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Abstract

This paper analyzes efficient pricing at a congested airport dominated by a single firm. Unlike much

of the previous literature, we combine a dynamic (bottleneck) model of congestion and a vertical structure

model that explicitly considers the role of airlines and passengers. We show that when a Stackelberg leader

interacts with a competitive fringe, charging the congestion toll that is derived for fully atomistic carriers

to both leader and fringe yields the first-best outcome. This holds regardless of the leader’s internalization

of congestion in the unregulated equilibrium, and regardless of the assumed demand substitution pattern

between firms. This result implies that the financial deficit under optimal pricing may be less severe than

what earlier studies suggest. Finally, we show that there are various alternative toll regimes that also induce

the welfare maximizing outcome, and therefore widen the set of choices for regulators.
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1. Introduction

As congestion at major airports worldwide continues to increase and traffic approaches existing capacity,

the implementation of policies aimed at reducing delays effectively are becoming essential. For example,

in the first half of 2007, 30 percent of commercial flights in U.S. arrived more than 15 minutes late, and

similar figures hold for European airports (Rupp, 2009; Santos and Robin, 2010). Policies to solve the

congestion problem have been extensively discussed during the last decades. One alternative is capacity

enlargements, but these have the drawback of bringing benefits only after a long period of time, and at a

relatively high monetary cost (see Jorge and de Rus (2004) for a cost-benefit analysis). Another option is

congestion pricing, perhaps the most discussed policy in the academic economics literature, often heavily

inspired by the road pricing literature.1 However, governments, regulators and airports have not followed
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this path. The current practice at many airports is to levy weight-based landing fees, a rule that has been

criticized since early contributions by Levine (1969) and Carlin and Park (1970), who were the first to

argue that these charges provide wrong incentives and lead to inefficiencies. Despite of four decades of

theoretical and empirical contributions calling for implementation of efficient landing and takeoff charges

based on economic principles, airport pricing schemes have been kept remarkably unchanged. But, as delays

are reaching critical levels and other negative externalities, such as pollution and noise, are becoming more

important, congestion pricing is likely to turn into a serious option for governments and regulators.2 This

policy may be specially appealing because landing fees are already in place, and only changes in the way

that they are charged are needed. Moreover, in some countries, such as the U.S., landing fees are allowed

to vary by time of the day, a fundamental feature of an efficient congestion pricing scheme.

It is now widely agreed that the vast literature on road congestion pricing may not be directly applicable

to airports, because airlines are non-atomistic players, in contrast to road drivers. Carriers have market

power and have non-negligible shares of the overall traffic and, as a consequence, they can be expected to

internalize the congestion imposed on themselves. Daniel (1995) was the first to recognize this, and Brueckner

(2002) and Pels and Verhoef (2004) analyzed the problem assessing the internalization of congestion with

theoretical models. Subsequent works by Brueckner (2005), Zhang and Zhang (2006), and Basso and Zhang

(2007) extend the analysis. The main conclusion, regarding congestion pricing, is that carriers competing in

a Cournot-Nash fashion internalize self-imposed congestion and, therefore, should be charged for the fraction

of congestion that they impose on others. This leads to a congestion charge that depends on the rivals’

market share at the congested airport, and, therefore, may be perceived as inequitable, as dominant airlines

should face lower charges than small carriers.

These results have led to a debate on congestion internalization that has not yet fully reached consensus.

On the one hand, Mayer and Sinai (2003) and Santos and Robin (2010) provide empirical evidence supporting

the internalization hypothesis. On the other, Daniel (1995) and Daniel and Harback (2008) argue empirically

that dominant airlines do not internalize self-imposed congestion because they act as Stackelberg leaders,

facing a group of perfectly competitive carriers (hereafter, the fringe). Based on this empirical result,

they suggest that the optimal congestion charge should be the so-called atomistic toll that ignores any

internalization. Subsequent theoretical works have aimed at bringing unity to the debate, using analytical

models that follow previous literature. Brueckner and Van Dender (2008) show that, indeed, an interaction

between a Stackelberg leader with fringe carriers can induce airlines to ignore the self-imposed congestion,

and that, in general, they only partially internalize own congestion. Silva and Verhoef (2011) consider a

differentiated Bertrand duopoly, and show that airlines internalize only part of the self-imposed congestion,

2Congestion pricing can be a second-best solution for environmental externalities. See, for example, Carlsson (2003) for an

analysis of airport pricing with congestion and emissions, and Brueckner and Girvin (2008) for an investigation of airport noise

regulation.
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because they realize that frequency increases affect rivals’ output through increased congestion. Under both

arguments, the first-best charge is in between the marginal external congestion cost imposed on the rivals,

and the “full” marginal congestion costs, which completely ignores internalization of own congestion costs.

Theoretical analyses that have contributed to this debate have often been based on static models of

congestion. This means, basically, that delays do not vary over time, and airlines are not concerned with

the time of arrival or departure of aircraft. However, a dynamic model of congestion is more appropriate

when scheduling preferences underlie observed peaks in travel, and when airports’ operational conditions

follow the first-come first-served discipline. In fact, this queuing discipline is the dominant mechanism in

U.S. airports; for example, Daniel and Harback (2008) show that the observed traffic pattern in most of the

major U.S. airports is consistent with the dynamic bottleneck model of congestion. In addition, they show

that most of the U.S. hub airports seem best described by a competition between a Stackelberg leader and a

competitive fringe, because it is the market structure that fits best the observed queuing patterns. Studies

to date have not aimed to provide transparent analytical insights in a context of dynamic congestion, for

the strategic interactions of airlines, and for the first-best charges that result from these interactions. This

is highly important, because static modeling misses the crucial behavioral margin of scheduling (flights) in

queuing problems. Therefore, the conclusions that can be drawn from models that ignore scheduling concern

only the total amount of flights. Instead, a structural model of dynamic congestion allows for an analysis

of the firms’ inefficiency in terms of the number of flights as well as the scheduling, and, as a consequence,

allows for a derivation of the optimal policy that deals with both.

The contribution of this paper is to provide clear-cut insights into and understanding of airlines’ strategic

interactions and airport congestion pricing in a model of dynamic congestion. We recognize the vertical

nature of aviation markets, thus explicitly including the role of airport’s tolls on airlines’ behavior, and

incorporating that airlines compete taking these into account, while facing passengers’ demand for trips.

We use the dynamic model of congestion used in most economic analyses in the literature, namely the

deterministic bottleneck model of congestion developed by Vickrey (1969) and Arnott et al. (1990, 1993).

This allows for an analysis that balances analytical tractability and the inclusion of behavioral decisions:

airlines endogenously adjust departure or arrival rates, trading off queuing delays and schedule delays, and

passengers dislike queuing and schedule delays in a different manner than airlines (i.e. at different shadow

prices). By combining these two modeling features, and focusing on the sequential competition between a

Stackelberg leader and a competitive fringe, we are able to obtain new insights and policy implications for

congested airports.

Our main result is that, while the (untolled) equilibrium is fully consistent with what previous literature

with static congestion suggests, first-best congestion pricing is not. In particular, when a Stackelberg leader

faces a competitive fringe, the equilibrium is fully consistent with static models in that the fringe does

not internalize any congestion, and in that the leader’s ability to exert market power and to internalize
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self-imposed congestion depends critically on the assumed substitution pattern (just as in Brueckner and

Van Dender (2008)). On the other hand, we find that the first-best optimum can be decentralized with a

pricing policy that consists of a market power subsidy for the leader, that is indeed a function of the assumed

substitution pattern, and a congestion toll for both agents that is independent of whether internalization

occurs in the untolled setting, and therefore also independent of the airlines’ substitutability. We show that

charging the congestion toll that is derived for the fully atomistic carriers to both leader and fringe yields the

first-best outcome. This is because the subsidy deals with the leader’s overpricing due to market power, and

the time-varying congestion toll eliminates queuing and provides the right incentives to take into account the

delays imposed on the rival airlines. We further show that another way of inducing the first-best outcome

is charging the dynamic atomistic toll to the fringe carriers, and a “flat” (time-independent) toll to the

leader that accounts only for the delays imposed on the fringe. This is also optimal because the anticipation

by the leader of the fringe carriers’ response to the toll already provides incentives to fully internalize the

self-imposed congestion, and to schedule flights without queuing. Only the delays imposed on the fringe

and the overpricing due to market power exertion need to be corrected with a time-invariant toll. Again,

the congestion component of the toll is independent of the degree of internalization by the leader in the

unregulated equilibrium. Finally, we show that there are various alternative toll regimes that also attain the

first-best, dealing with the congestion inefficiency in yet different ways, while still correcting for the market

power exertion.

The results of this paper suggest that optimal congestion pricing may have a more significant role on

airports than what has been suggested in the literature before. The congestion pricing scheme that is

obtained for fully atomistic carriers, that is independent of airlines’ market shares, induces the first-best

outcome and results in a revenue for the airport that restores the well known self-financing result for

congested facilities. We also show how the market-power exertion has to be corrected, finding insights

that are consistent with those in the previous literature, and that this overturns the self-financing result

if market-specific subsidies are drawn from the airport budget. Finally, our results also suggest that the

political feasibility of optimal congestion pricing would be enhanced, as the (first-best) atomistic congestion

charges do not vary across airlines and therefore may not be perceived as inequitable.

Our analysis contributes to the policy analysis on congested airports and extends previous literature that

do consider dynamic congestion at airports. Works such as Daniel (1995, 2001) and Daniel and Harback

(2008, 2009) focus on cost minimization of scheduling flights, hence ignoring the passengers’ role in the

problem, or at least treating that role only implicitly. Moreover, most of these papers aim at testing

whether the observed patterns of arrivals and departures of flights support the internalization hypothesis.

Daniel (2009) analytically studies the conditions under which dominant airlines internalize self-imposed

congestion with a deterministic bottleneck model, focusing on a Stackelberg-fringe competition, but omits

the passengers in the model, hence ignoring the fact that airlines use the airport as an input to sell an output
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in a downstream market. By combining the bottleneck congestion model with the explicit consideration of

two groups of agents (airlines and passengers) in a theoretical model, we are able to study key elements

that were not present in previous exercises with dynamic congestion. These include an analysis on how

airlines set the ticket price according to the time of departure, a derivation of an explicit relation between

the internalization of congestion and the assumed passengers’ demand substitution pattern between airlines,

and a clear comparison between the results derived in models of static congestion and the results obtained

with dynamic congestion. We are also able to study the implications, for the optimal pricing policy, of the

strategic interaction between the leader and the fringe, finding that there is a set of various pricing schemes

that maximize social welfare, as opposed to a single optimal congestion toll.3

Our results have to be qualified according to our assumptions. Naturally, the dynamic bottleneck model

is not directly applicable when queuing is not necessary or helpful for airlines in order to obtain a certain

arrival time, as in fully slot-constrained airports. This is because the airport’s regulator directly controls the

timing through slot allocations. For this case, more common in European airports, an analysis of slot sales

and slot trading is more pertinent (see Brueckner 2009). We also assume that airlines and passengers share

the desired time of arrival or departure and that airlines are homogeneous in values of time. The model

can be straightforwardly extended in these directions following the road pricing literature.4 Lastly, we use

the deterministic version of the bottleneck model for analytical simplicity. A stochastic version that does

not require attempted inflows at or above capacity to yield queues would be more realistic. However, as

the trade off between expected queuing and expected schedule delays will be driving airlines’ interactions,

general results may not change significantly, while detailed results such as equilibrium delays, traffic rates

and queue lengths will change.

The paper is organized as follows. Section 2 introduces the model and the assumptions that are necessary

for the analysis. We illustrate the main features of the model by characterizing the untolled equilibrium and

deriving first-best and time-invariant second-best tolls for perfectly competitive airlines. We then study a

monopoly carrier in the market. Section 3 extends the analysis to competition where a Stackelberg leader

faces a group of competitive carriers, focusing on the untolled equilibrium and on first-best tolling. We

study the case of imperfectly elastic demand and imperfectly substitutable airlines, and also look at the

special cases of perfect substitution, independent markets and perfectly elastic demand. Finally, Section 4

concludes.

3Daniel (2009) recognizes that the dynamic atomistic toll charged to all airlines induces the welfare maximizing output in his

scheduling model, but he does not analyze the leader’s response to the fringe behavior when facing the toll, and therefore does

not find alternative schemes. He also omits the passengers’ role in the analysis, and our behavioral model seems to match his

set of assumptions only when leader and fringe serve independent markets whose demands are related only through congestion.
4The original model by Vickrey (1969) analyses heterogeneity in desired arrival time. For heterogeneity in values of time

see e.g. Vickrey (1973), Arnott et al. (1994) and Van den Berg and Verhoef (2011).
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2. The model

2.1. The basics and perfect competition

Previous airport pricing literature, as noted above, has been successful in modeling the two groups of

agents involved, namely airlines and passengers, and in characterizing the policy implications of the vertical

structure that is typical of this market. However, most analyses have relied on models of static congestion.

On the other hand, the majority of papers modeling dynamic congestion have been used to empirically

test congestion internalization at airports. To the best of our knowledge, the only exception is Daniel

(2009), who analyzes airport pricing with a deterministic bottleneck model, but only including airlines and

therefore omitting the passengers’ role in the analysis. In this section we describe our model of dynamic

airport congestion and show how it incorporates the main features of airlines and passengers behavior, by

looking at the case of perfect competition. Subsequent sections look at the extension to different market

structures.

We base our analysis in the work of Vickrey (1969) and Arnott et al. (1990, 1993), extending their

dynamic congestion modeling for atomistic users (road users), to the case where congestion occurs in a

facility used by carriers with market power (airlines), who sell their output (trips) in a downstream market

of passengers. Although there are many ways to model the dynamics of congestion (see Small and Verhoef

(2007) for a review), Vickrey’s bottleneck model allows us to capture in an analytical tractable manner a

key aspect of dynamic airport congestion, namely queuing, as well as a key aspect of airlines’ behavior, the

decision of when to schedule flights.

Congestion takes the form of queuing behind a bottleneck of finite capacity K. As we focus our analysis

on arrivals, the bottleneck is the airport’s runway and queuing takes place in the air, before landing. The

analytical results would apply for departures as well, and can in principle be extended to a network setting

with multiple airports and delays in both arrivals and departures. Note that our bottleneck model is

relevant when the airport’s operational conditions for arrivals (or departures) follow the first-in first-out

(FIFO) discipline, and is not directly applicable when the airport is managed with slots, because queuing is

not needed or helpful for airlines to obtain a certain arrival (or departure) moment, as the airport’s regulator

directly controls the timing through slot allocations.

This model considers “pure” bottleneck congestion, implying that in absence of a queue and, as long as

the arrival rate of flights at the bottleneck is below its capacity, there are no travel delays. Under other

conditions, the queuing delay experienced by a flight and its passengers depends on the length of the queue

at the moment of joining it. We assume that free-flow travel time is zero,5 so that a flight that departs from

the origin at td, arrives at the bottleneck at the same time. As a consequence, in absence of queuing, the

5In a single origin-destination pair, we can assume zero free-flow travel time without loss of generality, but this is generally

different with multiple origin-destination pairs.
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time of arrival at the destination (landing), t, also matches the time of departure from the origin. When

there is queuing, the arrival time, t, is the time of departure (td) plus the queuing delay T (t), and the length

of the queue, Q(t), grows or shrinks at a rate Q̇ = rd−K, where rd is the aggregate airlines departure rate.

The travel delay of a flight arriving at destination at t, is the length of the queue at the moment of joining

it, divided by the bottleneck’s capacity:

T (t) =
Q(td)

K
with td = t− T (t) (1)

Note that this definition, due to the perfect information assumption, allows us to write time costs as a

function of the arrival time at the destination, instead of the departure time from the origin.

We follow Small’s (1982) model of scheduling behavior for both passengers and airlines, so that their time

costs are the sum of travel delay cost and schedule delay cost. Passengers, in a nutshell, face travel delays

in the form of queuing delays to land, and have a preferred arrival time t∗ from which any deviation (early

or late) induces a schedule delay cost. The passengers’ schedule delay cost, that arises from the difference

between desired and actual arrival (or departure) time, was introduced in the context of aviation by Douglas

and Miller (1974) and estimated by Morrison and Winston (1989) as part of a passengers’ discrete choice

model of airline.6 A natural interpretation for this cost is that people, everything else constant, want to

arrive at their destination at a certain moment, that can be, for instance, the start of the working day in

order to make the most out of it.7 The schedule delay costs for airlines is a less studied matter. However,

the scheduling of crew and coordination of arrivals and departures (specially in hub-and-spoke networks),

are possible interpretations for including early and late schedule delays costs for airlines. In addition, as

we show in Appendix A, our analysis and results hold in absence of airlines’ schedule delay costs. Phrased

differently, an airline’s own schedule delay costs enters its maximization problem in the same way as its

passengers’ schedule delay costs do, as the latter imply a decreased willingness to pay a ticket fare.

Let g be a sub-index that denotes agent-type (p for passengers and a for airlines), αg the value of travel

time for agent type g, βg the value of early schedule delay, and γg the value of late schedule delay. Then,

the time cost of arriving at t, for an agent type g, Cg(t), can be written as:

Cg(t) = αg · T (t) +

βg · (t
∗ − t) if t ≤ t∗

γg · (t− t∗) if t ≥ t∗
(2)

6Using a reduced-form for the schedule delay cost in models of static congestion is common in the aviation literature (e.g.

Oum et al., 1995; Brueckner, 2004).
7For example, this directly applies to business travel. It can be argued that for leisure passengers this also hold as well, as,

everything else constant, they prefer to arrive at a certain time during the day. Another possible interpretation is related to

transfers at hub airports. Although our model does not consider network effects, one can think of passengers using the flight

for a transfer and, in that case, t∗ would represent their most preferred moment to arrive at the hub airport (the time that

makes the transfer possible without experiencing undesired waiting). Clearly, in this case, a late arrival would be significantly

more costly than an early arrival because it may imply loosing the connection.
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The airline’s delay cost differs from user’s time cost only in the values of time, which reflects our assumption

that airlines share the desired departure time t∗ with the passengers.8

Having described the congestion modeling, we can turn to the passengers’ demand specification, and the

airlines’ costs and profit. We assume, for the perfectly competitive case, that passengers perceive airlines as

perfect substitutes, and that the demand for an airline follows a linear inverse demand function:

D

(∑
i

qi

)
= A−B ·

∑
i

qi (3)

which gives the marginal willingness to pay for traveling; qi is the number of passengers traveling with airline

i; A represents the maximum reservation price, and B is the demand sensitivity parameter. We use the

linear specification for analytical simplicity, but our results do not depend crucially on this.

The full price pi for a passenger traveling with airline i is the sum of the fare (ρi) and the generalized

cost experienced by the passenger. As we consider dynamic congestion, the various components of the

generalized cost are generally not constant over time (see (2)). The condition for an equilibrium, where all

flights are used by passengers and where passengers are indifferent between all the flights, is given by:

ρi(t) + Cp(t) = A−B ·
∑
i

qi (4)

which is simply the full price of taking any airline i’s flight, that arrives at destination at time t, equals

marginal willingness to pay. Recall that the generalized cost experienced by the passenger does not depend

on the identity of the airline, but only on the time of arrival. The equilibrium condition (4) implies that

airlines charge different fares for flights scheduled at different times, except for flights whose users experience

the same generalized cost. Forbes (2008) provides empirical evidence that airlines indeed charge lower fares

when they face higher delays.

