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Abstract

In a binary logit analysis with unequal sample frequencies of the
two outcomes the less frequent outcome always has lower estimated
prediction probabilities than the other one. This effect is unavoid-
able, and its extent varies inversely with the fit of the model, as given
by a new measure that follows naturally from the argument. Unbal-
anced samples with a poor fit are typical for survey analyses of the
social sciences and epidemiology, and there the difference in predic-
tion probabilities is most acute. It affects two common diagnostics, the
within-sample ’percentage correctly predicted” and the identification
of outliers. Partial remedies are suggested.
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1 Preliminaries

The setting of this paper is a standard binary logit regression that has been
estimated by Maximum Likelihood (ML). Leaving the parameter estimates
0 aside we at once proceed to the estimated within-sample probabilities P,
of the outcome Y; = 1. These probabilities are arranged in a vector p, with
complement ¢; the outcomes are likewise recorded in y, with complement
vector z. The crude residuals are defined as

67,:1/;2_]52' (1)

or the vector e = y — p. The vector of complement residuals z — ¢ is identical
with reverse sign.

The sample consists of n observations, m with ¥; = 1 and n — m with
Y; = 0, or Z; = 1; the relative shares are @ and 1 — a. Whenever the
two sample shares are unequal, « is by convention the larger share and the
corresponding outcome is labelled Y; = 1.

The regressor matrix of the full model is X, and the ML estimates p of
the logit model satisfy

X"y —p)=X"e=0. (2)
X is always taken to include a unit constant, so that in particular

S (y—p)=1"e=0, (3)

or, in other terms,

P =q, (4)

where P is the overall mean of the elements of p. This property of the
estimated probabilities will be called equality of the means.

In addition to P, and QZ we shall make use of the estimated probability
of the observed outcome Pr (i)

Pr(i) = Y;P + ZiQ;. (5)
Note that the maximum of the loglikelihood function is

log L = log L(A) = 3" log Pr(i). (6)



The null model has the unit constant as the sole regressor; it is nested in the
full model with richer X. In this model P; and (); are constant and equal to
a and 1 — « respectively, with loglikelihood

logLy = mloga + (n —m)log(l — «). (7)

This is the lower limit of log L of (6). On average, therefore, the Pr(i) are
at least equal to their null values of a for ¥; = 1 and of 1 — « for Y; = 0,
but it is of course hoped that they are substantially higher. This leads us to
consider the ratio of Pr(i) to its null value

Pf(i) = Yi(Pi/a) + Z,(Qi/ (1 = a)). (8)

Pf(i) reflects the improvement of the full model over the null model in pre-
dicting the i’th outcome; it is an index of performance for that particular
observation. It is not a probability; it is nonnegative, and its overall level or
average should exceed 1. Upon taking logarithms and summing we find

> log Pf(i) = log L —log L. (9)

Doubling this gives LR, the common likelihood ratio statistic for the signifi-
cance of the full model,

23 log Pf(i) = LR. (10)
The geometric mean of the P f (i) is
Pf = exp(LR/2n). (11)

LR is nonnegative and f’? is never smaller than 1.
2 Prediction Probabilities in Unequal Sample Shares

In most survey data of the social sciences and epidemiology the sample shares
of the two outcomes are unequal, and values of « of .7 or .8 are much more
common than equal parts. Upon fitting a logit model it is then invariably
found that the estimated prediction probabilities Pr(i) are quite high for
Y; = 1, the outcome with the greater share, and very low for the outcome
with the lesser share!. If we distinguish two subsets among the P;, with PJr

'Inequality of sample proportions of the outcomes thus by itself leads to a high overall
level of Pr(i) and to high loglikelihoods.



for Y; =1 and f’i_ for Y; = 0, and likewise for Qi, the PZ* have a much higher
overall level than the Qj . This asymmetry in the prediction of ¥; = 1 and
Y; = 0 is well known to practitioners. Yet there is no clear reason why a
rare outcome should be badly predicted; a good prediction must be simply
a matter of choosing the right regressors. This is indeed so, and even quite
rare outcomes can in principle have estimated probabilities all the way up to
1; but whatever value they attain, on average the other, prevalent outcome
will always be predicted even better. The extent of this systematic difference
varies with the fit of the model; and since outside controlled experiments the
fit is usually mediocre, a great contrast between the poor prediction of rare
states and the good prediction of prevalent states is the rule.

