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Abstract

An intensive and still growing body of research focuses on estimating a portfolio’s Value-
at-Risk. Depending on both the degree of non-linearity of the instruments comprised in
the portfolio and the willingness to make restrictive assumptions on the underlying
statistical distributions, a variety of analytical methods and simulation-based methods are
available. Aside from the total portfolio’s VaR, there is a growing need for information
about (i) the marginal contribution of the individual portfolio components to the
diversified portfolio VaR, (ii) the proportion of the diversified portfolio VaR that can be
attributed to each of the individual components consituting the portfolio, and (iii) the
incremental effect on VaR of adding a new instrument to the existing portfolio.

Expressions for these marginal, component and incremental VaR metrics have
been derived by Garman [1996a, 1997a] under the assumption that returns are drawn
from a multivariate normal distribution. For many portfolios, however, the assumption
of normally distributed returns is too stringent. Whenever these deviations from
normality are expected to cause serious distortions in VaR calculations, one has to resort
to either alternative distribution specifications or historical and Monte Carlo simulation
methods. Although these approaches to overall VaR estimation have received substantial
interest in the literature, there exist to the best of our knowledge no procedures for
estimating marginal VaR, component VaR and incremental VaR in either a non-normal
analytical setting or a Monte Carlo / historical simulation context.

This paper tries to fill this gap by investigating these VaR concepts in a general
distribution-free setting. We derive a general expression for the marginal contribution of
an instrument to the diversified portfolio VaR - whether this instrument is already
included in the portfolio or not. We show how in a most general way, the total portfolio
VaR can be decomposed in partial VaRs that can be attributed to the individual
instruments comprised in the portfolio. These component VaRs have the appealing
property that they aggregate linearly into the diversified portfolio VaR. We not only
show how the standard results under normality can be generalized to non-normal
analytical VaR approaches but also present an explicit procedure for estimating marginal
VaRs in a simulation framework. Given the marginal VaR estimate, component VaR and
incremental VaR readily follow. The proposed estimation approach pairs intuitive appeal
with computational efficiency. We evaluate various alternative estimation methods in an
application example and conclude that the proposed approach displays an astounding
accuracy and a promising outperformance.

Keywords: Value-at-Risk, marginal VaR, component VaR, incremental VaR, non-
normality, non-linearity, estimation, simulation

JEL classification: C13, C14, C15, G10, G11



1. Introduction

Value-at-Risk (VaR) is defined as a one-sided confidence interval on potential portfolio
losses over a specific horizon. Interest in such a diagnostic metric can be traced back to
Edgeworth [1888], but the developments in this field were really spurred by the release of
RiskMetrics™ by J.P.Morgan in October 1994. An intensive and still growing body of
research focuses on estimating a portfolio’s VaR and RiskMetrics has become a classic
framework by now. Depending on both the degree of non-linearity of the instruments
comprised in the portfolio and the willingness to make restrictive assumptions on the
underlying statistical distributions, a variety of analytical methods and simulation-based
methods are currently available (see for example Duffie & Pan [1997] and Jorion [1997]
for an overview). Aside from the total portfolio’s VaR, there is a growing need for
information about (i) the marginal contribution of the individual portfolio components to
the diversified portfolio VaR, (ii) the proportion of the diversified portfolio VaR that can
be attributed to each of the individual components consituting the portfolio, and (iii) the
incremental effect on VaR of adding a new instrument to the existing portfolio.

Why should one be interested in marginal VaRs, component VaRs and
incremental VaRs? Risking to answer a rhetoric question we can think of some reasons.
Firstly, when presented a VaR figure, what positions constitute the big risks and what
positions in contrast serve as hedges? Component VaR reveals pockets of risk
concentrations as well as hedges. Secondly, when the overall VaR figure appears to be
disturbingly high, how should one alter the portfolio mix (if possible) in order to mitigate
the portfolio’s overall risk exposure? The effects of changes in portfolio composition are
measured by marginal VaRs. Thirdly, what is the change in portfolio VaR when a hew
instrument or trade is added to the portfolio? Does the VaR increase or decrease and how
much? Incremental VaR measures this potential impact on overall VaR.

These three VaR metrics are closely related. Garman [1996a,b, 1997a,b] has
derived expressions for these measures under the assumption that returns are drawn from
a multivariate normal distribution. His results can readily be used in the so-called
variance-covariance approach to VaR estimation (like the RiskMetrics framework). For
many portfolios, however, the assumption of normally distributed returns does not apply.
Fat tailed distributions are rule rather than exception for financial market factors and the
inclusion of non-linear derivative instruments in the portfolio gives rise to distributional
asymmetries. Whenever these deviations from normality are expected to cause serious
biases in VaR calculations, one has to resort either to alternative distribution

specifications (like the t-distribution) or to historical and Monte Carlo simulation



methods. Although these approaches to overall VaR-estimation have received substantial
interest in the literature, there exist to the best of our knowledge no procedures for
estimating marginal VaR, component VaR and incremental VaR in a non-normal
context. Estimating marginal VaR then would imply re-estimating overall VaR for a
slightly changed portfolio composition. Since notably simulation methods are
computationally intensive, this brute force approach is tedious, time-consuming and
hence not feasible in a trading environment. For estimating component VaR even the

recipe is missing.

This paper tries to fill this gap by investigating the concepts of marginal, component and
incremental VaR in a general distribution-free setting. We show how the standard results
under normality can be generalized to non-normal analytical VaR approaches and we
present explicit procedures for estimating marginal VaR in simulation settings. Given the
marginal VaR, component VaR and incremental VaR readily follow. Based on the
intrinsic linearity of the portfolio operator, our approach pairs appealing simplicity with
high accuracy and computational efficiency.