As usual in the airport pricing literature, we assume that the product of the load factor and the seat

capacity is constant, so that the number of passengers per flight is given. Airlines’ cost consists of a time-

invariant operating cost per flight c1, a time-invariant operating cost per passenger c2, and the time-variant

cost Ca(t) described in (2). Denoting the constant product between seat capacity and load factor as s,

time-invariant costs can be expressed as a constant cost per flight c = c1 + s · c2.9 With the cost structure

8Although the preferred arrival time for airlines may be endogenous, following from desired arrival times for passengers,

the analysis of this issue is beyond the scope of this paper. With endogenous t∗, it can be expected that airlines’ preference

is significantly affected by passenger’s preferred arrival time and will be close in practice. For example, in hub-and-spoke

networks, airlines coordinate arrivals and departures to facilitate passenger connections. Cost advantages because of high

passenger density may also drive airlines to adopt the passengers’ preferred arrival time.
9Because of the fixed-proportions assumption, constant costs per passenger and per flight have the same effect, and can

be aggregated. The same occurs when airlines are charged a landing fee; it does not matter if it is a per-passenger fee or a

per-flight fee.
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defined, we can analyze the equilibrium in the airline market and then study the regulator’s problem. This

section looks at the perfectly competitive case, to illustrate the main features of the model.

In the case of imperfect competition, airlines would have as decision variables the number of flights (or

prices),10 and the departure time of each flight. In order to analyze the perfectly competitive case, we

assume that there is a continuum of small competitive airlines that can enter the market by scheduling a

single flight at any time. Therefore, each competitive airline’s decision variable is the time of arrival t, and

the aggregate number of flights will be given by the zero-profit condition.11 The profit of an airline, that

schedules its only flight to arrive at t, is revenues minus costs:

π(t) = s · ρi(t)− Ca(t)− c− τ(t) (5)

where τ(t) is the time-variant per-flight toll (in this case, landing fee) that the regulator might charge to

airlines. Denoting f as the aggregate number of flights, the total number of passengers is s · f , and using

the interior equilibrium condition (4), airline’s profit is:

π(t) = s · [A−B · sf − Cp(t)]− Ca(t)− c− τ(t) (6)

where the term between square brackets is the fare. Using (2) and defining α = s · αp + αa, β = s · βp + βa

and γ = s · γp + γa, the profit of an airline whose flight arrives at time t can be simplified as:

π(t) = s [A−B · sf ]− c− τ(t)− α · T (t)−

β · (t
∗ − t) if t ≤ t∗

γ · (t− t∗) if t ≥ t∗
(7)

This reduced form shows that airlines take into account the generalized cost of its own passengers, because

the lower the passengers’ generalized cost is, the higher the fare can be (see (4)), on a dollar-by-dollar basis.

Therefore, we can interpret the airline’s problem as if they face a generalized cost per flight, that is the sum

of its own delay costs, Ca(t), and the generalized cost of all the passengers on its flight, s · Cp(t).

The dynamic equilibrium is such that an airline cannot improve its profit by changing the schedule of

its single flight, for a given scheduling behavior of the other airlines. By looking at (7), this can only be

achieved when every airline, i.e. every flight, faces the same sum of toll and generalized cost per flight (the

travel and schedule delay cost terms on the right-hand side of equation (7)), because all other terms are

time-invariant. This generalized cost per flight from the airlines’ perspective, is similar to the generalized

costs typically found in the bottleneck road pricing literature for individual drivers (e.g., Arnott et al., 1990,

10Choosing the number of flights is equivalent to set the number of passengers (quantity) because the fixed-proportion

assumption implies qi = fi · s.
11An alternative interpretation of the perfectly competitive case is that airlines are not necessarily small, but they view price

and congestion level as parametric. This would imply that their fare and time of departure is given by the zero-profit condition

and they choose volumes.
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1993). A difference is that the values of time considered by the airline, for a single flight, are its own values

of time plus the summed passengers’ values of time in that flight. But, through the use of the composite

shadow prices α, β, and γ, this difference disappears from the formal model. This enables us to describe

the equilibrium in schedules following the road pricing literature, and keep the discussion concise.

We first characterize the untolled equilibrium. The equilibrium condition then is that the generalized

cost per flight (Ca(t) + s · Cp(t)) must be constant over time during the period of operation; otherwise an

airline would have an incentive to reschedule its flight and increase its profit. As shown in the road pricing

literature, there is a unique aggregate queuing pattern that satisfies this equilibrium property, and this

pattern defines the (equilibrium) scheduling behavior of the competitive airlines (see Appendix A for the

calculations and derivation of this result). Denote ts as the (endogenous) first moment of operation, i.e. the

time where the first flight arrives at destination, and te as the (endogenous) end of the operation period.

The first airline’s flight departs at ts and arrives at the same time, as there is no queue, incurring only early

schedule delay cost. The same holds for the last flight, at te, incurring only late schedule delay costs (if

the last flight incurred queuing, its costs could be reduced by departing later and still arriving at the same

moment). Arrivals are continuous in this model, and as a consequence, the duration of the peak period

has to be f/K, the total number of flights divided by the capacity of the bottleneck. From ts onward, the

queue evolves, growing up to a maximum level (just when a flight arrives at t∗) and then decreasing until

it dissipates completely at te, in the unique way that makes the generalized cost per flight constant over

time. The resulting constant generalized cost per flight can be found by determining the equilibrium timing

of the peak of duration f/K, such that the schedule delay costs are the same for the first and last flight.

This gives two conditions (β · (t∗ − ts) = γ · (te − t∗) ∧ te − ts = f/k) that are sufficient to determine the

equilibrium generalized cost:

Ca(t) + s · Cp(t) =
δ · f
K

∀ t ∈ [ts, te] (8)

where δ = (β ·γ)/(β+γ).12 The equilibrium departure rates can be derived from equating the time derivative

of (7) to zero. Note that the aggregate scheduling pattern is unique, but an individual airline’s scheduling

is undefined due to the perfect competitive assumption. This yields an equilibrium profit (superscript e) for

any airline of:

πe = s [A−B · sf ]− c− δ · f
K

(9)

Recall that airlines are indifferent between any arrival time t between ts and te, and passengers are indifferent

between any flight, because the full price of all flights is constant, equal to A−B · sf , and given by:

pi = ρi(t) + Cp(t) = A−B · sf =
1

s
·
(
c+

δ · f
K

)
(10)

12See Appendix A for a derivation of this result, and Arnott et al. (1990, 1993) for a detailed discussion.
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t
t∗

p

s[A−B · sf ]

sCp(t) + Ca(t) =
δ · f
K

ts te

α · T (t)

c

β · (t∗ − t) γ · (t− t∗)

Figure 1: Competitive no-toll equilibrium. Assumptions: α > β and γ > 0

where the last equality comes from the zero-profit condition of the perfectly competitive case (πe = 0). The

passengers’ full price in the no-toll equilibrium equals the airlines’ constant operating cost per passenger

(c/s) plus the generalized cost per flight divided by the number of passengers. The total generalized costs

(or travel delay plus schedule delay costs) are the generalized costs per flight times the number of flights,

δ · f2/K, as in the road case. In Appendix A we extend the analysis by looking how the equilibrium fare

varies over time.

Figure 1 illustrates the no-toll equilibrium for the competitive case. The equilibrium is represented by

the constant generalized costs per flight (from (8)), and the depiction of s[A− B · sf ] satisfying (10). The

only conditions on the values of time that are needed for this equilibrium to exist are that α > β > 0 and

γ > 0. As these values of time are made up of a combination of the passengers’ and the airline’s values

of time, the interpretation for the condition is not immediately straightforward. In the case of passengers’

values of time, empirical evidence indicates that the conditions are satisfied, i.e. that value of travel time

is higher than the value of schedule delay early (αp > βp), and that the value of schedule delay late is

above zero (γp > 0) (see Morrison and Winston, 1989; Lijesen, 2006).13 In the case of airlines, to the best

of our knowledge, there is no empirical evidence for the values of schedule delay. However, given that the

passengers relation is intuitive and has empirical support, the only additional assumptions that we need on

the airlines’ values of time are that αa ≥ βa and that βa ≥ 0 ∧ γa ≥ 0. The requirement on the relation

between value of travel time (αa) and early schedule delay (βa) is consistent with the plausible assumption

that, when a flight is set to arrive early, the airline prefers landing over extending the trip by making a

detour; the other requirement only states that values of schedule delay are not negative.

13In fact, Lijesen (2006) finds evidence that γp > βp, something that is usually found for road users.
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With the untolled equilibrium characterized, we analyze the regulator’s problem of maximizing social

welfare through a per-flight toll. First, consider the case of a time-invariant toll. As that toll does not vary

over time, the airlines treat it as a constant operating cost and, for a given number of flights, it does not

alter the scheduling decisions: the toll can only affect the number of flights. The regulator’s optimization

problem follows:

maxSW =

∫ sf

0

(A−Bx)dx−
∫ te

ts

(K · s · Cp(t))dt−
∫ te

ts

(K · c+K · Ca(t))dt (11)

where the first term is gross benefits for sf travelers, the second is total passengers’ generalized costs (at

t, a flow of K flights will serve s passengers each), and the third term is total airlines’ costs that includes

constant and generalized costs (fares and tolls cancel out). Rewriting,

SW =

∫ sf

0

(A−Bx)dx−K ·
∫ te

ts

(s · Cp(t) + Ca(t))dt−K · c
∫ te

ts

dt

=

∫ sf

0

(A−Bx)dx− δ · f2

K
− f · c (12)

where the second equality uses that the duration of the peak is f/K, and that, in equilibrium, s·Cp(t)+Ca(t)

is constant (condition (8)).

Let τ̂ be the time-invariant toll. Comparing the first-order conditions for welfare maximization and the

airline zero-profit condition, we then obtain:

∂SW

∂f
− πe = s(A−B · sf)− 2

δ · f
K
− c−

[
s(A−B · sf)− c− δ · f

K
− τ̂
]

(13)

As a consequence, the welfare maximizing time-invariant toll per flight is:

τ̂ =
δ · f
K

(14)

This toll matches the flat toll for the road bottleneck (Arnott et al., 1993), because without altering the

flights’ schedule, average (per flight) generalized costs are δ · f/K, and marginal social generalized costs are

therefore 2 ·δ ·f/K, which is fully consistent with the road case. As a consequence, it is straightforward that

the second-best flat toll is the difference between the two. The flat-toll in (14) is equal to the marginal delay

cost that a flight imposes on all airlines’ flights (including their passengers). This time-invariant toll induces

an aggregate number of flights f
′
, which is second-best optimal, given that queuing is not eliminated. The

fares will keep the dynamic structure that they have in the no-toll equilibrium (see Appendix A for details),

but the beginning and the end of the peak (ts and te) will be different, as the total number of flights is lower

and the peak period shorter.

As queuing delay is a pure loss in this model, welfare can be improved further. The reason is that, any

number of flights in an equilibrium with queues can be served in the same time interval, without queuing

while incurring the same schedule delay costs. This requires an arrival rate equal to capacity throughout
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the peak, which cannot be achieved spontaneously in equilibrium as the flights closer to t∗ would face a

lower generalized cost. The first-best charge is the time-variant toll τ(t) that decentralizes this queue-free

configuration. The toll is equal to the value of queuing delay per flight in the no-toll equilibrium, α · T (t)

in Figure 1. As travel delays are eliminated, the toll reduces aggregate generalized cost by 50%, so that

marginal cost becomes equal to the generalized price. That is, total cost becomes δ · f2/2K, so marginal

cost is δ · f/K, which is equal to the price faced by the first and last flight, and therewith by all flights.

Denoting f∗ as the optimal aggregate number of flights, the optimal toll is,

τ(t) =
δf∗

K
−

β · (t
∗ − t) if t ≤ t∗

γ · (t− t∗) if t ≥ t∗
(15)

We call this toll structure the dynamic atomistic toll, in contrast to the second-best flat toll of this problem,

in (14). With τ(t), the flight that arrives at t∗ faces no generalized costs and pays a toll equal to the marginal

social cost. The first and last flight face a schedule delay equal to the marginal social generalized cost and

therefore do not pay any toll. In addition, the part of the toll that reflects passenger valuation of delays is

transferred to them through the fare to maintain passenger equilibrium. The fare will thus show a stronger

time variation than in the no-toll equilibrium.

This section extended the arguably most used model of dynamic congestion in the transport pricing

literature to a case with a vertical structure, where passengers have a demand for trips, offered by atomistic,

perfectly competitive carriers that make the scheduling decisions. In the rest of the paper, we relax this

assumption and allow for different degrees of market power through the analysis of various market structures.

2.2. The monopoly case

Here, we consider a market with a single airline facing a linear inverse demand as in (3). The monopoly

carrier has as decision variables the number of flights F and how to schedule them, i.e. the time of departure

of each flight. Let ts be the time when the carrier schedules its first flight and te the time when the last

flight is scheduled, then the airline’s profit is:

π =

∫ te

ts

K · s · ρ(t)−K · c−K · Ca(t)dt = K

∫ te

ts

s[A−B · sF ]− sCp(t)− c− Ca(t)dt

= s · F · [A−B · sF ]− F · c−K
∫ te

ts

s · Cp(t) + Ca(t)dt (16)

The second equality uses (4), and the third equality that the peak lasts F/K. We have shown that the last

term on the right hand side of (16) reflects the road case with composite values of time α, β, and γ. Since

the airline faces no competition,14 the flights will be scheduled to minimize delays. The airline realizes that

14We are abstracting from potential entry in this setting, but we address this question in Section 3.
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by choosing a departure rate equal to the runway capacity, it will achieve the minimum possible generalized

cost, only facing schedule delay costs and no travel delay cost through queuing.

This allows us to write the generalized costs per flight as schedule delay costs that diminish linearly from

δF/K at ts to zero at t∗ and then grow to δF/K at te. Taking this into account, and considering a per-flight

time-invariant toll τ̂ (that is seen as parametric by the airline), the profit in (16) can be expressed as:

π = s · F · [A−B · sF ]− F · c− δ · F 2

2K
− F · τ̂ (17)

The airline first-order condition for profit maximization is,

∂π

∂F
= s[A−B · sF ]−B · s2F − c− δF

K
− τ̂ = 0 (18)

which means that the (constant) full price paid by passengers is:

p = ρ(t) + Cp(t) = A−B · sF =
1

s
·
(
c+

δ · F
K

)
+B · sF +

τ̂

s
(19)

implying that the fare, that maintains equilibrium, is:

ρ(t) =
1

s
·
(
c+

δ · F
K

)
+B · sF +

τ̂

s
− Cp(t) (20)

In contrast to the competitive case, this condition shows that the monopoly carrier charges to the passengers

a markup of B · sf . This is simply the number of passengers times the own-demand price sensitivity, the

traditional market power effect first described, in the aviation context, by Pels and Verhoef (2004). Note that

the fare is time-dependent, as the passengers’ generalized cost (Cp(t)) is not constant in this setting. Figure

2 depicts the time-invariant-toll equilibrium for a monopoly. There is no queue, and the first and last flight

(at ts and te, respectively) experience a generalized cost of δF/K. The fulfillment of the first-order condition

for profit maximization is represented in the vertical axis, where s[A−B · sF ] = c+ δF/K+B · sF + τ̂ . The

time-variant per-flight fare, s ·ρ(t) in (20), is also depicted in Figure 2. The slopes of passengers’ generalized

cost (Cp(t)) and airline’s delay costs (Ca(t)) are the same as in the optimum of the competitive case, and

therefore the slope of the per-flight fare is also the same.

Now, the regulator’s maximization problem is:

SW =

∫ sF

0

(A−Bx)dx−K ·
∫ te

ts

(s · Cp(t) + Ca(t))dt− F · c (21)

but, in contrast with the competitive case, the airline is scheduling the flights in such a way that there is no

queue. Hence, the second term on the right-hand side of (21) is the same as derived in (17), shaping social

welfare in the following way:

SW =

∫ sF

0

(A−Bx)dx− δ · F 2

2K
− F · c (22)
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Figure 2: Monopoly time-invariant-toll equilibrium.

This is gross benefits of the sF passengers minus total social costs; when there are no queuing delays, total

generalized costs is δ · F 2/2K. Taking the derivative with respect to F , we get the first-best condition:

s[A−B · sF ] = c+
δ · F
K

(23)

At the optimum, full price equals marginal social cost, which is the sum of the marginal operating cost plus

marginal total generalized costs (including airlines and passengers through δ).15 Comparing the monopolist’s

first-order condition (18) and the first-order condition for welfare maximization (23), it is straightforward

that the first-best toll is:

τ̂ = −B · s2F (24)

The regulator corrects the market power exertion by subsidizing the airline, and does not have to give an

incentive to the monopolist to internalize congestion. This subsidy (−B · sF per passenger) induces the

optimal number of passengers, and is analogous to the one obtained in the static model (Pels and Verhoef,

2004). A monopoly airline internalizes all the congestion costs by scheduling the flights efficiently: there is

no queuing and therefore there is no need for congestion pricing. In Figure 2, when the optimal subsidy is

applied, the term B ·s2F+ τ̂ disappears and the first-best condition (23) is satisfied. Moreover, the per-flight

fare (s multiplied by the per-passenger fare) at the first and last flight is simply the airline’s costs per flight,

as Figure 2 shows.

15We look at the full price of a flight (the full price of a trip A−B · sF times the number of passengers in a flight s) and the

marginal social cost of a flight, but there is no loss of generality. The condition also implies that the full price of a trip equals

the marginal social cost of a seat.
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Despite the fact that in the monopoly case only a subsidy that decreases price is needed, it is important

to emphasize that the dynamic atomistic toll in (15) could also be charged to the monopoly airline without

altering social welfare, but transferring part of the monopoly carrier profits to the regulator. This is the

result of the congestion technology: the monopoly airline cannot do better than setting the arrival rate equal

to capacity in time windows where it has arrivals, so as to face only schedule delay costs, regardless of the

dynamic toll schedule it faces. To see this, it is enough to add the time-variant toll to the monopoly profit

in (16):

π = s · F [A−B · sF ]− F · c−K
∫ te

ts

s · Cp(t) + Ca(t) + τ(t) dt (25)

By charging the dynamic atomistic toll (14) to the monopoly, it is straightforward that s · Cp(t) + Ca(t) in

(25) cancels out with the time-variant part of the toll, and the airline will set full price of a flight equal to

c plus the constant part of the toll per flight (δF ∗/K) and the market power mark-up. By including the

subsidy, the outcome will be the first-best.