The argument that establishes this result is somewhat unusual but really
almost trivial. Consider the averages of P, for the two subsets of observations
with ¥; = 1 and Y; = 0 already mentioned. The first, which refers to the
outcome with the larger share, is

Pt =ply/m (12)
and the other

P~ =p"2/(n —m). (13)
The overall mean P is their weighted average, or, with (4),

aPt+(1—-a)P”=P=a. (14)

If the fitted model has any explanatory power, P exceeds P~, and the
two will lie on either side of their (weighted) average a.. Since they are mean
probabilities, they are both constrained to the interval (0, 1); P~ lies in (0, «],
and P* in [, 1). This suggests writing Pt as a linear combination of a and
1 with nonnegative weights (1 — \) and A, or

Pt=(1-XNa+i=a+)1-a). (15)
By (14) this gives
P =a(l-2)) (16)

so that P~ is a linear combination of 0 and a with the same weights \ and
1—A



Similar expressions hold for the Ql The subset means are

QF =q"z/(n—m) (17)
and

Q™ =q"y/m. (18)
Since QZ is the complement of P; we have

Pr+Q =1, P +Q"=1.
and this gives

QT =(1-a)+ )\ (19)

and

Q" =(01-N(1-a) (20)

Q% and @~ are linear combinations like P* and P~ with the same weights
Aand (1— \).

The upshot is that all four means are determined by two parameters, the
share a and the weight A, with

O<a<l, 0<A<I. (21)
The limits of a are self-evident; as for A, it is zero for the null model with
Pt=P =P=aq,

but it can not attain its upper bound since this would imply PT =1, QT =1,
and such perfect prediction is beyond logit probabilities or their estimates?.

Figure 1 shows how Pt and QT vary with A for a given a and with « for
a given A. In the first panel « is .8, which is a quite common value. Provided
A is high enough, Q% can reach quite high values, but P+ will always be even
higher. In the second panel we need only look at the right-hand half since
outcomes have been so labelled that o > .5. Here PT again always surpasses
Q", and as « increases towards 1 the one goes up and the other goes down.
This effect is the more marked the lower A: here it is only .2.

2Negative A can be ruled out as this would mean that the loglikelihood of the full model
is less than that of the null model



1 -
+

P J
Q7 P

a=.8 A=.2
Figure 1. Behaviour of Pt and Q* with « and ).

Combining (15) and (19) as
Pt — Q" =2(a—.5)(1-)\) (22)

we have the answer to the initial question why the level of predicted prob-
abilities varies with the sample share. Unless o = .5, P exceeds Q*, and
this excess varies inversely with A. Large values of A would therefore limit
its extent; but in practice this is of little help, as A is usually quite small.
In the the illustrative nonexperimental studies of the next section it ranges
between .07 and .33.

In these conditions estimated probabilities are a poor measure of within-
sample predictive performance: they would lead to the absurd conclusion
that success is predicted very well while failure is predicted badly, as if one
can at the same time predict survival with precision but death not at all.

From (15) and (16), (19) and (20) we also find
PT—P =Q"-Q =\ (23)

A can therefore be seen as a crude measure of fit since it indicates the dis-
crimination of P; (and of ;) between the two observed outcomes. This
interpretation is further explored in section 4.

3 Illustrations

We illustrate these arguments by eight studies from the social sciences and
epidemiology. They are listed by increasing « in Table 1, with their abbre-
viated name, subject, sample size n and number of regressors K. Four deal
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with economic, educational and medical issues in Holland; one refers to the
French labour market; one is a study of British rapists; and two have been
taken from American textbooks of biostatistics. Sample size n and the num-
ber of regressors (including the intercept) K vary widely. Section 7 provides
thumbnail sketches with further details of the analyses and their adaptation
to present purposes. All studies have been published in respectable journals
or are otherwise available.

Name Subject Q@ n K

PART | labour market participation of married women

in France, 1979. Gabler et al. (1993) 520 | 3658 | 21
CAR private car ownership of Dutch households,

1980. Cramer (1991) .642 | 2820 | 6
FIBRO | fibrosis after breast cancer surgery, Holland,

1979-88. Borger et al. (1994) 720 | 332 | 12
EDUA | performance of Dutch schoolchildren, 1965.

