA(1,1) model, we can
specify a normal prior on the parameters of the AR(pmax) model (19) and construct the prior
that it implies on the parameters of the ARMA (p, ¢) model,

PARMA (p,q) (v, p, 02) X PAR (Pmax) (o, p, A, 02) Ix=0 (45)
X PAR (Pmax) (QO(O[, P )‘)7 0-2) |/\i0|J<907 (CY, P, )‘>>|/\i0|

1
o |Con [0 T2 P> exp — 5 (0, 2, Mlazo = ¢0) Ao (9o p, Na=0 = o)
where p(a, p, A) is defined in (44). Since the prior (45) is a conditional density that results
from a proper normal prior, it is also proper itself. Similar as for the ARMA(1,1) model, the
posterior that results from the prior (45) is also the conditional posterior using the prior (19)
of (a, p) given that A = 0 in the AR(pmax) model. Equation (45) shows the functional form
of a natural conjugate prior for the parameters of an ARMA(p, ¢) model as it is the unique

conditional density that results from the natural conjugate prior on the parameters of the
AR(pmax) model.

Diffuse Prior on AR(pn.x) parameters The diffuse prior on the parameters of the
AR(pmax) model (36) leads to the prior,

-1
pARl\IA(p,q)<aap> 02) X |02‘ |022|, (46)

on the parameters of the ARMA (p, ¢) model. For the ARMA(1,1) model, this prior is identical
to prior (36) and (46) thus also leads to posteriors that primarily reveal the information in
the data. The priors on the parameters of the ARMA(p,q) model that result from other
continuous priors on the parameters of the AR(pyay) model can be constructed analogously.
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4 Bayes Factors

The priors on the parameters of several different ARMA models can be constructed such that
they are conditional densities that result from one prior that is specified on the parameters
of an encompassing AR(pnax) model. When we compare these models using the Bayes factor,
the priors on the parameters of the different models then accord with one another as they all
result from the same prior on the parameters of the encompassing AR(ppax) model. Another
convenience for the Bayes factor is that we only have to specify one prior, the prior on the
parameters of the AR(ppax) model.

The Bayes factor for comparing model the ARMA (py, o) model Hy with the ARMA(p1, ¢1)
model H; is defined as, see e.g. Berger (1985),

SIS T (a0, po, )iy (@0, po, 0 y)] dvgdpydo’
JI P (s pry 03, (e, pry 02ly)] dandp do®’

where pg, (0, pg, %) and pg, (ay, p;,0?) are the proper priors for the parameters under H,
and H;. Both pg,(ao, py,0?) and pg, (aq, py,0°) are proper conditional densities that result
from the same prior on the parameters of the AR(pmax) model,

BF(Ho|H,) (47)

P (040 0 0_2) _ PAR (pmasx) (£(20,00,20),0%) [ xg =0l (¢,(20,00,20)) | xg =0l

0 P o I [PAR(pmax)(%(007907A0)702)|AQO:O|J(<P7(a07P07/\0))|A0:0|]d0‘0dﬂod027 (48)
P (061 P 0_2) _ PAR (pmax) (P(@1,01,21),0%) A1 =0 I (0, (@1,p1,21)) [ =0

1 PP fff [PAR(pmax)(‘P(al7917/\1)702)|>\1:0|J(<P7(alvﬂl7/\l))|h:0|]d0‘1dﬂld027

where (ag, pg, Ao) and (aq, p;, A1) satisfy the sufficient conditions for a unique conditional
density such that the conditional densities of (ayg, py) given Ao = 0 and (aq, p;) given A\; =0
are invariant with respect to the specification of the parameters. Note that the use of standard
normal priors on the parameters of the ARMA(p,q) models implies that the prior on the
parameters of the encompassing AR(puay), of which the prior of the nested ARMA model is
a conditional density, is different for every ARMA model. Hence, the priors of the ARMA
models then do not accord with one another.