2.3. Cournot oligopoly

Simultaneous competition between a small number of airlines in a Cournot fashion is, probably, the most

studied market structure in the airport pricing literature, although mainly in the context of static congestion

models. After having discussed monopoly and before moving on to the leader-fringe setting, it could have

been the right place to discuss that setting; e.g., a duopoly. However, it seems that within the framework

of the deterministic dynamic bottleneck model described above, with symmetric airlines, there is no arrival

pattern equilibrium in pure strategies.

Space is lacking to provide a detailed discussion, but a sketch of how we arrived at this conclusion might

be useful. One important dynamic equilibrium condition in the oligopoly setting is that the firm-internal

marginal cost of flights should be equal for all flights scheduled, and hence constant over time whenever

flights arrive. Firm internal marginal cost includes the cost of the flight itself, plus delays for remaining

flights by the airline itself. In the symmetric equilibrium that satisfies this condition, with airlines having

equal flows at any moment, it turns out that an individual airline, although marginal perturbations of

instantaneous flows do not increase profit, can benefit from making discrete changes in their flow patterns.

One is to take out a number of flights from the candidate equilibrium. With unaltered behavior of the other

airlines, queuing will stop earlier, and the deviating airline can position its deviating flights in the final

period of the peak that is now queue-free, and benefit from this. The candidate equilibrium that satisfies

the requirement that unilateral marginal changes in arrival times should not bring a benefit, thus does not

satisfy the requirement that also non-marginal or discrete unilateral changes to the arrival pattern should

not bring a benefit to the deviating airline.

It is not unlikely that—and currently under study whether—under different conditions and with addi-

tional modeling assumptions, it may be possible to find an equilibrium. The required changes make the
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model to depart far from the current one and, therefore, would place the analysis outside the scope of this

paper. Moreover, the main conclusion of our study can also be presented for the leader-fringe setting, which

does have an equilibrium in pure strategies. We therefore now turn to that situation.

3. A Stackelberg leader with a competitive fringe

We now turn to the case of competition between a Stackelberg leader and a follower that behaves

competitively. This market structure was shown to be empirically relevant by Daniel (1995), and was

studied further by Daniel and Harback (2008). They show that most of the U.S. airports have queuing

patterns that are consistent with a stochastic bottleneck model, and exhibit evidence that the Stackelberg-

fringe market structure is the one that fits best the observed queuing patterns. The purpose of this section

is to assess the degree of internalization of congestion by the leader, and to derive the first-best tolls. To the

best of our knowledge, there are two papers that study this type of set-up from a theoretical point of view.

Brueckner and Van Dender (2008)—with a static congestion model—show that the internalization of self-

imposed congestion by a Stackelberg leader facing a competitive follower can approach the atomistic levels,

depending on the assumed substitution pattern, and that the first-best congestion toll can also approach the

atomistic toll. On the other hand, Daniel (2009), with a dynamic bottleneck model of congestion, argues

the need for atomistic tolls for both the leader and the competitive fringe with an analytical model that

includes only the airlines, and therefore omits the vertical structure and passengers’ role in the analysis.

The competitive follower can be interpreted as a group of competitive airlines, as in Section 2.1 with

a free-entry condition. These airlines do not need to be small in general, but only to have a small share

of flights at the airport under consideration, where a single airline acts as a leader. Following the aviation

literature, we use the term “fringe” for this group of airlines that behaves competitively, regardless of the

temporal location of its flights. We assume that both the leader and the fringe treat the tolls that the

regulator sets as parametric, and that when the Stackelberg leader makes its decisions, it is aware of the toll

that the regulator applies to the fringe.16

3.1. Untolled equilibrium

To study the airlines’ interactions and assess the internalization of congestion, we first look at the no-

toll equilibrium, following the framework proposed in Section 2. We extend the demand model to account

for various substitution patterns between the leader and the fringe, following the representative consumer

16Brueckner and Verhoef (2010) point out that assuming that agents are large enough to exert market power and to recognize

the impact of their decisions on overall congestion, but that they do not take into account the impact of their actions on the

tolls, is a strong assumption. We maintain this assumption to focus on the first-order effects and comparison with earlier

literature, but discuss how the solution proposed by Brueckner and Verhoef (2010) applies to our case in Section 3.3.
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framework proposed by Dixit (1979). Demands are assumed to arise from the following strictly concave

quadratic utility function: U(ql, qf ) = A · (ql + qf ) − (B · q2l + 2 · E · ql · qf + B · q2f )/2, where A, B, and

E are positive, and ql and qf are the number of passengers of the leader and the fringe respectively. This

implicitly assumes that fringe carriers are perceived as perfect substitutes, and gives rise to the following

inverse demand structure:

Di(qi, qj) = A−B · qi − E · qj i ∈ {l, f} ∧ j 6= i (26)

where A represents the maximum reservation price, B is the own-demand sensitivity parameter, and E is

the cross-demand sensitivity parameter. We assume B ≥ E ≥ 0 in general, and usually B > E > 0 so that

outputs are imperfect substitutes. Perfect substitutability is a special case of our specification (E = B),

while E = 0 has airlines serving independent markets. This specification allows us to account for horizontal

product differentiation that may come from particular aspects that may differ across carriers and make

passengers perceive airlines as imperfect substitutes (e.g. food and language).17 The passengers’ equilibrium

condition, that stipulates that marginal willingness to pay has to be equal to the per-trip generalized cost,

implies the following fare:

ρi(t) = A−B · qi − E · qj − Cp(t) i ∈ {l, f} ∧ j 6= i (27)

This again implies that all carriers, in general, charge a fare that depends on the time of departure, as Cp(t)

does.

In this game, each fringe carrier has the departure time of its flight as a decision variable, and the

aggregate volume of the fringe is determined by the zero-profit condition. As in Section 2.1, in equilibrium,

the generalized cost per flight (s · Cp(t) + Ca(t)) must be constant in a period where the fringe operates

(see equation (8)), otherwise a carrier will have an incentive to reschedule its flight. Moreover, this can only

be possible by queuing in the center of the peak, i.e. around the desired time of arrival t∗, because that is

where schedule delays are lower. In order to balance schedule delay costs and queuing delay costs, the queue

must build up until t∗ and, only then, start to dissipate until it disappears completely. As we describe in

Section 2.1, and derive in Appendix A, there is a unique aggregate pattern of departures that makes the

generalized cost per flight constant over time, that will be the equilibrium pattern during the time-window

where the fringe operates.

On the other hand, the Stackelberg leader has as decision variables the number of flights and the departure

time of each of its flights. Because it anticipates the behavior of the fringe, the leader’s timing best response

can be reduced to scheduling flights joining the queue of the fringe operators, and/or to schedule flights

17A model of (vertical) product differentiation where firms also choose quality would be more general, but it would divert

attention from the implications of dynamic congestion on internalization and pricing.
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outside this congested period—in the peak shoulders—with a departure rate equal to capacity and bearing

only schedule delay costs.18 This is because the fringe carriers have the same (composite) values of time as

the leader, and therefore the leader cannot benefit from taking over the center by causing higher queuing

delays in this period. As a consequence, its best scheduling strategy for its flights in the center is to join

the fringe’s queue without exceeding the aggregate departure rate that makes generalized costs per flight

constant over time. The leader also correctly perceives that scheduling flights in the shoulders of the peak,

without queuing, may be attractive if the fringe’s number of flights (that are queuing in the center) is

sufficiently inelastic to its own decisions.

Let f be the number of flights that the fringe operates, lc the number of flights that the leader schedules

in the peak center along with the fringe, and ls the leader’s number of flights in the peak shoulders. The

fringe equilibrium condition is the same as in the competitive case (see (9)), but includes the fact that the

leader has s(lc + ls) passengers, affecting its inverse demand. Furthermore, the generalized cost per flight

in the peak center is constant, and will equal to δ · (f + lc)/K, as a result of the center’s duration being

(f+lc)/K, and the first and last flight having the same generalized cost.19 The fringe zero-profit equilibrium

condition is then given by:

s [A−B · sf − E · s(lc + ls)]− c−
δ · (f + lc)

K
= 0 (28)

This condition defines f as a function of lc and ls, and, therefore, it defines the fringe’s response to a change

in the number of flights set by the leader in both the center and the peak. The fringe’s number of flights

depends not only on the number of flights set by the leader in the peak center (lc), but also on those in

the shoulder (ls), unless E = 0. This is an important point to stress, because it allows us to identify the

condition that makes the fringe care only about what happens in the center. The latter is the assumption

made by Daniel (2009). The full independence case of our model (E = 0) is thus the case where results may

be comparable with Daniel’s (2009) findings.

Straightforward calculations (see Appendix B for all derivations) yield the following conditions:

−1 ≤ ∂f

∂lc
<
∂f

∂ls
≤ 0 (29)

which imply that the leader anticipates that any reduction in quantities (through a reduction in frequency

either in the center or in the shoulders) will be met by an increase in the fringe’s number of passengers, or,

equivalently, new entry, until the fringe profit is again zero.

18The leader can set the departure rate equal to the capacity of the bottleneck in the peak shoulders and achieve the minimum

time costs, because it does not face competition or potential entry in the peak shoulders.
19Denote tc1 the beginning of the center and tc2 the end. The conditions that determine the generalized cost per flight are:

β·(t∗−tc1) = γ·(tc2−t∗)∧tc2−tc1 = (f+lc)/k. Solving for tc1 and tc2, the costs at the borders will be ((β·γ)/(β+γ))·(f+lc)/K,

and denoting δ = (β · γ)/(β + γ) we get the result above. This also imply that a fraction γ/(β + γ) of the flights will arrive

early (between tc1 and t∗) and a fraction β/(β+γ) of the flights will arrive late (between t∗ and tc2). The aggregate departure

rate is obtained by equalizing the time-derivative of s · Cp(t) + Ca(t) to zero.
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There are two effects driving the fringe’s response. First, as airlines are perceived as (imperfect) substi-

tutes, any reduction in output by the leader will induce a shift in the inverse demand of the fringe, that will

induce an increase in the fringe’s output (this can be seen in the first term of (28)). Second, the airlines are

imposing congestion on each other, and the leader predicts that any frequency reduction is partially offset

by an increase of the number of flights set by the follower in response to reduced queuing (the second term

in (28)). The substitutability effect is the same for changes in the number of flights in the center and in

the shoulders, but the congestion effect happens only in the center, where there is congestion interaction.

This is the reason why the fringe’s response is stronger for changes in the center than in the shoulders

(∂f/∂lc < ∂f/∂ls).

When products are perfect substitutes (E = B), ∂f/∂lc = −1, which means that any change in the

leader’s number of flights in the center is fully offset by an opposite change of equal magnitude by the

fringe. This is because the zero-profit condition (28), determines a unique value for the aggregate number of

flights when airlines are perfect substitutes. In the other extreme, when airlines serve independent markets

(E = 0), the substitution effect disappears and only the congestion effect survives. This implies that

∂f/∂ls = 0 ∧ −1 < ∂f/∂lc < 0, because in the shoulders there is no congestion. The general case of

imperfect substitutability B > E > 0 is, naturally, in between the two cases above, satisfying (29) with

strict inequalities.

With the response of the fringe defined, we can look at the first-order conditions for the Stackelberg

leader and derive the equilibrium. In this untolled equilibrium, the leader’s profit can be separated into

two terms, the profit from the operations in the peak center and the profit from the peak shoulders. In

the center, because of the fringe’s presence, the generalized cost per flight must be constant and equal to

δ · (f + lc)/K. In the shoulders, the leader’s timing best response is to set the arrival rate equal to the

bottleneck’s capacity and experience only schedule delay costs. Since the duration of the entire peak has to

be total number of flights over capacity, (f + lc + ls)/K, the schedule delay cost of the first and last flight

is δ · (f + lc + ls)/K. The reason is the same as for the peak center; equalizing schedule delay costs at the

borders and knowing the duration, provide the necessary conditions to determine costs at the border (see

footnote 19). Finally, with linear schedule delay costs, the average generalized cost per flight in the peak

shoulders will be the average between the schedule delay cost at the exterior border of the shoulder (of the

first and last flight) and the schedule delay cost at the interior border of the shoulder (at the beginning and

end of the center): [δ · (f + lc + ls)/K + δ · (f + lc)/K]/2 = δ · (f + lc)/K + δ · ls/(2K). This shapes the

profit in the following way:

Π = lc ·
(
s[A−B · s(lc + ls)− E · sf ]− c− δ(f+lc)

K

)
+

ls ·
(
s[A−B · s(lc + ls)− E · sf ]− c− δ(f+lc)

K − δls
2K

)
(30)

The leader’s profit is a function only of ls and lc, because we are already taking into account the equilibrium
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strategy in departure times. Any amount of flights the leader sets in the shoulders, ls, will be scheduled at

a departure rate equal to capacity, and any number of flights in the center lc, will be scheduled such that

generalized costs are constant (taking into account that the fringe also schedules flights in the center). The

first-order conditions, in Appendix B, show that the leader exerts market power through a markup that is

less than the traditional monopoly markup, because of the fringe’s offsetting behavior. We also find that

the fraction of flights that the leader sets in the shoulders is:

ls
ls + lc

= 1− Es2 + δ/K

Bs2 + δ/K
(31)

This shows that in the untolled equilibrium, when demand is imperfectly elastic and airlines are imperfect

substitutes (i.e. 0 < E < B), the leader schedules flights in both the peak center as well as in the peak

shoulders (ls/(ls + lc) > 0). This is also the case when the outputs are independent (E = 0). In the case

of perfect substitution (E = B) and when demand is perfectly elastic (B = E = 0), the leader sets all of

its flights in the peak center (so the peak center occupies the full peak), queuing along with the fringe. The

reason is that the leader knows that the fringe reacts to increases in lc by offsetting them, so that the fringe

will make room for the leader’s flights; and conversely, if the leader decreases the number of flights in the

peak center by shifting to the shoulders, the fringe will increase the number of flights raising the generalized

costs. When the fringe fully offsets the changes in the leader’s number of flights, the leader is better off

setting all the flights in the peak center along with the fringe. When this effect is partial, the leader is better

off setting part of the flights in the center.

The implications for congestion internalization are now straightforward to identify. The leader fails to

fully internalize self-imposed congestion because the offsetting behavior of the fringe (shown in (29)) reduces

its incentives to decrease output. When demands are perfectly elastic or when demand is imperfectly

elastic and products are perfect substitutes, the leader does not internalize any congestion and behaves

atomistically (consistent with its own demand becoming, in practice, perfectly elastic). In the case of

full independence and imperfect substitutability, the leader internalizes only a fraction of the self-imposed

congestion, because the offsetting behavior of the fringe is partial. These results reproduce previous findings,

regarding internalization of self-imposed congestion in a Stackelberg-fringe competition, by Brueckner and

Van Dender (2008), but now in a dynamic congestion model. Our result for full independence is also similar

to the result by Daniel (2009), who finds that the leader sets a fraction of the flights in the peak center that

ranges from 0 to 1 in the untolled equilibrium (Daniel’s proposition 1). Daniel argues that the leader sets

all of the flights in the peak shoulders when the number of flights by the fringe is fixed. This is also true

in our model, and is obtained when market are independents and only the fringe faces a perfectly inelastic

demand.
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3.2. First-best tolls

Tolls are required to correct the inefficiency present in the two margins of choice of the airlines: number

of flights and trip timing. The number of flights is not optimal as a result of market power exertion by the

leader and the lack of full internalization of congestion by all airlines. The inefficiency in trip timing is due

to the fact that queuing is a pure loss in this model: any amount of flights queuing in a certain period of

time can be rescheduled to arrive during the same interval in such a way that there is no queuing while

schedule delays do not increase, therefore reducing social costs.

As a result of this, the optimal timing decision by carriers must satisfy an aggregate departure rate

equal to capacity, so that there are no queuing delays and no spare capacity. This allows us to drop the

differentiation between the leader’s flights in the center and shoulders, because there is no center with

queuing. Let l be the number of flights of the leader and f the fringe’s number of flights. Because, in the

first-best optimum, the first and last flight must experience the same cost (only schedule delay cost) and

the duration of the peak is (l + f)/K, delay costs will equal δ · (l + f)/K in the borders, and they will

decrease linearly to zero at t∗. This yields a total social delay cost of (l+f) ·δ · (l+f)/2K, and the first-best

conditions, equating marginal social cost to full price for both the leader and the fringe, are given by:

s[A−B · sl − E · sf ] = s[A−B · sf − E · sl] = c+
δ · (l + f)

K
(32)

Denote f∗ and l∗ the first-best number of flights that solve (32). As the fringe does not exert market power,

it is inefficient only in the timing decisions (excessive queuing). This implies that the congestion toll that

has to be charged to the fringe is the dynamic atomistic toll described in Section 2.1:

τ(t) =
δ(f∗ + l∗)

K
−

β · (t
∗ − t) if t ≤ t∗

γ · (t− t∗) if t ≥ t∗
(33)

This toll is the marginal social cost of the first-best equilibrium (first term on the RHS of (33)) minus the

schedule delay cost at time t. It gives the incentive to each fringe carrier to schedule its single flight such

that the aggregate departure rate equals capacity, because it is the only timing equilibrium that yields a

constant generalized price over time (the experienced schedule delay cancels out with the time-variant part

of the toll). A higher departure rate would generate queuing delays and, therefore, a higher and unbalanced

generalized price over time. A lower aggregate rate will generate room for new entry of fringe carriers, that

would occur until there is no spare capacity.

To derive the optimal toll that the leader has to pay, we need to derive its best response in timing and

number of flights, when the fringe faces the dynamic atomistic toll in (33). With static model of congestion,

this is straightforward, as the only decision variable is the number of flights. In the present setting, the

leader also chooses the departure time of each of its flights. The main result of our analysis is that the

first-best congestion toll for the leader is not unique. There is a time-invariant toll that can be charged to
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the leader in order to achieve the first-best outcome, a time-variant toll that also yields the efficient outcome,

but there are also various other pricing schemes.

• Time-invariant toll

The Stackelberg leader has the potential to schedule its flights without incurring queuing delays, as we

discussed in Section 2.2 for a monopoly, but it has reduced incentives to do so in the no-toll equilibrium of

this game because of the fringe’s presence. However, when the regulator imposes the dynamic atomistic toll

(33) to the fringe, the leader realizes that it can schedule flights efficiently (without queuing and operating

at capacity), and knows that this keeps the fringe completely out of its own period of operation. This is

because the fringe, when facing the atomistic toll (33), experience a constant generalized price per flight

equal to the marginal social cost (δ(f∗ + l∗)/K), regardless of the time of operation, as long as the aggregate

departure rate is, at most, equal to capacity. In any other case, the generalized price will be higher. Thus,

the leader, by setting its departure rate equal to capacity, effectively prevents entry from the fringe to its

period, because the fringe is always better off operating at times when departures do not exceed the capacity.

