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Measuring credit risk in a large banking system:

econometric modeling and empirics

Abstract

Two new measures for financial systemic risk are computed based on the time-varying

conditional and unconditional probability of simultaneous failures of several financial

institutions. These risk measures are derived from a multivariate model that allows

for skewed and heavy-tailed changes in the market value of financial firms’ equity.

Our model can be interpreted as a Merton model with correlated Lévy drivers. This

model incorporates dynamic volatilities and dependence measures and uses the overall

information on the shape of the multivariate distribution. Our correlation estimates

are robust against possible outliers and influential observations. For very large cross-

sectional dimensions, we propose an approximation based on a conditional Law of

Large Numbers to compute extreme joint default probabilities. We apply the model to

assess the risk of joint financial firm failure in the European Union during the financial

crisis. By augmenting the dynamic parameter model with Euribor-EONIA rate and

other variables that capture situations of systemic stress, we find that including extra

economic variables helps to explain systemic correlation dynamics.

Keywords: systemic risk; dynamic equicorrelation model; generalized hyperbolic dis-

tribution; Law of Large Numbers.

JEL classification: G21, C32.



1 Introduction

We propose a new approach to measure the credit risk in a large system of European financial

institutions, based on the time-varying probability of simultaneous failure of multiple finan-

cial institutions. Such joint failures are akin to financial crises when the banking sector is in

distress. Our measures for joint financial firm failure are based on a dynamic multivariate

Generalized Hyperbolic skewed-𝑡 (GHST) density that allows for skewed and heavy-tailed

changes in the market value of financial firms’ equity. The model incorporates dynamic

volatilities and failure dependence, while being consistent with expectations about firms’

marginal probabilities of failure at each point in time. By applying the new model to the

data of European large financial institutions, we show that the model works well even when

the cross-sectional dimension is large. Since the model can be treated as a statistical factor

model, it can also be used to explore the possible economic variables driving the variation

in the default dependence structure.

The systemic risk or the joint default probability of financial institutions has drawn con-

siderable attention since the recent global financial crisis. How to measure the systemic risk

and safeguard the financial system during periods of stress has become the key interest of

policy makers. There are several commonly used approaches to measure the systemic risk.

The Macro stress tests, such as the 2009 SCAP exercise in the U.S. and the 2010 and 2011

CEBS/EBA stress tests in the E.U., are widely used to assess financial stability conditions.

However, they are expensive to conduct (both in terms of manpower at supervisory agen-

cies as well as at the involved financial institutions), subject to a wide range of political

sensitivities, and as a result not suitable for regular financial sector surveillance at monthly

frequency. Model-based Banking Stability Measures (BSM) are considered a valuable alter-

native to more accurate financial stability assessments. The model proposed in this paper

yields two financial stability measures related to the conditional and unconditional default

probability of a certain percentage of banks in the system at one point in time. Such bank-

ing stability measures are currently widely used in central banks and international policy

institutions, see for example ECB (2010).
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The construction of useful systemic risk or banking stability measures, however, is not

straightforward. First, the risk of a systemic event, such as the simultaneous failure of mul-

tiple financial firms, usually involves a high cross-sectional dimension, even if only large and

possibly systemically important financial institutions are considered. Extending a copula or

multivariate density model beyond, say, five time series is difficult. Second, the failure de-

pendence among financial institutions is time-varying. In particular, the interconnectedness

across financial firms appears to be stronger during times of turmoil. For example, fire-sale

externalities may connect financial firms through market prices in bad times even in the ab-

sence of direct business links, see for example Lorenzoni (2008), Brunnermeier and Pedersen

(2009), and Korinek (2011). As a result, taking into account higher correlations during times

of stress, in addition to higher marginal risks, is an important feature of financial systemic

risk. We overcome the two problems of a high dimension and time-varying parameter values

by proceeding in two steps. First, we separate the univariate from the multivariate analysis,

as in Engle (2002). Second we impose a parsimonious equicorrelation structure into our

dynamic density, similar to the approach taken by Engle and Kelly (2012). The parsimo-

nious structure then ensures that the computations remain tractable. The time variation

in volatility and correlation parameters is modeled following the Generalized Autoregressive

Score (GAS) framework of Creal, Koopman, and Lucas (2011), and Zhang, Creal, Koop-

man, and Lucas (2011). In our setting, the scaled score of the local log-likelihood drives the

dynamic behavior of the time-varying parameters. As a result, the log-likelihood is available

in closed form and can be easily maximized.

Two studies in particular relate to our construction of financial stability measures. In

each case, the banking system is seen as a portfolio of financial intermediaries whose multi-

variate dependence structure is inferred from equity returns. Avesani, Pascual, and Li (2006)

assess financial failure in a Gaussian factor model setting. The determination of joint fail-

ure probabilities is in part based on the notion of an 𝑛th-to-default CDS basket, which can

be set up and priced as suggested in Hull and White (2004). Alternatively, Segoviano and

Goodhart (2009) propose a non-parametric copula approach. Here, the banking system’s

multivariate density is recovered by minimizing the distance between the so-called banking
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system multivariate density and a parametric prior density subject to tail constraints that

reflect individual failure probabilities. We regard each of these approaches as polar cases,

and attempt to strike a middle ground. The proposed GAS framework in our current paper

retains the ability to describe the salient equity data features in terms of skewness, fat tails,

and time-varying correlations (which the Gaussian copula fails to do), and in addition retains

the ability to fit a cross-sectional dimension larger than fifteen (which the non-parametric

approach fails to do due to computational problems). In addition, and for the first time,

parameter non-constancy is addressed explicitly in our new modeling setup. The two above

approaches are inherently static, and rely on a rolling window approach to capture time

variation in parameters. By contrast, we model the parameter dynamics explicitly in a

parsimonious way.

The remainder of the paper is structured as follows. Section 2 introduces a framework for

simultaneous failures of financial sector firms. The econometric framework is introduced in

Section 3 and two new risk measures are proposed in Section 4. Section 5 presents empirical

results on the likelihood of joint failures of large financial institutions in the European Union.

In Section 6, we study the explanatory power of a few economic variables in understanding

the equity correlation dynamics. Section 7 concludes.
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2 A framework for simultaneous financial firm failures

The structural approach due to Merton (1974) and Black and Cox (1976) is probably the

most widely used approach for the estimation of individual firms’ credit risk. In this firm

value framework, a firm’s underlying asset value evolves stochastically over time, and default

is triggered if the firm’s asset value falls below a certain default threshold. This threshold

is in general determined by a firm’s current liability structure. It is straightforward to

extend the basic premise of the Merton model to a portfolio credit risk setting. In the

case of multiple firms, however, the assumptions regarding the correlation (more generally,

dependence) structure between the firm value processes are important for overall risk.

First, consider the simple case of two firms 𝑖 = 1, 2, whose asset values 𝑆𝑖,𝑡 follow

d𝑆𝑖,𝑡 = 𝑆𝑖,𝑡(𝜇𝑖d𝑡+ 𝜎𝑖d𝑊𝑖,𝑡), (1)

where 𝑊𝑖,𝑡 is a standard Brownian Motion, 𝜇𝑖 and 𝜎2
𝑖 are drift and variance parameters,

respectively, and d𝑊1,𝑡𝑊2,𝑡 = 𝜌d𝑡. The solution to Equation (1) is

𝑆𝑖,𝑡 = 𝑆𝑖,0 exp
[(
𝜇𝑖 − 𝜎2

𝑖 /2
)
𝑡+ 𝜎𝑖𝑊𝑖,𝑡

]
. (2)

If log 𝑆𝑖,0 = 0, the log asset values are normally distributed as

𝑦𝑖,𝑡 = log𝑆𝑖,𝑡 ∼ N
[(
𝜇𝑖 − 𝜎2

𝑖 /2
)
𝑡, 𝜎2

𝑖 𝑡
]
. (3)

The use of Brownian Motions and Gaussian distributions has been popular in the literature

for modeling asset returns. However, the conditions of Brownian Motions and the log-

normal distribution are too restrictive for financial datasets. The asset returns are usually

skewed and heavy-tailed, with time-varying (co)variances. The price process does not have

a continuous path as the Brownian Motion, but is identified as a semi-martingale with

jumps (Cont and Tankov (2004)). To incorporate these empirical features, the Generalized

Hyperbolic (GH) Lévy process has gained more attention as a replacement for the Gaussian
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assumption. The GH distributions are infinitely divisible (Barndorff-Nielsen and Halgreen

(1977)) and every member of this family can generate a Lévy process that is a semimartingale.

We focus on the GH skewed-𝑡 distribution in this paper, which is an asymmetric version

of the Student’s 𝑡 distribution. Our analysis can be easily extended to several other GH

distributions. Eberlein (2001) provides a useful survey on asset pricing models under the

GH Lévy process assumption.

We write the firm values in a Lévy process framework as in Bibby and Sørensen (2001),

d𝑆𝑖,𝑡 =
1

2
𝑣(𝑆𝑖,𝑡)[log(𝑓(𝑆𝑖,𝑡)𝑣(𝑆𝑖,𝑡))]

′d𝑡+
√
𝑣(𝑆𝑖,𝑡)d𝑊𝑖,𝑡, (4)

with 𝑣(𝑆𝑖,𝑡) and 𝑓(𝑆𝑖,𝑡) two continuously differentiable strictly positive real functions defined

on ℝ. Following the arguments in Bibby and Sørensen (2003), we can find suitable functions

for a prescribed marginal distribution, for instance a GH skewed-𝑡 distribution. The asset

value becomes

𝑆𝑖,𝑡 = 𝑆0,𝑡 exp (ℒ𝑖,𝑡),

where ℒ𝑖 is a Generalized Hyperbolic Skewed-𝑡 Lévy process and the log asset values are

Generalized Hyperbolic Skewed-𝑡 distributed at discrete time intervals as

𝑦𝑖,𝑡 = log𝑆𝑖,𝑡 ∼ 𝐺𝐻𝑆𝑇 (�̃�2
𝑖,𝑡, 𝛾𝑖, 𝜈).