4.1 Bayes factor for comparing ARMA models with identical p+q

When py + go = p1 + ¢ and we specify a normal prior on ¢ given o2 with an infinite (prior)
variance for (Cpotqo+1, " » Cpmae )» the Bayes factor simplifies considerably. Not only the nor-
malizing constant of the likelihoods under Hy and H; cancel, also the normalizing constants of
the priors are identical. Consider, for example, the case of a normal-gamma prior on (i, 0?),
PAR (pme) (05 0°) = DAR (prae) (P10 )PAR (prn) (02, (49)
with
1n -1 —L(ng+2 s
PARGran (0) = (22T (o)) [o2720 % exp [~ 35] (50)
—l _l max
PAR(pmax) (P107) = (2)72Pmax | Ag| |0 | 727 exp [~ 505 (¢ — ) Ao (¢ — #0)] »

and where ng, sq are the prior parameters for the prior for o2 and ¢, Ag for the prior for ¢ given
o, see (19). We specify ¢ = (6" X'), ¢y = (8 Xy)'; 6, 60 © (Po+40) X 15 A, Ao ¢ (Prmax—(Po+0)) X1,
and Ag as

Ag11 Ao
Ay — ; : o1
0 < Ag2r Aoz ) ’ (51)



where Ag 11 : (po + o) X (Po + qo); Ap21> Ao12 : (Po + G0) X (Pmax — (Po + 0)), Ao22 © (Pmax —
(Po +q0)) X (Pmax — (Po + qo)), With Afy 5 = Ag 12 = 0, Ag 2 = 0, which leads to a diffuse prior
on \. The proper priors implied by (50) on the parameters of the ARMA models Hy and H;
now both correspond with the same (py + qo)-variate normal density,

Py (00, polo®) = (2m) 300 [ A0 | |02 TFPT) 175, (g, o) (52)
exp |~ (8(00, ) — o) Aoz (800, o) — o)
piy (e, pylo?) = (27);%@0”0) Aol |02 2P 118, (00, 1) -
exp | 5o (e, 1) = 80) Aoy (Ban, 1) )|
such that it results from (44) that - -
ston, ) = (70 5C20%0 ) e = (715, (53

with Ci90, Ci21 and Cyp and Cya; are the specifications Cip and Cye under Hy and H;
resp., see (11) and (12), such that J (6, (a, py)) = Cano and J(8, (a1, p;)) = Caz1. Note that
|Cas| = 1 for pure AR and MA models. The normalizing constants of the priors under H, and
H; (52) are identical such that they cancel out in the Bayes factor. We can therefore let the
prior variances converge to infinity, Ag11 — 0, so — 0, ng = 0, and still maintain a properly
defined Bayes factor which reads,

[ _1
If] |10 2(p°+q°+2)IJ(%(ozo,po))llHo(ao,po,UQIy)] dovgdpydo?
BF(Ho|H,) = - (54)

[ _1

SIS 12177052 15y (0, p)) i (4, 021y) | deadpydo?
[ _1

fff |0_2| 5(Po+q0+2) |CQQ,0|ZHO <a07p07 0_2|y>] dOéodedO'Q

fff ’0.2’*2(170%107@) ’02271|ZH1 (ahplv OQ’CU)] 6104151p16i0'2

The Bayes factor (54) can be considered as a Bayes factor for comparing ARMA models with
equal summed AR and MA lag lengths that uses non-informative priors for the parameters
of the compared ARMA models. Normally, the use of improper non-informative priors leads
to Bayes factors that suffer from the Lindley paradox, see Poirier (1995). The Bayes factor
(54) avoids the Lindley paradox because of the manner in which the priors are constructed
and the fact that the compared models have the same number of parameters. In case of
normal distributed disturbances, the Bayes factor (54) can be simplified further by analytically
integrating out o2,

_1
I {120, poYe(an, po)l 7274704 |G ol dergdpy
I [leten, poyetan, p)l 20059 | Con || dasdp,

where € = (g1 ---e7)' : T x 1 is the vector of disturbances. The Bayes factor (55) can also be
approximated using the Schwarz (Bayesian) Information Criterium (BIC), see Schwarz (1978),
BF(Hy|Hy) ~ exp |3 (BIC(H;) — BIC(Hy))], but this approximation does not involve the
jacobian factors |Caoo| and [Cao1]. In a later section, we use the Bayes factor (55) to compare
different ARMA (p, q) models with identical p + ¢q. Note that these models are non-nested and
can not be compared using classical test statistics.