The leader realizes that it is better off operating in the peak center, around t∗, where the schedule delays

are lower. For any amount of flights l, the profit maximizing timing strategy is to set the departure rate

equal to capacity (to have only schedule delay costs and prevent the fringe from entering), from t1 to t2 such

that the cost of the first flight and the last flight is the same (β · (t∗ − t1) = γ · (t2 − t∗)). As t2 − t1 = l/K,

the delay cost at the borders equals δ · l/K, and as schedule delay costs are linear and zero at t∗, the average

delay cost per flight will be δ · l/2K. Then, the leader’s profit and first-order condition, when facing a time

invariant toll τ̂ , is:20

Π = l ·
(
s[A−B · sl − E · sf ]− c− δl

2K
− τ̂
)

∂Π

∂l
= 0⇒ s[A−B · sl − E · sf ] = c+

δ · l
K

+ (B + E · ∂f
∂l

) · s2l + τ̂ (34)

The leader fails to take into account the delays imposed on the fringe (δf/K is not in the full price),

and exerts market power (third term on the RHS of (34)), which in this case is reduced compared to the

monopolistic case, because of the (partial) offsetting behavior of the fringe. The fringe’s full price depends

on l only through the demand side (the substitutability effect) because there is no queuing interaction.

Hence, any reduction of frequency by the leader will result in a lower full price for the fringe, that—because

of the free-entry (zero-profit condition)—translates into an output expansion by the fringe. The first-best

flat-toll for the leader is simply the toll that corrects market power and congestion effects, and makes the

full price set by the leader (RHS of (34)) equal to the marginal social cost (RHS of (32)):

τ̂ =
δf∗

K
− (B + E · ∂f

∂l
) · s2l∗ (35)

20The derivation of the profit function is analogous to the monopoly case (see (16) and (17)).
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This first-best toll consists of a market power subsidy (second term on the RHS), that depends on the

substitution pattern, and a congestion charge that is independent of the amount of internalization of the

untolled equilibrium. Our result shows that the congestion side of the toll appears to be different from what

has been found in the literature before. Brueckner and Van Dender (2008) find that the leader should pay a

congestion toll that lies in between the congestion imposed on the fringe and total marginal congestion costs

(depending on the substitution pattern). We find that, when the regulator charges the dynamic atomistic

toll to the fringe, because of the sequential nature of the game and the congestion technology, the leader

does not fail to internalize self-imposed congestion. As a consequence, the regulator can induce the first-best

outcome by charging the delays imposed by the leader on the fringe (analogous to the so-called “Cournot”

toll).

When airlines are perfect substitutes (E = B), there is no need for market power subsidy as the fringe

fully offset any reduction of flights (∂f/∂l = −1). As both types of agent behave atomistically, only the

aggregate number of flights is defined and, therefore, the toll δf∗/K will define the proportion of flights

set by the leader and the fringe. In particular, the regulator can set the leader’s congestion toll to zero,

meaning that the leader will supply the optimal output making the optimal timing decisions. In the case

of full independence, the fringe does not exhibit the offsetting behavior as there is no substitutability effect

nor congestion effect (∂f/∂l = 0), and the congestion part of the toll is uniquely determined because f∗ is

unique (see (32)). In the general case of imperfect substitution (0 < E < B), the market power subsidy is

lower because of the partial offsetting behavior of the fringe, and approaches zero as airlines become closer

substitutes, while the congestion part of the toll remains unchanged and uniquely defined by (32).

Figure 3 shows the (first-best) equilibrium that results from charging τ̂ in (35) to the leader, and the

dynamic atomistic toll in (33) to the fringe. The leader schedules its flights to arrive in the center, between

[t1, t2], the fringe operates outside, between [ts, t1] and [t1, te], the first-best conditions (32) are satisfied,

and there are no queuing delays. The leader charges a fare that depends on the time of departure (ρ(t)),

its profit is equal to the saved queuing costs δl∗2/2K and the revenues from the market power effect

(l∗ · (B + E · ∂f/∂l) · s2l∗, not shown graphically). The congestion toll revenues (before subtracting the

subsidy) are equal to the shaded area in Figure 3: the sum of the revenues from the leader (the rectangle in

the center) and from the fringe (the two triangles at the shoulders).

• Time-variant toll

In this section we show that the first-best can also be attained by charging the dynamic atomistic toll

in (33) to both the leader and the fringe, if, in addition, the market power subsidy is given to the leader.

To see this, consider a leader’s flight that is scheduled to arrive at t to the destination. The profit that the

leader gets from that flight is given by:

π(t) = s · [A−B · sl − E · sf − Cp(t)]− [Ca(t) + c]− [τ(t)] (36)
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δ · l∗

K
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K

Figure 3: First-best equilibrium with time invariant toll to the leader.

where the first term in brackets is the fare that the leader charges for that flight (marginal willingness to

pay minus passengers’ generalized cost), the second bracketed term is the airline’s cost from operating that

flight, and the last term is the dynamic atomistic toll in (33). The negative component of the profit that

depends on the time of arrival, that will determine the best response in timing, is the generalized cost per

flight minus the time dependent part of the toll:

[s · Cp(t) + Ca(t)]−

β · (t
∗ − t) if t ≤ t∗

γ · (t− t∗) if t ≥ t∗
(37)

For any number of flights by the leader, the timing decisions must minimize the sum of the costs in (37) for

all flights, and the unique way to do so is to schedule them such that the departure rate does not exceed

the capacity of the bottleneck. This is because it minimizes the generalized cost per flight (first term in

(37)), that will consist of only schedule delay costs and, as a consequence, the time varying component of

the profit will be zero (the schedule delay costs cancel out with the time-varying part of the toll). This is

also compatible with the competitive fringe’s reaction, as fringe carriers facing the dynamic atomistic toll

never schedule flights to exceed capacity. As the best response in timing makes the profit per flight constant

(s · Cp(t) + Ca(t) + τ(t) = δ(f∗ + l∗)/K), the leader’s total profit can be written as the number of flights l

times the profit per flight:

Π = l ·
(
s[A−B · sl − E · sf ]− c− δ(f∗ + l∗)

K

)
(38)
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The first-order condition gives the full price set by the leader:

∂Π

∂l
= 0⇒ s[A−B · sl − E · sf ] = c+

δ(f∗ + l∗)

K
+ (B + E · ∂f

∂l
) · s2l (39)

This shows that the dynamic atomistic toll charged to the leader solves the externality inefficiency and only

the market power exertion needs to be corrected with the same subsidy as in (35): (B + E · ∂f/∂l) · s2l∗.

This result shows again that the congestion part of the first-best toll is not related with the degree of

internalization in the untolled equilibrium. In this case, the dynamic atomistic toll for all carriers (leader

and fringe) solves the externality inefficiency. This result also has an important implication for the financial

situation of the airport. As Arnott et al. (1993) demonstrate, the self-financing results of Mohring and

Harwitz (1962) for capacity investments hold for the bottleneck model with elastic demand. As we have

shown, the results of our analysis parallel results for the road case regarding the toll; therefore, the self-

financing result also holds when (33) is charged to both groups of airlines. If there are constant returns to

scale in capacity provision, the revenues from the first-best toll then exactly cover the cost of providing the

optimal capacity.21 This differs from earlier results because first-best tolls, are now not discounted by the

fraction of congestion that is internalized by carriers; therefore, the self-financing result is not overturned by

the internalization of congestion. However, the market-power subsidy does upset exact self-financing under

neutral scale economies. This is because under marginal cost pricing and constant returns to scale, the

surplus will be zero. When part of the revenues is used to subsidize the firm with market power, there will

be insufficient revenue to cover capacity costs. The shortfall in self-financing equals the aggregate airlines’

profit under constant returns to scale. With this time-varying pricing scheme, the leader makes a lower profit

compared to the time-invariant case (this time only from the ability to exert market power), and revenues

are equally higher. In fact, this is the pricing scheme that yields the highest revenue for the regulator.

• Alternative schemes

In addition to the two different ways to deal with the congestion inefficiency of the leader described

above, namely a flat toll equal to the delays imposed on all the fringe’s flights or the dynamic atomistic

toll, there are other pricing schemes that can induce the first-best outcome. Although the market power

distortion has to be corrected in any case with the subsidy in (35), (B +E · ∂f/∂l) · s2l∗, the regulator can

induce the leader to set the full price of its flights equal to the marginal social cost with regimes that correct

the congestion effect differently.

First, note that if the leader is forced to give up a time-window [t1, t2] around t∗, of duration f∗/K, and

with t1 and t2 satisfying the condition of equal schedule delay costs (β · (t∗− t1) = γ · (t2− t∗)), the first-best

21In general, “the ratio of the revenue collected from the optimal toll to the costs of constructing optimal capacity equals

the elasticity of construction cost with respect to capacity” (Arnott et al., 1993).
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can again be attained (given that the market power distortion is being corrected). In this case the fringe

will operate around t∗, between [t1, t2], paying the dynamic atomistic toll, ensuring that full price equals

marginal social cost. The generalized cost per flight at t1 and t2 equals δf∗/K. The leader’s best response

is to schedule its flights with a departure rate equal to capacity outside the “forbidden period” [t1, t2], and

such that the first and last flight experience the same generalized cost. As a result, it schedules l∗ flights

from ts to t1 and from t2 to te, without queuing, earning the saved queuing costs as profit. The leader’s first

and last flight face a generalized cost (per flight) of δ(f∗ + l∗)/K, hence satisfying the first-best condition

(32).22 The leader has no incentives to schedule more (nor less) flights, because the marginal revenue of the

first and last flight is exactly equal to the marginal cost (s · ρ(ts)−Ca(ts)− c = s · ρ(te)−Ca(te)− c = 0 in

Figure 3).

The toll regime that induces this outcome is the dynamic atomistic toll (33) for the fringe, and for the

leader the per-flight market power subsidy to correct dead-weight losses, and a toll arbitrarily higher than

δ(f∗ + l∗)/K only during the period [t1, t2]. The latter works as a barrier for the leader to operate in the

peak center, as it makes him better off operating outside it, not paying the toll. In fact, this is equivalent

to restrict the interval of time where the leader can operate.

This configuration is similar to the previous time-invariant toll setting in the sense that the full price

does not change, because the gain in costs by the fringe (resulting from operating closer to t∗) is offset by

higher tolls, and the cost increase of the leader is offset by the absence of congestion tolls. This makes this

setting identical to the time-invariant case analyzed above in social welfare, consumer surplus, profit per

firm (hence total profit) and total revenue. The difference, besides the times of operation for each firm, is

that the tax revenues are not the same for each individual firm, but total tax revenues remain unchanged.

In fact, there is a continuum of configurations, where the leader faces a time restriction (or barrier-toll)

and a flat toll, that follow these properties. These configurations are defined by more elaborate patterns of

temporal separation of leader and fringe operations, and the congestion tolls become a more complicated

matter.

Furthermore, there is also a continuum of alternative schemes that deal with the leader’s congestion

inefficiency with different time-varying tolls. This is due to the fact that the leader, knowing that the fringe

faces the dynamic atomistic toll, will never schedule its flights in a way that causes the aggregate departure

rate to exceed capacity. As a consequence, there is a continuum of dynamic tolls that can be charged to

the leader (complementing the market power subsidy), that are less steep than the atomistic toll (a positive

slope lower than β for early arrivals, and a negative slope higher than γ for late arrivals), and that have

a fixed component that makes the full price of the leader’s flights to be equal to the social marginal cost.

22This equilibrium is not shown graphically, but it is enough to see Figure 3 and change l∗ for f∗ (and vice versa). The

duration of the center is t2 − t1 = f∗/K.
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Graphically, these toll schedules would produce toll revenues that are between those from the flat toll in

Figure 3, and those from the time varying atomistic toll that would add the triangle below that rectangle,

bordered by the two s · Cp(t) + Ca(t) legs, to those revenues.

3.3. Manipulable tolls

We assume in the analysis above that airlines, that are large enough to exert market power and to

recognize the impact of their decisions on overall congestion (and followers), do not take into account the

impact of their actions on the tolls. We are aware that this is a strong assumption, but it is common to

most previous works. Brueckner and Verhoef (2010) propose a manipulable toll rule, designed to induce the

social optimum when carriers predict the impact of their decisions on tolls that can also be applied to our

problem. They propose an adjustment such that the carriers’ profit plus the (manipulable) toll liability varies

perfectly in parallel with social surplus. In our problem, market power correction can be straightforwardly

adjusted with their methodology: the subsidy for an airline is the surplus from own-passengers consumption.

This makes the airlines pricing strategy maximize social welfare. On the other hand, congestion tolls have

to be corrected differently. The efficient time-variant toll has to be corrected by modifying the intercept

and keeping the slopes unchanged. This is because the slopes provide the incentives to schedule flights

efficiently and the intercept to set the efficient number of flights. The manipulable toll has to be such that

the derivative of the number of flights times the intercept yields marginal social cost; in the case of the

Stackelberg leader this also needs to take into account that the leader does not view the follower’s number

of flights as parametric. The efficient time-invariant congestion toll also has to be such that the derivative

of the number of flights times the toll yields marginal social generalized cost.

4. Conclusion

This paper studies airlines’ interactions and scheduling behavior together with airport efficient pricing

with a deterministic bottleneck model of congestion. We confirm that an airline acting as a Stackelberg

leader, facing a competitive group of fringe carriers, partially internalizes self-imposed congestion in the sense

that, without facing tolls, it schedules fewer flights than perfectly competitive carriers would, achieving lower

social congestion costs. Consistent with earlier literature with static models of congestion (e.g., Brueckner

and Van Dender, 2008), the degree of internalization of self-imposed congestion depends critically on the

assumed demand substitution pattern. Nevertheless and what is new, our results suggests that social

welfare maximizing congestion tolls do not depend crucially on the degree of internalization, and that the

time-variant tolls derived for perfectly competitive carriers apply also to a monopoly airline and to a setting

where a Stackelberg leader interacts with a group of competitive carriers as followers.

Our analysis suggests that optimal congestion pricing may have a more significant role than what has

been suggested in the earlier literature based on static models. Moreover, the efficient fully time-variant
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congestion toll regime results in a revenue for the airport that restores the well known self-financing result

for congested facilities. Still, if the market power distortion is corrected with a subsidy drawn from the

airport’s budget, the self-financing result is upset. Results also suggest that the political feasibility of

congestion pricing would be enhanced as efficient congestion charges do not vary with market shares, and

therefore may not be perceived as inequitable.

We also find agreement with Daniel (1995, 2009) and Daniel and Harback (2008) in that dynamic

atomistic tolls are efficient in markets well represented by an interaction between a leader and a competitive

follower, but we show that this is not the only efficient solution. The non-uniqueness of social welfare

maximizing congestion tolls in this setting allows for other pricing schemes that also achieve the social

optimum.

Incorporating heterogeneity and studying step-tolling are natural extensions of the present analysis, to

complement Daniel’s (2009) work. Our model allows for the inclusion of heterogeneity in values of time

and preferences for both airlines and passengers. Certainly, the equilibrium and optimal toll will depend on

the type of heterogeneity considered. Step-tolling, a relevant alternative in practice, may bring important

benefits compared with the social optimum; as the number of steps is increased, it approaches the dynamic

atomistic congestion toll, and, consequently, its efficiency and consumer surplus (see van den Berg (2012))

increases approaching the optimal values. Finally, the analysis of simultaneous competition between airlines

with market power is also a natural extension of this analysis.
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Appendix A. Derivation of the equilibrium in the perfect competitive case

Appendix A.1. Equilibrium in scheduling

This Section determines the unique equilibrium values for the beginning (ts) and the end (te) of the peak

period, as well as the departure rate function r(t) that defines the equilibrium (aggregate) queuing pattern.

The travel delay, T (t), and queue length, Q(t), of a flight that departs at t are given by:

T (t) =
Q(t)

K
∧ Q(t) =

∫ t

t̂

(r(u)−K)du (A.1)

where t̂ is the most recent time at which there was no queue. Let t̃ be the departure time for an on-time

arrival (t̃+ T (t̃) = t∗), and consider a flight that departs at t and arrives early (t < t̃). The generalized cost

of that flight is:

s · Cp(t) + Ca(t) = α · T (t) + β · (t∗ − t− T (t)) (A.2)
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The equilibrium condition states that the generalized cost per flight has to be constant over time. By

equating the time-derivative of (A.2) to zero, we obtain the equilibrium departure rate for early arrivals:

d[s · Cp(t) + Ca(t)]

dt
= α ·

(
r(t)

K
− 1

)
− β ·

(
1 + α ·

(
r(t)

K
− 1

))
= 0 (A.3)

⇒ r(t) =
K · α
α− β

∀ t ∈ [ts, t̃ ) (A.4)

Analogous calculations give the following equilibrium departure rate for late arrivals:

r(t) =
K · α
α+ γ

∀ t ∈ [ t̃, te) (A.5)

The rates in (A.4) and (A.5) show that the queue builds up linearly from ts to t̃, and then dissipates linearly

until it disappears at te.

Using that the first and last flight must experience the same generalized cost in equilibrium, and that the

peak duration is f/K, the start and end of the peak period can be derived, together with the equilibrium

generalized cost per flight:

β · (t∗ − ts) = γ · (te − t∗) ∧ ts − te = f/K (A.6)

⇒ ts = t∗ − γ

β + γ
· f
K
∧ te = t∗ +

β

β + γ
· f
K
∧ s · Cp(t) + Ca(t) =

β · γ
β + γ

· f
K
∀ t ∈ [ts, te] (A.7)

Finally, straightforward calculations yield the departure time for an on-time arrival:

t̃ = t∗ − α

β
· γ

β + γ
· f
K

(A.8)

As can be seen above, the conditions that we need to impose are α > β > 0 and γ > 0, so that the variables

have the correct sign. As the empirical literature suggests (Morrison and Winston (1989); Lijesen (2006)),

the values of time for passengers satisfy these conditions (αp > βp > 0 and γp > 0), and, as a consequence,

the results hold also when airlines’ do not incur schedule delay costs (βa = 0 and γa = 0).

Appendix A.2. Equilibrium fare variation over time

With the equilibrium rates described, we can study how the fare ρ(t) changes over time by using (2),

(10), and taking the derivative with respect to t:

∂ρ(t)

∂t
= −∂Cp(t)

∂t
= −αp

∂T (t)

∂t
−

βp
∂(t∗−t)
∂t

γp
∂(t−t∗)
∂t

=

−
[
αp · βα − βp

]
= βp

[
1− αp/βp

α/β

]
if t ≤ t∗[

αp · γα − γp
]

= γp

[
αp/γp
α/γ − 1

]
if t ≥ t∗

(A.9)

where we use that, in equilibrium, queuing delays, T (t), have a slope of β/α for early arrivals and −γ/α for

late arrivals. This reveals that only when the ratios αp/βp and αp/γp equal α/β and α/γ respectively, the

fare (and generalized cost) is constant over time. This can only occur when the passengers’ willingness to

accept schedule delays in order to reduce travel times, as represented by the ratios αp/βp and αp/γp, equal

the airlines’ willingness to accept schedule delays in order to reduce travel times (αa/βa and αa/γa). On

the other hand, when the passengers’ ratios αp/βp and αp/γp are lower (higher) than the airlines’ ratios,

the fare will be higher (lower) for passengers traveling closer to t∗.
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Appendix B. Fringe’s response and leader’s first-order conditions

From (28), we can solve for f and take the derivative with respect to lc and ls in order to obtain the

fringe’s reaction to changes in number of flights by the leader. Solving for f , we obtain:

f =
s [A− E · s(lc + ls)]− c− δ · lc/K

Bs2 + δ/K
(B.1)

Taking the derivative of (B.1) with respect to lc, we find the response of the fringe to a change in the number

of flights that the leader schedules in the peak center:

∂f

∂lc
= − Es2

Bs2 + δ/K
− δ/K

Bs2 + δ/K
= −Es

2 + δ/K

Bs2 + δ/K
≡ φ (B.2)

Since E < B, it follows that −1 < φ < 0. That is, a frequency change by the leader in the peak center,

yields an opposite change in number of flights by the fringe, but that is not equal in magnitude because of

the assumed substitution pattern in demand. In the case where outputs are perfect substitutes (E = B),

φ = −1, which means that any frequency reduction by the leader in the congested period is fully offset by

an increase in number of flights by the competitive fringe. When outputs are independent (E = 0), the

response of the follower still partially offsets a leader’s frequency change.