Compared to the Student’s 𝑡 distribution, the GHST distribution is an asymmetric distribu-

tion with 𝛾𝑖 as the skewness parameter. It is flexible enough to capture the most interesting

data features with a limited set of parameters. The dynamic version of the GH distribution

proposed in Zhang, Creal, Koopman, and Lucas (2011) can accommodate in addition the

time-varying covariance matrices. In this paper we adopt the same framework, which is now

used to model the correlated defaults in a large portfolio.

In the Merton model and also in our paper, a borrower 𝑖 defaults at time 𝑡 if 𝑦𝑖,𝑡 falls below

the firm specific default threshold 𝑦∗𝑖,𝑡. Therefore, at time 𝑡, the firm’s marginal probability
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of default 𝑝𝑖,𝑡 is given by

𝑝𝑖,𝑡 = 𝐹 (𝑦
∗
𝑖,𝑡), (5)

where 𝐹 (⋅) is the cumulative distribution function (CDF) of a standard univariate GHST

distribution. Similarly, the joint default probability of two borrowers is

𝑝1&2,𝑡 = 𝐹𝜌

(
𝑦∗1,𝑡, 𝑦

∗
2,𝑡

)
, (6)

where 𝐹𝜌 is the bivariate standard GHST distribution function with correlation 𝜌.

If an estimate of a firm’s marginal default probability is available, say from Moody’s KMV

EDF estimates, then (5) implicitly defines the corresponding threshold value 𝑦∗𝑖,𝑡. With these

thresholds, we are able to determine a distress region for the multivariate distribution. A

firm defaults at time 𝑡 when its asset value 𝑦𝑖,𝑡 fall into the region (−∞, 𝑦∗𝑖,𝑡). In this paper,

we adopt EDF estimates as the estimated probability of default.

3 The model

3.1 The Dynamic GH skewed-𝑡 model

The risk measure we propose is the joint default probability for a large portfolio of 𝑁

banks. In the multivariate case, the joint default probability can be inferred from the mar-

ket by considering the interrelationship of equity returns. We assume the equity returns

𝑦𝑡 = (𝑦1,𝑡, ⋅ ⋅ ⋅ , 𝑦𝑁,𝑡)
′ follow a multivariate dynamic Generalized Hyperbolic skewed-𝑡 (GHST)

distribution. The GHST distribution can be obtained as a normal mean-variance mixture

𝑦𝑡 = (𝜍𝑡 − 𝜈

𝜈 − 2
)�̃�𝑡𝛾 +

√
𝜍𝑡�̃�𝑡𝜖𝑡, (7)

with a scalar random variable 𝜍𝑡 ∼ InverseGamma(𝜈/2, 𝜈/2) where 𝜍𝑡 is independent of 𝜖𝑡,

and 𝑁 -dimensional 𝜖𝑡 ∼ N(0, I𝑁), and �̃�𝑡 is an 𝑁 × 𝑁 loading matrix which defines the

individual exposures to the common risk factor 𝜖𝑡. The mixing structure introduces non-

trivial clustering in the tails compared to the situation with only a Gaussian factor 𝜖𝑡. The
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GHST density of 𝑦𝑡 is given by

𝑝(𝑦𝑡; Σ̃𝑡, 𝛾, 𝜈) =
𝜈

𝜈
2 21− 𝜈+𝑁

2

Γ(𝜈
2
)𝜋

𝑁
2 ∣Σ̃𝑡∣ 12

⋅
𝐾 𝜈+𝑁

2

(√
𝑑(𝑦𝑡) ⋅ (𝛾′𝛾)

)
𝑒𝛾

′�̃�−1
𝑡 (𝑦𝑡−�̃�𝑡)

𝑑(𝑦𝑡)
𝜈+𝑁
4 ⋅ (𝛾′𝛾)− 𝜈+𝑁

4

, (8)

𝑑(𝑦𝑡) = 𝜈 + (𝑦𝑡 − �̃�𝑡)′Σ̃−1
𝑡 (𝑦𝑡 − �̃�𝑡), (9)

�̃�𝑡 = − 𝜈

𝜈 − 2
�̃�𝑡𝛾, (10)

where 𝐾𝑎(𝑏) is the modified Bessel function of the second kind, Σ̃𝑡 = �̃�𝑡�̃�
′
𝑡 is the scale matrix,

see Bibby and Sørensen (2003).

�̃�𝑡 = 𝐿𝑡𝑇, (11)

(𝑇 ′𝑇 )−1 =
𝜈

𝜈 − 2
I +

2𝜈2

(𝜈 − 2)2(𝜈 − 4)
𝛾𝛾′, (12)

The matrix 𝐿𝑡 characterizes the time-varying covariance matrix Σ𝑡 = 𝐿𝑡𝐿
′
𝑡. We consider the

time-varying covariance matrix of 𝑦𝑡 as

Σ𝑡 = 𝐿𝑡𝐿
′
𝑡 = 𝐷𝑡𝑅𝑡𝐷𝑡, (13)

where 𝐷𝑡 is a diagonal matrix holding the volatilities of 𝑦𝑖,𝑡 and 𝑅𝑡 is the correlation matrix

of equity returns 𝑦𝑡. The marginal distribution for a multivariate Generalized Hyperbolic

skewed-𝑡 distribution is a univariate Generalized Hyperbolic skewed-𝑡 distribution. The

skewness variables can be different in each marginal.

We assume the dynamic covariance matrix Σ𝑡 depends on the unobserved factor 𝑓𝑡, where

𝑓𝑡 follows the Generalized Autoregressive Score process as specified in Creal, Koopman and

Lucas (2011, 2012) and Zhang, Creal, Koopman, and Lucas (2011).

𝑓𝑡+1 = 𝜔 +

𝑝−1∑
𝑖=0

𝐴𝑖𝑠𝑡−𝑖 +

𝑞−1∑
𝑗=0

𝐵𝑗𝑓𝑡−𝑗, (14)

𝑠𝑡 = 𝑆𝑡∇𝑡, (15)

∇𝑡 = ∂ ln 𝑝𝐺𝐻(𝑦𝑡∣ℱ𝑡−1; 𝑓𝑡, 𝜃)/∂𝑓𝑡, (16)
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𝜔 is a vector of fixed intercepts, and 𝐴𝑖 and 𝐵𝑗 are fixed parameter matrices. In order to

obtain our result below, we define

vec(𝐿) = 𝒟0
𝑁vech(𝐿) (17)

for a 𝑁 ×𝑁 lower triangular matrix 𝐿,

vech(𝑆) = ℬ𝑁vec(𝑆) (18)

for a symmetric matrix 𝑆, and the commutation matrix 𝒞𝑁 for an 𝑁 ×𝑁 matrix 𝑋 as

vec(𝑋) = 𝒞𝑁vec(𝑋 ′). (19)

Result 1. If 𝑦𝑡 follows a GHST distribution 𝑝(𝑦𝑡; Σ̃𝑡, 𝛾, 𝜈), where the time-varying covariance

matrix is driven by the GAS model (14)-(16). The dynamic score is

∇𝑡 = Ψ′
𝑡𝐻

′
𝑡vec

(
𝑤𝑡 ⋅ 𝑦𝑡𝑦′𝑡 − Σ̃𝑡 −

(
1− 𝜈

𝜈 − 2
𝑤𝑡

)
�̃�𝑡𝛾𝑦

′
𝑡

)
, (20)

𝑤𝑡 =
𝜈 +𝑁

2𝑑(𝑦𝑡)
−
𝑘′𝜈+𝑁

2

(√
𝑑(𝑦𝑡) ⋅ (𝛾′𝛾)

)
2
√
𝑑(𝑦𝑡)/(𝛾′𝛾)

, (21)

Ψ𝑡 =
∂vech(Σ𝑡)

′

∂𝑓𝑡
, (22)

𝐻𝑡 = (Σ̃−1
𝑡 ⊗ Σ̃−1

𝑡 )(�̃�𝑡 ⊗ I𝑁)(𝑇
′ ⊗ I𝑁)𝒟0

𝑁(ℬ𝑁(I𝑁2 + 𝒞𝑁)(𝐿𝑡 ⊗ I𝑁)𝒟0
𝑁)

−1, (23)

where we define 𝑘 𝜈+𝑁
2
(⋅) = ln𝐾 𝜈+𝑁

2
(⋅) with first derivative 𝑘′𝜈+𝑁

2

(⋅). The matrices Ψ𝑡 and 𝐻𝑡

are time-varying, parameterization specific, and depend on 𝑓𝑡, but not on the data.