The structure of the paper is as follows. Section 2 introduces notation and gives
some definitions. After summarizing marginal VaR and component VaR in a restrictive
normal world, section 3 presents our theoretical key results. We derive a general
expression for the marginal contribution of an instrument to the diversified portfolio VaR
- whether this instrument is already included in the portfolio or not. We show how in a
most general way, the total portfolio VaR can be decomposed in partial VaRs that can be
attributed to the individual instruments comprised in the portfolio. These component
VaRs have the appealing property that they aggregate into the diversified portfolio VaR.
In section 4 we investigate the empirical issues connected to the practical application of
our findings. We discuss the distributional assumptions under which the derived
expressions hold, either exactly or as mean-square error approximations. In addition we
provide guidelines to estimating the VaR measures. We propose various different
procedures for estimating the common building block of marginal, component and
incremental VaRs, viz. global and local regression models, asymmetric response models,
rational approximants and the adjusted conditional mean model. We hereby do not limit
ourselves to a “normal” world, but also cover non-normality, historical simulation
methods and Monte Carlo simulation approaches. Section 5 evaluates the accuracy of
the proposed estimators. On the basis of some prototypical examples we conclude that
the preferred estimation procedure pairs computational simplicity with high accuracy.

Finally, section 6 concludes the paper and presents some suggestions for further research.



2. Some definitions

dollar-VaR and return-VaR

Given the current (t=0) marked-to-market portfolio value V,, a confidence level of ¢ and

an evaluation horizon of Dt years, the overall portfolio VaR is defined by:
@ PV, -V, <VaRl=c

where the tilde marks a stochastic variable. Using continuous compounded returns, the
stochastic end-of-horizon portfolio value is \7Dt =V, exp(i’"th) . So the dollar-VaR can be

expressed in terms of a continuously compounded return-VaR (or the critical negative

return), denoted by r; , defined over the VaR-horizon Dt :

* WO = VaRG
2 r, =- Ingv—oa » VaR/V,

satisfying Pr{F,Dt <-r }=1- c.
We assume that the portfolio p is composed of N individual instruments.

Given the current dollar-positions {n.} ; , in these instruments and their time Dt market

imp

values { ﬁ,m} the end-of-horizon portfolio value is V,, = a i N B ot - The portfolio

itp

return over the holding period Dt then equals:*
~ o
(3) rp,Dt = a \Niri,Dt
ilp

where the portfolio weights {w},; , are defined by w ° n, Fi’,O/V0 , satisfying

imp

é - w =1.2In fact, we allow eq.(3) to represent any partitioning of the portfolio as long

ifp !
as it is disjoint, exhaustive and linear in the portfolio weights. For example, W, may

indicate the proportion of the current portfolio value invested in instrument i, instrument

! Note that eq.(3) is exact for percentage returns, but holds only approximately for logarithmic
returns. We join in with conventional practice and assume that the cross-sectional aggregation
property in eg.(3) holds with acceptable accuracy.

2 The composition of the portfolio is assumed to be constant over the VaR-horizon, obviously.



type i, trade i, or geographical region i. For convenience, we’ll henceforth refer to the
portfolio components as instruments.
In the following, we focus on portfolio and instrument returns and on return-

VaR. Without any loss of generality, our results can be transposed to dollar-VaR since
VaR :VO[l- exp(- rp)] 2 For notational convenience, we set Dt =1.Where it is obvious

from the context, we’ll suppress the time subscripts.

marginal VaR, component VaR and incremental VaR
On a return basis, the marginal VaR is the change in the return-VaR resulting from a
marginal change in the relative position in instrument i. Hence, the marginal return-VaR

of component i, M-VaR;, equals:

*

‘ﬂrp -

Wi

(4) M -VaR °

=

In addition to the marginal contribution of individual instruments to the portfolio
VaR, we consider the total contribution of each separate included instrument to the
diversified portfolio VaR. In order to analyze the (return-) VaRs of the individual
instruments within the context of the portfolio in which they are included, we must find
out how to decompose the portfolio VaR into partial VaRs or component VaRs. We
require that these component VaRs (i) can uniquely be attributed to each of the
individual instruments comprised in that portfolio and (ii) aggregate linearly into the total
diversified portfolio VaR. Denoting an instrument’s i component return-VaR by C-VaR;,

we require that:

5 r,°§C-vaR

ilp

Of course, the relative magnitude of the individual component VaRs depends on the
portfolio partitioning criterion involved. However, since we require the partitioning to be
disjoint and exhaustive, the additivity property is independent of the particular

partitioning criterion employed.

¥ Whether focusing on returns or on dollar positions, transactions with zero initial value have to
be decomposed into non-zero (long and short) positions. For example, a newly initiated long
forward contract is represented by a long spot position and a short bond position. A swap contract
consists of a long and a short position in two different bonds.



Note that because of interdependencies between instrument returns, the
instruments’ stand-alone VaRs do not add up to the diversified portfolio VaR. The break-
down of VaR according to portfolio components or market risk factors as suggested by

Fong & Vasicek [1997] suffers from the same shortcoming and is hence not useful.*

Note that eq.(4) also applies to an instrument not yet included in the portfolio. Suppose
the initial portfolio p comprises N- 1 instruments and consider this (N- 1)-element

portfolio as an N-element portfolio where w, =0 . Now assume that instrument N is
added to the portfolio with weight w,, . Then, to a first order approximation the change

in portfolio VaR is:

for wy small. This is the incremental VaR of instrument N. Hence, the VaR of the

augmented portfolio can be approximated by r; + Dr;. Although they have the same

building block, the main difference between component VaR and incremental VaR is that
the former applies exact while the latter is an approximation.

Since incremental VaR readily follows from marginal VaR, we concentrate on
marginal VaR and component VaR. In the next section we first discuss marginal VaRs,
component VaRs and their relationship in a normal world, whereafter we shift our

attention to a general setting.