Differentiating (B.1) with respect to ls gives the response of the fringe to a change in the number of

flights scheduled in the peak shoulders:

∂f

∂ls
= − Es2

Bs2 + δ/K
≡ λ > φ (B.3)

When 0 ≤ E < B, the response of the fringe, to an increase of the leader number of flights scheduled in

the peak shoulders, satisfies −1 < λ ≤ 0. Note that λ > φ means that the response φ is stronger than the

response λ, because both are negative.

With these expressions, we can derive the first-order conditions for profit maximization. Taking the

derivatives of the profit in (30), we get the following:

∂Π

∂lc
= 0 = s[A−B · s(lc + ls)− E · sf ]− c− δ(f+lc)

K

−
[
(B + φE) · s2(lc + ls)

]
−
[
δ(lc+ls)

K (1 + φ)
]

(B.4)

∂Π

∂ls
= 0 = s[A−B · s(lc + ls)− E · sf ]− c− δ(f+lc+ls)

K

−
[
(B + λE) · s2(lc + ls)

]
−
[
δ(lc+ls)

K · λ
]

(B.5)

In both first-order conditions, the last two terms in square brackets on the right-hand side show the market

power markup and the reduced incentives to internalize self-imposed congestion, respectively. By subtracting

(B.4) and (B.5), we can explicitly write the fraction of flights that the leader schedules in the shoulders:

∂Π

∂lc
− ∂Π

∂ls
=
δls
K
−
[
φE · s2(lc + ls)

]
+
[
λE · s2(lc + ls)

]
− δ(lc + ls)

K
(1 + φ− λ) = 0
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⇒ ls
ls + lc

=
E · s2(φ− λ) + δ/K(1 + (φ− λ))

δ/K
= 1− Es2 + δ/K

Bs2 + δ/K
(B.6)
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Abstract

This paper analyzes airlines’ strategic interactions and airport efficient pricing, with a

deterministic bottleneck model of congestion, in Cournot-Nash competition and in sequential

competition where a Stackelberg leader interacts with perfectly competitive airlines. We

show that the internalization of self-imposed congestion by non-atomistic carriers is consistent

with earlier literature based on static models of congestion, but the congestion tolls are not.

The tolls derived for fully atomistic airlines achieve the social optimum, when charged to all

carriers, in the simultanous setting as well as in the sequential setting. We also find that

alternative efficient pricing schemes exist for the sequential competition between a dominant

airline and a competitive follower. The analysis suggests that airport congestion pricing has

a more significant role than what previous studies have suggested. Moreover, the financial

deficit under optimal pricing may be less severe than what earlier studies suggest, as congestion

toll revenues may cover optimal capacity investments. Political feasibility would be enhanced

as efficient congestion charges do not depend on market shares and therefore may not be

perceived as inequitable.

Keywords: Airport pricing, Congestion, Bottleneck model
JEL codes: H23, L50, L93, R48

1. Introduction

As congestion at major airports worldwide continue to increase and traffic approaches

existing capacity, the implementation of policies aimed at reducing delays effectively are be-

coming essential. For example, in the first half of 2007, 30 percent of commercial flights in

U.S. arrived more than 15 minutes late, and similar figures hold for European airports (Rupp,

2009; Santos and Robin, 2010). Policies to solve the congestion problem have been extensively

discussed during the last decades; one alternative is capacity enlargements, but they have the

drawback of bringing benefits after a long period of time and at a relatively high monetary

cost (see Jorge and de Rus (2004) for a cost-benefit analysis). Another option is congestion
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pricing, perhaps the most discussed policy in the academic literature, often following the road

pricing literature.2 However, governments, regulators and airports have not followed this path;

the current practice at many airports is to levy weight-based landing fees, a rule that has been

criticized since early contributions by Levine (1969) and Carlin and Park (1970), who were the

first to argue that these charges provide wrong incentives and lead to inefficiencies. Despite of

four decades of theoretical and empirical contributions calling for implementation of efficient

landing and takeoff charges based on economic principles, airport pricing schemes have been

kept remarkably unchanged. But, as delays are reaching critical values and other negative

externalities, such as pollution and noise, are becoming more important, congestion pricing

is likely to turn into a serious option for governments and regulators.3 This policy may be

specially appealing because landing fees are already in place, and only changes in the way

that they are charged are needed. Moreover, in some countries, such as the U.S., landing fees

are allowed to vary by time of the day, a fundamental feature of an efficient congestion pricing

scheme.

It is now agreed that the vast literature on road congestion pricing may not be directly

applicable to airports, because airlines are non-atomistic players, in contrast to road drivers.

Carriers have market power and have non-negligible shares of the overall traffic and, as a con-

sequence, they can be expected to internalize the congestion imposed on themselves. Daniel

(1995) was the first to recognize this, and Brueckner (2002) and Pels and Verhoef (2004) an-

alyzed the problem assessing the internalization of congestion with theoretical models. Sub-

sequent works by Brueckner (2005), Zhang and Zhang (2006), and Basso and Zhang (2007)

extend the analysis. The main conclusion, regarding congestion pricing, is that carriers com-

peting in a Cournot-Nash fashion internalize self-imposed congestion and, therefore, should

be charged for the fraction of congestion that they impose on others. This leads to a conges-

tion charge that depends on the rivals’ market share at the congested airport. This may be

perceived as inequitable, as dominant airlines should face lower charges than small carriers.

These results have led to a debate on congestion internalization that has not yet fully

reached consensus. On the one hand, Mayer and Sinai (2003) and Santos and Robin (2010)

provide empirical evidence supporting the internalization hypothesis. On the other, Daniel

(1995) and Daniel and Harback (2008) argue empirically that dominant airlines do not in-

ternalize self-imposed congestion because they act as Stackelberg leaders, facing a group of

perfectly competitive carriers (hereafter, the fringe). They suggest that the optimal congestion

charge should be the so-called atomistic toll that ignores any internalization. Subsequent the-

oretical works have aimed at bringing unity to the debate, using analytical models that follow

previous literature. Brueckner and Van Dender (2008) show that, indeed, an interaction be-

2Quantity-based approaches to congestion management are also being discussed as an alternative in the

literature. See Brueckner (2009), Basso and Zhang (2010) and Verhoef (2010) for analyses.
3Congestion pricing can be a second-best solution for environmental externalities. See, for example, Carls-

son (2003) for an analysis of airport pricing with congestion and emissions, and Brueckner and Girvin (2008)

for an investigation of airport noise regulation.
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tween a Stackelberg leader with fringe carriers can induce airlines to ignore the self-imposed

congestion, and that, in general, they only partially internalize own congestion. Silva and

Verhoef (2011) consider a differentiated Bertrand duopoly, and show that airlines internalize

only part of the self-imposed congestion, because they realize that frequency increases affect

rivals’ output through increased congestion. Under both arguments, the first-best charge is

in between the congestion imposed on the rivals’ and the total marginal congestion costs that

results from completely ignoring internalization.

Theoretical analyses that have contributed to this debate have often been based on static

models of congestion. This means, basically, that delays do not vary over time, and airlines are

not concerned with the time of arrival or departure of aircrafts. However, a dynamic model of

congestion is more appropriate when scheduling preferences underly observed peaks in travel,

and when airports’ operational conditions follow the first-come first-served discipline. In fact,

this queuing discipline is the dominant mechanism in U.S. airports; for example, Daniel and

Harback (2008) show that the observed traffic pattern in most of the major U.S. airports

is consistent with the dynamic bottleneck model of congestion. Studies to date, have not

provided transparent analytical insights, in a context of dynamic congestion, for the strategic

interactions of airlines, and for the first-best charges that result from these interactions.

Previous exercises such as Daniel (1995, 2001) and Daniel and Harback (2008, 2009) con-

sider dynamic congestion at airports, but focus on cost minimization of scheduling flights,

hence ignoring the passengers’ role in the problem, or at least treat that role only implic-

itly. Moreover, most of these papers aim at testing whether the observed patterns of arrivals

and departures of flights support the internalization hypothesis. Furthermore, congestion

tolls are derived for an atomistic equilibrium only, ignoring airlines’ strategic interactions.

Daniel (2009) analytically studies the conditions under which dominant airlines internal-

ize self-imposed congestion with a deterministic bottleneck model, but focuses only on a

Stackelberg-fringe competition and omits the passengers in the model, hence ignoring the fact

that airlines use the airport as an input to sell an output in a downstream market. As a result,

congestion charges are not directly applicable and comparable to previous findings.

The contribution of this paper is to provide clear-cut insights and understanding of airlines’

strategic interactions and airport congestion pricing in a model of dynamic congestion. We

recognize the vertical nature of aviation markets, thus explicitly including the role of airport’s

tolls on airlines’ behavior, and incorporating that airlines compete taking these into account

while facing the passengers’ demand for trips. We use the dynamic model of congestion used

in most economic analyses in the literature, namely the deterministic bottleneck model of

congestion developed by Vickrey (1969) and Arnott et al. (1990, 1993). This allows for an

analysis that balances analytical tractability and the inclusion of behavioral decisions: airlines

endogenously adjust departure or arrival rates trading off queuing delays and schedule delays,

and passengers dislike queuing and schedule delays in a different manner than airlines. Fur-

thermore, we derive the equilibrium and first-best pricing for the case of a Cournot-oligopoly

of airlines competing simultaneously, and the sequential competition between a Stackelberg

leader and a competitive fringe.
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Our main result is that, while the (untolled) equilibrium is fully consistent to what previous

literature with static congestion suggests, first-best congestion pricing is not. In particular,

non-atomistic carriers competing in a Cournot-Nash fashion do internalize the self-imposed

congestion, but the first-best congestion charge is not altered by this internalization result

and resembles the charges with fully atomistic carriers. Likewise, when a Stackelberg leader

faces a fringe, the equilibrium is fully consistent with static models regarding internalization

of congestion (e.g. Brueckner and Van Dender, 2008), but the first-best congestion toll is not.

We find that one way of inducing the first-best outcome is by charging the atomistic toll, in

the dynamic context, to the fringe carriers and a flat toll to the leader that accounts only for

the congestion imposed on the fringe. The anticipation by the leader of the fringe carriers’

response to the toll provides incentives to internalize the self-imposed congestion. We further

show that charging the toll that is derived for fully atomistic carriers to both leader and

fringe carriers also yields the first-best outcome. This is independent of the assumed pattern

of substitution between airlines, and holds with imperfectly elastic demand if a market-power

correcting subsidy is given. These results confirm Brueckner’s (2002) claim that the allocation

of number of flights in peak hours may be not as severe as atomistic models predicts and that

delays are smaller at more concentrated airports (in absence of time-variant tolls), because

airlines itnernalize congestion based on own market shares. But, at the same time, suggests

that the first-best congestion charges have the same structure as in the case with atomistic

airlines that do not internalize congestion.

The results of this paper suggest that optimal congestion pricing has a more significant role

than what has been suggested in the literature before. The congestion pricing scheme that

is obtained for fully atomistic carriers, that is independent of airlines’ market shares, induces

the first-best outcome and results in a revenue for the airport that restores the well known

self-financing result for congested facilities. This also suggests that the political feasibility of

congestion pricing would be enhanced as congestion charges do not vary across airlines and

therefore may not be perceived as inequitable. Finally, we also show in the analyses how

the market-power exertion has to be corrected, finding insights that are consistent with those

in the previous literature, and that this overturns the self-financing result if market-specific

subsidies are drawn from the airport budget.

Our results have to be qualified according to our assumptions. Naturally, the dynamic

bottleneck model is not directly applicable when queuing is not necessary or helpful in order to

obtain a certain arrival time, as in fully slot-constrained airports. For this case, more common

in European airports, the quantity-based approach is more pertinent (see Brueckner 2009).

We also assume that airlines and passengers share the desired time of arrival or departure

and that airlines are homogeneous in values of time. The model can be straightforwardly

extended following the road pricing literature.4 Lastly, we use the deterministic version of the

bottleneck model for analytical simplicity. A stochastic version that does not require operation

4The original model by Vickrey (1969) analyses heterogeneity in desired arrival time. For heterogeneity in

values of time see e.g. Vickrey (1973), Arnott et al. (1994) and Van den Berg and Verhoef (2011).
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at capacity to yield (non-linear) queues would be more realistic. However, as the trade off

between expected queuing and expected schedule delays will be driving airlines’ interactions,

general results may not change significantly, while detailed results such as equilibrium delays,

traffic rates and queue lenghts will change.

The paper is organized as follows. Section 2 introduces the model and the assumptions

that are necessary for the analysis. We illustrate the main features of the model by character-

izing the untolled equilibrium and deriving first-best and time-invariant second-best tolls for

perfectly competitive airlines. We then study a monopoly carrier in the market and Cournot-

Nash competition. Section 3 extends the analysis to competition where a Stackelberg leader

faces a group of competitive carriers, focusing on the untolled equilibrium and on first-best

tolling. We study the case of imperfectly elastic demand and imperfectly substitutable airlines,

and also look at the special cases of perfect substitution, independent markets and perfectly

elastic demand. Finally, Section 4 concludes.

2. The model and basic analysis

We use a vertical setting, recognizing that airports provide an input for the output sold by

airlines in a downstream market, and explicitly incorporate the passengers’ role. The demand

for an airline i follows a linear inverse demand function:

Di(qi, qj) = Ai −Bi · qi − Ei · q−i (1)

which gives the marginal willingness to pay for travelling with airline i; qi is the number

of passengers travelling with airline i, and q−i the aggregate of the rivals’ passengers; Ai
represents the maximum reservation price, Bi is the own-demand sensitivity parameter, and

Ei is the cross-demand sensitivity parameter. We assume Bi ≥ Ei in general, and Bi > Ei
usually so that outputs are imperfect substitutes. Perfect substitutability is a special case of

our specification (Ei = Bi = B ∀ i), while the special case where airlines serve independent

markets is represented by Ei = 0. We use the linear specification for analytical simplicity, but

our results do not depend crucially on this particular functional form.

The full price pi for a passenger travelling with airline i is the sum of the fare (ρi) and the

generalized cost experienced by the passenger (Ci). As we consider dynamic congestion, the

various components of the generalized cost are generally not constant over time. We use the

deterministic bottleneck model of Vickrey (1969) and follow Small’s (1982) model of scheduling

behavior, so that the passengers generalized cost is the sum of travel delay cost and schedule

delay cost. In a nutshell, passengers face travel delays that include queuing delays to land or

depart, and have a preferred arrival or departure time from which any scheduled deviation

(early or late) induces a schedule delay cost. For simplicity we consider one congested airport

and focus on arrivals, so the bottleneck is the airport’s runway. However, the analytical results

would apply for departures as well, and can in principle be extended to a network setting with

multiple airports and delays in both arrivals and departures. Our bottleneck model is relevant

when the airport’s operational conditions for arrivals (or departures) follow the first-in first-
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out (FIFO) discipline, and is not directly applicable when the airport is managed with slots,

so that queuing is not needed or helpful to obtain a certain arrival (or departure) moment.

We further assume that passengers have the same desired arrival time (t∗), that free-flow

travel time is zero,5 and that the generalized cost, for passengers in a flight arriving at the

destination at t, is:

C(t) = α · T (t) +

β · (t∗ − t) if t ≤ t∗

γ · (t− t∗) if t ≥ t∗
(2)

where T (t) is the travel time for a flight arriving at t, in our case consisting only of queuing

delay; α is the passengers’ value of travel time, β is the value of early schedule delay and

γ is the value of late schedule delay. We drop the subindex referring to the airline in (2),

because the generalized cost experienced by the passenger does not depend on the identity of

the airline; preferences over airlines are captured in the demand function (1).

As it is usual in the airport pricing literature, we assume that the product of the load factor

and the seat capacity is constant, so that the number of passengers per flight is given, and

that airlines compete in a Cournot fashion, so they choose the number of flights.6 They also

choose when to schedule each flight, which is represented by t. Consequently, the equilibrium

condition for any airline i is that the full price of a trip arriving at t, equals the inverse demand

Di(qi, q−i):

ρi + C(t) = Ai −Bi · qi − Ei · q−i (3)

This implies that an airline may have to charge passengers a time-dependent fare ρi(t). This

is a condition for an interior equilibrium, where all flights are used by passengers and where

passengers are indifferent between all the flights of a single airline. Flights with the same

generalized cost must have the same fare for user equilibrium to hold. Forbes (2008) provides

empirical evidence that airlines indeed charge lower fare when they face higher delays. Note

that this does not mean that different airlines charge the same fare, even for flights with the

same passenger generalized costs; fares may differ between airlines because of the imperfect

substitution assumption.

Airline’s cost consists of a time-invariant operating cost per flight c1, a time-invariant

operating cost per passenger c2, and a time-variant cost Ca(t). Furthermore, we assume that

the same scheduling model holds for airlines as for passengers; therefore, the airline’s delay

cost differs from (2) only in the values of time.7 Let αa, βa and γa the values of travel time,

5In a single origin-destination pair, we can assume zero free-flow travel time without loss of generality, but

this is generally different with multiple origin-destination pairs.
6This is equivalent to set the number of passengers (quantity) because the fixed-proportion assumption

implies qi = fi · s, where s is the product between seat capacity and load factor.
7This also means that airlines share the desired departure time t∗ with the passengers. Although the

preferred arrival time for airlines may be endogenous, following from desired arrival times for passengers,

the analysis of this issue is beyond the scope of this paper. With endogenous t∗ it can be expected that

airlines’ preference is significantly affected by passenger’s preferred arrival time and will be close in practice.

For example, in hub-and-spoke networks, airlines coordinate arrivals and departures to facilitate passenger
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early schedule delay and late schedule delay for the airline, respectively. Denoting the constant

product between seat capacity and load factor as s, and cp = c1 + s · c2 as the time-invariant

cost per flight,8 an airline’s cost per flight can be written as:

c1 + s · c2 + Ca(t) = cp + αa · T (t) +

βa · (t∗ − t) if t ≤ t∗

γa · (t− t∗) if t ≥ t∗
(4)

With the cost structure defined, we can analyze the equilibrium in the airline market and then

study the regulator’s problem. This section looks at three market structures to illustrate the

main features of the model, namely the perfectly competitive case, the monopoly case, and

an oligopoly interacting in Cournot-Nash fashion.