The dynamics driven by the score ∇𝑡 can be seen as a local improvement of the likelihood

to the new data observed at time 𝑡, and 𝒮𝑡 is a scaling matrix for the score∇𝑡. Typical choices

for the scaling matrix 𝒮𝑡 are the unit matrix or inverse (powers) of the Fisher information

matrix ℐ𝑡−1, where

ℐ𝑡−1 = E [∇𝑡∇′
𝑡∣ 𝑦𝑡−1, 𝑦𝑡−2, . . .] .
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For example, 𝒮𝑡 = ℐ−1
𝑡−1 accounts for the curvature in the score ∇𝑡. With the choice of

scaling matrix as the inverse Fisher information matrix, the GAS step 𝑠𝑡 can be seen as a

Gauss-Newton improvement step of the local fit of the model. As the Fisher information

matrix for the GH distribution has no analytical expression, we instead use the inverse Fisher

information matrix from the Student’s 𝑡 in our current paper. Zhang, Creal, Koopman, and

Lucas (2011) demonstrate that this results in a stable model that outperforms alternative

models if the data are fat-tailed and skewed. We obtain

𝒮𝑡 =
{
Ψ′

𝑡(I⊗ �̃�−1
𝑡 )′[𝑔𝐺− vec(I)vec(I)′](I⊗ �̃�−1

𝑡 )Ψ𝑡

}−1

, (24)

where 𝑔 = (𝜈 +𝑁)/(𝜈 + 2 +𝑁), and 𝐺 = E[𝑥𝑡𝑥
′
𝑡 ⊗ 𝑥𝑡𝑥′𝑡] for 𝑥𝑡 ∼ N(0, I𝑁).

3.2 Estimation and restrictions

Zhang, Creal, Koopman, and Lucas (2011) show that the GAS dynamic structure has su-

perior performance under skewed and fat-tailed distributions. However, evaluating the full

covariance matrix in the full likelihood is cumbersome computationally if the dimension

of the data is large. Therefore, we separate the estimation of the covariance matrix into

volatility estimation and correlation estimation procedures. The algorithm works in two

steps.

1. Estimate the log-volatility log(𝜎𝑖𝑡) for each series with a univariate dynamic GHST

model. The skewness parameter is estimated for each series separately, but the kur-

tosis parameter is fixed at 5. The motivation is to ensure that the marginal GHST

distributions are internally consistent with the multivariate GHST distribution. The

data at time 𝑡 is standardized by the volatility 𝜎𝑖𝑡. The standardized data is tested for

serial correlation using the F-test suggested in Engle (2002).

2. Estimate the correlation matrix 𝑅𝑡 of the standardized returns using the volatilities

from the first step. The correlation matrix is driven by the factor 𝑓𝑡 from the multivari-

ate dynamic GHST model. Again the kurtosis parameter is set ex ante as 𝜈 = 5 and
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the skewness parameters are equal to those from the univariate distributions obtained

from the first step. We need a parametrization as in Engle (2002) or Zhang, Creal,

Koopman, and Lucas (2011) to ensure that 𝑅𝑡 actually is a correlation matrix.

In the univariate and the multivariate GH skewed-𝑡 model, we fix the degrees of freedom pa-

rameter for all the marginal distributions at five. We can also estimate a GHST distribution

in order to obtain a sensible degree of freedom. Interestingly when estimate static GHST

model in a exploratory analysis, we find five a reasonable parameter value that ensures the

distribution captures the tail behavior of the data.

The idea behind the algorithm is simple. We first use the dynamic GHST model as a filter

for the volatility in the equity returns for each of the series. The standardized equity returns

are then used in a multivariate dynamic GHST model model, where the covariance matrix

is the correlation matrix. It is similar to the two-step procedure or the composite likelihood

method in Engle (2002), Hu (2005), and other studies that are based on a multivariate

GARCH framework.

If we want to work with a large dimensional dataset, we still need to impose some further

restrictions to confront the computational difficulties. One difficulty arises from estimating

the unconditional mean 𝜔 in Equation (14). In a dataset of 𝑁 time series, we have to

estimate 𝑁(𝑁 − 1)/2 coefficient for the unconditional mean of factors 𝜔. In order to reduce

the computational difficulty, we estimate the unconditional mean of the factors 𝑓 ∈ ℝ
𝑁(𝑁−1)/2

separately and estimate a scalar 𝜔 in the equation (14),

𝑓𝑡+1 = 𝜔𝑓 +

𝑝−1∑
𝑖=0

𝐴𝑖𝑠𝑡−𝑖 +

𝑞−1∑
𝑗=0

𝐵𝑗𝑓𝑡−𝑗; (25)

The 𝜔 is now defined as the levels of correlation coefficients proportional to the uncondi-

tional mean of our factors. We choose 𝐴 and 𝐵 scalar parameters as in the DCC model.

This reduces the total number of parameters in GAS model to three only, irrespective of the

data’s cross-sectional dimension. In practice, we can also fix 𝜔 at one, because the param-

eter estimate is usually close to one. It is sometimes called “correlation targeting” in the

literature.
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One of the attractive features of the GAS model is the possibility to introduce a latent

factor structure to describe the time variation in the dynamic parameters we are interested

in. We could impose the restriction that several time-varying parameters are driven by

common factors. This is extremely useful to process high-dimensional data from a large

system. In the next section, we introduce the block GAS-Equicorrelation model and the

GAS-Equicorrelation model as two examples of such a framework.

3.3 The Block GAS-Equicorrelation model

With the two-step estimation procedure, the task of maximizing the multivariate GHST

likelihood in a large system becomes more feasible. The computational burden is largely

reduced due to the separation of the likelihood for volatilities and correlations. Still, this

method is cumbersome if the data dimension becomes high, for instance around 100. The

advantage of the factor structure in the GAS framework (14) underlying the dynamic cor-

relation matrix makes it possible to address this problem by using common factors. We

assume the factor dimension to be smaller than the number of correlations. This defines a

multi-factor structure underlying the dynamic correlation model. In the literature, we call

correlation matrices with such a structure a block dynamic equicorrelation matrix. Assume

that 𝑁 firms fall into 𝑚 different groups according to their exposure to a common systemic

risk factor. Firms have equicorrelation 𝜌2𝑖 within each group and 𝜌𝑖 ⋅𝜌𝑗 between groups 𝑖 and

𝑗. So we have 𝑁 = 𝑛1 +𝑛2 + ⋅ ⋅ ⋅+𝑛𝑚 random variables that follow a GH distribution with a

correlation matrix that has a block equicorrelation structure, where 𝑛𝑖 denotes the number

of firms in group 𝑖. The correlation matrix at time 𝑡 is given by

𝑅𝑡 =

⎡
⎢⎢⎢⎢⎢⎣
(1− 𝜌21,𝑡)I𝑛1

. . . . . . 0

0 (1− 𝜌22,𝑡)I𝑛2 . . . 0

...
...

. . .
...

0 0 . . . (1− 𝜌2𝑚,𝑡)I𝑛𝑚

⎤
⎥⎥⎥⎥⎥⎦+

⎛
⎜⎜⎜⎜⎜⎝

𝜌1,𝑡ℓ1

𝜌2,𝑡ℓ2
...

𝜌𝑚,𝑡ℓ𝑚

⎞
⎟⎟⎟⎟⎟⎠ ⋅

(
𝜌1,𝑡ℓ

′
1 𝜌2,𝑡ℓ

′
2 . . . 𝜌𝑚,𝑡ℓ

′
𝑚

)
,

(26)
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where ℓ𝑖 ∈ ℝ
𝑛𝑖×1 is a column vector of ones and ∣𝜌𝑖,𝑡∣ < 1 to ensure the positive-definiteness

of 𝑅𝑡. The matrix 𝐿𝑡 and the inverse of 𝐿𝑡 can be calculated explicitly by assuming

𝐿𝑡 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

𝑎1,𝑡I𝑛1 . . . . . . 0

0 𝑎2,𝑡I𝑛2 . . . 0

...
...

. . .
...

0 0 . . . 𝑎𝑚,𝑡I𝑛𝑚

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

𝑏11,𝑡𝐽11 𝑏12,𝑡𝐽12 . . . 𝑏1𝑚,𝑡𝐽1𝑚

𝑏12,𝑡𝐽21 𝑏22,𝑡𝐽22 . . . 𝑏2𝑚,𝑡𝐽2𝑚

...
...

. . .
...

𝑏1𝑚,𝑡𝐽𝑚1 𝑏2𝑚,𝑡𝐽𝑚2 . . . 𝑏𝑚𝑚,𝑡𝐽𝑚𝑚

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (27)

where 𝐽𝑖𝑗 ∈ ℝ
𝑛𝑖×𝑛𝑗 is a matrix of ones 𝐽𝑖𝑗 = ℓ𝑖ℓ

′
𝑗. We solve for all the parameters in the

equation 𝑅𝑡 = 𝐿𝑡𝐿
′
𝑡, where 𝐿𝑡 is symmetric. The block equicorrelation model allows us to

obtain analytical solutions for the determinant of 𝑅𝑡. As a result of the Matrix Determinant

Lemma (see Harville (2008)), the determinant of the matrix 𝑅𝑡 is

det(𝑅𝑡) = det(Ξ𝑡 + 𝑢𝑡𝑢
′
𝑡) = (1 + 𝑢′𝑡Ξ

−1
𝑡 𝑢𝑡) det(Ξ𝑡)

=

[
1 +

𝑛1𝜌
2
1,𝑡

1− 𝜌21,𝑡
+ ⋅ ⋅ ⋅+ 𝑛𝑚𝜌

2
𝑚,𝑡

1− 𝜌2𝑚,𝑡

]
(1− 𝜌21,𝑡)𝑛1 ⋅ ⋅ ⋅ (1− 𝜌2𝑚,𝑡)

𝑛𝑚 ,

with Ξ𝑡 the diagonal matrix in the first term on the righthand side of (26) and 𝑢𝑡 the vector

in the second term, such that 𝑅𝑡 = Ξ𝑡 + 𝑢𝑡𝑢
′
𝑡. The determinant of matrix 𝐿𝑡 is easy to

find as the square root of this value. The analytic expressions facilitate the computation of

the likelihood and GAS steps in high dimensions. The time-varying correlation coefficients

𝜌1,𝑡, ⋅ ⋅ ⋅ , 𝜌𝑚,𝑡 are driven by the GAS factors from a GH skewed-𝑡 distribution. We can derive

the GAS model with these restrictions.