3. Generalizing marginal VaR and component VaR

The available formulas for estimating marginal VaR and component VaR (in dollar
terms) rest on the multivariate normality assumption. We therefore first summarize the
normal case. We then offer a completely general perspective on marginal VaR and
component VaR. We analyze these metrics in a distribution-free setting and present our

theoretical key results.

4 Hallerbach & Menkveld [1999] in contrast derive a disjoint, exhaustive and linear decomposition
of overall VaR with respect to a multi-factor risk model. They also provide empirical evidence in a
corporate VaR context.



multivariate normality

Analytical approaches to estimating VaR rest on assumptions with respect to the form of
the portfolio return distribution. A popular (because tractable) assumption is that
instrument returns are drawn from a multivariate normal distribution. Hence the

portfolio return, continuously compounded over the horizon Dt , also follows a normal

distribution, , ~ N(m,,s ) . For a 95%-VaR , for example, the return-VaR over the

specified horizon is given by:
@) r,=-m+N*c)>s , =-m +165%
From the definition of portfolio variance it readily follows that:

© fis, _ Cov('ri”,'r”p) o

i ®p
fw s,

where b, is the slope coefficient in the OLS regression of . on 'r”p ,

Cov(F\F,)
@  b=——r

o

~——

Var r

and where Cov(>® and Var (¥ are the covariance and variance operators. Setting all

expected returns equal to zero according to common practice®, the marginal return-VaR
follows from egs.(4), (7) and (8):

(10) M-VaR =b; x,

This indeed corresponds to the expression for marginal dollar-VaR as derived by Garman
[1996a,b].°

From the linearity of the covariance operator, it follows immediately from eq.(9)
that:

® Because of the short time horizon Dt involved in VaR estimations, the expected returns are often
neglected. This practice is not always warranted, however, for example when there are substantial
non-linearities in the instruments’ pay-offs inducing convexity effects.



Hence,

12 ;=@ wlb ;)= w M -vaR

ilp ilp
where according to eq.(5) each term i identifies the component-VaR of instrument i :
(13) C-VaR =w xM -VaR il p

So an instrument’s i component return-VaR is simply given by its marginal return-VaR,
multiplied by its investment weight in portfolio p . Egs.(12) and (13) are fully consistent
with the dollar-terms expressions as presented by Jorion [1997, p.154] and as derived by
Garman [1997a,b].

It happens that this relationship between marginal and component VaR is much
more general than is believed. Let us therefore escape from the restrictive multivariate

world and analyze marginal- and component-VaRs in a general setting.

a general perspective

Eq.(3) identifies the portfolio return as a convex combination of the returns on the

individual components. Therefore, the portfolio return 'r”p and hence the return-VaR r;

are linearly homogeneous functions of the investment fractions {w },; , . According to

imp

Euler’s theorem it then immediately follows that:

. Tr,
14 =3P
(14) rp ?pﬂwi

Wizé.WiXM-VaRizéC-VaRi [ |
ilp ilp

So the relationship between marginal and component VaR is of a very general nature. It
does not depend on any distributional assumptions but prevails since the portfolio return
can be expressed as a linear combination of the individual component returns. Without

loss of generalization, the components may be mapped in a non-linear fashion onto M

® Garman [1996a,b] terms this metric DelVaR and VaRdelta™, respectively.



underlying state variables (or market factors) or standardized positions (like cash flows

on the maturity vertices in JPMorgan’s [1996] RiskMetrics).

Maintaining the general nature of the setting, we can even obtain more insight in
marginal and component VaRs . The only (and very weak) assumption we now make is
that all relevant return distributions have finite first moments. From eq.(3), by the very

definition of conditional expectations, we have:
as) 7, =€{7[} =& welif)

imp
Note that E{ i’,"|i’”p} is to be interpreted as the expectation of I, conditional to the s-field
F relative to which T is defined. Hence, this conditional expectation is a random
variable. By taking iterated expectations, we get:

(16) :-éWiE{'ri"|'r"p :-r*]

~ p
ilp

Since the portfolio return now takes the particular value - r; , this conditional

expectation becomes deterministic. Combining egs.(4) & (16) yields:

a7 M-VaR =-Eff|- r;f il p n
and hence, from eq.(14),

(18) C-VaR =-w <E{f|- r;} i7 p n

The intuition behind eqs(17-18) is clear. When there is a strong positive (negative)
interdependence between r~IO and r;, then large negative portfolio returns will be
associated with large negative (positive) instrument returns. Increasing (decreasing) the
weight w; of the instrument will then lower the portfolio return even more, thus
increasing the portfolio’s VaR.

Once marginal VaR is known, component VaR (and incremental VaR when w,

is initially zero) readily follow. In the remainder we’ll therefore focus on marginal VaR.

10



In the next section we investigate how to estimate this metric, in both analytic and

simulation environments.

4, Estimating marginal VaRs (and component VaRs)

In analytical approaches to estimating VaR, either assumptions are made with respect to
the specific form of the portfolio return distribution or this distribution is reconstructed in
an approximate way by means of its first four or so estimated moments’. Simulation
based methods come in two basic forms. Historical simulation approaches employ
historical return ““scenarios” to construct a sample frequency distribution from which the
portfolio’s return confidence interval can be determined. In Monte Carlo simulations, a
very large number of drawings is made from predetermined (joint) distributions to
construct the portfolio’s return frequency distribution.

Simulation methods are much more flexible than analytical methods since they
can effectively cope with non-linear return patterns from options and other non-linear
derivative instruments. Given a particular sampling of market factors, the instruments
can be marked-to-model and the end-of-horizon portfolio can be determined. Compared
to Monte Carlo simulation, historical simulation has the advantage that no assumptions
have to be made regarding the underlying return generating distributions and that it is
relatively fast.® On the other hand, when there are (almost) no non-linear return patterns,
analytical methods are much more tractable and display a higher computational
efficiency.