2.1. The competitive case

In the competitive case, airlines are atomistic and each carrier operates a single flight with

s passengers. Because of free entry, fares just cover operating cots; therefore, airlines face

a zero-profit condition. We assume that carriers are homogeneous, i.e. airlines are perfect

substitutes. This implies that Ei = Bi = B in the inverse demand function in (1). The profit

of an airline, that schedules its only flight at t, is revenues minus costs:

π(t) = s · ρi(t)− Ca(t)− cp − τ(t) (5)

where τ(t) is the time-variant per-flight toll (in this case, landing fee) that the regulator

might charge to airlines. Denoting f as the aggregate number of flights, the total number of

passengers is sf , and using (3) we can write profit for a flight arriving at t as:

π(t) = s ·

A−B · sf − α · T (t)−

β · (t∗ − t) if t ≤ t∗

γ · (t− t∗) if t ≥ t∗

− Ca(t)− cp − τ(t) (6)

where the term between square brackets is the fare. Using (4) and defining α = sα + αa,

β = sβ + βa and γ = sγ + γa, the profit of an airline whose flight arrives at time t at the

bottleneck can be simplified as:

π(t) = s [A−B · sf ]− cp − τ(t)− α · T (t)−

β · (t∗ − t) if t ≤ t∗

γ · (t− t∗) if t ≥ t∗
(7)

This reduced form shows that airlines take into account the generalized cost of its own passen-

gers, because the lower the passengers’ generalized cost is, the higher the fare can be (see (3)).

connections. Cost advantages because of high passenger density may also drive airlines to adopt the passengers’

preferred arrival time.
8Because of the fixed-proportions assumption, constant costs per passenger and per flight have the same

effect and can be aggregated. The same occurs with a landing fee; it does not matter if it is a per-passenger

fee or a per-flight fee.
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Therefore, we can interpret the airline’s problem as if they face a generalized cost per flight

that is the sum of its own delay costs, Ca(t), and the generalized cost of all the passengers on

its flight, s · C(t).

The dynamic equilibrium is such that an airline cannot improve its benefits by changing

the schedule of its single flight. By looking at (7), this can only be achieved when every

airline, i.e. every flight, faces the same generalized cost per flight (last two terms on the

right-hand side of equation (7)), because all other terms are time-invariant. This generalized

cost per flight from the airlines’ perspective, is similar to the generalized costs typically found

in bottleneck road pricing literature for individual drivers (e.g., Arnott et al., 1990, 1993). A

difference is that the values of time considered by the airline, for a single flight, are its own

values of time plus the summed passengers’ values of time in that flight. But, through the use

of the composite shadow prices α, β, and γ, this difference disappears from the formal model.

This enables us to describe the equilibrium in schedules following the road pricing literature,

and keep the discussion concise.

We first characterize the untolled equilibrium. In this case, the generalized cost per flight

must be constant over time:

Ca(t) + s · C(t) =
δ · f
K

∀ t ∈ [ts, te] (8)

where K is the runway capacity in terms of flights per unit of time, ts the start of the operation

period, te the end of the operation period, and δ = (β ·γ)/(β+γ).9 This yields an equilibrium

profit (superscript e) for any airline of:

πe = s [A−B · sf ]− cp −
δ · f
K

(9)

Recall that airlines are indifferent between any arrival time t and passengers are indifferent

between any flight, because the full price of all flights is constant, equal to A − B · sf , and

given by:

pi = ρi(t) + C(t) = A−B · sf =
1

s
·
(
cp +

δ · f
K

)
(10)

where the last equality comes from the zero-profit condition (πe = 0). The passengers’ full

price in the no-toll equilibrium equals the airlines’ constant operating cost per passenger (cp/s)

plus the generalized cost per flight divided by the number of passengers. The total generalized

costs (or total delay costs) are the generalized costs per flight times the number of flights,

δ · f 2/K, as in the road case.

We can also study how fare (ρ) changes over time by using (2), (10), and taking the

derivative with respect to t:

∂ρ

∂t
= −∂C

∂t
= −α ∂T

∂t
−

β
∂(t∗−t)
∂t

γ ∂(t−t
∗)

∂t

=

−
[
α · β

α
− β

]
= β

[
1− α/β

α/β

]
if t ≤ t∗[

α · γ
α
− γ
]

= γ
[
α/γ
α/γ
− 1
]

if t ≥ t∗
(11)

9See Arnott et al. (1990, 1993) for a derivation of this result.
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t
t∗

p

s[A−B · sf ]

sC(t) + Ca(t) =
δ · f
K

ts te

α · T (t)

sC(t)

cp + Ca(t) = sρ(t)

cp

Figure 1: Competitive no-toll equilibrium (α/β < α/β < αa/βa and α/γ < α/γ < αa/γa).

where we use that, in equilibrium, queuing delays, T (t), have a slope of β/α for early arrivals

and −γ/α for late arrivals. This reveals that only when the ratios α/β and α/γ equals α/β

and α/γ respectively, the fare (and generalized cost) is constant over time. This is when the

passengers’ willingness to accept schedule delays in order to reduce travel times, as represented

by the ratios α/β and α/γ, equals the equilibrium rates of change between schedule delays and

travel time. On the other hand, when the passengers’ ratios α/β and α/γ are lower (higher)

than the equilibrium rates of change, the fare will be higher (lower) for passengers travelling

closer to t∗.

Figure 1 illustrates the no-toll equilibrium for the competitive case. The equilibrium

is represented by the constant generalized costs per flight (see (8)), and the depiction of

s[A − B · sf ] satisfying (10). Figure 1 also shows the fare structure for the parametrization

where values of time are such that αa/βa > α/β and αa/γa > α/γ.

With the untolled equilibrium characterized, we analyze the regulator’s problem of maxi-

mizing social welfare through a per-flight toll. First, consider the case of a time-invariant toll.

As it does not vary over time, the airlines treat it as a constant operating cost and, for a given

number of flights, it does not alter the scheduling decisions. The regulator’s optimization

problem follows:

maxSW =

∫ sf

0

(A−Bx)dx−
∫ te

ts

(K · s · C(t))dt−
∫ te

ts

(K · cp +K · Ca(t))dt (12)

where the first term is gross benefits for sf travelers, the second is total passengers’ generalized

costs (at t, a flow of K flights will serve s passengers each), and the third term is total airlines’

costs that includes constant and generalized costs (fares and tolls cancel out). Rewriting,

SW =

∫ sf

0

(A−Bx)dx−K ·
∫ te

ts

(s · C(t) + Ca(t))dt−K · cp
∫ te

ts

dt

=

∫ sf

0

(A−Bx)dx− δ · f 2

K
− f · cp (13)
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where the second equality uses that the duration of the peak is f/K, and that, in equilibrium,

s · C(t) + Ca(t) is constant (condition (8)).

Let τ̂ be the time-invariant toll. Comparing the first-order conditions for welfare maxi-

mization and the airline zero-profit condition, we then obtain:

∂SW

∂f
− πe = s(A−B · sf)− 2

δ · f
K
− cp −

[
s(A−B · sf)− cp −

δ · f
K
− τ̂
]

(14)

As a consequence, the welfare maximizing time-invariant toll per flight is:

τ̂ =
δ · f
K

(15)

This toll matches the flat toll for the road bottleneck (Arnott et al., 1993), because without

altering the flights’ schedule, generalized costs per flight are δ · f/K, and marginal social

generalized costs are 2 ·δ ·f/K, which is fully consistent with the road case. As a consequence,

it is straightforward that the second-best flat toll is the difference between both.

Note that—given that airlines are queuing such that generalized costs are constant over

time—the aggregate number of flights is not optimal, and the flat-toll (15) equal to the

marginal delay cost that a flight imposes on all airlines’ flights (including their passengers)

is necessary. This is analogous to the atomistic toll derived in static congestion models (e.g.,

Brueckner, 2002), because—as showed by Arnott et al. (1993)—the untolled equilibrium in

the bottleneck model is characterized by a supply function (8) that depends (linearly) on the

aggregate number of flights. This time-invariant toll induces an aggregate number of flights

f
′
, which is second-best optimal, given that queuing is not eliminated. The fares will remain

with the same dynamic structure that they also have in the no-toll equilibrium.

As queuing delay is a pure loss in this model, welfare can be improved further. The

reason is that, any number of flights in an equilibrium with queues can be served in the same

time interval, without queuing and without increasing schedule delay costs. This requires an

arrival rate equal to the capacity throughout the peak, and cannot be achieved spontaneously

in equilibrium, as the flights closer to t∗ face a lower generalized cost. The first-best charge is

the time-variant toll τ(t) that fully eliminates queuing. It is equal to the value of queuing delay

per flight of the no-toll equilibrium, α ·T (t) in Figure 1, and induces that the generalized cost

of each flight equals marginal social generalized cost. Denoting f ∗ as the optimal aggregate

number of flights, the optimal toll is,

τ(t) =
δf ∗

K
−

β · (t∗ − t) if t ≤ t∗

γ · (t− t∗) if t ≥ t∗
(16)

We call this toll structure the dynamic atomistic toll , in contrast to the atomistic toll derived

in static models of congestion and the second-best flat toll of this problem (15). In the first-

best equilibrium, as there is no queuing, total generalized costs are δ · f 2/2K, hence marginal

social generalized costs are δ ·f/K. With τ(t), the flight that arrives at t∗ faces no generalized

costs and pays a toll equal to the marginal social cost. Moreover, the first and last flight face
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a schedule delay equal to the marginal social generalized cost and therefore do not pay any

toll. The equilibrium full price does not differ from the no-toll equilibrium, but generalized

cost does. The queuing costs completely disappear and are replaced by the toll, hence total

revenue is equal to the total queuing costs of the untolled equilibrium. The part of the toll

that reflects passenger valuation of delays is transferred to them through the fare to maintain

passenger equilibrium. In other words, the fare will show a stronger time variation than in

the no-toll equilibrium.

2.2. The monopoly case

Here, we consider a market with a single airline facing a linear inverse demand (as in (1)

with E = 0). The monopoly carrier chooses the number of flights F and how to schedule

them. Since the airline faces no competition,10 the flights will be scheduled such that there

is no queue at all. The airline realizes that by choosing a departure rate equal to the runway

capacity, it will achieve the minimum possible delay, i.e. only schedule delay costs. Let ts be

the start of the period and te the end, then the airline’s profit is:

π =

∫ te

ts

K · s · ρ(t)−K · cp −K · Ca(t)dt = K

∫ te

ts

s[A−B · sF ]− sC(t)− cp − Ca(t)dt

= s · F · [A−B · sF ]− F · cp −K
∫ te

ts

sC(t) + Ca(t)dt (17)

Where the second equality uses the appropriate version of (3), and the third equality that

the peak lasts F/K. We have shown that the last term on the right hand side of (17) reflects

the road case with α, β, and γ. This allows us to write the generalized costs per flight given

that the monopoly does not queue, i.e. these are schedule delay costs that diminish linearly

from δF/K at ts to zero at t∗ and then grow to δF/K at te. Taking this into account and

considering a per-flight time-invariant toll τ̂ (that is seen as parametric by the airline), the

profit in (17) can be expressed as:

π = s · F · [A−B · sF ]− F · cp −
δ · F 2

2K
− F · τ̂ (18)

The airline first-order condition for profit maximization is,

∂π

∂F
= s[A−B · sF ]−B · s2F − cp −

δF

K
− τ̂ = 0 (19)

which means that the (constant) full price paid by passengers is:

p = ρ(t) + C(t) = A−B · sF =
1

s
·
(
cp +

δ · F
K

)
+B · sF +

τ̂

s
(20)

implying that the fare, that maintains equilibrium, is:

ρ(t) =
1

s
·
(
cp +

δ · F
K

)
+B · sF +

τ̂

s
− C(t) (21)

10We are abstracting from potential entry in this setting, but we address this question in Section 3.
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t
t∗

p

s[A−B · sF ]

δ · F
K

ts te

sC(t)

sC(t) + Ca(t) s · ρ(t)

cp

B · s2F + τ̂

s · ρ(ts) =
cp + Ca(ts)+

B · s2F + τ̂

γ
sγβ sβ

Figure 2: Monopoly time-invariant-toll equilibrium.

In contrast to the competitive case, this condition shows that the monopoly carrier charges

to the passengers a markup of B · sf . This is simply the number of passengers times the own-

demand price sensitivity, the market power effect first described by Pels and Verhoef (2004).

Figure 2 depicts the time-invariant-toll equilibrium for a monopoly. There is no queue, and

the first and last flight (at ts and te, respectively) experience a generalized cost of δF/K. The

fulfillment of the first-order condition for profit maximization is represented in the vertical

axis, where s[A−B ·sF ] = cp+δF/K+B ·sF + τ̂ by construction. The time-variant per-flight

fare, s · ρ(t) in (21), is also depicted in Figure 2. The slopes of passengers’ generalized cost

(C(t)) and airline’s delay costs (Ca(t)) are the same as in the optimum of the competitive

case, and therefore the slope of the per-flight fare is also the same. Finally, note that the fare

at the first and last flight is just the sum of the constant operating cost, the airline’s delay

cost, the toll and the market power markup. Now, the regulator’s maximization problem is:

SW =

∫ sF

0

(A−Bx)dx−K ·
∫ te

ts

(s · C(t) + Ca(t))dt− f · cp (22)

but, in contrast with the competitive case, the airline is scheduling the flights in such a way

that there is no queue. Hence, the second term on the right-hand side of (22) is the same as

derived in (18), shaping social welfare in the following way:

SW =

∫ sF

0

(A−Bx)dx− δ · F 2

2K
− F · cp (23)

This is gross benefits of sF passengers minus total social costs; when there are no queuing

delays, total generalized costs equals δ · F 2/2K. Taking the derivative with respect to F , we

get the first-best condition:

s[A−B · sF ] = cp +
δ · F
K

(24)
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This is simply that, at the optimum, full price equals marginal social cost, which is the sum

of the marginal operating cost plus marginal total generalized costs (including airlines and

passengers through δ).11 Comparing the monopolist’s first-order condition (19) and the first-

order condition for welfare maximization (24), it is straightforward that the first-best toll

is:

τ̂ = −B · s2F (25)

The regulator corrects the market power exertion by subsidizing the airlines, and does not

have to give an incentive to the monopolist to internalize congestion. This subsidy (−B · sF
per passenger) induces the optimal number of passengers, and is analogous to the one obtained

in the static model (Pels and Verhoef, 2004).

A monopoly airline internalizes all the congestion costs by scheduling the flights efficiently:

there is no queuing and therefore there is no need for congestion pricing. In Figure 2, when

the optimal subsidy is applied, the term B · s2F + τ̂ disappears and the first-best condition

(24) is satisfied. Moreover, the per-flight fare (s multiplied by the per-passenger fare) at the

first and last flight is simply the airline’s costs per flight, as Figure 2 shows.

2.3. Cournot oligopoly

In this section we analyze the case where a small number of airlines compete for passengers

and face horizontally differentiated demands as in (1). We look at the case where they make

their decisions simultaneously, and believe that they are not able to influence the competitors’

traffic volume. This problem has been studied in various settings in the literature, but mainly

in the context of static congestion models. In this section we derive the equilibrium and first-

and second-best tolls with the dynamic deterministic bottleneck model of congestion.

The equilibrium that mirrors the road case with the adjusted values of time (α,β and

γ), where every airline faces the same generalized cost per flight, is the unique Cournot-

Nash equilibrium. Airlines cannot increase profit by changing the schedule of flights, and,

even though they have market power and the potential to internalize congestion imposed on

their own flights, they cannot reach the equilibrium without queuing delays. An equilibrium

without queues cannot be supported because one flight will always face higher schedule delays

than other; therefore, one airline will have an incentive to reschedule flights. This is obviously

not the case when all the flights face the same generalized cost. It is worth stressing that the

equilibrium pattern of queuing implies that there is no particular unique “order” of flights

over operators.

Despite the fact that in the untolled equilibrium there is queuing, airlines do internalize

the generalized costs imposed on themselves—given that they are queuing. To see this, let

fi be the flights of the airline i and f−i the rivals’ aggregate number of flights. Then, the

constant generalized cost per flight is δ · (fi + f−i)/K and profit and first-order conditions for

11We look at the full price of a flight (the full price of a trip A−B · sF times the number of passengers in a

flight s) and the marginal social cost of a flight, but there is no loss of generality. The condition also implies

that the full price of a trip equals the marginal social cost of a seat.
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the airline i are:

πi = s · fi[Ai −Bi · sfi − Ei · sf−i]− fi · cp − fi ·
δ · (fi + f−i)

K

∂πi
∂fi

= 0⇒ s[Ai −Bi · sfi − Ei · sf−i] = cp +
δ(fi + f−i)

K
+Bi · s2fi +

δfi
K

(26)

Recall that in this equilibrium marginal social costs are cp + 2 · δ · (fi + f−i)/K. Therefore,

the first-order condition (26) shows that airlines apply the conventional monopolistic markup

(B · sfi per passenger) and fail to internalize the congestion imposed on the rivals (δ · f−i/K).

As a result, the second-best optimal flat toll is fully consistent with the earlier literature with

static congestion in Cournot competition, and is given by:

τ̂ = δ · f−i/K −B · s2fi (27)

Airlines are still not capable of reaching the equilibrium without queues, but they internalize

self-imposed congestion. This toll in (27) is not the first-best toll. As queuing costs remain

a pure loss in this model, welfare can be improved further with a time-variant toll that fully

eliminates queuing. This is the dynamic atomistic toll that reflects the road case, and is given

by:

τ(t) =
δ(f ∗

i + f ∗
−i)

K
−

β · (t∗ − t) if t ≤ t∗

γ · (t− t∗) if t ≥ t∗
(28)

where f ∗
i + f ∗

−i is the first-best number of flights. This toll is completely analogous to the

toll derived in the perfect competitive case, and transfers queuing costs into toll revenues.

With (28), there is no need for flat congestion tolls because there are no queues and marginal

social cost is reduced to δ · (fi +f−i)/K; hence, congestion costs are at the efficient level when

airlines pay (28). In order to achieve the first-best equilibrium, the market power exertion

has to be corrected through the optimal per-passenger subsidy of Bi · sf ∗
i . The first-best

congestion toll, in contrast to previous findings and to the second-best flat toll, does not have

to be different for airlines with different market shares of flights; however, the market-power

correcting subsidy does. Moreover, the first-best congestion toll increases consumer surplus,

as the the full price of a trip decreases with respect to the untolled equilibrium (the last term

of (26) is eliminated). However, the effect on profits is ambiguous; it can increase or decrease

depending on the relative magnitude of the market power effect.