Dronkers (1993) 777 | 699 | 8
ICU intensive care unit performance, Massachusetts,

1983. Lemeshow et al. (1988) .800 | 200 | 9

EDUB | educational choice of Dutch schoolchildren,
1982. Oosterbeek and Webbink (1995) 802 | 1706 | 12

DEPRI | depression in Los Angeles, 1979.
Afifi and Clark (1990) 830 | 294 | 6

RAPE | antecedents of rapists in Great Britain, 1965-93.
Davies et al. (1997) 843 | 210 | 13

Table 1. Illustrative binary logit studies

In six out of eight samples a lies between .70 and .85; only two samples
are more evenly balanced. A cursory inspection of the literature suggests
that among surveys of these types unbalanced samples of this order are the



rule, and a fair 50/50 division is an exception. One can easily find examples
with a much skewer distribution of the outcomes than reported here.

Name a Pt | Qf | diff A

PART | .520 | .627 | .596 | .031 | .223

CAR 642 | 759 | .568 | .191 | .327

FIBRO | .720 | .793 | .467 | .326 | .260

EDUA | .777 | .823 | .385 | .438 | .208

ICU 800 | .872 | .487 | .385 | .359

EDUB | .802 | .816 | .256 | .560 | .072

DEPRI | .830 | .838 | .208 | .630 | .046

RAPE | 843 | .872 | .312 | .560 | .183

Table 2. Prediction probabilities for eight examples

In Table 2 we repeat o and show the two subset means P and Q*, their
difference, and the value of A from (23). It is quite clear that with unequal
sample shares the less frequent outcome systematically has a (much) lower
average prediction probability than the other. This is equally due to low
values of \ as to high values of «, as by (19) Q@ must exceed both (1 — «)
and A. As the table shows, A varies widely between the various studies. The
highest value is is .36 for ICU, based on a nonrandom subset from a larger
sample, selected for textbook use. The lowest value occurs for DEPRI, where
all six regressors turn out to be rather crude categorical variables. The values
between .07 and .33 for the other samples seem to set the norm for survey
studies.

All the illustrative studies are from epidemiology and the social sciences.
Much more extreme cases of rare outcomes can be found in marketing and
in financial analyses, such as the response to large indiscriminate direct mail
campaigns or the incidence of take-over bids or bankruptcies. In contrast, the



problem hardly arises in controlled experiments like the classic bio-assay of
the effect of pesticides on strictly homogeneous batches of organisms. Most
samples are about equally balanced as a matter of design, and the analyses
have a substantially better fit. In a handful of such controlled experiments
we found values of A between .4 and .73.

4 )\ as a measure of fit

In (15) A was introduced as a weight that pulls up P* from its null model
value (for zero \) towards the unattainable limit P+ = 1 of perfect predic-
tion (for unit \). By (23) it is the difference between P™ and P~. Both
interpretations suggest that it is a measure of fit, whether the sample shares
are unequal or not.

This suggestion is strengthened by the relation of A to the index of pre-
diction performance P f (i) of (8). Its arithmetic mean over the entire sample
is

Pf=1/n3 Pf(i)=a(P"/a)+ (1 —a)(Q"/(1 - a)), (24)
or, by (15) and (19),
Pf=1+A\ (25)

There is more. In ordinary least squares regression with a continuous
regressand c the residuals e = ¢ — ¢ satisfy

Similar properties hold for the crude residuals (1) of the logit model. First,
as in (3),

Te=0;
as for the second property, it can be shown that

ple/n L 0. (26)

3We used the data of two examples from Finney(1947), viz. the case of vasoconstriction
of Gilliatt (1947) (Finney p.184) and of Tribolium castaneum of Hewlett (1969) (Finney
p.260) as well as six analyses of mite eggs from Bakker et al (1993).



This holds under quite general conditions for any consistent estimate p of
p for the (0, 1) outcomes y of any discrete model (see Cramer (1997)). For
finite samples it is of course only an approximation

ple/n~0 (27)
or equivalently
ply/nptp/n (28)

and likewise for ¢ and z. We shall refer to this as the orthogonality property
of p - orthogonality to the residuals.

Name R;.