Result 2. If 𝑦𝑡 follows a GH skewed-𝑡 distribution and the time-varying correlation matrix

𝑅𝑡 has a block equicorrelation structure, the dynamic score follows Equation (20) and the

matrix 𝐻𝑡 stays the same as Equation (23). We denote the time-varying parameters in 𝑅𝑡

14



as Φ𝑡 = (𝜌1,𝑡, ⋅ ⋅ ⋅ , 𝜌𝑚,𝑡)
′ = 𝑓𝑡. The major difference is ∂vec(𝑅𝑡)′

∂𝑓𝑖,𝑡
as part of ∂vec(Σ𝑡)′

∂𝑓𝑡
in Ψ𝑡,

∂vec(𝑅𝑡)
′

∂𝑓𝑖,𝑡
= −2𝜌𝑖,𝑡 ⋅ vec

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0

...
...

. . .
...

0 0 I𝑛𝑖
0

0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

𝜌1,𝑡ℓ1

𝜌2,𝑡ℓ2
...

𝜌𝑚,𝑡ℓ𝑚

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⊗

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

...

ℓ𝑛𝑖

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

...

ℓ𝑛𝑖

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⊗

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

𝜌1,𝑡ℓ1

𝜌2,𝑡ℓ2
...

𝜌𝑚,𝑡ℓ𝑚

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
(28)

The simplest case of the block GAS-Equicorrelation model is if we only have one block,

which we call the GAS-Equicorrelation model. Following Engle and Kelly (2012), we then

assume the correlation matrix 𝑅𝑡 with the equicorrelation structure:

𝑅𝑡 = (1− 𝜌𝑡)I + 𝜌𝑡ℓℓ′, (29)

where 𝜌𝑡 ∈ ( −1
𝑁−1

, 1). Under such an assumption, the dynamic score equation stays the same

as (20), but the matrix computations are simplified.

Result 3. If we assume one equicorrelation structure for the correlation matrix, the GAS

model works as in the equations in Section 3.1. The only difference is that Ψ𝑡 simplifies to:

Ψ𝑡 =

(
d𝑎𝑡
d𝜌𝑡
𝑐vec(I𝑁) + (

d𝑎𝑡
d𝜌𝑡
𝑑+

d𝑏𝑡
d𝜌𝑡
𝑐+

d𝑏𝑡
d𝜌𝑡
𝑁𝑑)ℓ𝑁2

)
𝜗′(𝑓𝑡), (30)

d𝑎𝑡
d𝜌𝑡

= − 1

2
√
1− 𝜌𝑡 , (31)

d𝑏𝑡
d𝜌𝑡

=
1

2𝑁

(
𝑁 − 1√

1− 𝜌𝑡 +𝑁𝜌𝑡
+

1√
1− 𝜌𝑡

)
, (32)

where the scalar 𝑐 = 1√
𝜇𝜍

, 𝑑 =
√
𝜇𝜍−

√
𝜎2𝜍 𝛾

′𝛾+𝜇𝜍√
𝜇𝜍

, 𝜇𝜍 =
𝜈

𝜈−2
, and 𝜎2

𝜍 = 2𝜈2

(𝜈−2)2(𝜈−4)
.

The GAS-Equicorrelation model may seem too restrictive at first. In our application,

however, the data we are dealing with are European financial institutions that have strong

economic and financial links and the equicorrelation captures our salient parameter of inter-

est: the systemic dynamic correlation in the entire system of banks considered. We compare

the equicorrelation model with the full GAS model in Section 5.1 for a small system where
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we can still estimate both models. For the large system with more than 70 institutions, we

only consider the GAS-Equicorrelation version of the model.

4 The risk measures in a large system

There are multiple ways to construct a financial sector stability measure. For example, a

higher probability of at least a certain number of firms failing over the next year is a natural

measure of systemic risk. Such a measure is for example constructed and tracked in the Euro-

pean Central Bank’s biannual Financial Stability Report, see for example ECB (2010). Here

we use the same definition of a systemic risk measure. After estimating the conditional co-

variance matrix through the dynamic-GH model, the time-varying correlation and volatility

mechanism are used to calculate the probability of failure of European financial firms. With

this estimated multivariate density, we can thus produce a systemic risk measure. In this

section, we calculate this measurement either by simulation or by analytic approximations.

The latter are particularly useful for large cross-sectional dimensions.

The straightforward approach is based on simulations of equity returns. As discussed

in Section 2, a firm default may happen if the equity return is too negative compared to

pre-specified default threshold. In the multivariate distribution, these thresholds define a

distress region. We can generate simulations and compute tail probabilities by counting the

number of realizations in this pre-determined distress region. In this paper, we simulate from

the estimated dynamic multivariate GHST distribution. The distress region is determined

by the default thresholds transformed from Moody’s EDF estimates. This simulation based

method is general enough for all different distributions and model specifications.

When the dimension of the dataset becomes too large, the simulation based risk mea-

surements become inefficient. We need a large number of simulations. Interestingly, we are

able to explore the advantage of the equicorrelation structure for the simplified correlation

matrix. This is the alternative approach to produce the systemic risk in a large system. We

consider the system of banks as homogenous portfolio of equities.1 We can use a Law of

1The homogeneity assumption is only used for exposition. Different 𝛾𝑖 and 𝜌𝑖 in the block equicorrelation
structure can easily be allowed for.
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Large Number (LLN) result in the context of credit risk as in Lucas et al. (2001). We define

the Systemic Risk indicator as the probability that a certain number of banks default in the

same timespan. The number of defaults at time 𝑡 is

𝑐𝑁,𝑡 =
1

𝑁

𝑁∑
𝑖=1

1{𝑦𝑖,𝑡 < 𝑦∗𝑖,𝑡∣𝜅𝑡, 𝜍𝑡}. (33)

Given that the 1{𝑦𝑖,𝑡 < 𝑦∗𝑖,𝑡}s are conditionally independent, the Law of Large Numbers tells

us if 𝑁 → +∞,

𝑐𝑁,𝑡 ≈ 1

𝑁

𝑁∑
𝑖=1

E(1{𝑦𝑖,𝑡 < 𝑦∗𝑖,𝑡∣𝜅𝑡, 𝜍𝑡}) (34)

=
1

𝑁

𝑁∑
𝑖=1

P[𝑦𝑖,𝑡 < 𝑦
∗
𝑖,𝑡∣𝜅𝑡, 𝜍𝑡]. (35)

If the returns are GHST distributed and have a block equicorrelation structure as equation

(26), we can model the banks’ market values as:

𝑦𝑡 = (𝜍𝑡 − 𝜇𝜍)𝛾 +√
𝜍𝑡𝑧𝑡, (36)

𝑧𝑡 = 𝜂𝑡𝜅𝑡 + Λ𝑡𝜖𝑡, (37)

where 𝜅𝑡 ∼ N(0, 1) and 𝜖𝑡 ∼ N(0, I𝑁), 𝜂𝑡 is a vector of parameters (𝜂1,𝑡, ⋅ ⋅ ⋅ , 𝜂𝑁,𝑡)
′, and Λ𝑡 is

an 𝑁 × 𝑁 diagonal matrix with (𝜆1,𝑡ℓ
′
1, ⋅ ⋅ ⋅ , 𝜆𝑚,𝑡ℓ

′
𝑚) on the diagonal. We are interested in

finding the values of 𝜂𝑡 and Λ𝑡 such that Var(𝑧𝑡) = 𝑅𝑡. We know

Var(𝑦𝑡) = Ξ𝑡 + 𝑢𝑡𝑢
′
𝑡

= 𝜇𝜍Λ
2
𝑡 + 𝜇𝜍𝜂𝑡𝜂

′
𝑡 + 𝜎

2
𝜍 𝛾𝛾

′. (38)

So the parameters 𝜂𝑡 and Λ𝑡 should satisfy the following equations,

𝜆𝑖,𝑡 =

√
1− 𝜌2𝑖,𝑡
𝜇𝜍

, for 𝑖 = 1, ⋅ ⋅ ⋅ ,𝑚, (39)

𝜇𝜍𝜂𝑡𝜂
′
𝑡 = 𝑢𝑡𝑢

′
𝑡 − 𝜎2

𝜍 𝛾𝛾
′. (40)
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This is a two-factor model with a common Gaussian factor 𝜅𝑡 and a mixing factor 𝜍𝑡. The

stability measure in this setting is given by

𝑝𝑡 = P(𝐶𝑁,𝑡 > 𝑐𝑝,𝑡), (41)

where we can compute the measure conditional on the latent factors 𝜅𝑡 and 𝜍𝑡,

𝑐𝑝,𝑡 =
1

𝑁

𝑁∑
𝑖=1

P[𝑦𝑖,𝑡 < 𝑦
∗
𝑖,𝑡∣𝜅𝑡, 𝜍𝑡], (42)

P[𝑦𝑖,𝑡 < 𝑦
∗
𝑖,𝑡∣𝜅𝑡, 𝜍𝑡] = Φ

(
(𝑦∗𝑖,𝑡 + 𝜇𝜍𝛾𝑖 − 𝜍𝑡𝛾𝑖)/

√
𝜍𝑡 − 𝜂𝑖,𝑡𝜅𝑡

𝜆𝑖,𝑡

∣∣∣∣𝜅𝑡, 𝜍𝑡
)
. (43)

The risk measure is related to the number of defaults as a proportion in the portfolio. Using

equation (42), we rewrite the threshold common factor 𝜅𝑡 = 𝜅
∗
𝑡 (𝑐𝑝,𝑡, 𝜍) as a function of the

default proportion 𝑐𝑝,𝑡 and the mixing variable 𝜍𝑡. We are able to compute the joint default

probability numerically as

𝑝𝑡 = P(𝐶𝑁,𝑡 > 𝑐𝑝,𝑡) =

∫
P(𝜅𝑡 < 𝜅

∗
𝑡 (𝑐𝑝,𝑡, 𝜍𝑡))𝑝(𝜍𝑡)d𝜍𝑡. (44)

Similarly, we can compute the probability of certain proportion 𝑐−𝑖
𝑝,𝑡 of the system excluding

bank 𝑖 defaulting conditional on the event that bank 𝑖 fails.

