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Abstract

Adaptive Polar Sampling is proposed as an algorithm where random drawings are

directly generated from the target function (posterior) in all-but-one directions of the

parameter space. The method is based on the mixed integration technique of van Dijk,

Kloek & Boender (1985) but extends this one by replacing the one-dimensional quadrature

step by Monte Carlo simulation from this one-dimensional distribution function. The

method is particularly suited for the analysis of ill-behaved surfaces. An illustrative

example shows the feasibility of the algorithm.
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1 Introduction

Sampling from a general posterior distribution with density function p(�) of a parameter

vector � has been the topic of intensive research in recent years. For well-behaved cases, with

the full conditionals given or with the probability mass of the density lying in one, joined

region, where the distribution is regular enough, several e�cient algorithms are available.

The most important sampling methods are the Metropolis-Hastings algorithm, importance

sampling and the Gibbs sampler (see e.g. Metropolis, Rosenbluth, Rosenbluth, Teller & Teller

(1953), Kloek & van Dijk (1978) and Smith & Gelfand (1992)).

For more di�cult cases, sometimes an algorithm as the Griddy Gibbs sampler (Ritter

& Tanner 1992), the local adaptive importance sampler of Givens & Raftery (1996) or the

simulated tempering or sintering algorithms (see Liu & Sabatti (1998)) may lead to a solution.

In this paper we propose adaptive polar sampling (APS) as an alternative. This algorithm can

be used in less well-behaved cases, which may exhibit multiple modes, ridges in the density

function, non-Gaussian tail behavior or e.g. strong correlation between the elements of the

parameter vector.

2 Basics of adaptive polar sampling

Let the joint density function p(�) of the parameter vector � be of a known parametric form.

Assume that the probability mass lies in a bounded region R 2 <n. In case the bounds are

not known, take them `large' such that every area of interest is contained within R. Suppose

� and � are preliminary estimates of the location and scale. As a �rst step, standardize the

parameter vector � using the location and scale as

y = ��1=2(� � �)
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with �1=2 the Cholesky decomposition of the scale matrix �.

The probability mass in terms of the parameterization y can be expected to be distributed

more or less evenly in all directions around the origin of the space. The distribution of the

distance of the mass from the origin may still behave quite erratically.

Given this observation, we propose to transform the n-dimensional vector y into polar

coordinates (see Kendall & Stuart (1969), chapter 11 for details), leaving an n�1 dimensional

vector � of directions and a scalar � indicating the length of the vector y. As will be shown

in the next section, the marginal distribution of � is expected to be reasonably well behaved.

In order to sample from this marginal distribution using Metropolis-Hastings, the marginal

density of � for the case where � is assumed to be normally distributed can be used as the

candidate density. Given a direction �, a corresponding element � can be sampled from the

univariate conditional distribution function, by inverting the cumulative distribution function

of � in the direction �. In this decomposition of the parameter space into polar coordinates

the similarity with the Mixed Integration algorithm of van Dijk et al. (1985) is found.

After collecting a sample conditional on � and �, these estimates can be adapted using

the �rst and second moment of the training sample. In a new rotation, the updated estimates

can be used in order to get a better behaved marginal distribution of �.

3 Transformed densities

Denote the transformation of � into (�; �) by (�; �) = T (�). We suppress the dependence of

the transformation on � and � for notational convenience. The density in terms of the polar

coordinates can be written as

p�;�(�; �) = p�
�
T�1(�; �)

�
jJ(�; �;�)j
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with a Jacobian

J(�; �;�) = det(�)�
1

2�n�1

 
n�2Y
i=1

cosn�i�1 �i

!
:

The APS method transforms the joint density of � and � into

p�;�(�; �) = p� j �(� j �)p�(�)

where

p�(�) =

Z
r(� jR)

p�
�
T�1(�; �)

�
jJ(�; �;�)j @�:

Here r(� jR) is the region in terms of � in the direction � as prescribed by the region of

interest R in the original metric.