PART | .0021
CAR .0090
FIBRO | -.0135
EDUA | -.0192
ICU .0096
EDUB | .0008
DEPRI | -.0003
RAPE | .0003

Table 3. Correlation of p and e.

By (28) p and e are approximately uncorrelated, and Table 3 bears out
that for the present illustrations the correlations are indeed quite close to
zero. Inspection shows that p comes near to a linear combination of X, which
by (2) is orthogonal to e. This need not always be so, but the correlation of
p and e is easily established in any particular instance.

The common decomposition of the sum of squares of P; in (27) gives

ﬁTy/nzﬁTﬁ/n:az—i-ag (29)

where ag is the variance of the column p over its entire length. Substitution
in (12) yields

Pt ra+o,/a, (30)
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and equating this to (15) gives

0.2

Ay —2 31
a(l — ) (31)
For A = 1 or perfect prediction o7 attains its maximum of a(1 — a); A = 0
implies 02 = 0, or constant P;, which is the null model.

Since P; and e; are (nearly) uncorrelated we have the familiar decompo-
sition of the sum of squares of Y;

SSy ~ SS.+SS,. (32)
Clearly,

5SS, =no;,  SS, =na(l—a)
so that by (31)

A~ SS,/SS,=1—-55./SS,. (33)

Thus A is supported by (32), which is a straightforward analysis of variance
of y as advocated by Efron (1978). Efron strongly stresses the need for
a Pythagorean relation which permits a simple additive decomposition; (32)
satisfies this, if only approximately (or asymptotically). By (33), A resembles
R? since it indicates the proportion of the total dependent variation that has
been ’explained’.

It is tempting to use (33) to construct a F' statistic for the overall signif-
icance of the full model, but there is no need for this. There is a perfectly
good Likelihood Ratio test of this issue, and by (11) and (25) both LR and
A are based on the same P f(i), although the one uses the geometric mean
and the other the arithmetic mean. Hence A\ does not add any new informa-
tion. The only merit of F' would be to show that quite low values of A\ are
compatible with a significant relation, provided the sample is large enough -
just as in the case of R%. This is the usual situation in the analysis of survey
data in the social sciences.

To sum up, A varies between zero for the null model and 1 for perfect
prediction; it reflects the differences between Pt and P~ it measures the
proportion of the total variation of y that is ’explained’; and it turns up
in various other measures and decompositions. In short, it uncommonly
resembles R? of linear regression. Like R?, however, it is merely a descriptive
measure with immediate intuitive appeal rather than a proper statistic with
a known distribution.
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5 Unfortunate effects for unbalanced samples

We return to unbalanced samples with widely different levels of P and Q;
and examine the effect on two common diagnostics.

Percentage correctly predicted

Many statistical computer packages show the percentage correctly pre-
dicted in the sample. Estimated 0,1 attributes Y; are assigned to the obser-
vations according to whichever is the greater of P; and Q;, or

ifP,>.5 Y =1
ifQ; > .5 Y =0.

This criterion or 'cut-off’ point of .5 is optimal if either form of misclas-
sification carries the same loss. The Y; are then set off against the observed
values in a 2 by 2 table, shown for EDUB as Table 4.

Y;=1]Y;=0| total

=
I
[y

1358 334 1692

=
Il
o
—
o
=
—
S

total 1368 338 1706

Table 4. Predicted and observed states for EDUB
(cut-off point .5)

In this case the number of correct predictions is 1358 + 4 = 1362, and
the success rate would be blithely reported as 1363/1706 = 79.8%. But this
result reflects the composition of the sample rather than the performance of
the model; it is due to an « of .8, coupled with a poor fit (A = .072). This
leads to a low level of the Q:r and thereby to a high overall level of B, so
that for all but 14 observations the prediction is Y; = 1, while of course 80%
of all observations actually have Y; = 1. Underneath, the scores for the two
outcomes are very different: the success rate is 1358/1368 = .99 for V; =1
but only 4/338 = .01 for ¥; = 0.
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This incongruous result is linked to the ’cut-off’ point of .5. An alternative
is a prediction that is optimal in the sense that, for given ﬁ’i, it maximizes
Pf(i) of (8), and hence the fit of § to the given p. This is achieved by a
"cut-off” point of «, or

ifP,>a Y =1
ifQ;>(1—a),Y;=0.
Table 5 shows that with this procedure the overall success rate drops to

.63, but that it is much more evenly spread over the two alternatives: it is
now .62 for Y; = 1 and .68 for Y; = 0. This is a more sensible result.