P(𝐶𝑁−1,𝑡 > 𝑐
−𝑖
𝑝,𝑡∣𝑦𝑖,𝑡 < 𝑦∗𝑖,𝑡) =

P(𝐶𝑁−1,𝑡 > 𝑐
−𝑖
𝑝,𝑡, 𝑦𝑖,𝑡 < 𝑦

∗
𝑖,𝑡)

P(𝑦𝑖,𝑡 < 𝑦∗𝑖,𝑡)

=

∫
Φ2(

𝑧∗𝑖,𝑡
√
𝜇𝜍√

1−𝜎2𝜍 𝛾
′𝛾
, 𝜅∗𝑡 (𝑐

𝑖
1,𝑡, 𝜍𝑡), 𝜂𝑖,𝑡)𝑝(𝜍𝑡)d𝜍𝑡∫

P(𝜅𝑡 < 𝜅∗𝑡 (𝑐𝑖1,𝑡, 𝜍𝑡))𝑝(𝜍𝑡)d𝜍𝑡
,

(45)

where

𝑧∗𝑖,𝑡 =
𝑦∗𝑖,𝑡 − (𝜍𝑡 − 𝜇𝜍)𝛾𝑖√

𝜍𝑡
(46)

from Equation (36), Φ2(⋅, ⋅, 𝜂𝑖,𝑡) is the bivariate normal CDF with correlation 𝜂𝑖,𝑡, and

𝜅∗𝑡 (𝑐
𝑖
1,𝑡, 𝜍𝑡) denotes the corresponding threshold common factor when bank 𝑖’s equity return
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fall below the threshold 𝑦∗𝑖 . This conditional probability is close to the Multivariate extreme

spillovers indicator of Hartmann, Straetmans, and de Vries (2005).

We define the average of this conditional default probability over 𝑁 financial firms as

the Systemic Risk Measure (SRM), as it measures the possibility that an individual credit

event increases the level of systemic risk. We apply the two measurements proposed here in

the empirical section.

5 Empirical application

In this section, we compute the banking stability measure in the European Union. We

observe 73 major financial groups with complex interactions. The data contain monthly

observations of equity prices and estimated EDFs for all 73 financial institutions. Our whole

sample covers the period January 1992 to June 2010, but with missing observations of several

names in the beginning of the sample. Dealing with missing values in our model’s setting is

straightforward. Both the likelihood and the score steps in the dynamic GHST model adapt

automatically if data are not observed at particular times and there are no sample selection

issues.

The analysis in this section consists of two parts. To compare the dynamic GHST

model with the block GAS Equicorrelation models, we choose a subsample consisting of ten

European banks. The full multivariate model from Section 3.1 is estimated with a time-

varying covariance matrix. We also show the estimation results for models in Section 3.3.

These results are presented in Section 5.1. Second, we impose the GAS Equicorrelation

structure in the dynamic GHST model for the whole sample of 73 financial institutions. The

conditional Law of Large Numbers approximation is implemented to compute the Banking

Stability Measure and the Systemic Risk Measure. Section 5.2 includes the results for this

analysis.
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5.1 The system of major European banks

In our first analysis, we select a geographically diversified sub-sample of 10 banks in the

Euro Area: Bank of Ireland, BBVA, Santander, BNP Paribas, Commerzbank, Deutsche

Bank, Societe Generale, ING, UniCredito, National Bank of Greece. To estimate the time-

varying correlations and volatilities, we use monthly log returns from January 1994 to June

2010 from Bloomberg. The dataset contains 198 observations for each series. The EDF data

used to compute the distress thresholds are provided by Moody’s KMV. From the descriptive

statistics in Table 1 we see that all equity returns are skewed and fat-tailed. Commerzbank

and ING Group stand out with a pronounced skewness of -1.10 and -1.64, and a kurtosis of

8.33 and 6.99, respectively. However, the Bank of Ireland has a large kurtosis of 16.053. We

model the equity returns from all 10 banks with our skewed and heavy-tailed dynamic GH

skewed-𝑡 model.

We first estimate the full correlation matrix with forty-five pair-wised dynamic corre-

lations driven by the scaled autoregressive scores. The dynamics of these correlations are

different over time, but they share some commonality. For instance, all correlations go

up during the financial crisis, especially after the failure of Lehman Brothers in September

2008. Figure 2 depicts the correlation series of the other nine banks with the Bank of Ireland,

which received recapitalization and a bail-out from the Irish government and ECB in 2009

and 2010. The correlations show a significant drop around the year 2001 and rise during the

financial crisis 2008 and onwards.

The estimated volatility series are plotted in separate panels in Figure 1. The volatility

estimates are obtained via estimation of the GH skewed-𝑡 distribution for each individual

time series. All parameters in the volatility models are significant at the 5% significant level,

as shown in Table 2. From the graph, we see three highly volatile periods corresponding

to either financial crises or global economic recessions. The most recent period with clearly

high volatility begins in Sept. 2008, when the failure of Lehman Brothers brought down

the stock prices of all banks. But the magnitude of this increase differs from one institution

to the other. The most volatile time series is the Bank of Ireland’s equity return. In the
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Table 1: Sample Descriptive Statistics.

The descriptive statistics for the monthly equity returns between January 2000 and June 2010. The sample
mean values are all very close to zeros. The standard deviations, minimum and maximum values are
multiplied by 100 respectively in the table. All skewness and excess kurtosis are significantly different from 0.

Mean Std.Dev. Skewness Kurtosis Minimum Maximum
Bank of Ireland 0.000 1.309 -0.594 16.053 -113.917 106.153
BBVA 0.000 0.710 -0.512 3.220 -38.894 37.003
Santander 0.000 0.720 -0.725 3.758 -40.720 37.609
BNP Paribas 0.000 0.675 -0.502 3.261 -34.001 32.959
Commerzbank 0.000 0.940 -1.101 5.474 -67.779 45.536
Deutsche Bank 0.000 0.760 -0.421 3.906 -46.588 45.444
Societe Generale 0.000 0.777 -0.968 4.110 -53.679 29.201
ING 0.000 0.896 -1.647 8.939 -73.367 45.187
UniCredito 0.000 0.752 -0.048 3.282 -44.318 36.017
National Bank of Greece 0.000 0.938 0.336 2.324 -48.178 53.652

midst of the Global Financial Crisis, the Irish Banking Crisis hits this largest Irish bank

even harder. The Bank of Ireland was recapitalized by the Irish Government in February

2009 and further bailed-out by the ECB and IMF in 2010. The idiosyncratic shock to the

Bank of Ireland, on top of the common shock from the Lehman Brother’s bankruptcy, drives

up its volatility even higher.

We filter the equity returns with the estimated volatilities and apply a multivariate GH

skewed-𝑡 model in the second step. The time-varying correlation matrices are assumed to

follow the GAS model in Equations (14) and (16). We implement four dynamic GHST

models imposing different parameterizations on the dynamic correlation matrix.

As a comparison, we estimate the dynamic GH skewed-𝑡model with the GAS-Equicorrelation

model (Equations (29)-(32)), and the two-Block GAS-Equicorrelation model (Equations

(26)-(28)) on the same sample. The banks are separated into two groups. The first group

contains the Bank of Ireland, BBVA, Santander, UniCredito and the National Bank of

Greece. The second group includes the rest banks. The correlation estimates are plotted

in the bottom panels in Figure 2. As benchmarks, we also include the average correlation

from the Rolling Window (RW) method with the window size set to 12 months.

If we compare the Equicorrelation model outputs and the average correlation from the

GAS model and RW method, the dynamic equicorrelation appears to be an average of the
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Table 2: The Estimation Results: Part I.

The parameter estimated in our GAS-GHST models for ten banks’ equity returns. We use
univariate GAS-GHST models for the marginal volatility. With the filtered returns, we
estimate three dynamic correlation models: the GAS Equicorrelation model, the Block GAS
Equicorrelation model, and the GAS model with full correlation structure. All parameters
are significant at the 5% level.