The conventional formulas for estimating marginal VaR and component VaR rest
on the multivariate normality assumption. To the best of our knowledge, there are no
simple procedures available for estimating these metrics within simulation-based VaR
approaches. In those cases one would have to re-estimate VaR for a slightly changed
portfolio composition. Since simulation methods are computationally intensive, this
brute force approach is tedious, time-consuming and hence not feasible in a trading
environment. In this section, we provide guidelines to estimating marginal VaR and

component VaR within non-normal analytical VaR methods and simulation methods.

" This can be accomplished by means of moment expansions of the distribution function; see
Kendall & Stuart [1969, pp.156-167] for a general discussion. Jarrow & Rudd [1982] apply the
technique in option pricing and Hull [1998, pp.357-358] summarizes its use in a VaR context.
8 However, historical simulation can suffer from a lack of sufficient observations to construct a
comfortably reliable frequency distribution.

11



4.1 preamble

Estimating M-VaR entails two steps. First, I; is linked to the portfolio return 'r”p in order

to obtain E{ i’,"|i’”p} , and then the restriction that the portfolio return equals minus the

return-VaR, T, =-r isimposed, in order to get E{ i’,"|'r”p =- rp} .

Suppose that we model the relationship between 1. and 'r”p by some function

f.(3:
a9 7=1(7)+x

where without loss of generality, we let the additive disturbance term satisfy E{){} =0.

Assuming that the relevant first and second moments exist, the choice f (3 = E[ 'r,”|'r"p]

minimizes the mean-squared error of the fit E{)g 2} 2 Hence, the least-squares

representation of eq.(19) is:
(200 r = E{
which in turn implies the semi-independence of the disturbance term:*°

(21) E{>Z|’r‘} =0

p

~ 2 - 2|~
® This follows from applying iterated expectations: E{[l‘i - 1. (>)] } = E{ E{[l‘i - 1. (>)] |rp}} .
10 At first sight, the assumption of semi-independence between ){ and 'r”p may seem unwarranted.

After all, since the portfolio p is a convex combination of all instruments, the disturbance term X;
is part of the return on p. However, multiplying the LHS and RHS of eq.(20) with W, and

- -~ o ~
summing over | | P implies that X, = a . pWi)(i =0.

12



orthogonal projection
In order to obtain a general insight in E{ i’,"|i’”p} , we consider the orthogonal projection of

I into the subspace spanned by the portfolio return 'r”p :

(22) r =a,+br, +e

This construction is always possible. In statistical terms, eq.(22) represents an ordinary

linear least-squares approximation to the relationship between F. and 'r”p satisfying

E{éi} = 0 and the orthogonality condition E{é,'r”p} = 0 of the disturbances. Assuming

that second moments exist, it follows from the latter that Cov('ri”,'r"p) =Db Nar('r”p) ,
which defines the slope coefficient b, in this general setting as in eq.(9) above. Also, for

the intercept we have a; = E{ i’i"} - b, XE{ i’”p} , which conforms to well-known results

from standard OLS regression theory.™*

From eq.(22) we thus have:
e lffe] =elr) enfr, - el =fa)

where E{ i’,"|i’”p} is a random variable. When the actual relationship between 1 and T is
linear, the conditional expectation eq.(23) is linear in T,. This in turn implies the semi-

independence E{éi'|'r”p] = 0. Together with the restriction that T, = - r’,eq.(23) then

p !

transforms to the deterministic expression:

(24) E{'ﬁ|’r‘p =-f£} = {7} +bi[' o - E{Fp}]

Hence, from eq.(17) we obtain:

1 Likewise, it is easy to see that on the portfolio level we have a slope of unity (see eq.(11)) and a
zero intercept, a p= ail pwia; = E{Fp}- b p XE{Fp} = 0. When p is a market index or “the
market portfolio” of financial assets, eq.(22) is known as the market model; see Stapleton &

Subrahmanyam [1983], e.g. We explicitly do not label the slope coefficients as “betas” since this
term is contaminated with diverse interpretations in finance.

13



(25) M -VaR =-E{f}+b,|r; +E{f ] n

which reduces to eqg.(10) when expected returns are set to zero.

Note that eq.(25) also applies to an instrument not (yet) included in the portfolio.
Suppose the portfolio p comprises N- 1 instruments and we want to know whether a
marginal addition of instrument N lowers or increases the portfolio VaR. Consider the

initial (N- 1)-element portfolio as a N-element portfolio where w,, = 0 . The coefficient
b, measured with respect to the (N- 1)-element portfolio is equal to the slope coefficient

measured with respect to the N-element portfolio with w, =0 . So when that the slope

is greater (smaller) than unity, then the marginal inclusion of instrument N increases

(lowers) the portfolio VaR.

4.2 analytical approaches

Expression (25) applies exactly when the linearity condition E{ éi'|'r”p] =0 is satisfied,

whence E{i’,"|i’"p} is linear in T . This condition is satisfied whenever I and T, follow a

bivariate elliptical (or spherical) distribution. *> The class of elliptical distributions - also
known as location-scale or “two-parameter” distributions - includes the Student t
distribution, the exponential distribution and symmetric stable (or Pareto-Lévy)
distributions (see Press [1972, p.455]), of which the normal distribution is a special case.
Also non-normal variance mixtures of multivariate normal distributions belong to the
elliptical class. Together with the t-distribution, variance mixtures are especially relevant
in a VaR context, since these distributions possess fat tails.