Y;=1]Y;=0| total

=
I
[y

841 110 951

527 228 755

=~
I
o

total 1368 338 1706

Table 5. Predicted and observed states for EDUB
(cut-off point «)

Admittedly EDUB, because of its poor fit, is one of the worst examples
of the damage uneven sample shares can do, but Table 6 shows that similar
results hold for the other analyses with unbalanced samples. Clearly for
such samples the conventional 'percentage correctly predicted’ does not mean
a thing. With the alternative criterion (a cut-off point of «), the overall
success rate is lower, but successful prediction is much more evenly spread
over the two outcomes. Moreover the percentage correctly predicted now
reflects fit rather than sample proportions: among the 8 cases of Table 6 the
conventional percentage varies with o and the alternative with \.
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at .o: at a:
Name overall | Y;=1|Y;=0 overall | ;=1 |Y;=0
PART 71 71 71 .70 .68 73
CAR 79 .88 .62 a7 79 74
FIBRO 7 .90 44 73 72 75
EDUA .80 .94 31 71 .69 78
ICU .88 .99 43 a7 a7 75
EDUB .80 .99 .01 .63 .62 .68
DEPRI .83 1.00 .00 .54 49 78
RAPE .86 .99 15 .62 .60 .76

Table 6. Fraction correctly predicted at cut-off points
of .5 and a.

Detection of outliers

Outliers or atypical observations are conventionally identified by their
contribution to the fit of the model, measured by the effect of their deletion.
In linear regression large absolute values of the residual indicate an outlier,
in discrete models small values of Pr(i) of (5) (the estimated probability of
the observed outcome) do so. Pregibon (1981) makes use of

d? = —2log Pr(i)
and

, (1= Pr(@))?
X = Priy1 - Pr(i)

which indicate the contribution of observation i to the deviance (minus twice
the loglikelihood) and to the Pearson chi-square fit statistic respectively.
Both criteria are equivalent to Pr(i), with low values indicating outliers.
This stamps observations that are highly unlikely as outliers.
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Pregibon uses an evenly balanced sample with a very good fit as an
illustration*. With unequal sample proportions, however, the two outcome
sets do not have an equal chance of yielding outliers: since the prediction
probabilities of the less frequent outcome Y; = 0 are substantially lower,
these observations are much more readily branded as outliers. The outliers
are therefore heavily concentrated among the less frequent outcome.

This is demonstrated in Table 7. The number of observations ranked as
outliers is 1% of the sample, with a minimum of 10. The next columns show
the share of the rare outcome in the sample, among the conventional outliers,
and among outliers according to an alternative criterion.

share of Y; =0
Name # in in in
outliers | sample | outliers outliers
by Pr(i) | by Pf(i)
PART 37 48 .89 .84
CAR 28 .36 .75 43
FIBRO 10 .28 90 .30
EDUA 10 .22 .80 .70
ICU 10 .20 1.00 .60
EDUB 17 .20 1.00 .94
DEPRI 10 A7 1.00 .80
RAPE 10 .16 1.00 40

Table 7. Share of Y; = 0 in sample and among supposed outliers
by two criteria

There is no hard rule that outliers must reflect the sample distribution of
the outcomes. Recording errors or other anomalies may systematically occur

4This is the vasoconstriction case of Gilliatt(1947) and Finney(1947,1971); v is .51 and
A 52,
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more frequently with one outcome than with the other. This may account for
the PART result, an evenly balanced sample with the outliers concentrated
in one outcome subset. For the other examples columns 2 and 3 demonstrate
clearly that an uneven division of the sample leads to an uneven distribution
of the outliers in the opposite sense: in four out of six cases all outliers refer
to the outcome with the smaller sample share.

The alternative is to define outliers according to the observations’ contri-
bution to the fit as measured by A, or - by (25) - to rank the observations
by Pf(i) instead of Pr(i). The result is shown in the last column of Table
7. There is some improvement, notably for CAR and FIBRO, but in other
cases the imbalance persists. EDUB and DEPRI are particularly disappoint-
ing; but this may be due to their very poor fit, which makes any attempt to
identify outliers illusory.