Dynamic Volatility

𝐴 𝐵 𝜔 𝛾 Log-lik
Bank of Ireland 0.201 0.964 0.093 -0.206 -725.655

(0.003) (0.002) (0.005) (0.004)
BBVA 0.154 0.902 0.220 -0.145 -701.432

(0.003) (0.004) (0.010) (0.004)
Santander 0.196 0.884 0.256 -0.163 -696.317

(0.004) (0.005) (0.011) (0.004)
BNP Paribas 0.212 0.866 0.295 -0.152 -691.252

(0.005) (0.006) (0.014) (0.005)
Commerzbank 0.168 0.929 0.175 -0.167 -738.160

(0.003) (0.003) (0.006) (0.004)
Deutsche Bank 0.168 0.910 0.211 -0.105 -715.436

(0.003) (0.004) (0.010) (0.005)
Societe Generale 0.196 0.918 0.189 -0.134 -711.646

(0.003) (0.003) (0.008) (0.005)
ING 0.167 0.915 0.200 -0.224 -719.552

(0.003) (0.003) (0.007) (0.004)
UniCredito 0.126 0.969 0.071 -0.064 -708.966

(0.003) (0.002) (0.004) (0.005)
National Bank 0.141 0.927 0.188 -0.060 -768.016
of Greece (0.003) (0.003) (0.008) (0.005)

Dynamic Correlation

A B 𝜔1 𝜔2 𝛾 Log-lik AIC BIC
GAS EquiCorr (1) 0.116 0.915 0.205 -0.071 -2050.956 4111.91 4128.35

(0.004) (0.005) (0.015) (0.002)
GAS EquiCorr (2) 0.070 0.907 0.931 1.417 -2052.116 4114.23 4130.67

(0.002) (0.004) (0.011) (0.011)
GAS Model 0.027 0.717 1.007 -1952.200 3914.40 3930.84

(0.001) (0.007) (0.001)
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Figure 1: Volatility estimations for the banks’ equities

The volatility estimates from the Dynamic GH Skewed-𝑡 for all the banks’ stock return
data. (BBVA stands for BBV.Argentaria and DB refers to Deutsche Bank.)
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Figure 2: Correlation estimations between the other banks and the Bank of Ireland

The correlation estimates from Dynamic GH Skewed-𝑡 model with banks’ stock returns.
We selected the correlations of the Bank of Ireland’s with other banks in our sample. The
last two panels are from a one-factor and two-factor equicorrelation model in the skewed-𝑡
distribution.
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pairwise correlations. The flexible GAS-GHST model allows for more heterogenous dynamics

on the pair-wise correlation coefficients. But we also see that the equicorrelation model picks

up the most salient comovements in the data, such as the drop of correlation in 2001 and

the increase after 2008 due to the financial crisis. In the model estimates from the two-block

GAS-Equicorrelation matrix, we see that the three correlation estimates exhibit similar time-

varying patterns as the equicorrelation dynamics. But we start to see differences in particular

periods, for instance around the year 2008. It seems that the correlation of banks in the first

group is higher in the crisis period. We provide the parameter estimates and log-likelihood

values from the dynamic correlation models in Table 2.

With the estimated GH skewed-𝑡 distributions, either with the full model or with the

equicorrelations and block equicorrelations, we can compute the Banking Stability Measure

(BSM) and Systemic Risk Measure (SRM) given the default thresholds from inverting the

GH skewed-𝑡 CDF at the observed EDF levels. The banking stability measure is defined

as the joint probability of three or more banks defaulting. The Systemic Risk Measure is

constructed with the conditional statement of two or more banks defaulting given bank 𝑖

defaulted. With the estimated multivariate GH skewed-𝑡 distributions, we can use simu-

lations to compute the risk indicators. We use 10,000,000 simulations at each time 𝑡 and

count the number of banks under stress. As we obtain the simulations directly, we can

compute the conditional and unconditional default probabilities. Alternatively if we use the

GAS-Equicorrelation model, we can analytically calculate these measures under the LLN ap-

proximation suggested in Section 4. The analytical calculation is fast and less cumbersome

than the simulation method.

From Figure 3, we see that the dynamic patterns of the risk indicators are very sim-

ilar irrespective of the computation method used. The Banking Stability measures simu-

lated/calculated from different correlation models are close to each other. The LLN approx-

imated risk measure somewhat understates the risk in normal times and overestimates the

risk in crisis times after the year 2008. This is because the number of banks is as small

as 10 in our current setting, which makes the LLN approximation less accurate. Figure 4

plots the Systemic Risk Measure proposed in Section 4. The simulated (SIM) measure is
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computed with the straightforward simulation method and the correlation matrix is driven

by the estimated GAS model in Result 1. The LLN approximated Systemic Risk Measure is

calculated analytically based on the dynamic Equicorrelation estimates. We see the differ-

ence in the SRM between these two methods. The approximated SRM with the conditional

Law of Large Numbers is always lower than the simulated SRM, but the pattern over time

is similar. If we look at the average of the approximated indicator in the last panel, we see a

break around the year 2002 in the mean for the analytical SRM. This may be attributed to

the introduction of the Euro as a common currency, which tightened the interconnectedness

of the European banks.

5.2 European large financial institutions

The task becomes more challenging with a few European large financial institutions. These

financial institutions are large and possibly systemically important, as their failure would

likely spread and have adverse implications for financial markets or other financial institu-

tions operating within the system.

The datasets we use are monthly equity returns from 73 financial institutions. These

institutions are European banks, insurance companies and investment companies. In Table

3, we provide a full list of the names in our sample. The sample skewness and kurtosis for

each time series is also included in the table. Most equity return series exhibit negative

skewness and fat-tailness.

The sample covers the period between January 1992 and June 2010. But the length

of time series differs for each financial institution. The longest time series contains 488

observations and the shortest one has 10 observations. We modified our model to adapt to

this structure. We assume the time-varying equicorrelation matrix is driven by one common

factor that follows the GAS process. The correlation between two institutions starts to load

this dynamic factor once the equity returns become available for both names. So the size of

the correlation matrix is also changing over time and reaches 73 at the maximum. There are

two approaches to compute the stability measure for this large dimensional dataset. One is

the simulation method proposed in Section 5.1. The drawback is that it takes a long time
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Figure 3: The Banking Stability Measures: a comparison

The Banking Stability Measure constructed from the Dynamic GH skewed-𝑡 models. A
comparison study is provided here with two different correlation assumptions. The top left
and bottom left panel contains the BSM with Dynamic Equicorrelation, but the top one is
calculated with the analytical computation and the other one is simulated. The top right
plot shows the simulated BSM with the full model correlation result. These measures are
defined as the probability of three or more firm defaults.
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Figure 4: The Systemic Risk Measures: a comparison

The Systemic Risk Measure constructed from the Dynamic GH skewed-𝑡 models. We show
the result of simulated SRM with correlation estimates from a Full GAS model, as well
as the LLN approximated SRM from a Dynamic Equicorrelation model. The last panel
contains the average of the SRM measure over all firms. SRM is defined as the probability
of two or more firms defaulting given firm 𝑖 failing.
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Table 3: Sample Skewness and Kurtosis Statistics.

Descriptive statistics for the CRSP stock returns between January 1970 and June 2010.
All observations are monthly log returns. All names are large European financial firms
including banks, insurance companies and investment firms.

Name Skewness Kurtosis Name Skewness Kurtosis
ACKERMANS & VAN HAAREN -0.10 3.92 DEUTSCHE BANK (XET) -0.36 6.55
AEGON -1.13 6.75 DEUTSCHE BOERSE (XET) -0.30 3.98
AGEAS (EX-FORTIS) -3.78 30.21 DEUTSCHE POSTBANK (XET) -1.39 8.42
ALLIANZ (XET) -0.58 5.77 DEXIA -0.83 7.56
ALLIED IRISH BANKS -2.16 13.41 EFG EUROBANK ERGASIAS -0.21 5.19
ALPHA BANK -0.42 4.36 ERSTE GROUP BANK -0.61 9.86
GENERALI -0.83 5.40 EURAZEO -0.45 5.00
ATRIUM EUROPEAN RLST. -0.32 10.60 FONCIERE DES REGIONS -0.85 8.33
AXA -1.05 6.67 GECINA -0.33 7.49
AZIMUT HOLDING -0.26 3.43 GBL NEW -0.85 5.06
BANK OF IRELAND -0.32 13.30 SOCIETE GENERALE -0.72 4.72
BANKINTER ’R’ 0.09 4.97 HANNOVER RUCK. (XET) -0.85 6.65
BANCA CARIGE -1.36 8.54 ICADE -0.29 3.76
BANCA MONTE DEI PASCHI -0.95 5.76 IMMOFINANZ -2.75 19.24
BANCA POPOLARE DI MILANO -0.61 4.37 ING GROEP -1.36 9.58
BANCA PPO.DI SONDRIO -0.28 3.71 INTESA SANPAOLO -0.96 5.40
BANCA PPO.EMILIA ROMAGNA -1.02 7.33 KBC GROUP -0.99 9.54
BBV.ARGENTARIA -0.33 4.47 KLEPIERRE -0.97 6.20
BANCO COMR.PORTUGUES ’R’ -0.50 4.10 MAPFRE -0.40 4.94
BANCO DE VALENCIA -0.25 4.27 MARFIN INV.GP.HDG. 0.19 3.78
BANCO ESPIRITO SANTO -1.03 6.19 MEDIOBANCA 0.11 4.36
BANCO POPOLARE -0.99 8.06 MUENCHENER RUCK. (XET) -0.37 10.20
BANCO POPULAR ESPANOL -0.34 6.42 NATIONAL BK.OF GREECE -0.37 4.70
BANCO DE SABADELL -0.24 3.99 NATIXIS 0.26 8.21
BANCO SANTANDER -0.66 4.73 BANK OF PIRAEUS -0.45 3.62
BNP PARIBAS -0.66 6.56 POHJOLA PANKKI A -1.77 13.97
BOLSAS Y MERCADOS ESPANOLES -0.07 3.85 RAIFFEISEN INTL.BK.HLDG. -0.99 5.89
CATTOLICA ASSICURAZIONI -0.35 5.45 SAMPO ’A’ -0.48 3.63
CNP ASSURANCES -0.65 4.01 SCOR SE -2.58 17.83
COFINIMMO -1.43 7.86 SOFINA -0.86 5.01
COMMERZBANK (XET) -0.92 6.31 UBI BANCA -0.86 7.05
CIE.NALE.A PTF. -0.35 3.20 UNIBAIL-RODAMCO -0.78 3.54
CORIO -0.84 4.47 UNICREDIT -0.45 7.71
CREDIT AGRICOLE -0.66 4.17 VIENNA INSURANCE GROUP A -0.66 13.37
CREDITO VALTELLINES 0.16 5.09 WENDEL -0.98 4.58
CRITERIA CAIXACORP -0.73 4.05 WERELDHAVE -0.19 2.69
DELTA LLOYD GROUP -0.32 1.70
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to generate enough simulations for all possible stressed scenarios. The alternative way is to