This result for a Cournot-oligopoly of airlines has an important implication for the financial

situation of the airport. As Arnott et al. (1993) demonstrate, the self-financing results of

Mohring and Harwitz (1962) for capacity investments hold for the bottleneck model with

elastic demand. As we have disclosed, the results of our perfect competitive case parallel

results for the road case; therefore, the self-financing result also holds when (28) is charged

to airlines. If there are constant returns to scale in capacity provision, the revenues from

the first-best toll exactly cover the cost of providing the optimal capacity.12 This differs

12In general, “the ratio of the revenue collected from the optimal toll to the costs of constructing optimal

capacity equals the elasticity of construction cost with respect to capacity” (Arnott et al., 1993).
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from earlier results because first-best tolls are not discounted by the fraction of congestion

that is internalized by carriers; therefore, the self-financing result is not overturned by the

internalization of congestion. However, the market-power subsidy that corrects dead-weight

losses can overturn this self-financing. As suggested by Brueckner (2005), this should be

corrected at a city-pair market level instead of at an airport level, but even then the break-

down of self-financing, of course, remains.

The results of this section show that the dynamic atomistic toll is the only toll that

leads to the first-best when carriers are atomistic, but also when competing airlines have

market power and internalize self-imposed congestion. In fact, when non-atomistic airlines

offer perfect substitutes, the first-best toll is exactly the same as in the perfect competitive

case (see (16) and (28)). Conversely, for a monopoly, only a subsidy that decreases price is

needed, however, it is important to emphasize that the dynamic atomistic toll could also be

charged to the monopoly airline without altering social welfare, but transferring part of the

monopoly carrier profits to the regulator. This is the result of the congestion technology:

the monopoly airline cannot do better than setting the arrival rate equal to capacity in time

windows where it has arrivals, so as to face only schedule delay costs, regardless of the dynamic

toll schedule it faces. To see this, it is enough to add the time-variant toll to the monopoly

profit in (17):

π = s · F [A−B · sF ]− F · cp −K
∫ te

ts

sC(t) + Ca(t) + τ(t) dt (29)

By charging the dynamic atomistic toll (28) to the monopoly, it is straightforward that sC(t)+

Ca(t) in (29) cancels out with the time-variant part of the toll, and the airline will set full price

equal to cp plus the constant part of the toll per flight (δF ∗/K). By including the subsidy, it

is clear that the outcome will be the first-best.

These results suggest that a simple congestion pricing scheme, the dynamic atomistic toll

at an airport level, that is independent of airlines’ market shares and degree of competition

(it only depends on the aggregate optimal traffic) will induce the first-best outcome, if the

market power exertion is corrected with a subsidy at a market level. Moreover, it is the unique

first-best congestion toll when there is, at least, some degree of competition.

3. A Stackelberg leader with a competitive fringe

We now turn to the case of a Stackelberg leader with a follower that behaves competitively

to assess the internalization of congestion by the leader, and derive the optimal congestion

tolls for this situation. This issue was raised by Daniel (1995) and studied further by Brueck-

ner and Van Dender (2008), Daniel and Harback (2008) and Daniel (2009). On the one hand,

Brueckner and Van Dender (2008)—with a static congestion model—show that the internaliza-

tion of self-imposed congestion by a Stackelberg leader facing a competitive follower depends

on the assumed substitution pattern. When all carriers are perceived as perfect substitutes,

the leader does not internalize congestion and, as a result, the optimal congestion charge for

all carriers would be the so-called atomistic toll that accounts for the marginal congestion
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damage from an extra flight imposed on all flights. When leader and follower offer imperfect

substitutes, and when they offer independent goods, the leader partially internalizes the self-

imposed congestion. Consequently, the optimal toll lies in between the congestion imposed on

the fringe and the atomistic toll. On the other hand, Daniel (1995) and Daniel and Harback

(2008) find empirically that traffic patterns at most U.S. airports are not consistent with the

internalization hypothesis and argue that atomistic tolls are needed for all carriers. Daniel

(2009) also argues the need for atomistic tolls with an analytical model.

The competitive follower can be interpreted as one airline behaving competitively, or a

group of competitive airlines, as in Section 2.1 with a free-entry condition. Following the

aviation literature, we use the term “fringe” for the group of airlines that behaves competi-

tively, regardless of the temporal location of its flights; note, in particular, that the fringe may

operate in the temporal center of the peak. To avoid confusion, we will therefore not use the

term fringe for indicating the shoulder periods of the peak. We assume that the leader and

the fringe treat the toll that the regulator sets as parametric, and that when the Stackelberg

leader makes the decisions, it is aware of the toll that the regulator applies to the fringe.13

3.1. Untolled equilibrium

To study the airlines’ interactions, we first look at the no-toll equilibrium. In this case, the

fringe carriers are characterized by a zero-profit condition and satisfy the dynamic equilibrium

of constant generalized cost per flight, as in equation (8). This can only be possible by

queuing in the center of the peak. On the other hand, the Stackelberg leader has the choice

of scheduling flights joining the queue of the fringe operators, and to schedule flights outside

this congested period, in the peak shoulders, bearing only schedule delay costs.14 Let f

be the number of flights that the fringe operates, lc the number of flights that the leader

schedules in the peak center along with the fringe, and ls the leader’s number of flights in

the peak shoulders. We follow the framework proposed in Section 2, with fringe airlines

being pure substitutes and inverse demands given by (1), but with symmetric parameters

(Bi = B ∧ Ei = E ∀ i); both carriers and passengers are homogeneous in values of time and

in preferred arrival time, and the airlines have the same constant operating cost.

The fringe equilibrium condition is the same as in the competitive case (see (9)), but

including the fact that the leader has s(lc + ls) passengers, affecting its inverse demand.

Moreover, the generalized cost per flight has to be constant in the peak center, and will equal

δ · (f + lc)/K. This is because the leader can only operate jointly with the fringe in the same

period if the aggregate queue pattern satisfies the competitive conditions. If the leader causes

13Brueckner and Verhoef (2010) point out that assuming that agents are large enough to exert market power

and to recognize the impact of their decisions on overall congestion, but that they do not take into account

the impact of their actions on the tolls, is a strong assumption. We maintain this assumption to focus on the

first-order effects and comparison with earlier literature, but discuss how the solution proposed by Brueckner

and Verhoef (2010) applies to our case in Section 3.3.
14The leader can set the departure rate equal to the capacity of the bottleneck and achieve the minimum

time costs, because it does not face competition or potential entry in the peak shoulders.
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steeper queue rates of change, the fringe will be pushed to the outsides, and the leader will

harm itself unnecessarily at central times. Conversely, if the leader causes flatter queue rates

of change, the fringe will be pushed to the inside and the leader will harm itself unnecessarily

at shoulder times. The fringe zero-profit equilibrium condition is given by:

s [A−B · sf − E · s(lc + ls)]− cp −
δ · (f + lc)

K
= 0 (30)

Note that this condition defines f as a function of lc and ls. Solving for f , we obtain:

f =
s [A− E · s(lc + ls)]− cp − δ · lc/K

Bs2 + δ/K
(31)

First, note that the fringe’s number of flights depends only on the number of flights set by

the leader in the peak center (lc) and not those in the shoulder (ls) if, and only if, E = 0.

This is an important point to stress, because allows us to identify the condition that makes

the fringe care only about what happens in the center. The latter is the assumption made by

Daniel (2009), thus the full independence case of our model is the case where results may be

comparable with Daniel’s (2009) findings.

By taking derivatives of (31) we can obtain the response of the fringe to a change in lc,

the number of flights that the leader schedules in the peak center, yielding the following:

∂f

∂lc
= − Es2

Bs2 + δ/K
− δ/K

Bs2 + δ/K
= −Es

2 + δ/K

Bs2 + δ/K
≡ φ (32)

Since E < B, it follows that −1 < φ < 0. That is, a frequency change by the leader in

the peak center, yields an opposite change in number of flights by the fringe, but that is not

equal in magnitude because of the assumed substitution pattern in demand. As (32) shows,

two effects are present in the fringe response. The first one is because of the substitutability;

the leader will anticipate the fact that any reduction in the number of passengers (through

a reduction in frequency, because of the fixed proportions assumption) will induce a shift in

the inverse demand of the fringe, that will be met by an increase in the fringe’s number of

passengers, or, equivalently, new entry until the fringe profit is again zero. Any reduction in

the number of passengers by the leader will thus be partially offset by an increase from the

fringe. The second effect is because both carriers are imposing congestion on each other; the

leader predicts that any frequency reduction is partially offset by an increase of the number

of flights set by the follower in response to reduced queuing.

Note that in the case where outputs are perfect substitutes (E = B), φ = −1, which

means that any frequency reduction by the leader in the congested period is fully offset by

an increase in number of flights by the competitive fringe. Note also that when outputs are

independent (E = 0), the response of the follower still partially offsets a leader’s frequency

change, because of the congestion effect.

We can also derive the response of the fringe to a change in the number of flights scheduled

in the peak shoulders, by differentiating (31) with respect to ls, yielding:

∂f

∂ls
= − Es2

Bs2 + δ/K
≡ λ > φ (33)
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This is the substitutability effect discussed above. Since the flights scheduled in the peak

shoulders do not impose congestion on the fringe, there is no congestion effect. When 0 ≤
E < B, the response of the fringe, to an increase of the leader number of flights scheduled

in the peak shoulders, satisfies −1 < λ ≤ 0. Note that λ > φ means that the response φ is

stronger than the response λ, because both are negative.

With the response of the fringe defined, we can look at the first-order conditions for the

Stackelberg leader and derive the equilibrium. In this untolled equilibrium, the leader’s profit

can be separated into two terms, the profit from the operations in the peak center and the

profit from the peak shoulders. In the center, because of the fringe’s presence, the generalized

cost per flight must be constant and equal to δ · (f + lc)/K. In the shoulders, the leader sets

the arrival rate equal to the bottleneck capacity and experiences only schedule delay costs.

Since the duration of the entire peak has to be (f + lc + ls)/K, the schedule delay of the first

and last flight is δ · (f + lc + ls)/K. The flights at the interior borders of the shoulders still

experience only schedule delay costs and, as the duration of the peak center is (f+ lc)/K, they

experience a schedule delay cost of δ(f + lc)/K. Therefore, with linear delays, the average

generalized cost per flight in the peak shoulders will be δ ·(f+ lc)/K+δ · ls/(2K). This shapes

the profit in the following way:

Π = lc

(
s[A−B · s(lc + ls)− E · sf ]− cp − δ(f+lc)

K

)
+

ls

(
s[A−B · s(lc + ls)− E · sf ]− cp − δ(f+lc)

K
− δls

2K

)
(34)

The first-order conditions are:

∂Π

∂lc
= 0 = s[A−B · s(lc + ls)− E · sf ]− cp − δ(f+lc)

K

− [(B + φE) · s2(lc + ls)]−
[
δ(lc+ls)

K
(1 + φ)

]
(35)

∂Π

∂ls
= 0 = s[A−B · s(lc + ls)− E · sf ]− cp − δ(f+lc+ls)

K

− [(B + λE) · s2(lc + ls)]−
[
δ(lc+ls)

K
· λ
]

(36)

In both first-order conditions, the last two terms in square brackets on the right-hand side

are the market power effect and the congestion internalization, respectively. By subtracting

(35) and (36), we can explicitly write the fraction of flights that the leader schedules in the

shoulders as:

∂Π

∂lc
− ∂Π

∂ls
=
δls
K
−
[
φE · s2(lc + ls)

]
+
[
λE · s2(lc + ls)

]
− δ(lc + ls)

K
(1 + φ− λ) = 0

⇒ ls
ls + lc

=
E · s2(φ− λ) + δ/K(1 + (φ− λ))

δ/K
= 1− Es2 + δ/K

Bs2 + δ/K
(37)

This shows that in the untolled equilibrium, when demand is imperfectly elastic and airlines

are imperfect substitutes (i.e. 0 < E < B), the leader schedules flights in both the peak center

as well as in the peak shoulders (ls/(ls + lc) > 0). This is also the case when the outputs
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are independent (E = 0). In the case of perfect substitution (E = B) and when demand is

perfectly elastic (B = E = 0), the leader sets all of its flights in the peak center, queuing

along with the fringe. The reason is that the leader knows that the fringe reacts to increases

in lc by offsetting them, so that the fringe will make room for the leader’s flights; conversely,

if the leader decreases the number of flights in the peak center by shifting to the shoulders,

the fringe will increase the number of flights raising the generalized cost. When the fringe

fully offsets the changes in the leader’s number of flights, the leader is better off setting all

the flights in the peak center along with the fringe. When this effect is partial, the leader is

better off setting part of the flights in the center.

Recall that the leader schedules flights in the peak center, queuing in the same way as

the fringe and partially internalizes self-imposed congestion (as shown by the last term on the

right-hand side of (35)). Conversely, in the peak shoulders it is scheduling the flights such that

there is no queue, therefore being efficient in this sense, but still failing to fully internalize self-

imposed congestion because of anticipation of the fringe response (captured by the last term

on the right-hand side of (36)). This means that the leader does not internalize any conges-

tion when demands are perfectly elastic or when demand is imperfectly elastic and products

are perfect substitutes. In the case of full independence and imperfect substitutability, the

leader internalizes a fraction of the self-imposed congestion. These results reproduce previous

findings, regarding internalization of self-imposed congestion, by Brueckner and Van Dender

(2008), but now in a dynamic congestion model.

Our result for full independence is also similar to the result by Daniel (2009) who finds

that the leader sets a fraction of the flights in the peak center that ranges from 0 to 1 in the

untolled equilibrium (Daniel’s proposition 1). He argues that the leader sets all of the flights

in the peak shoulders when the number of flights by the fringe is fixed. This is also true in

our model, and is obtained when market are independents and the fringe faces a perfectly

inelastic demand.

In the next section, we analyze the regulator’s problem, deriving the first-best tolls for the

three cases separately.

3.2. First-best tolls

• Perfect substitution

When outputs are perfect substitutes (E = B), it is straightforward from (37) that the leader

sets all the flights in the peak center, queuing along with the fringe. In this case, (35) is the

only relevant first-order condition, and using φ = −1, the last two terms in square brackets

become zero. Hence, the leader behaves atomistically in the sense that it does not exert

market power (consistent with its own demand becoming, in practice, perfectly elastic), and

does not take into account the fact that scheduling flights imposes congestion on its own flights

(because elastic supply from the fringe frustrates any attempt to reduce travel delays). Let l

be the number of flights scheduled by the leader;15 in this case, both the zero-profit condition

15There is no need, in this case, to differentiate the leader’s flights as it schedules all of them in the congested
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of the fringe (30) as well as the first-order condition of the leader (35) are:

s [A−B · s(f + l)]− cp −
δ · (f + l)

K
= 0 (38)

As a consequence, the leader’s profit will also be zero and only the aggregate number of flights

can be determined. The fact that airlines are perfect substitutes makes the leader behave

atomistically, because the fringe zero-profit condition requires a constant value for the overall

number of flights, as (38) shows. This implies that the fringe fully offsets any change of

leader’s number of flights, and that the equilibrium is the same as Figure 1 depicts.

Since queuing delay is a pure loss in the model, the first-best toll scheme has to fully

eliminate queuing. The fringe, by definition, operates atomistically; therefore, the only way

to induce the first-best is by charging the dynamic atomistic toll described in Section 2.1 to

the fringe: a per-flight toll equal to the queuing costs (per flight) of the untolled equilibrium:

τ(t) =
δF ∗

K
−

β · (t∗ − t) if t ≤ t∗

γ · (t− t∗) if t ≥ t∗
(39)

where F ∗ denotes the aggregate number of flights of the no-toll equilibrium, that results from

(38); and δF ∗/K is the marginal social cost when there is no queue.

Conversely, the Stackelberg leader has the potential to schedule its flights without incurring

queuing delays, as we discussed in Section 2.2 for a monopoly, but it has no incentive to do

so in the no-toll equilibrium because of the fringe’s presence. However, when the regulator

imposes the dynamic atomistic toll (39) only to the fringe, the leader realizes that can schedule

F ∗ flights efficiently (without queuing and operating at capacity), earning profit (because it

is not paying any toll), and keeping the fringe completely out. This is because whenever the

fringe schedules a flight, it unavoidably experiences at least the constant generalized cost per

flight of the untolled equilibrium (δF ∗/K), as it incurs schedule delay cost and pays the toll

that mirrors the queuing costs. Anticipating this, the leader—when not facing any toll—

schedules F ∗ flights from ts to te, leaving no room for the fringe. Figure 3 shows the first-best

equilibrium.

As there are no queuing delays, there is no congestion inefficiency. Moreover, the leader

does not exert market power, as can be seen by noting that the first-best condition is being

satisfied: the full price of a flight (s[A−B · sF ∗]) equals marginal social costs (cp + δF ∗/K).

Finally, the leader’s profit is positive and equal to the queuing costs savings. To see this, note

that at any time t, the revenue per-flight equals s · ρ(t) and the costs are cp + Ca(t). The

subtraction of both equals δF ∗/K − (sC(t) + Ca(t)), exactly the queuing costs savings with

respect to the no-toll equilibrium. The first and last flights have a marginal profit of zero,

ensuring that the fringe does not have incentive to enter.

Even though the fringe is not operating along with the leader, the latter has no incentive

to exert market power, because any reduction of number of flights from F ∗ results in a profit

period along with the fringe.
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Figure 3: First-best equilibrium with perfect substitution.

loss. To see this, graphically, suppose the leader schedules l1 flights from t1 to t2, where

schedule delay costs per flight equal δl1/K at the borders. As a response to this, the fringe

will schedule flights from ts to ts and from t2 to te, because of the perfect substitution, keeping

constant the total number of flights (l1 + f = F ∗). The leader’s outcome from reducing the

number of flights is a profit loss equal to the shaded area.

This results in a first-best equilibrium where the dynamic atomistic toll is being only

requested to the fringe. This toll works by inhibiting its operation and, at the same time,

maintaining the leader’s lack of capability to exert market power, but providing incentives to

schedule the flights efficiently. However, this toll regime that exempts the leader from paying,

and does not bring any revenue to the regulator, is not the only one that induces the first-best

equilibrium. For example, the regulator can charge the dynamic atomistic toll (39) to both

the fringe and to the leader, and the equilibrium will have the same scheduling pattern (only

schedule delay costs). The difference is that all the leader’s profit will be transferred to the

regulator, making all carriers’ profit zero. This is because of the congestion technology and

the perfect substitution; in the deterministic bottleneck model, the leader is always better off

setting the arrival rate equal to capacity so as to face only schedule delay, minimizing costs,

but the fringe response prevents the market power exertion.

Brueckner and Van Dender (2008) find that the atomistic toll must be charged to both the

leader and the fringe to obtain the first-best outcome. In our case, the dynamic atomistic toll—

analogous to the first-best of the road case—for both agents leads to the first-best outcome, but

it is not the only way, because the airline’s interactions are different with dynamic congestion.

The regulator can charge to the leader the dynamic atomistic toll (39), with the only effect

of transferring leader’s profit to toll revenues, but it may also charge a zero toll to the leader.

The former case makes the outcome consistent with Brueckner and Van Dender (2008); the

latter corresponds to the elastic case where the congestion toll approaches zero as the firm’s
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market share approaches unity.