It is illustrative to apply this transformation to polar coordinates to a variable which is dis-

tributed as a bivariate normal, � � N (�;�). Then we get y � N (0; I2), � =
p
y21 + y22 (� � 0)

and � is the unique solution of cos � = y1=� and sin � = y2=� (� 2 [0; 2�)). The joint, marginal

and conditional distributions of interest are

p�;�(�; �) / � e��2=2

p�(�) =
1

2�

p� j �(� j �) / � e��2=2 , �2 j � � exp(1=2):

For the bivariate normal distribution function the marginal density of the (univariate) di-

rections � is uniform. In the general case, for the multivariate normal distribution, the

last direction �n�1 is uniformly distributed between 0 and 2�, whereas the other directions

�1; ::; �n�2 have a marginal density p(�i) / cosn�i�1 �i (�i 2 [��; �); i = 1; ::; n � 2).

For other, non-normal distribution functions the marginal of � at most approximately

follows this combined uniform/cosine density. The di�erence, which depends on the case
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studied, is not expected to be extremely large. Sampling from the marginal distribution of �

using a Metropolis-Hastings step with the uniform/cosine density as a candidate function is

expected to give reasonable acceptance rates.

4 The APS algorithm: Sampling by parts

The similarity of the marginal distribution of the direction � to the marginal distribution in

the case the distribution of � is normal is exploited in a Metropolis-Hastings sampling step.

Assume we have a starting value �(0), and have put i = 1. Then the algorithm proceeds in

drawing �(i)'s as follows:

� Draw �� = (��1 : : : �
�
n�1) from the candidate density corresponding to the normal density

for � as it was indicated above. Denote this candidate density by ~p�. The sampling

is most easily done by drawing y� � N (0; In) and transforming this y� into polar

coordinates (��; ��), where only �� is used in the next steps.

� Calculate

� = min

(
p�(�

�)

~p�(��)

,
p�(�

(i�1))

~p�(�(i�1))
; 1

)

with �(i�1) the � drawn in the previous iteration,

� Take �(i) =

8>><
>>:

�� with probability �

�(i�1) with probability 1� �:

� If desired, increase i and repeat the above steps.

In this sampler for � the density function in the direction of � is explored while calculating

the marginal p�(�). With this information, it is no large e�ort to sample �(i) j �(i) from the

inverse distribution function, as is done e.g. in the Griddy Gibbs sampler (see Ritter & Tanner
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(1992)). The sampled values (�(i); �(i)) are then transformed back into the original metric

using the inverse transformation, �(i) = T�1(�(i); �(i)).

The sampling is done under the assumption that the location and scale parameters � and

�, used in the transformation � ! (�; �), are known. When this is not the case (that is,

usually), the algorithm can be used with a rough, preliminary estimate of these parameters;

one or two small rounds of sampled values can be used to improve on the estimate of � and

�, before the algorithm is run for collecting the �nal sample. We note that poor estimates

of location and scale do not lead to an incorrect distribution of the sampled values, only the

acceptance rate in the sampling of �'s is expected to be lower.

5 An illustration on an ill-behaved density function

The focus of several papers in the MCMC literature is directed at the sampling from mixture

distributions. For these distributions Gibbs sampling may not converge if the probability of

switching from one mode to the other is close to zero. When using Metropolis-Hastings, it

can be hard to �nd a good, general candidate density function which is able to cover all sorts

of mixtures. Very low acceptance rates and strong correlation in the sampling output are

often the results.

The model we put to the test is the following. Take0
BB@x

y

1
CCA �

8>><
>>:
N (�1;�1) with probability p

N (�2;�2) with probability 1� p

This is a canonical example of a bivariate bimodal mixture model. As long as the modes are

not connected, and they do not lie next to each other in the direction of one of the axes, Gibbs

sampling does not converge on this problem. A general candidate function for Metropolis-
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Table 1: Results of location and scale estimates in successive samples

Sample #� #�
#� Acc. rate � Location �(�) Scale �(�)

0

0
BB@ 5

5

1
CCA

0
BB@ 5 0

0 5

1
CCA

1 100 50 1

0
BB@ 3:4

3:1

1
CCA

0
BB@ 15:6 �2:6

�2:6 16:7

1
CCA

2 100 50 .18

0
BB@ �0:5

0:5

1
CCA

0
BB@ 17:1 �15:9

�15:9 17:9

1
CCA

3 10000 5 .16

0
BB@ 0:0

0:0

1
CCA

0
BB@ 17:5 �16:1

�16:1 17:6

1
CCA

Hastings is hard to �nd, especially if the two modes are not close.