Elliptical distributions possess density functions depending on only quadratic
functions of the variates, ensuring a symmetrical shape. Any linear combination of
elliptically distributed variates is still elliptical. Hence, when the component returns
follow a multivariate elliptical distribution, T ~EL(D,W), also the portfolio return is

elliptically distributed. When first moments exists, the location parameters D are the

12 The linearity of the conditional mean for elliptical distributions is proven by Kelker [1970,
p.424]; see also Chmielewski [1981, p.72]. Fang, Kotz & Ng [1990] provide an extensive overview
and Owen & Rabinovitch [1983] discuss the application of elliptical distributions in portfolio
theory. Although for all elliptical distributions the conditional mean is linear (when it exists),
except for the normal case the distribution of the conditional expectation depends on the

conditioning variable - here 'r”p . So the higher conditional moments of T. , and hence of the

14



means of the distribution. When also the second moment exists, the covariance matrix a
exists and & =c-W, where ¢ is a nonnegative scalar independent of D and W.** So not only
applies the expression for marginal VaR in eq.(25) exact, also the slope coefficient retains

it conventional definition eq.(9).

Any distribution assumption within analytical VaR approaches is likely to be covered by
the elliptical class. When the portfolio contains non-linear derivative instruments, the fist
four or so statistical moments of the portfolio return distribution can be derived under the
assumption that the returns on the underlying values are multivariate normal. Using
series expansions (like Cornish-Fisher) one can then reconstruct the portfolio return
distribution in an approximate sense from its moments (or cumulants) in order to derive

confidence intervals (see footnote 7). Eq.(7) is then replaced by:
(26) r,»-m +k(c)s

where K(%¥ is a function of the cumulants of Fp . For return distributions displaying

negative skewness or fat tails we have k(c) > N"*(c). However, since K(¥ is a function

of the moments of the portfolio’s return distribution, and hence of w, ,

*

(27) T b, %’
T w

so the conventional formulas for M-Var and C-VaR under normality no longer apply.

This is adequately illustrated in section 5 (see also footnote 21).

disturbance term 5, , (insofar they exist) are heteroskedastic, implying time-varying residual (co-)
variances.

13 We can be more specific for symmetric stable distributions. For the (conditional) expectation to
exist, their characteristic exponent must exceed one. When the characteristic exponent is smaller
than two, the variance of the distribution does not exist. Hence, the slope coefficients b, are no
longer defined by eq.(9). In that case, the mean-absolute deviation estimator is a sensible
candidate for the slope coefficient. Minimizing the mean-absolute deviations of the errors instead
of minimizing the mean-square errors can be done in a conventional OLS regression framework
by using an iterative WLS technique. See Maddala [1977, pp.309ff], e.g.

15



4.3 simulation-based approaches

When it is no longer possible to specify return distributions that are both realistic and
tractable, one has to resort to simulation methods. In this section we discuss the
estimation of marginal VaR and component VaR in a simulation context. As a
preliminary we first investigate the effects of non-linearity and distributional asymmetry
on marginal VaR estimates. We then suggest some estimation methods: asymmetric
response approximation, rational approximation and linear local approximation. These

methods will be evaluated in section 5.

non-linearity .....

Distributional asymmetries and/or non-linearities in the relationship between I, and 'r”p

destroy the linearity of E{ i’,"|i’”p} . In that case, a linear relationship between I and 'r”p is

no longer implied, but linearity could be imposed by forcing a linear least-squares
regression of the form of eq.(22). Now assume for a moment that the portfolio return
does follow a normal distribution (by invoking the central limit theorem, e.g.) but that no
assumptions are made with respect to the distributions of the individual components’

returns (aside from some mild regularity restrictions). When f, (¥ is at least once

differentiable with derivative f.'(%¥, then from eq.(19) we have:

28 Cov(f,7,)=cov(f,,) 7, )+ covix;. 7, )= E{f (7, Jvar 7))

iv'p

where the last equality follows from applying Stein’s lemma and eq.(21). Hence, the

slope from the forced regression in eq.(22) equals:
@) b=g{f(7)

In words: the linear OLS slope coefficient linking I and T is given by the expected

value of the gradient of the (unknown) function f, (¥ .** The expectation is taken with

4 The assumption of normality of 'r”p is only a matter of convenience and does in no way affect

our conclusion. To see this, we note a remarkable parallel between the interpretation of the
regression coefficient under normality in eg.(29) on the one hand and some robust regression
estimators that are designed to cope with deviations from normality (especially outliers) on the

other. Theil [1950] and Sen [1968], for example, developed estimators for the slope coefficient bi
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respect to the distribution of T, so the OLS slope provides a global approximation to

f.(¥ . Butwhen f.(3 is non-linear, this gives a problem. For estimating the return-VaR

we are interested in the relationship between I, and T in the left tail of the distribution,
i.e. where T, = -r,. So what we need is not a global linear approximation to f, (3 but

instead a local approximation in the neighbourhood of where i’”p =- r; .
..... and asymmetry

What happens when the true relationship between I, and T, is non-linear and the

underlying distributions are no longer symmetric? White [1980, p.155] proves that linear
least squares estimates provide consistent (i.e. asymptotically correct) estimates of a well-
defined weighted linear least squares approximation to the true but unknown function,

f.(¥ in eq.(20) in our case. The distribution function of the independent variable (T,)

hereby serves as weighting function.”™ In this case, the global mean-square approximation
provided by the OLS slope is even more inappropriate. The slope estimate may be tilted

towards the slope of the function f, (3 in the right tail of ,’s distribution, instead of

towards the left tail which is relevant in the VaR context.