BF(Ho|H,) =

(55)
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5 Posterior Simulators

The developed priors and posteriors of the parameters of ARMA models do not belong to a
known class of densities. This implies that we have to use numerical techniques to evaluate
the priors and posteriors of the parameters of these kind of models. We therefore construct a
simulator that generates drawings from the prior and/or posterior. We note that the priors and
posteriors of the parameters of ARMA models, that result as conditional densities of normal
and diffuse priors on the parameters of encompassing AR models, are such that the conditional
densities of the AR parameters given the MA parameters, and vice versa, do not belong to
a known class of densities. This property also results when we specify other kind of priors
on the parameters of the ARMA models that result from plausible priors on the parameters
of the encompassing AR model. As a consequence, we can not sequentially simulate the AR
parameters given the MA parameters and vice versa and use the generated drawings in a
Markov Chain Monte Carlo (MC?) algorithm as, for example, in Chib and Greenberg (1994).
The simulator thus has to generate the AR and MA parameters jointly and we can use these
jointly generated drawings in, for example, a MC? or Importance Sampling algorithm.

5.1 Importance Sampling

We construct an Importance Sampling scheme to compute Bayes factors and prior and pos-
terior moments of the ARMA parameters that result from normal and diffuse priors on the
parameters of the encompassing AR model. Also the disturbances are assumed to be normally
distributed with mean zero and variance o2, which assumption can, however, be relaxed such
that we can also, for example, allow for independent student ¢ disturbances. We thus assume
that a prior on ¢ given o2 is specified like (19),

S 1
PAR(pmas) (Pl0?) o< || 27 exp {—7 (¢ — o) Ao (¢ — 800)] : (56)

with ¢y = (o1 - Coppay) a0 SOME j < Pray exists such that c¢; = 0 for ¢ > j, and on o? like
(50),

PAR (e (02) o [ 20 e [ 25 (57)
o
The Importance Function only needs to approximate the prior or posterior where we want
to sample from. As initial parameters of our Importance Function, we therefore use the mean
and variance of the marginal posterior of the first p+ ¢ parameters of an AR(p+ ¢+ h) model,
where p+q+h > j and h > 0, where h is set a priori. Using the prior (56)-(57), this posterior
reads,

pAR(p+q+h)(80ha 02|?J> = pAR(pmax)(SOha 02|80—h =0, y)v (58)

where o = (¢}, @ 1), ¢n: (P+q+h) X1, 0 4 : (Pmax — (p+ g+ h)) x 1, and corresponds
with a conditional normal posterior on ¢, given o2 and an inverted-gamma posterior for 2.
We then specify ¢, as ¢, = (8" @), 6 : (p+q) X 1, ¢ : h X 1, and construct the marginal
posterior of 8,

pAR(p+q+h)(5|y) = //pAR,(p+q+h)(90h(5a §0h2)702|y)d50h2d027 (59)
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which is a (p + g)-variate ¢ density. We denote the posterior mean of § by § and its posterior
covariance matrix by cov(d). So, in case of, for example, the diffuse prior (46) and we have
set h equal to 0, 6 = (Yi(erq)Y_(erq))_1Yi(p+q)y, 52 = m(y — Y (p19)0)' (¥ — Y_(p19)6),
and cov(6) = &Q(Yl(p+q)Y,(p+q))*1, where 2_; = (y1—i---yr_i), i = 0,...,p+q, y = o,
Y_(piq) = (-1 T_(ptq)). In case of computing the moments of the prior we proceed according
to the above but we use the prior instead of the posterior of the parameters of the AR(ppmax)
model.