Clearly, in unbalanced samples the outliers detected by the conventional
criterion should be viewed with reserve, but the proposed remedy does not
always work. In case of a very poor fit the very notion of outliers may be out
of place.

6 Generalization to other models

The present analysis has been conducted entirely in terms of the vectors p
and y and their complements, and we have made use of only two properties
of the estimated probabilities, viz. the equality of the means of (4) and the
orthogonality of (26)). For a linear probability model with simple regression
estimation both properties hold exactly. For logit models with ML estima-
tion, as considered here, the first holds exactly and the second asymptotically.
For any other binary probability model both properties hold asymptotically,
provided p is a consistent estimate of £y = p (see Cramer (1997)). The
present argument therefore holds asymptotically for a wide class of analyses.
Whether the two key properties are an acceptable approximation in a finite
sample must be verified in each particular instance.

The extension to multivariate probability discrete models with S > 2
states labelled s is not immediate. The zero mean property as well as the
orthogonality again hold asymptotically for any pair p, and y,, but the easy
symmetry of p and ¢ of the present approach breaks down.
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7 Notes on sources

Eight published analyses have been used as illustrations. We once more acknowledge our
debt to five authors who have generously provided their data and sometimes their calcu-
lations for this purpose. A short description of these sources (and their adaptation, where
applicable) is given below in alphabetical order of their acronyms. Unless stated otherwise,
the original analysis is a plain binary logit regression with ML estimation; in some cases
we have performed this analysis on data originally used in a different manner. For a full
appreciation of all quoted analyses the reader must turn to the original publications.

CAR is an analysis of the ownership of private cars by Dutch households in the
budget survey of 1980. The presence of a business car in the household is a particularly
effective regressor, and this accounts for the good fit. The data set is used extensively for
illustrative purposes in Cramer (1991).

DEPRI is based on a 1979 survey of the incidence of depression among 1 000 persons
in Los Angeles, reported by Frerichs et al (1981). A subset of 294 observations has been
published in the textbook by Afifi and Clark (1990) and has also found its way to the
exercises in the Manual of the BMDP computer package of Dixon (1992). The original
survey reports a great variety of possible regressors, 37 in number, but only five have
been used in exercise LR3 of the BMDP manual, and this is the analysis that has been
replicated here. Since the regressors are all categorical variables - sex, marital status, and
the like - the sample consists of clusters of several observations with the same regressor
values and hence the same Pl

EDUA has been taken from a study of the Dutch educational system; the issue
is whether a major school reform has indeed improved the performance of the system.
Dronkers (1993) compares various changes in status of pupils as a result of schooling
in two cohorts before and after the reform. Since he controls for background variables
the cohort variable will capture the reform’s effect. The present example refers to the
transition from low teacher assessment to low achievement score, that is the first top cell
of Dronkers’ Table 1. We have re-estimated the logit concerned.

EDUB is taken from a study by Oosterbeek and Webbink (1995) of educational choice
of Dutch high-school pupils in their final year; the issue is whether or not they intend to
continue in higher education (the majority does). This choice is related to 11 regressor
variables like the student’s social background and school record and economic variables
such as the cost and benefits of further schooling. We have re-estimated the logit for the
1982 sample of 1706 students, Table 2 of the article quoted.

FIBRO refers to a study of fibrosis after breast conservation cancer therapy by Borger
et al. (1994). The sample consists of Dutch patients treated between 1979 and 1988, for
which the degree of fibrosis six years after treatment was established on a four-degree
scale by expert inspection. In the original study these four states are analysed by means
of a restricted logit model, with much attention being paid to nonlinear effects of the
characteristics of diagnosis and treatment. Table 3 of the quoted article lists seven variables
that have been retained, with categorical subdivisions increasing the number of estimated
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coefficients to 11 (apart from three intercepts). The same data set has here been used for
the ML estimation of a simple binary logit model for fibrosis of the most severe degree as
a function of the same variables, that is 11 covariates and one intercept.