The problem of functional non-linearity and distributional asymmetry is by no
means insurmountable. In effect, the discussion above clearly suggests one obvious
solution to the estimation problem, i.e. applying a local approximation to the relationship

between I, and I, . Given the portfolio VaR and estimates of b, , marginal VaR and

component VaR readily follow. In the next section we discuss local linear

approximations and present alternatives.

estimation by linear local approximation
Figure 1 shows why functional non-linearity and distributional asymmetry render a
global linear regression approximation inappropriate. Combined with the assumed

convexity of the return relationship, the left-skewed portfolio return distribution pushes

which are the median of the set of slopes Dr, /Drp joining pairs of points (T, ,rp) . The slopes

Dr, /Drp can be imagined as gradients, so these estimators would resemble the median of

gradients. Another example are Hinich & Talwar [1975] who propose the (trimmed) mean or
median of slope coefficients from a large number of non-overlapping sub-sample OLS regressions.
As these sub-samples contain very few observations, the coefficient from each of these regressions
may be considered as a local linear approximation to the gradient, evaluated in the sub-sample
mean. Hence, the (trimmed) mean or median of these coefficients can then be considered as the
mean (or median) of the gradients.

15 See also Spanos [1986, p.459] for a clear exposition.
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the global OLS- b, towards a lower value. The local linear approximation in the

*

neighborhood of where r, =-r

D p would yield the slope estimate that is relevant for

computing marginal-VaR and component-VaR.

-

local OLS
approximation

-
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portfolio return
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Figure 1: Global and local OLS slope estimates in case of functional non-linearity and
distributional asymmetry. The fat gray curve indicates the set of portfolio and
instrument return combinations.

The local estimation of the slope coefficients is required in analytical non-parametric
approaches as well as in simulation-based approaches. The procedure is the same.
Starting from the raw sample return data matrix or from the Monte Carlo generated

return data matrix, first select the complete data rows for which:
30) rpl | r;-q,-r; +q

for some small g > 0. Using only the selected data window, perform next OLS

regressions of eq.(22) to obtain estimates bAI of the slope coefficients of the individual
instruments. Finally, use the estimated slopes in eq.(25).
The number T* of selected data rows depends on the width 2q of the return

window. On the one hand, the interval must be narrow enough to yield a truly local

approximation. On the other hand, the interval must contain a sufficient number of
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return observations in order to provide reliable slope estimates. To be on the safe side, let
T*315. The consequences for the total sample size can be put in perspective by assuming

normality. For a VaR confidence level of c=95% (and centering around the 5% tail
probability), we expect 2% of the observations to lie between - 0.94x, and - 1.06, .
Requiring a minimum of T*=15 observations in this interval implies a total sample size

of 750. Likewise, we expect 6% of the observations to lie between - 0.64 ><r; and

- 1.25><r; , indicating a minimum total sample size of 250 (i.e. a full year of daily data).

The latter interval would still be sufficiently narrow to provide a suitable local

approximation.

For Monte Carlo simulations, the number of drawings is sufficiently high to ensure that a
fairly large number of generated portfolio returns will fall within a small interval.
Especially here, because of this high number of drawings, brute force investigations into
the effect of marginally changed portfolio compositions on the portfolio VaR are
prohibitive. The local regression approximation then signifies an efficient method of
VaR-analysis.

But is it also a robust method? Intuitively, this depends on the range of observed

instrument returns 1; that belong to the interval of r as defined by eq.(30). When the

implied window of r; is too small, the local regression line will be tilted towards an

infinitely large positive or negative value - irrespective of the actual functional
relationship. The degree of robustness would profit from an increase in the number of
observations available for the local approximation. This leads us to two alternative

estimation methods.

estimation by an asymmetric response model
Increasing the domain of the local linear approximation leads us to an alternative

estimation model. Assume that the relationship between r. and 'r”p can be approximated

by a two-piece linear function. Define a cut-off return f (which may be the mean or

median of the portfolio return T, or zero) and set:

(31) v max[f ’Fp]

;o minff 7]
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The regression model eq.(22) is now extended to:

(32) T =a, +b'f  +b'F; +€

The estimate bAI of the relevant slope is then used in lieu of b. . Setting the cut-off point
f equal to the median of the portfolio return 1 implies that effectively half of the total

sample size is used to estimate the slope. This is a significant improvement over the local

linear approximation method, but the linearity imposed over a wider range of 'r”p is the
price paid. Since by construction, the “positive” and “negative” parts of 'r”p are

orthogonal, omitting the positive part from the regression has no consequences for the
estimate of b ."* However, when estimating the full equation, time-varying volatility

effects can be accounted for, either directly (by using (G)ARCH) or indirectly (for
example via the general iterative weighted least-squares approach proposed by Davidian
& Carroll [1987]).

estimation by rational approximation

The third approximation method allows use of all available sample data to estimate
E{ i’,"|'r”p =- rp} . Assuming that the function f. (¥ in eq.(19) is continuous and analytic,

it can be approximated by a n-order Taylor series expansion (around the mean portfolio
return, e.g.). Since that expansion is linear in the coefficients, their estimates can be
obtained via OLS regression. However, polynomial approximations usually become
unsatisfactory when it is necessary to approximate a function over a wide interval.
Moreover, for tractable order n, they lack the capacity to adjust to complex non-
linearities. In many cases, for a given amount of computational effort, a function can be
approximated with greater accuracy by the use of rational functions, rather than by the
use of polynomials. A rational function approximation, like the Padé approximation, can
be seen as a kind of generalization of a Taylor series approximation.'” A (m,k)-order
rational approximant takes the form of the ratio of an m-order and a k-order polynomial.
In our experience, m=k=2 usually suffices to capture complex non-linear empirical

relationships.®

18 Of course, the R? of the regression and hence the significance of the slope estimate will then
decrease.

17 See for example Young & Gregory [1973, Ch.6.12] for an exposition.

18 See Hallerbach & Kremer [1993] on this point. Hallerbach [1994] provides detials and another
empirical application.
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The (2,2)-order rational approximation to eq.(19) is:

+
M

+
(33) r = PP

The parameters of this equation can be estimated using various algorithms', some of
which are standard in most commercial statistical software packages.?”® Given these

estimates and using egs.(4) and (17), an instrument’s i marginal return-VaR is given by:

Given the appropriateness of the approximant, the advantage of this approach is that all
available sample data can be used to estimate marginal VaR and component VaR . In

addition, the relationship between 17 and T is truly evaluated at the point where

rp =- r;. The relative complexity of the procedure is an obvious disadvantage.

estimation by conditional mean

Considering computational complexity and intuitive appeal, the last estimation
procedure presented here is on the other extreme of the spectrum. Instead of first
modelling the relationship between portfolio and instrument return, the conditional
expectation is estimated directly. The procedure is as follows. Choose a window of
portfolio returns according to eq.(30) and select the corresponding T* complete data rows
from the sample(d) data matrix. T* should be large enough to establish a sufficiently
reliable estimate, but not too large. Then, for each instrument i, compute minus the

(conditional) mean return over the T* observations in the data window:

.1 .
35 T :-Férm il p
thT*

At first sight, this would give us an estimate of instrument i ‘s marginal VaR according to

eq.(17). However, since the tail of the portfolio’s return distribution tapers off, the

9 Cf. Beck & Arnold [1976, Ch.7] or Draper & Smith [1981, Ch.10].
20 Press et.al [1989, Ch.14.4], for example, provide program source codes. Also, the solver from
Excel can be used.
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median of the T* return observations will be higher than the mean. Hence we expect that
the portfolio-weighted average of (minus) the conditional mean returns is below the

portfolio VaR:

% o _* *
@6 r,° ?‘wiri <r,
ilp

Therefore we introduce a correction factor |

-

@7 j°=

*

-

The adjusted estimate of instrument i ’s marginal VaR then becomes:
(38) M -VaR =j X il p

Note that the adjusted conditional mean represents the probability-weighted least squares
aproximation to E{ i’,"|'r”p =- rp} . The adjustment implies linear interpolation of the tail

of the return distribution in the g -window. The corresponding estimate for the
component VaR according to eq.(18) is C-VaR =w xM -VaR . Due to the adjustment

factor in eq.(38) this estimate for component VaR indeed satisfies eq.(14). Given its
simplicity and intuitive appeal, this is our a priori preferred procedure. In section 5 we

investigate whether this method can actually stand the test.

In the spirit of egs.(37) and (38) we can also adjust the marginal VaRs (and hence the

component VaRs) estimated through other procedures by:

*

r
39) adjusted M -VaR =M -VaR x :
9 R i a w, M -VaR,

iip

This ensures that the portfolio-weighted average of the adjusted estimated marginal VaRs

(i.e. the sum of the component VaRs) equals the initially estimated overall portfolio VaR.
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5. Evaluation of the estimators

In order to evaluate the proposed estimation procedures, we present a prototypical
example in a simulation context. After describing the data we first discuss estimated
marginal and component VaRs. Then we evaluate the use of marginal VaR estimates for

approximating augmented portfolio VaR through incremental VaR.

data

The VaR horizon is one trading day and we generate 1,000 samplings. This could be a
four year historical simulation or a small scale Monte Carlo simulation. We consider a
single stochastic market factor: a stock on which various European options are written.
The current value of the stock is set to S=100. Its continuous compounded return is

drawn from a normal distribution with mean m=15% p.a. and standard deviation

s =40% p.a. For each sampling, the portfolio is marked-to-model with the sampled
stock price and the maturity of the options decreased with one day. The options are
valued using the Black & Scholes model. The risk free interest rate is 5% p.a.

The initial portfolio we consider is a strap with a remaining maturity of one
month. It consists of 2 long calls C1 and one long put P1 written on the stock. The strap
is at-the-money in the forward sense, i.e. the exercise price X equals the forward price of
the stock, X = Sxexp(.08x05) =100.40. Hence C(X) = P(X) = 4.51. The current value
of the strap is 13.53. We choose an at-the-money strap because of the high gamma
(which induces non-linearity) and the resulting negatively skewed return distribution. In

order to evaluate the estimated marginal VaRs, we consider three candidate trades:

Table 1: Composition of initial and augmented portfolios

augmented portfolios
initial portfolio A B C

# w, # w, # w, # w,
C1 2 .67 2 .38 2 .61 2 .87
P1 1 .33 1 .19 1 .30 1 44
S - - A 43 - .09 - -
P2 - - - - 25 - - -
Cc2 - - - - - - -5 -31
value : 13.53 23.53 14.88 10.34
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A. aposition in the underlying stock S,

B. a position in a deep out-of-the-money put option P2 with exercise price 85,
remaining maturity of two weeks and current value 0.05, and

C. aposition in a two-month call option C2 with exercise price 100.8 (at-the-money
forward) and current value 6.38.

Table 1 summarizes the portfolios.

marginal and component VaRs

The overall VaR of the initial strap portfolio with confidence level 95% is r; =24.73%.

This corresponds to k(c) =2.24 in eq.(26) whereas under normality k(c) =1.65. We

use some of the methods outlined in section 4 to estimate marginal VaRs and component
VaRs.

There are three OLS regression procedures. Global OLS uses all 1,000 samplings
in eg.(22) to estimate the slope coefficient b, in eq.(10).* This is the conventional
procedure under normality. The asymmetric response model is egs.(31-32) with

f =median, so 50% of the data is used to estimate the relevant slope b. . The local
regression procedure uses 25 observations centered around - r; to estimate the slope
coefficient b, in eq.(10).

The fourth procedure is the (2,2)-Padé approximation according to the rational

approximant egs.(33-34). Finally we have the conditional mean procedure according to
eq.(35) with T*=21 observations centered around - r; and adjusted according to eq.(37).