We use the posterior mean and variances of the parameters of the AR(p + ¢ + h) as
the initial parameters of the Importance Function, which we can update in later rounds of
the Importance Sampler. As o2 can be integrated out analytically, the Importance Sampler
involves the marginal posterior of (a, p),

Pamiap (@ ply) o / Pamaag (s 0 |y)do? (60)
x /[PAR(pmax)(sO(Oé,P,A),Uzly)h0|J(907 (c, p, A)|a=o]] do?

X |J<907 (CY, P, >‘>|>\:0| / [pAR(pmax)(QO(a, P, )‘)7 0-2|y>|>\i0:| d02
X PAR(pma) (L, 0, A))[Y) r=0] T (0, (v, p, M) a0l

where, for example, in case of the diffuse prior (46), par(p...)(@(a, p, A))|y)|[r=o reads,

PAR(mae) (905 £, M)y [r=0 o e, p)'e(a, p)[ 727 (61)

The resulting Importance Sampling scheme is then given by
Importance Sampling Scheme for ARMA parameters

1. Choose the degrees of freedom of the Importance function, v, the number of drawings,
N and set i = 1.

) R . 1—%(wtp+q)

2. Generate 6" from ¢(6) [U + (6 — 6) (cov(8))71(6 — 0) .

3. Solve for p' and o’ from & using (11)-(14).

4. Construct weight:

w(pi Ozi) _ pARl\IA(p,q)<aiapi|y) _ pARil\IA(pﬂ)(ai?pi'.y) (62)
’ qarMA(pg) (@ 0%Yy) I8, (oF, p))|q(8]y)

pAR(pmaX)<90(ai7 pi7 )\) ’y)l)\:O"J(wZ? (ai7 pi7 )\) ’)\:O|7

; o ; N 1/ ~ f%(v+p+Q)
78", (ad, p))] v+ (8" = 8) (cov(8)) (6 = §)
pAR(pmax)<90<Oéiv piv )‘)ly)lAZO

v+ (8" — 8 (cov(8))"1(6" — S)] .

since |J (¢, (a, p, A)[a=o| = [Caz| = [J (6, (e, p))]-
5. Set i =4+ 1, and if 7« < N go to step 2.
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ﬁ w(p’,a’)g(p',at)
6. Compute E(g(p,a)) = = :

N

> w(pi,at)
i=1
7. To improve numerical accuracy, update 6 and cov(5) by considering g(p, o) = 6, set i = 1
and go to step 2.

In step 3 of the algorithm the matrix C5 is needed. As a byproduct, this enables us to
compute the diagonal elements of the lower diagonal matrix in (15), 6;;, i = 1,... ,q. These
parameters show the identifiability of the (AR)MA parameters. In particular, if one of the
0;;’s is close to zero the matrix Csy is nearly singular and the constructed MA parameters,
o= ngl(cp+1, ... ,Cp+q) may be very large. The posterior densities of the ARMA parameters
can then be fat-tailed. Note that if the model is overspecified, i.e. p and/or ¢ are chosen
too large, this is likely to be the case. It is therefore difficult to perform a general to specific
approach in the analysis of ARMA models.

Computation of Bayes Factor for Models with Equal Summed AR and MA lag
lengths In section 4.1 we constructed a Bayes factor for comparing two ARMA models H
and H; that have equal summed AR and MA lag lengths. The priors on the parameters
of both models resulted from the same normal prior on the parameters of the encompassing
AR(pmax) model such that the Bayes factor can be made independent of the prior by letting
the prior variance converge to infinity. It results in the Bayes factor (55). This Bayes factor
can be computed using Importance Sampling, see Geweke (1989b). The Bayes factor equals
the ratio of the marginal likelihoods under both models. In Geweke (1989a), it is shown that

VN (% > w(p',al) - JJ Parviapg (0 p |y>dadp> = N(0,w), (63)