In our illustration we choose �1 = (4;�4)0; �1 = I2; �2 = (�4; 4)0; �2 = 2I2 and p = 1=2,

with I2 the 2 � 2 identity matrix. The preliminary `estimates' of the location and the scale

of � = (x; y)0 are taken as �(0) = (5; 5)0 and �(0) = I2. These initial values are far away from

the true location and scale of the density of �(true) = (0; 0)0 and �(true) =
�

17:5 �16:0
�16:0 17:5

�
. The

region of interest was chosen as R = [�15; 15] � [�15; 15].

To improve on the preliminary estimates of location and scale, two rotations of the al-

gorithm were used. We sampled 50 values � in 100 di�erent directions �. In constructing

the �rst training sample we skipped the Metropolis-Hastings step on �, to get a very quick

�rst improvement on �(0) and �(0). The second rotation used MH to sample from the true

distribution of �, resulting in an acceptance rate of � of 0.18. From this training sample

the location and scale parameters (�(2);�(2)) were estimated, to be used in drawing the �nal
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sample of 10000 di�erent values of �. The �nal acceptance rate of � was 0.16, as is reported

in Table 5. In this �nal rotation, about 16% of the sampled values of � where accepted.
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Figure 1: Results for the joint density of the two elements of the bivariate normal mixture

distribution

The algorithm continued until 10000 �'s were accepted, resulting in a total sample of size

10000� 5=0:16 � 310000 elements of �. Figure 1 depicts the joint density of the sampled �'s,

where a kernel smoother was applied in constructing the graph. In Figure 2 the marginal

distributions of the sampled x and y are shown.

Implementation of the algorithm was done in the Gauss programming language. The run

which was described above took about 15 minutes on a Pentium 233Mhz.

6 Conclusions

An alternative method for sampling from a posterior density has been introduced. This Adap-

tive Polar Sampling is a new MC algorithm which is better able to handle ill-behaved surfaces,
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Figure 2: Results for the marginal densities of the two elements of the bivariate normal

mixture distribution

where other sampling algorithms may exhibit slow convergence or may not converge at all.

This greater 
exibility comes at the cost of having to calculate a one-dimensional integra-

tion at every step during the sampling. For irregular posterior densities however the greater


exibility and better expected convergence rate will outweigh the cost of the integration.

As an illustration we used the algorithm to sample from the bivariate mixture with two

modes lying far apart (see also Liu & Sabatti (1998)) who applied the sintering algorithm for

sampling from the same model). A sample from the true posterior density was found even

though initial estimates of the location and scale parameters used in the transformation were

wildly wrong. Adaptation of these parameters in two preliminary steps led to good results. A

set of other densities was put to the test as well, but for reasons of space those results are not

extensively reported here. In short, results for a tobit, bimodal tobit, ARMA(1,1) with near

root cancellation, ARMA(1, 1)-ARCH(1) and for a bivariate uniform density were similar:

Two or three training samples where su�cient to get reasonably high acceptance rates in the

�nal sample from the true posterior. Acceptance rates of � usually varied between 30% and
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80%. The exception was the bimodal mixture distribution presented here: A larger distance

between the modes results in a lower acceptance rates, as the covariance structure of the

(training) sample does not describe well the distribution of the density mass in the directions

�.

Future work on the improvement of the algorithm can be directed at several topics. First,

the problem of convergence should be targeted further. What convergence measures are

available for this speci�c algorithm? The algorithm does not depend strongly on the estimates

of location � and scale � that are used in the transformation. Even so, the optimal number

and type of preliminary rotations for improving the estimates of these parameters can be

investigated more deeply.

The Mixed Integration algorithm (van Dijk et al. 1985), which is based on a similar

transformation as the one applied here, uses antithetic sampling as a variance reduction

technique. A similar extension of the present algorithm may have further positive e�ects on

the robustness, especially in case the location and scale parameters in the transformation are

not accurate, and on the degree of correlation between successive drawings.

At present, the parameters � and � of the algorithm are estimated using the �rst and

second moment of the sample generated by the algorithm in a (preliminary or �nal) rotation.

As the e�ort of calculating p� j �(� j �) is made already, it is more e�cient if this information

was used in a type of Rao-Blackwell estimate of these parameters.

The accuracy of the one-dimensional numerical integration in the calculation of p�(�)

is another topic of future investigation. The way the size of the region of interest R or the

presence of strong singularities in the posterior density a�ects the integration and convergence

results needs some practical and theoretical attention as well.

Finally, the algorithm should be tested on models of empirical interest.
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