Table 2 contains the estimates. All methods recognize that the call options
contribute to the risk exposure as measured by the VVaR whereas the put option serves as
a hedge. However, the estimates for the marginal VaRs and hence the component VaRs
show considerable differences. Global regression generates estimates that are most
pronounced - but also incorrect given the non-normality at hand. The estimates from the
rational approximant and the conditional mean are mid-range and almost

indistinguishable from one another while local regression estimates are smallest. A priori

2 Of course, the value of K(C) implied by s , and r; in eq.(26) could be used to estimate

marginal VaRs. However, from eq.(8) it follows that rp = szﬂs V =kxb; %6 , =b;, ¥
ﬂWi Wi p p

so this decomposition of overall VaR corresponds exactly to the global OLS procedure!
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Table 2: Marginal- and component-VaR estimates for the initial portfolio.

The 95% return-VaR is rE, =24.73% . Global regression uses all 1,000 scenarios. The

asymmetric response model is egs.(31-32) with f = median. Local regression uses 25

observations centered around - r; . (2,2)-Padé is the rational approximant eq.(34). The

adjusted conditional mean is according to eqs.(35-37) with T*=21 observations

centered around - r, . Component VaRs are adjusted according to eq.(39).

r; =24.73% OLS (2,2)-Padé conditional
global asymmetric local approx. mean

M-VaR(C1) 6776 .5830 5269 5674 .5630
M-VaR(P1) -.6142 -.4242 -.3417 -.3939 -.3892
M-VaR(S) .0566 0441 .0378 .0415 .0415
M-VaR(P2) -2.0650 -1.4415 -1.1627 -1.0560 -1.0464
M-VaR(C2) 4803 4011 .3566 .3880 .3850
C-VaR(C1) 45.22% 38.87% 36.59% 37.87% 37.79%
C-VaR(P1) -20.49% -14.14% -11.86% -13.14% -13.06%

we expect global OLS estimates to be biased by the non- linear relationship between T;

and F;) and it seems that the local regression estimates overshoot.

incremental VaRs

In order to evaluate the estimated marginal VaRs, we next estimate incremental VaRs.

We add another instrument to the strap portfolio and use marginal VaR to estimate the

overall VaR of the augmented portfolio. Note however, that expression (6) for

incremental VaR only applies for a small weight w,, of the instrument added. But we are

here considering a small portfolio and we want to evaluate the effect of larger changes in
composition. For larger changes in the portfolio, an additional adjustment must be made.

Suppose the initial portfolio p with current value V, ;is composed of N - 1
instruments. Next we add instrument N with current value V) , to the portfolio. Then

the portfolio weight of this instrument in the augmented portfolio p' becomes:

V
(40) W, =__ N0
VpO +VN,0

and the weights of the initial instruments in p' change according to:
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@41) w® (1-wy)w  i=1.,N-1

Now, by definition, the VaR of the initial portfolio p is:

N-1
* o]
42) r, = qlwi M -VaR

Give the changed portfolio weights, we would have for the augmented portfolio p':

N-1

* o L} L}
r=(1- wy)a w M -VaR +wy XM -VaRy
i=1

(43)

where the prime indicates that the marginal VaRs are measured with respect to p'. Then,
to a first order approximation:

N-1
roo» (- wy)a w M -VaR +w, XM -VaR,

i=1

(44)

° (1- wy )r, +w, XM -VaR,

We use eq.(44) and the information in Table 2 to estimate the VaR of the
augmented portfolios A, B and C. We confine ourselves to the global regression method
and the proposed adjusted conditional mean method. Table 3 confronts these estimates

with the portfolio VaRs obtained by brute force full-fledged re-estimation (“actual” VaR).

Table 3: Actual VaR and estimated VaR (via incremental VaR) for the augmented
portfolios A, B and C.

Global regression uses all 1,000 scenarios. The adjusted conditional mean is according

to egs.(35-37) with T*=21 observations centered around - r; . Confidence level: 95%.

actual OLS global conditional mean
A 16.00% 2.40% 15.99%
B 13.18% 3.87% 13.06%
C 20.41% 17.54% 20.48%
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As expected the global regression method (which embraces the very quick but even more
dirty variant of the conventional variance-covariance method, as described in footnote
21) fails miserably, whereas the conditional mean method yields almost exact results.
Given the non-normality and the highly non-linear portfolio at hand we expected the
former but could only dream of the latter. Although this is a highly stylized example we
conclude that the adjusted conditional mean method is not only intuitively appealing and
embarrassingly simple but also promises to be highly accurate for non-linear portfolios in
general. We performed some additional simulations on the basis of random portfolios
and these results strengthen our confidence. We expect the adjusted conditional mean

method to live up to its promises in a more scrutinous empirical investigation.

6. Summary and conclusions

This paper investigates the concepts of marginal, component and incremental VaR in a
general setting. We derive a distribution-free expression for the marginal contribution of
an instrument to the diversified portfolio VaR - whether this instrument is already
included in the portfolio or not. We show how in a most general way, the diversified
portfolio VaR can be decomposed in component VaRs that can be attributed to the
individual instruments comprised in the portfolio. We show how the standard results
under normality can be generalized to non-normal analytical VaR approaches and we
discuss the distributional assumptions under which the derived expressions hold, either
exactly or as mean-square error approximations. In addition we present explicit
procedures for estimating marginal VaR and component VaR in simulation settings, viz.
global and local regression models, asymmetric response models, rational approximants
and the adjusted conditional mean model. Based on the intrinsic linearity of the portfolio
operator, the last approach pairs appealing simplicity with high computational efficiency.
We evaluated the performance of various estimation methods applied to a
prototypical non-linear portfolio in a simulation setting. The conventional variance-
covariance method - albeit adapted for non-normality - fails miserably, whereas the
conditional mean method yields almost exact results. The latter method is not only
intuitively appealing and embarrassingly simple but also pairs high accuracy with
computational efficiency. We expect that this outperformance can be maintained for
non-linear portfolios in general. Additional simulations strengthen our confidence and a

more detailed empirical investigation will be the subject of a next paper.
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