[ aarma(p.g) (e, p)dadp

where papuia(p,q)(-) is the (unnormalized) posterior, gapnia(p,q)(-) is the importance density,
= indicates weak convergence, and w = E((w(9) — E(w(?)))?), which can be estimated
by wa £ 3V w(pf,al)? - (L 3V) w(pi,ai))z. Equation (63) can be used to estimate the

marginal likelihood

N
1 S
//pARMA(p,q)(Oévp|y)dadp ~ (// C]ARMA(p,q)(Oé,P)dOédP) x (Nzw(ﬂz»az)) . (64)
i=1

Note that sofar we represented the Importance Function by its kernel, without the normalizing
constants. In the construction of the Bayes factor however we need to include these normalizing
constants. Doing this, the Bayes factor is approximated by

No
1 1 31 i LO Z ’w(Piﬁai,Ho)
BF(Ho[H,) ~ |: P(5(A14+p1+91))0(520)A ] <|cov(50)i>2 :| N =] 7 (65)

! COV(6 1
P Ootmta)TEAA 0 NIV 3 5 it 0r H
=1

where w(p, a, H;) are the weights for model j, N, is the number of Importance Sampling
drawings from model j, v; is the degrees of freedom of the Importance function used for
model j and cov(d;) is the covariance matrix of the Importance functions used for model j. If
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v1 = vy the weight ratio approximating the Bayes factor simplifies to,

No o
¥ le@aaaHo)
P

(66)

1
BF(HyH;) = { <|COV(<50)|)2 ]

(Ho[Hy) [COV(51)] ﬁféw@%a"ﬂﬂ
Further simplifications are possible if one of the models is an AR model, in which case the
corresponding integral can be evaluated analytically. In section 6 we apply the Bayes factor
to compare different ARMA models for the extended Nelson-Plosser data, see Schotman and
van Dijk (1993).

The Bayes factor for comparing ARMA models with different summed AR and MA lag
lengths and /or informative proper priors can also be computed using the Importance Sampler.
The Importance Sampler is constructed such that it can easily accomodate informative priors
that result from a normal prior on the parameters of the encompassing AR (pmax) model. For
these kind of priors, the Importance Sampler also has to be used to compute the normalizing
constant of the prior on the ARMA parameters, see (48). The Bayes factor then follows from
(47) where the marginal likelihoods can again be computed according to (64)-(65).

5.2 Metropolis-Hastings Sampling

Instead of Importance Sampling, we can also use the Metropolis-Hastings (MH) algorithm,
see, e.g., Chib and Greenberg (1995). The Metropolis sampling algorithm can be set up as
follows
Metropolis Sampling Scheme for ARMA parameters
1. Choose starting values (02)°, a, p°, the number of iterations, N, and set i = 1. Note
that also 6° := (c),... ,Cy,) is implicitly chosen.

2. The probing density in the MH step is given by N(8, cov(§)). Generate a candidate 6™
from this density, transform 6" to p** and o™, and apply the following acceptance

probability
w<pnc“v7 Ojncw b 6]10“‘)
= , , —— 67
w w(pz—17az—1762_1> ( )
where
A 2|, _
u}(p7 a, 5) _ pAR(pmax) (@(pv «, )|y7 g )|)\—O ‘ (68)

N (816, cov(6))

Note that the jacobians cancel out in the weight function and that the MH acceptance
probability can be interpreted as the ratio of the importance weight in the model with
given o2. Next, with probability 1 we set (o', o, 8") = (p"*, ™", 6™") and with proba-
bility (1 — 1)) we set (p,at,6") = (p' 1, a1, 671).

3. Conditional on p and «, 0% has an inverted-Wishart distribution. Generate o2 from this
distribution.

4. If 1 < N set i =1+ 1 and go to step 2.

Note again that the identifying parameter matrix Cy, is obtained as a byproduct in step 2,
such that also the posterior of the diagonal elements of Cs; can be obtained, and that the
above MC? sampler generates o and p jointly.
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6 Empirical Application

We conduct a Bayesian analysis of ARMA models for the extended Nelson-Plosser data. This
data set consists of yearly observations of 14 macro-economic variables. The original sample
period ended in 1970, see Nelson and Plosser (1982), but the sample period has been extended
to 1988, see Schotman and van Dijk (1993).