This has an important implication for the financial situation of the regulator, since it can

finance airport’s capacity investment. As we discuss in Section 2.3, the self-financing results of

capacity investments of Mohring and Harwitz (1962) hold in our problem when the dynamic

atomistic toll is charged. Therefore, if the costs of providing capacity exhibit constant returns

to scale, the regulator can finance the optimal capacity investments by charging the dynamic

atomistic tolls to both the leader and the fringe.

• Full independence

In this setting, the fringe and the leader serve two different markets, they face independent

demands (E = 0), and we let parameters A and B vary among airlines (subscripts f and l).

As a result, the fringe is not affected by the operations in the peak shoulders (λ = 0), but

still partially offsets peak center frequency reductions (−1 < φ < 0), implying that the leader

schedules flights in both periods (from (37), ls/(ls + lc) > 0). The full independence also

implies that, in both the peak center and the peak shoulders, the leader is exerting market-

power with a markup equal to Bl · s2(lc + ls), as a result of the full price being independent

of the fringe’s number of flights. This is exactly the markup that is present in the monopoly

case, related to the own-price sensitivity and the total number of passengers (see the second

term in square brackets (35) and (36) using E = λ = 0).

Consistent with Brueckner and Van Dender (2008), the internalization in the no-toll equi-

librium is in between the Cournot case and the atomistic behavior, and the leader exerts

market power. This result is comparable to the results obtained by Daniel (2009), as he finds

that the dominant airline schedules a fraction between 0 and 1 with the fringe in the center.

However, we find that the leader exerts market power raising the full price of a trip, that its

number of flights cannot be represented as a function of average generalized cost per flight,

and that it partially internalizes self-imposed congestion in the center (in contrast to Daniel

(2009)).

Note that in the first-best for full independence, it cannot be socially optimal to fully deter

fringe operations because the fringe serves a different market than the leader, where optimal

consumption is not generally zero. Moreover, queuing delays have to be fully eliminated and,

for f flights of the fringe and l flights of the leader, marginal social costs equals δ(f + l)/K

plus the airlines’ constant operating costs. Therefore, first-best conditions for both markets

are:

s[Al −Bl · sl] = cp +
δ · (l + f)

K

s[Af −Bf · sf ] = cp +
δ · (l + f)

K
(40)

This indicates that the full price should equal marginal social costs. Note also that we do

not restrict the demands to be the same, i.e. markets are asymmetric, and therefore optimal

number of flights are different. Let f ∗ and l∗ be the optimal number of flights of the fringe
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and the leader respectively, that result from (40). Following the arguments of the previous

section, the only way to eliminate queuing delays caused by the fringe is by charging it the

following dynamic atomistic toll:

τ(t) =
δ(f ∗ + l∗)

K
−

β · (t∗ − t) if t ≤ t∗

γ · (t− t∗) if t ≥ t∗
(41)

This toll makes the fringe indifferent between scheduling flights at any time when the aggregate

arrival rate does not exceed capacity. The equilibrium interval of time where the fringe

operates depends on decisions by the leader, and as a consequence, on the toll that the

regulator charges to the leader.

The leader, that anticipates the fringe’s reaction to the toll in (41), realizes that it can

schedule flights efficiently (without queuing) because by setting the arrival rate equal to ca-

pacity is enough to keep the fringe outside its operating period. In doing so, the leader earns

all the saved queuing costs as profit, and it is better off operating in the peak center where

the schedule delays are lower. In this case, the leader’s profit is:16

Π = l ·
(
s[Al −Bl · sl]− cp −

δl

2K

)
(42)

This is the monopoly profit described in Section 2.2 (see (18)). The first-order condition

yields:

s[Al −Bl · sl
′
] = cp +

δ · l′

K
+Bl · s2l

′
(43)

where l
′

denotes the number of flights set by the leader when it does not face any toll and

the regulator charges the dynamic atomistic toll to the fringe. Comparing (43) with the first-

best condition for the leader (40), we see that the leader exerts market power by charging a

per-flight markup equal to Bl · s2l
′
, and does not internalize congestion imposed on the fringe.

Hence, the leader sets frequency taking into account its own marginal generalized cost δl
′
/K,

instead of the social marginal cost δ(l
′
+ f)/K.

As a consequence, the regulator has to correct both effects, but this is possible to achieve

in a number of ways. We look first at the case where the regulator induces the first-best

outcome with a flat toll to the leader, whereas the other socially optimal configurations are

discussed below. The flat-toll that corrects these two effects is the sum of the uninternalized

congestion and a subsidy equal to the markup:

τ̂ =
δf ∗

K
−Bl · s2l∗ (44)

16This is when the toll is defined as in (41) and not confined to the optimal period of operation [ts, te]; this

means that outside that period the toll is negative. If the toll is not negative outside the first-best interval of

operation, the analysis holds if and only if parameters are such that l
′

is smaller than l∗. This is when the

number of flights set by the leader when it does not face any toll and the regulator charges the atomistic toll

to the fringe, is smaller than the first-best number of flights for the leader.
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Figure 4: First-best equilibrium with full independence.

Note that depending on the parameters, the toll might be negative or even zero. Figure 4

shows the unique (first-best) equilibrium that results from charging τ̂ in (44) to the leader,

and the dynamic atomistic toll in (41) to the fringe. The leader schedules its flights to arrive,

in the center, between [t1, t2], and the fringe operates outside. As Figure 4 shows, the first-best

conditions (40) are satisfied, and there are no queuing delays. The leader’s profit is equal to

the saved queuing costs δl∗2/2K and the revenues from the market power effect (l∗ · B · s2l∗,
not shown graphically). The congestion toll revenues (before subtracting the subsidy) are

equal to the shaded area in Figure 4: the sum of the revenues from the leader (the rectangle

in the center) and from the fringe (the two triangles at the shoulders).

This first-best toll regime is again different from the results by Brueckner and Van Dender

(2008), because the leader is not failing to internalize self-imposed congestion. Moreover, it

also differs from the first-best toll proposed by Daniel (2009), which was the dynamic atomistic

toll (41) for both the leader and the fringe. In our model, the leader anticipates the fringe’s

decisions and realizes that—when the regulator charges the dynamic atomistic toll to the

fringe—it is enough, and profit maximizing, to schedule flights efficiently around the preferred

arrival time, keeping the fringe out of this period. As a consequence, the leader only fails to

internalize the congestion imposed on the fringe through the expansion of the peak period.

Nevertheless, as in the perfect substitution case, this toll regime is not the only one that

yields the first-best outcome. Although the market power has to be corrected in any case, the

regulator can induce the leader to set the full price of its flights equal to the marginal social

cost with regimes that correct the congestion effect differently.

First, note that if the leader is forced to give up the peak center, and operate outside the

fringe’s period, the first-best can again be attained (given that the market power is being

corrected). In this case the fringe will operate around t∗, between [t
′
1, t
′
2], paying the dynamic

atomistic toll, ensuring that full price equals marginal social cost. The generalized cost per
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flight at t
′
1 and t

′
2 for the leader is equal to δf ∗/K and it schedules from ts to t

′
1 and from t

′
2 to

te, without queuing and earning the saved queuing costs as profit. The leader’s first and last

flight face a generalized cost (per flight) of δ(f ∗ + l∗)/K, hence satisfying first-best condition

(40).17 The toll regime that induces this outcome is the dynamic atomistic toll (41) for the

fringe, and for the leader the per-flight market power subsidy to correct dead-weight losses

Bl · s2l∗, and a toll equal or higher than δ(f ∗ + l∗)/K only during the period [t
′
1, t
′
2]. The

latter works as a barrier for the leader to operate in the peak center, as it makes him better

off operating outside and not paying the toll. In fact, it is equivalent to restrict the interval

of time where the leader can operate.

These two configurations are similar in the sense that full price does not change, because

the gain in costs by the fringe (resulting from operating closer to t∗) is offset by higher tolls,

and the cost increase of the leader is offset by the absence of congestion tolls. This makes

these settings identical in social welfare, consumer surplus, profit per firm (hence total profit)

and total revenue. The difference, besides the times of operation for each firm, is that the tax

revenues are not the same for each individual firm, but total tax revenues remain unchanged.

In fact, there is a continuum of configurations that follow these properties, defined by more

elaborate patterns of temporal separation of leader and fringe operations, but the congestion

tolls become a more complicated matter. The leader can operate outside any restricted time-

window around t∗, and it will be an efficient outcome as long as the regulator charges the

dynamic atomistic toll to the fringe, corrects the market power effect with a subsidy, and

charges for the congestion imposed by the leader on the fringe’s flights that did not fit in the

central time-window, and are outside the leader’s time of operation. Any time restriction (or

barrier-toll) together with an efficient flat congestion toll designed for that time restriction

gives a unique first-best equilibrium pattern of arrivals. The two outcomes discussed above

are special cases of a combination of time-restriction and efficient congestion flat-toll: (i) no

restriction together with a toll equal to the congestion imposed on all the fringe’s flights, and

(ii) a period where all of the fringe’s flights can operate and hence no congestion tolls. All the

other possible equivalent configurations are in between these two.

Finally, if the dynamic atomistic toll (41) is applied to both the leader and the fringe, and

the market power subsidy is given to the leader, the first-best outcome is also attained. In this

case, the equilibrium pattern of queuing implies that there is no particular order of flights.

The intuition is that, with the bottleneck model, the leader cannot be better than when it

sets the arrival rate equal to capacity so as to face only schedule delay costs, because it is

cost minimizing and regardless of paying (41) since profit is still positive. With the dynamic

atomistic toll and the subsidy, full price will equal marginal social cost and the part of the

leader’s profit that corresponded to queuing costs savings in previous regimes, is transferred

to the regulator. The leader will still have a positive profit because of the market power. This

is the first-best regime that yields the highest revenues for the regulator, and the revenue gain

17This equilibrium is not shown graphically, but it is enough to see Figure 4 and change l∗ for f∗ (and vice

versa), t1 for t
′

1 and t2 for t
′

2. The duration of the center is t
′

2 − t
′

1 = f∗/K.
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with respect to the toll regimes discussed above is equal to δl∗2/2K. The total revenue from

congestion tolls allows the Mohring-Harwitz self-financing result to hold, and it will only be

overturned by the market-power subsidy.

• General case

As discussed in Section 3.1, in the untolled equilibrium of the general case of imperfect

substitution (0 < E < B), the leader schedules flights in the peak center along with the

fringe and also in the peak shoulders. The fact that the full price of the leader’s trips depends

also on the fringe’s number of flights, implies that the offsetting behavior (see (32) and (33),

0 < λ < φ < −1) partially restricts the leader’s ability to exert market power, because the

fringe partially offsets any leader’s reduction of flights.

The derivation of the first-best tolls is similar to the case of full independence, therefore we

keep discussion concise and begin with the flat toll case. In the first-best equilibrium, queuing

again has to be eliminated and full prices must equal marginal social cost. Denote f ∗ and l∗

the optimal number of flights of the fringe and the leader. The regulator then charges the

dynamic atomistic toll (41) to the fringe, and a flat toll τ̂ to the leader. The leader is better

off when scheduling flights efficiently around t∗, therefore the leader’s profit and first-order

conditions are:

Π = l ·
(
s[A−B · sl − E · sf ]− cp −

δl

2K

)
∂Π

∂l
= 0⇒ s[A−B · sl − E · sf ] = cp +

δ · l
K

+ (B + E · ∂f
∂l

) · s2l + τ̂ (45)

This is analogous to the result of the full independence case (see (43)), where the leader

does not take into account the delays imposed on the fringe and exerts market power, in this

case reduced because of the (partial) offsetting behavior of the fringe. The fringe’s full price

depends on l and hence, any reduction of frequency by the leader will result in a lower full

price for the fringe, that—because of the free-entry (zero-profit condition)—translates into

an output increase by the fringe. The first-best flat-toll is simply the flat toll that corrects

market power and congestion effects:

τ̂ =
δf ∗

K
− (B + E · ∂f

∂l
) · s2l∗ (46)

The equilibrium is very similar to the one depicted in Figure 4. The difference in optimal

number of flights for the leader and the fringe, makes the actual values different, but the

structure is the same (e.g. ts and te are different, but slopes do not vary).

Likewise, the flat-toll higher or equal than δ(f ∗ + l∗)/K applied to the leader in the center

peak (of duration f ∗/K around t∗), together with the subsidy in (46) also yields the first-

best outcome. The intuition is the same: this toll works as a time-restriction that keeps

the leader in the shoulders, where it does not impose congestion on the fringe and is better

of scheduling efficiently; on the other hand, the fringe pays the dynamic atomistic toll that

ensures full price equal marginal social cost, and keeps revenues unchanged with respect to
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the equilibrium where the leader pays (46). Moreover, again there is a continuum of first-best

configurations that yield the same social welfare and revenue, each of them obtained with

a unique combination of time-restriction and efficient congestion toll. Finally, the regulator

again can charge the dynamic atomistic toll (41) to both the leader and the fringe, to induce

the first-best outcome and maximize revenue, as long as the market power subsidy is given to

the leader. The intuition is that the leader is better off scheduling flights efficiently because of

the congestion technology, and the subsidy ensures the optimal number of flights and positive

profit to the leader. The profits that the leader was earning (apart from the market power)

are transferred to the regulator.

The first-best toll regimes for the case of imperfect substitutability always includes the

subsidy that corrects the market power exertion by the leader, but the congestion side of the

toll appears to be different from what has been found in the literature before. Brueckner

and Van Dender (2008) find that the leader should pay a congestion toll that lies in between

the congestion imposed on the fringe and total marginal congestion costs. We find that,

when the regulator charges the dynamic atomistic toll to the fringe, because of the sequential

nature of the game and dynamic congestion, the leader does not fail to internalize self-imposed

congestion. As a consequence, the regulator can induce the first-best outcome by charging

the congestion imposed by the leader on the fringe (analogous to the so-called “Cournot”

toll), or charge him a barrier-toll that induces him to operate in the shoulders, hence not

imposing congestion on the fringe. The regulator can also increase revenues by charging

the dynamic atomistic toll to both the leader and the fringe, and (partially) finance capacity

investments, because with deterministic bottleneck congestion this does not induce scheduling

inefficiencies, but only induces monetary transfers. In addition, consumer surplus increases

with the implementation of efficient congestion pricing, as the the full price of a trip decreases

with respect to the untolled equilibrium.

Although the untolled equilibria derived in this Section are consistent to previous literature,

including static congestion models, the first-best congestion tolls are not. Results show, in

general, that the first-best can be induced with a dynamic atomistic toll for the group of

competitive carriers and a flat toll to the leader that accounts for market power exertion and

only the congestion imposed on the fringe. These tolls yield an equilibrium where leader and

fringe operate in different times. Moreover, results suggest that the simple congestion pricing

scheme of levying the dynamic atomistic toll to all airlines (at an airport level), also yield

the first-best equilibrium (market power being corrected at a market level). This congestion

pricing scheme increases revenues without altering social welfare and is easier to implement

in the sense that it may not be perceived as inequitable. The non-uniqueness of optimal

toll schedules that we find has not been reported before. Note, however, that the resulting

equilibria are identical in terms of welfare, and only the order of operation is different.

These results also imply that, in a sequential leader-fringe competition, when there is more

than one non-atomistic carrier in the first-stage, the first-best congestion toll is unique and

fully atomistic (as in (28)), because, as derived in Section 2.3, a duopoly cannot reach the

efficient outcome, and only market power subsidies have to be airline and market specific.
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3.3. Manipulable tolls

We assume in the analysis above that airlines that are large enough to exert market

power and to recognize the impact of their decisions on overall congestion (and followers), do

not take into account the impact of their actions on the tolls. We are aware that this is a

strong assumption, but it is common to most previous works. Brueckner and Verhoef (2010)

propose a manipulable toll rule designed to induce the social optimum when carriers predict

the impact of their decisions on tolls that can also be applied to our problem. They propose an

adjustment such that the carriers’ profit plus the (manipulable) toll liability varies perfectly in

parallel with social surplus. In our problem, market power correction can be straighforwardly

adjusted with their methodology: the subsidy for an airline is the surplus from own-passengers

consumption. This makes the airlines pricing strategy maximize social welfare. On the other

hand, congestion tolls have to be corrected differently as per-flight tolls that vary over time

are required. The efficient time-variant toll has to be corrected by modifying the intercept and

keeping the slopes unchanged. This is because the slopes provide the incentives to schedule

flights efficiently and the intercept to set the efficient number of flights. The manipulable toll

has to be such that the derivative of the number of flights times the intercept yields marginal

social cost; in the case of the Stackelberg leader this also needs to take into account that the

leader does not view the follower’s number of flights as parametric.

4. Conclusion

This paper studies airlines’ interactions and scheduling behavior together with airport

efficient pricing with a deterministic bottleneck model of congestion. We confirm that non-

atomistic airlines internalize self-imposed congestion in the sense that, without facing tolls,

they schedule less flights than perfectly competitive carriers would, achieving lower social

congestion costs. Consistent with earlier literature with static models of congestion (e.g.,

Brueckner, 2002; Brueckner and Van Dender, 2008), the degree of internalization of self-

imposed congestion depends critically on the market structure. Nevertheless, our results

suggests that social welfare maximizing congestion tolls do not depend crucially on the degree

of internalization, and that the time-variant tolls derived for perfectly competitive carriers

apply also to a Cournot oligopoly and to a setting where a Stackelberg leader interacts with a

group of competitive carriers as followers. On the other hand, time-invariant tolls—that are

second-best optimal—depend on market structure and are consistent with earlier literature.

This is because time-variant tolls aim at changing the schedule of flights so as to reduce

inefficient queuing delays, whereas time-invariant tolls aim at reducing the number of flights

that are being scheduled inefficiently.

Our analyses suggest that optimal congestion pricing may have a more significant role

than what has been suggested in the earlier literature based on static models. Moreover,

the efficient fully time-variant congestion toll regime results in a revenue for the airport that

restores the well known self-financing result for congested facilities.18 Results also suggest

18The market-power subsidy that corrects dead-weight losses can overturn this, but, as suggested by Brueck-
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that the political feasibility of congestion pricing would be enhanced as efficient congestion

charges do not vary with market shares, and therefore may not be perceived as inequitable.

We also find agreement with Daniel (1995) and Daniel and Harback (2008) in that dynamic

atomistic tolls are efficient in markets well represented by an interaction between a leader

and a competitive follower, but we show that this is not the only efficient solution. The

non-uniqueness of social welfare maximizing congestion tolls in this setting allows for other

pricing schemes that achieve the social optimum. As the dominant airline behaves inefficiently

because of the competitive follower’s presence, it is enough to toll fringe carriers out from the

leader’s operation time-window to provide the right incentives (although further time-invariant

corrections are needed).

We see incorporating heterogeneity and studying step-tolling as natural extensions of the

present analysis, to complement Daniel’s (2009) work. Our model allows to include hetero-

geneity in values of time and preferences for both airlines and passengers. Certainly, the

equilibrium and optimal toll will depend on the type of heterogeneity considered. Finally,

step-tolling, a relevant alternative in practice, may bring important benefits compared with

the social optimum; as the number of steps is increased, it approaches the dynamic atomistic

congestion toll, and, consequently, its efficieny (and consumer surplus) increases approaching

the optimum values.
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