use the law of large numbers (LLN) rule to approximate the probability, as in Section 4.

This approach is numerically easier and still sensible if the main purpose of the study is a

joint risk analysis as demonstrated in the previous subsection.

We assume our 73 institutions form a homogenous portfolio. That means all the institu-

tions have the same skewness and kurtosis coefficients 𝛾 and 𝜈 in the multivariate dynamic

distribution for their equity returns. With the volatilities estimated from marginal GAS-GH

skewed-𝑡 model, we standardize the equity returns and focus on the modeling of dynamic

correlations. A multivariate GHST distribution is estimated with the equicorrelation re-

striction. The parameter estimation results are shown in Table 4. The correlation coefficient

plotted in Figure 5 hovers around 0.3 over time. Compared with a rolling window corre-

lation series (the window size is 12), the GAS equicorrelation is more persistent over time.

But the means of these two correlation series are similar.

We compute the financial risk measures analytically given the multivariate GHST model

and the probability of default from the expected default frequency (EDF) of Moody’s KMV.

We numerically evaluate the integral (44) to compute the Banking Stability Measure, defined

as the probability of more than 10% financial institutions defaulting. The risk measure is

plotted in Figure 5. From the figure, the LLN result for the default probability does not

move too much before 2008. But it appears that the period of 2008-2010 is quite special: the

failure probability increases to more than five times the historical mean. We also compute the

same measure with the simulation method. The approximated risk indicator is the same as

the simulated one. So we did not include that in the graph. We plot the LLN approximated

risk indicators, the Banking Stability Measure and the Systemic Risk Measure in Figure 6.

From the graphs, we see the large influence of the recent financial crisis, which drives up the

two risk measures in that period. Note that the systemic risk indicator shoots up to 0.60

around the failure of Lehman Brothers.
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Figure 5: The Banking Stability Measures in whole sample

The Banking Stability Measure defined as the probability of more than 10% firms defaulting
under the Law of Large Numbers approximation result. The upper-right panel show the
dynamic correlation estimated in the GAS-Equicorrelation model. And the bottom-left
panel plots the average of pairwise rolling window correlation coefficients. As a comparison,
the bottom-right panel shows the two correlation estimates jointly.
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Figure 6: The Banking Stability Measure and Systemic Risk Measure

The Banking Stability Measure (BSM) and Systemic Risk Measure (SRM) under the LLN
approximation from the GAS-GHST Equicorrelation model. The BSM indicator is defined
as the probability of more than 10% firms defaulting at time 𝑡. The SRM indicator is the
average of the default probability of more than seven other firms default conditional on firm
𝑖 defaulting.
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6 What factors drive the bank equity correlation?

A natural extension of the statistical model so far is to relate the correlation dynamics in

the banking system to observed factors. There are extensive discussions about the common

factors underlying stock returns and stock return correlations, for example Hou et al. (2011).

Also research has been done on idiosyncratic volatility factors, see Bekaert et al. (2010).

However to the knowledge of the authors, less attention has been paid to study which

observed factors determine dynamic correlations in the banking system. This is essential

for the purpose to differentiate contagion effects and interdependence in the comovement of

banks’ equity returns. In this section, we select a set of economic variables ranging from

global macroeconomic factors to market and country specific observed indicators to capture

the dynamics in correlations.

We allow the correlations 𝜌𝑡 to depend on both observed (𝑋𝑡) and unobserved (𝑓𝑡) factors.

Define 𝑋 = (𝑋1, ⋅ ⋅ ⋅ , 𝑋𝑡) as a 𝑁 × 𝜏 matrix of economic variables and 𝛽 a 1×𝑁 vector of

parameters,

𝜌𝑡 = 𝜗(𝑓𝑡 + 𝛽𝑋𝑡). (47)

where 𝑓𝑡 has the familiar GAS dynamics. The monthly economic variables we choose for

𝑋𝑡 are: the European Volatility Index (VSTOXX), the Euribor-EONIA (ECB Overnight

Interest) spread, and the S&P European stock market index return. VSTOXX is a pop-

ular measure of the implied volatility of European index options. It is considered to be

a good measure of the short term volatility and thus an indicator for market turbulence.

The Euribor-EONIA spread is a measurement of liquidity in the banking sector. The S&P

European stock market index tracks the health of European equity markets and corporate

profitability conditions as perceived by financial markets. It describes the condition of Eu-

ropean stock markets and also reflects the state of the economy. The time series are plotted

in Figure 7. The sample including the explanatory variables 𝑋𝑡 ∈ ℝ
3 covers the period

January 2000 to June 2010. The parameters in the Dynamic GHST framework and the new

regression coefficients 𝛽 are estimated via maximizing the log likelihood.

The coefficient estimates and standard errors are presented in Table 4. All coefficients
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Figure 7: The economic variables.

The plots of the economic variables used to explain the variation of correlation over time:
Euribor-EONIA, EU stock index return and VSTOXX.
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are significant at the level 5%. It appears that the stock market index significantly explains

the correlation movement. The negative sign coincides with the past observations about

downside risk and rising correlations during crises. As the Euribor-EONIA spread is a

measure of a lack in funding liquidity for the banking sector, we see the positive coefficient

for this variable as an indication that the correlation increases in times of market turbulence

and reduced liquidity. The coefficient for the VSTOXX is positive. It means that the

correlation is high when the market volatility is also high, as in times of financial crisis. We

plot the estimated equicorrelation with extra economic variables in Figure 8.

Table 4: Estimation Results Part II

The parameter estimates in the GAS-GHST models with extra economic variables and
the GAS-GHST Equicorrelation model. These models are estimated with the filtered
returns data. All parameters are significant at the 5% level. Note that the two models are
applied to different datasets. Due to the availability of the economic variables, the Aug-
mented GAS model uses a shorter dataset starting in January 2000 and ending in June 2010.

Augmented GAS Model GAS EqCorr Model

𝐴 0.270 0.239
(0.013) (0.018)

𝐵 0.903 0.897
(0.010) (0.012)

𝜔 -1.279 -1.214
(0.010) (0.004)

𝛾 -0.039 -0.034
(0.001) (0.001)

Euribor-EONIA 0.126
(0.008)

S&P European stock index -0.869
(0.071)

VSTOXX 0.160
(0.028)

Log-lik -9498.91 -9502.36

By adding observed economic variable to the GAS dynamics, the correlation estimates

are less persistent over time. They are still close to the previous GAS correlation estimates.

The major difference emerges before and after the Lehman Brothers’ bankruptcy on 2008.

The correlation produced by the augmented GAS model is higher before the bankruptcy.
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Figure 8: The correlation estimates from different models.

The correlation coefficient estimated over time with the Dynamic GHST density but with
different correlation models. The top-left panel plots the correlation estimates from the
Equicorrelation model. The top-right panel contains the time-series plot of the correlation in
the Equicorrelation model with extra economic variables. The bottom two panels shows the
correlation and the GAS factors under the Equicorrelation model and the Equicorrelation
model with extra variables. The left panel plots the correlation estimates and the right
panel is the plot of factors.
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Also note that the GAS factors 𝑓𝑡 in the augmented model are lower than the factors in the

GAS model. The reason is that the observed economic variables capture part of the corre-

lation movements. The time-varying pattern in correlations is driven partly by the market

perception of risk and liquidity. However, a substantial part of the correlation dynamics

are still unexplained with the three variables considered in our current analysis. Further

macroeconomic variables need to be added to the model to enhance its explanatory power

and capture more of the underlying economic mechanisms for changing dynamic (systemic)

correlations.

7 Conclusion

In this paper, we develop the dynamic GHST model with GAS-Equicorrelation or block GAS-

Equicorrelation structure. These models are applicable to large dimensional problems. We

also propose two risk measures with a large panel of multiple European financial institutions.

The Banking Stability measure we developed indicates the joint default risk in the system.

