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Abstract

Econometric estimation using simulation techniques, such as the efficient method of moments, may be

time consuming. The use of ordinary matrix programming languages such as Gauss, Matlab, Ox or S-plus

will very often cause extra delay. For the Efficient Method of Moments implemented to estimate stochastic

volatility models this will surely be the case. Therefore the author made a C/C++ library containing the bulk of

the procedures needed in the implemention of the efficient method of moments technique for a broad range of

univariate stochastic volatility models. As a side effect of the Efficient Method of Moments, EGARCH models

with a variety of nonnormal distributions can be estimated with this package. Implementations have been made

for the Intel Pentium platform under Windows and for the IBM RS/6000 platform under AIX. The library is

dynamically linked to Ox under Windows and statically under AIX. The speed improvements are considerable

compared with pure Ox code. The paper serves as a manual for this library. It describes the efficient method

of moments for this specific case of stochastic volatility models. It describes the program. Some examples are

given from other work of the author. Technicalities are given in the appendices
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1 Introduction

Even with the current state of computing power the estimation of stochastic volatility models (see Ghysels et

al. (1996) and section 2 below) using simulation techniques such as the efficient method of moments (EMM, see

Gallant and Tauchen (1996) and section 3 below) may still be very time-consuming. This is amplified by the fact

that many econometricians use for their applied work matrix oriented programming languages, such as GAUSS,

MATLAB, S-PLUS or more recently Ox (Doornik (1996)). See e.g. Cribari-Neto (1996) for a comparison

of GAUSS, Ox and S-PLUS. As long as the estimation involves mainly matrix manipulations without any

substantial for-next or do-while loops, which is the case for linear models such as regression, AR and VAR

models, there is no loss of computing power. There is also no loss in computing power in case the developers

of the matrix language have provided the researcher with a hard coded built-in procedure for doing a certain

time consuming job. However, there is a big loss of computing time as soon as the solution to a certain problem

involves loops, such as the Kalman filter, where a system of Riccati equations is evaluated recursively, or the

EMM estimation technique that we are dealing with in this paper, where the score of a specific complex auxiliary

model is evaluated under the structural model, in order to calibrate the parameters of the structural model. With

EMM with a well specified auxiliary model, one can obtain maximum likelihood efficiency1 of the parameters

for models where direct maximum likelihood is not feasible.

One faces a substantial loss of computational speed for two reasons: (i) A matrix oriented language is not

good at doing loops. (ii) Kalman filter techniques or EMM are not yet standard procedures of these matrix ori-

ented programming languages. One solution may be to hard code the whole program in C, Fortran, Modula 2

or Pascal. This has the drawback that the programmer has the continuous feeling that he or she is reinventing

the wheel. The econometrician has to do many things that do not belong to his or her core competence, therefore

from an economic perspective the marginal benefits of less computing costs may not be on equal footing with the

marginal losses in human capital2. One possible solution to this is to link hard coded procedures that contain the

loops, to the matrix programming language, combining the facilities of the matrix programming language with

the speed of a (relatively) low level programming language. Under Ox this link can be implemented dynam-

ically using dynamic link libraries (DLL’s) on Windows based platforms (Windows 3.xx, Windows 95 and

Windows NT) or statically on mainframe computers under AIX, UNIX, SUN and many others3. These libraries

basically extend the matrix language with some procedures. For Ox this has been done for the Kalman filter by

Koopman et al. (1997, SffPack) and for several Bayesian procedures to estimate stochastic volatility models

by Shephard (1996a, SvPack), among others. Here time consuming procedures were hard coded in C/C++ and

linked to the matrix programming language Ox. Exactly this is done here for the EMM estimation technique

for a wide class of stochastic volatility models using dynamic link libraries for Windows and statically on the