ICU is based on a study by Lemeshow et al (1988) of survival and death of intensive
care patients. The data of the original study refer to a fairly homogeneous sample of
737 patients admitted to an Intensive Care Unit in Springfield in 1983. The covariates
are characteristics of the patients prior to admission; we here only use the 8 regressors
retained by the authors in their preferred specification of table 3 of the article. The present
analysis is based on a subset of 200 observations from the original sample of 737, selected
for didactic purposes: it is reproduced in the textbook of Hosmer and Lemeshow (1989)
and freely available to third parties at http://www-unix.oit.ukase.edu/-statdata.

PART refers to a sample of 3658 households from the French INSEE household budget
survey of 1979. These data have been used extensively for analyses of the labour market
participation of married women (in 1979 a minority worked), and they have served as an
example in the article on semi-nonparametric (SNP) estimation by Gabler et al (1993).
The authors employ 20 regressor variables that have proved useful in earlier research, and
compare the results of SNP estimation of the binary choice model with ML estimation of
a straightforward probit. We here use a plain logit estimated by ML from the same data
set.

RAPE is taken from an investigation into the antecedents of stranger rapists on the
basis of various aspects of their modus operandi by Davies et al. (1997). The data consist
of 210 records collected from British police forces over 28 years from 1965 to 1993; in the
study, twelve aspects of the rape and the rapists’ behaviour were further investigated. In
the present analysis these serve to explain whether he has a previous conviction or not.
The data have been put at our disposal by the authors.

References

Afifi, A.A., and V. Clark (1990) Computer-aided Multivariate Analysis, 2nd
edition. Lifetime Learning Publ., Belmont.

Bakker, Frank M., Martha E. Klein, Nora C. Mesa and Ann R. Braun (1993)
Saturation deficit tolerance spectra of phytophagon mites and their phytoseiid
predators on cassava. Experimental & Applied Acarology, 17, 97-113.

Borger, J., H. Kemperman, H. Sillevis Smitt, A. Hart, J. van Dongen, J.Le-
besque, H. Bartelink (1994) Dose and volume effects on fibrosis after breast-
conservation therapy. International Journal of Radiation, Oncology, Biology and
Physics 30, 1073-1081.

Cramer, J.S. (1991) The Logit Model - an introduction for economists. Edward
Arnold, London.

18



Cramer, J.S. (1997) Two properties of predicted probabilities in discrete re-
gression models. Tinbergen Institute discussion paper T1 97-044/4.

Davies, A., K. Wittebrood and J.L. Jackson (1997) Predicting the criminal
antecedents of the stranger rapist from his offence behaviour. Science and Justice
forthcoming.

Dixon, W.J. (ed.) (1992) Biomedical Data Processing Manual. California-
Princeton Fullfillment Services, Princeton.

Dronkers, J. (1993) Educational reform in the Netherlands: did it change the
impact of parental occupation and education ? Sociology of Education 66, 262-277.

Efron, Bradley (1978) Regression and ANOVA with zero-one data: measures of
residual variation. Journal of the American Statistical Association 73, 113=121.

Finney, D.J. (1947, 3d edition 1971) Probit Analysis. Cambridge University
Press, Cambridge.

Frerichs, R.R., C.S. Aneshensel, and V. A. Clark (1981) Prevalence of depres-
sion in Los Angeles city. American Journal of Epidemiology, 113, 691-699.

Gabler, Siegfried, Francois Laisney and Michael Lechner (1993) Semi-nonpara-
metric Estimation of Binary-Choice Models With an Application to Labor-Force
Participation. Journal of Business and Economic Statistics 11, 61-80.

Gilliatt, R.W. (1947) Vaso-constriction in the finger following deep inspiration.
Journal of Physiology 107, 76-88.

Hewlett, P.S. (1969) The toxicity to Tribolium castaneum of mixtures of pyre-
thrins and piperonylbutoxide: fitting a mathematical model. Journal of Storing
Products Research 5, 1-9.

Hosmer, David H., and Stanley Lemeshow (1989) Applied Logistic Regression.
Wiley, New York.

Lemeshow, Stanley, Daniel Teres, Jill Spitz Avrunin, and Harris Pastides
(1988) Predicting the Outcome of Intensive Care Unit Patients. Journal of the
American Statistical Association 83, 348-356.

Oosterbeek, Hessel, and Dinand Webbink (1995) Enrolment in higher educa-
tion in the Netherlands. De Economist 143, 367-380.

Pregibon, D. (1981) Logistic regression diagnostics. Annals of Statistics 9,
705-724.

19