We model the (extended) Nelson-Plosser series using ARMA models with three ARMA
parameters (p + ¢ = 3). Following previous analyzes of these series a constant term and a
trend variable are included in the model,

p(L)y = a(L) (e + ¢ + dt), (69)

where p(L) =1—p,L— ... —p, L7, a(L) =1— a1 L — ... — L9, & ~ N(0,0?). We specify
the deterministic components such that,

c(L)yy = e+ c+dt, (70)

where ¢(L) = a(L) !'p(L), and we can integrate out ¢ and d analytically from the joint
posterior of (a, p, 02, ¢,d), when diffuse or normal priors are specified on ¢ and d. For example,

in case of the prior (46) on («, p,0?) and a flat prior on ¢ and d, the analysis corresponds with
the ARMA(p, q) model,

p(L)ge = (L), (71)

where 7; are the residuals that result after regressing a constant and linear trend on ;.

We computed the marginal posteriors of the parameters of the ARMA(p, ¢) model (71)
using the prior (46) on («, p,0?). We also calculated the Bayes factor (55) for comparing
models with equal summed AR and MA lag lengths using the average weights that result from
the Importance Sampling Algorithm (65). The Importance Sampling Algorithm converges
very fast and because of the good approximation of the posterior by the Importance Function,
the Importance Function could even be used for direct acceptance-rejection sampling from
the posterior. We performed this exercise for all ARMA models containing three ARMA
parameters. Bayes factors are calculated for ARMA(3,0) [=AR(3)], ARMA(2,1), ARMA(1,2)
and ARMA(0,3) [=MA(3)] models. The resulting Bayes factors are listed in table 3. We also
approximated the Bayes factors using the Schwarz (Bayesian) Information Criterium (BIC), see
Schwarz (1978), BF(Ho, Hy) ~ exp|3(BIC(H;) — BIC(Hy))], of which we obtained estimates
from EVIEWS. For the series for which EVIEWS was capable to give reasonably precise
parameter estimates, the Bayes factors from both procedures are close to one another. For the
non-precise estimates, the Bayes factors were rather different as the Bayes factors resulting
from the BIC’s are inprecise. The numerical errors for the Bayes factors resulting from the
Importance Sampler are also in these cases very small such that we prefer this latter procedure
for calculating the Bayes factor.

The Bayes factors from table 3 are quite surprising as for most of the series, an ARMA(2,1)
model is preferred above an AR(3) model. A possible explanation for this phenomenon could
be that many series consist of time averages which introduces MA errors in the series. For
some series, the ARMA(2,1) model is clearly preferred above an AR(3) model given the value
of the Bayes factor. This holds, for example, for Industrial Production, Employment, Unem-
ployment, Consumer Price Index, Interest and the Standard and Poor 500. For other series
the Bayes factors indicate that both models are more or less equally likely. The ARMA(2,1)

27



Series \ ARMA order | 3,0/2,1 | 3,0/1,2 | 0,3/3,0 | 2,1/1,2 | 0,3/2,1 | 0,3/1,2
Real GNP 0.969 1.082 0.003 1.117 0.003 0.003
Nominal GNP 1.019 1.422 0.000 1.395 0.000 0.000
GNP Capita 0.975 1.091 0.005 1.119 0.005 0.005
Indus. Prod. 0.638 0.842 0.000 1.320 0.000 0.000
Employment 0.549 0.844 0.000 1.537 0.000 0.000
Unemploy. 0.069 0.166 0.420 2.418 0.029 0.070
GNP Def. 1.682 6.821 0.000 4.055 0.000 0.000
Cons. Price Ind. 0.219 0.638 0.000 2.915 0.000 0.000
Wages 0.852 1.338 0.000 1.570 0.000 0.000
Real Wages 0.795 0.951 0.000 1.197 0.000 0.000
Money 0.923 14.73 0.000 15.96 0.000 0.000
Velocity 1.020 1.005 0.000 0.985 0.000 0.000
Interest 0.301 0.340 0.000 1.127 0.000 0.000
S&P 500 0.694 0.846 0.000 1.220 0.000 0.000