The Systemic Risk Measure takes the average of conditional default probabilities to test the

interconnectedness of the financial system. The full dynamic multivariate model with the GH

skew-𝑡 distribution is used to simulate the possible distress scenarios for the banks. Based on

the Monte Carlo simulation, we can analyze the joint and conditional credit risk in individual

financial institutions. Another risk measuring model originates from the conditional Law of

Large Numbers approximation method. With the application of a Dynamic Equicorrelation

model in a large system of financial firms, the approximated risk indicator provides a good

measure of credit risks for an unbalanced large panel.

We further showed the explanatory power of some commonly used economic variables

(VSTOXX index, Euribor-EONIA spread and European stock market index) to explain

systemic correlation dynamics. By introducing these new variables in our dynamic system,

the correlation becomes less persistent compared to the pure GAS dynamic model. The

residual GAS factor decreases due to the explanatory power of the extra economic variables.

It appears that we still miss one or a few more factors to explain the variation in correlation
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dynamics. Moreover, we might miss a few important firm specific variables, such as the

leverage ratio. The current model also enable us to measure the systemic risk contribution

of each bank by looking at the conditional probability in the multivariate GH skewed-𝑡

distribution. We leave this for future research.
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Appendix: the dynamic GAS-Equicorrelation model

The GH skewed-𝑡 distribution is a subclass of the GH distribution family which preserves

much of the flexibility of GH distribution, but with less parameters. With the observed stock

return for bank 𝑖 defined as 𝑦𝑖𝑡 following the GH skewed-𝑡 distribution, the model is

𝑦𝑡 ∼ 𝑝(Σ̃𝑡, 𝜈, 𝛾), (A1)

Σ̃𝑡 = 𝐿𝑡(𝑇𝑇
′)𝐿′

𝑡, (A2)

Σ𝑡 = 𝐿𝑡𝐿
′
𝑡 = 𝑅𝑡, (A3)

where 𝛾 collects the skewness parameters and the matrix 𝑇 satisfies the condition

(𝑇 ′𝑇 )−1 =
𝜈

𝜈 − 2
I𝑁 +

2𝜈2

(𝜈 − 2)2(𝜈 − 4)
𝛾𝛾′. (A4)

The deco-Dynamic-GH model defines the correlation matrix as

𝑅𝑡 = (1− 𝜌𝑡)𝐼𝑁𝜌𝑡ℓ𝑁ℓ′𝑁𝑁 , 𝜌𝑡 ∈ (
−1

𝑁 − 1
, 1), (A5)

where Σ𝑡 = 𝑅𝑡 is the dynamic conditional correlation matrix we are interested in and ℓ𝑁 ∈
ℝ

𝑁 is a vector of ones. In this model, we define 𝐿𝑡 as a symmetric matrix. Further, we

parameterize 𝜌𝑡 as a GAS model

𝜌𝑡 = 𝜗(𝑓𝑡), (A6)

𝑓𝑡+1 = 𝜔 + 𝐴𝑠𝑡 +𝐵𝑓𝑡. (A7)

We also define the scale matrix as Σ̃𝑡 = 𝐿𝑡𝐿𝑡
′
. The variable 𝑇 links these two matrices such

that �̃�𝑡 = 𝐿𝑡𝑇 .

The innovation term 𝑠𝑡 is the scaled observation density score as in Zhang et al. (2011).
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Note that the matrix 𝐿𝑡 is symmetric.

𝑠𝑡 = 𝒮𝑡∇𝑡, (A8)

∇𝑡 = Ψ′
𝑡𝐻

′
𝑡vec

(
𝑤𝑡 ⋅ 𝑦𝑡𝑦′𝑡 − Σ̃𝑡 −

(
1− 𝜈

𝜈 − 2
𝑤𝑡

)
�̃�𝑡𝛾𝑦

′
𝑡

)
, (A9)

𝒮𝑡 =
{
Ψ′

𝑡(I⊗ �̃�−1
𝑡 )′[𝑔𝐺− vec(I)vec(I)′](I⊗ �̃�−1

𝑡 )Ψ𝑡

}−1

, (A10)

𝐻𝑡 = ((I𝑁2 + 𝒞𝑁)(Σ𝑡 ⊗ Σ̃𝑡))
−1, (A11)

Ψ𝑡 =
∂vec(Σ𝑡)

′

∂𝑓𝑡
, (A12)

where 𝑔 = 𝜈+𝑑
𝜈+2+𝑑

and 𝐺 is defined as in Creal et al. (2011).

From the derivation, it is clear that we have to take inverses and compute the determi-

nants of matrices in a large dimension. If we have the matrices in blocks or in the form

of the equicorrelation model, we can obtain the inverse and determinant in analytical form

which will help to speed up the computations. To get the matrix 𝐿𝑡 in an easy-to-operate

form, we have

�̃�𝑡 = 𝑎𝑡I𝑁 + 𝑏𝑡ℓ𝑁ℓ
′
𝑁 , (A13)

where 𝑎𝑡 =
√
1− 𝜌𝑡 and 𝑏𝑡 = (

√
1− 𝜌𝑡 +𝑁𝜌𝑡−

√
1− 𝜌𝑡)/𝑁 . The condition for the correlation

matrix to be positive definite does not change.

𝑇−1 = 𝑐I𝑁 + 𝑑ℓ𝑁ℓ
′
𝑁 , (A14)

where

𝑐 =
1√
𝜇𝜍
,

𝑑 =

√
𝜇𝜍 −

√
𝜎2
𝜍 𝛾

′𝛾 + 𝜇𝜍√
𝜇𝜍

,

𝜇𝜍 =
𝜈

𝜈 − 2
,

𝜎2
𝜍 =

2𝜈2

(𝜈 − 2)2(𝜈 − 4)
.
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So we have

𝐿𝑡 = �̃�𝑡𝑇
−1 = 𝑎𝑡𝑐I𝑁 + (𝑎𝑡𝑑+ 𝑏𝑡𝑐+𝑁𝑏𝑡𝑑)ℓ𝑁ℓ

′
𝑁 . (A15)

It is straightforward to derive the inverse and determinant as

𝐿−1
𝑡 =

1

𝑎𝑡𝑐
I𝑁 − 𝑎𝑡𝑑+ 𝑏𝑡𝑐+𝑁𝑏𝑡𝑑

𝑎𝑡𝑐(𝑎𝑡𝑐+𝑁(𝑎𝑡𝑑+ 𝑏𝑡𝑐+𝑁𝑏𝑡𝑑))
ℓ𝑁ℓ

′
𝑁 , (A16)

det(Σ𝑡) = det(𝐿𝑡)
2 = (𝑎𝑡𝑐)

2(𝑁−1)(𝑎𝑡𝑐+𝑁(𝑎𝑡𝑑+ 𝑏𝑡𝑐+𝑁𝑏𝑡𝑑))
2. (A17)

In the application with the whole sample, it appears that the computation of the scale

matrix and score matrix takes too much time. One reason is the inversion of a large 𝑁 ×𝑁
matrix in equation (A11). In order to reduce the burden for calculation, we manage to derive

Ψ𝑡 analytically, which would speed up the computational speed.

Ψ =
∂vec(𝐿𝑡)

∂𝑓𝑡
=

(
d𝑎𝑡
d𝜌𝑡
𝑐vec(I𝑁) + (

d𝑎𝑡
d𝜌𝑡
𝑑+

d𝑏𝑡
d𝜌𝑡
𝑐+

d𝑏𝑡
d𝜌𝑡
𝑁𝑑)ℓ𝑁2

)
𝜗′(𝑓𝑡), (A18)

d𝑎𝑡
d𝜌𝑡

= − 1

2
√
1− 𝜌𝑡 ; (A19)

d𝑏𝑡
d𝜌𝑡

=
1

2𝑁

(
𝑁 − 1√

1− 𝜌𝑡 +𝑁𝜌𝑡
+

1√
1− 𝜌𝑡

)
. (A20)

This does help in getting out the correlation simply. The scale matrix 𝒮𝑡 is the inverse Fisher

information matrix from the symmetric 𝑡 distribution, as explained in Zhang et al. (2011).

41



References

Avesani, R. G., A. G. Pascual, and J. Li (2006). A new risk indicator and stress testing tool: A

multifactor nth-to-default cds basket.

Barndorff-Nielsen, O. and C. Halgreen (1977). Infinite divisibility of the hyperbolic and general-

ized inverse Gaussian distributions. Probability Theory and Related Fields 38 (4), 309–311.

Bekaert, G., R. Hodrick, and X. Zhang (2010). Aggregate idiosyncratic volatility. Technical

report, National Bureau of Economic Research.

Bibby, B. and M. Sørensen (2001). Simplified estimating functions for diffusion models with a

high-dimensional parameter. Scandinavian Journal of Statistics 28 (1), 99–112.

Bibby, B. and M. Sørensen (2003). Hyperbolic processes in finance. Handbook of heavy tailed

distributions in finance, 211–248.

Black, F. and J. C. Cox (1976). Valuing corporate securities: Some effects of bond indenture

provisions. The Journal of Finance 31 (2), 351–367.

Brunnermeier, M. K. and L. H. Pedersen (2009). Market liquidity and funding liquidity. Review

of Financial Studies 22(6), 2201–2238.

Cont, R. and P. Tankov (2004). Financial modelling with jump processes, Volume 2. Chapman

& Hall.

Creal, D., S. Koopman, and A. Lucas (2011). A dynamic multivariate heavy-tailed model for

time-varying volatilities and correlations. Journal of Business & Economic Statistics 29 (4),

552–563.

Eberlein, E. (2001). Application of generalized hyperbolic lévy motions to finance. Lévy processes:
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