Table 3: Bayes Factors Extended Nelson-Plosser Series

series \ ARMA par. | p, s 03 aq b | p=>"1pi
Real GNP 1.18 | —0.37 —0.07 ] 0.46 0.81
0.23 0.21 0.22 0.15 0.062
Nominal GNP 1.45 | —0.57 | 0.063 0.94
0.12 0.20 0.12 0.032
GNP Capita 1.17| —0.37 —0.062 | 0.45 0.80
0.24 0.21 0.23 0.14 0.06
Ind. Prod. 0.69 | 0.075 —-0.29 | 0.21 0.77
0.32 0.27 0.30 0.10 0.08
Employment 0.97 | —0.14 —0.33 | 0.57 0.82
0.22 0.21 0.21 0.16 0.061
Unemploy. 0.41 | 0.15 —0.66 | 0.55 0.56
0.18 0.16 0.16 0.14 0.10
GNP Def. 1.43 1 —0.38 | —0.09 0.97
0.11 0.18 0.11 0.02
Cons. Price Ind. 1.36 | —0.38 —047 | 1.24 0.99
0.12 0.12 0.12 0.18 0.015
Wages 1.27 1 —0.35 —0.23 | 0.70 0.93
0.20 0.19 0.19 0.18 0.035
Real Wages 0.93 | —0.018 —0.30 ] 0.38 0.91
0.34 0.33 0.30 0.14 0.056
Money 1.50 | —0.56 —0.19 | 0.89 0.93
0.14 0.14 0.16 0.20 0.027
Velocity 1.09 | —0.15 | 0.026 0.97
0.094 0.14 0.093 0.025
Interest 0.72 0.20 —0.54 | 047 0.92
0.22 0.21 0.19 0.16 0.052
S&P 500 0.80 | 0.094 —0.42 ] 0.42 0.89
0.22 0.21 0.20 0.13 0.05

Table 4: Posterior Moments ARMA parameters Nelson-Plosser Series
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model can also be approximated by a high order AR model but an important difference be-
tween AR and MA components lies in their consequences for the long run behavior of the
series. In particular, MA components have autocorrelations which abruptly die out while the
autocorrelations of AR components decrease exponentially. So, it is interesting to investigate
the influence of the MA parameters on the parameters reflecting the long run behavior of the
analyzed series, like the unit root parameter, Y :_, p;. We perform such an analysis and the
results are listed in table 4, which contains the posterior means and standard deviations (given
below the means) of the ARMA model that is preferred by the Bayes factor from table 3. Note
that a MA(3) model is implausible for all series since this model leads to a very restricted type
of long run behavior of the analyzed series.

For all series, except the Consumer Price Index (CPI), the MA parameter, a;, has a positive
correlation with the unit root parameter. The posterior mean of the unit root parameter of
the ARMA(2,1) is, therefore, for all series, except CPI, smaller than the posterior mean of
the unit root parameter of the AR(3) model. Depending on the size of the MA parameter,
this decrease of the MA parameter can be quite large and it is most pronounced for the
unemployment series. For this series, the unit root parameter decreases from 0.74 to 0.56. For
the other series, which contain significant MA components, the decrease is also relatively large:
Industrial Production (0.06), Employment (0.05), Interest (0.03), S&P 500 (0.04). Also, for
all series the posterior standard deviations increase slightly from AR(3) to ARMA(2,1). It is
typical that the series which vary a lot, like CPI and Interest, contain large MA components.
When combined with an AR component, these MA components can explain the long run
memory in the first differences of these series, like inflation.

The parameter 611, see (15) for an interpretation of this parameter, shows that for the
series for which an ARMA(2,1) model is preferred, the MA parameter, oy, is identified as the
posterior mean of 61; does not lie relatively close to 0. Exceptions are the series of Industrial
Production and Velocity. For the velocity series, an AR(3) model is preferred. For Industrial
Production, there is some posterior probability for zero values of 6;; leading to fat tailed
behavior of the posteriors. This behavior disappears when we consider an ARMA(1, 1) model,
which is sensible since the posterior mean of p, lies close to 0. In the resulting ARMA(1,1),
oy is properly identified, see table 6. If the posteriors of an ARMA(2,1) model for velocity
are calculated, the posterior of 6;; has a considerable amount of probability mass close to
zero leading to fat tailed posteriors for the other parameters. This also indicates that an
ARMA(2,1) is not the appropriate model for velocity, which can also be concluded from the
Bayes factors from table 3.

Since for many series contained in table 3, the posterior means indicate that either p,
or/and a4 lies close to zero, we calculated the Bayes factors of an AR(2) model compared to
an ARMA(1,1) model for these series. The resulting Bayes factors are listed in table 5.

Table 5 shows that Industrial Production, Employment, Real Wages and S&P 500 are
better characterized by an ARMA(1,1) than an AR(2) model according to the Bayes factors.
The opposite holds for Real GNP, Nominal GNP, Wages and Money. This accords with the
results in tables 3 and 4 which show that these series are either preferred to be AR(3) or that
the MA parameter o lies relatively closer to 0 than the AR parameter p,. Table 6 shows the
posterior moments of the parameters of the resulting ARMA(1,1) models.

Table 6 shows that the summed posterior mean changes of p; and a; of the ARMA(1,1)
model compared to ARMA(2,1) model approximately equal the posterior mean of p, in the
ARMA(2,1) model. Since the identifying parameter #; differs much more from 0 than in the
ARMA (2,1) model, the posterior standard deviations of the parameters are much smaller than
in the ARMA(2,1) model. It is typical that the posterior standard deviation of the unit root
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series \ odds | 2,0/1,1
Real GNP 5.212
Nominal GNP | 3.105
Indus. Prod. 0.770

Employ. 0.741
Wages 3.819
Real Wages 0.942
Money 671.3
S&P 500 0.306

Table 5: Bayes Factors for AR(2) vs. ARMA(1,1) Nelson-Plosser Series

series \ parameter | p, o 011
Ind. Prod. 0.79 | —0.18 | —0.97
0.06 0.11 0.09
Employ. 0.82 | —0.43 | —1.25
0.06 0.09 0.09
Real Wages 0.92 | —0.28 | —1.18
0.05 0.12 0.11
S&P 500 0.89 | —0.31 | —1.21
0.05 0.14 0.10

Table 6: Posterior Moments of ARMA(1,1) model for Nelson-Plosser Series

parameter is, however, similar in both models, indicating that the information regarding the
long run behavior is not affected by deleting p,.

7 Conclusions

An ARMA model is nested within an encompassing AR model. Since the restriction that
is imposed by the ARMA model on the parameters of the encompassing AR model satisfies
the sufficient conditions for a unique conditional density developed in Kleibergen (2000), the
prior and posterior of the parameters of the ARMA model are conditional densities of a prior
and posterior of the parameters of the encompassing AR model. We can thus specify a prior
and posterior on the parameters of the encompassing AR model and construct the prior and
posterior that it implies on the parameters of the ARMA model. Priors on the parameters
of ARMA models that result from standard priors on the parameters of the encompassing
AR model lead to posteriors that are similar to those that result in finite order AR models.
Because of the local non-identification of parameters, standard priors that are directly specified
on the parameters of the ARMA model do not lead to such kind of posteriors. We construct
Importance and Metropolis-Hasting simulators to generate parameters from the priors and
posteriors of ARMA models. Also Bayes factors for model comparison are developed.

For the conducted applications, the Importance Sampling Algorithm converged rapidly
and, quite surprisingly, we discovered that many series, which are traditionally modelled using
AR models, contain strong MA components. These MA components can influence the long run
parameters such that the use of MA components can be important for forecasting purposes.

In future work, we extend the analysis to ARMA models containing seasonal lags and
Vector ARMA models. Also, by considering the Metropolis-Hastings algorithm, extensions of
the model by, e.g., structural changes, can be analyzed in a MC? framework.
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