1It should be noted that very often maximum likelihood delivers not only first-order asymptotic efficiency but also second-order asymp-

totic efficiency. In this paper we will limit ourselves to first-order asymptotic efficiency and the regular case: an estimator that has maximum

likelihood efficiency means that this estimator has the same variance-covariance matrix of the asymptotic normal distribution‘of the maxi-

mum likelihood estimator. For EMM there are no results yet regarding higher-order efficiency.
2An example where C/C++ code is provided in this context is Danielsson (1996a) where C/C++ source code for the estimation of a basic

stochastic volatility model is given.
3For an extensive list of different platforms for which Ox is available, see section 4. Since the list is still growing, for an up to date list

see

http : ==www:nuff:ox:ac:uk=Users=Doornik
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RS/6000 under AIX4.

The program is called EmmPack. Unlike its name it does not only provide code to estimate stochastic

volatility models via EMM. As a consequence of the EMM methodologyone can also use the package to estimate

by maximum likelihood the auxiliary SemiNonParametric models, for which, in the case of stochastic volatility

models, we have specified an EGARCH leading term. This means that this program can also be used to quickly

estimate EGARCH models with disturbance terms that follow a variety of non-normal distributions.

The plan of the paper will be as follows. In section 2 a cursory introduction to stochastic volatility models

is provided. In section 3 a cursory introduction to EMM is provided. These two sections are merely provided to

introduce some notation and nomenclature. The reader who is unfamiliar with any of these subjects, is advised

to consult the above mentioned references and the references mentioned in these sections. Section 4 presents

some of the key features of Ox. Here we also explain how to get the program installed and working. Section

5 provides some empirical examples taken from van der Sluis (1997a and 1997b). Section 6 concludes. In the

appendices details about the actual implementation are provided.

2 Stochastic Volatility Model

Stochastic volatility models have become quite popular in the econometrics and finance literature. Key refer-

ences on estimation of stochastic volatility models include: Harvey et al. (1994), Harvey and Shephard (1996),

Fridman and Harris (1997) and Sandmann and Koopman (1997) for Kalman filter techniques5. Jacquier et al.

(1994), Schotman and Mahieu (1994), Kim et al. (1996) on Bayesian methods6, Danielsson (1994) and Daniels-

son and Richard (1993) on Simulated Maximum Likelihood methods7. Finally, Gallant and Tauchen (1996)

and Gallant et al. (1994) are the main references for EMM methods8. These have been the most successful

techniques. We also mention Andersen and Sørensen (1996) for GMM techniques and Monfardini (1996) for

indirect inference technique à la Gourieroux et al. (1993).. For foundations of stochastic volatility models see

Clark (1973), Tauchen and Pitts (1983), Taylor (1986) and Hull and White (1987). Review articles have been

provided by Ghysels et al. (1996) and Shephard (1996b).9.

A stochastic volatility model in its basic discrete time format reads

yt = �t�t (1)

ln�2t = ! + 
 ln �2t�1 + ���t

�t; �t � IN(0; 1); t = 1; : : : ; n

This model has served as the benchmark and starting point of the bulk of the econometric literature on stochastic

volatility models. Note that this model is in discrete form, EmmPack is designed to deal with discrete models.

However one may may modify some of the ox-code in emm.ox and make it also applicable to continuous-time

models. The reason why model (1) cannot be estimated by standard maximum likelihood lies in the fact that

4This code is available from the author on request. For other platforms contact the author.
5On Kalman filter techniques in this context we also mention Ruiz (1994).
6On Bayesian methods in this context we also mention Shephard (1996a)’s SvPack.
7See also Danielsson (1996a,b), Richard and Zhang(1995a,b) for more on SML methods in this context. Danielsson (1996a) actually

contains the source code.
8Other references on EMM in this context are Andersen and Lund (1996), Andersen and Lund (1997), Gallant and Long (1997) and Van

der Sluis (1997a,b,c) and Andersen et al. (1997)
9See also Taylor (1994), Andersen (1994) and Andersen (1992).
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the �t are latent or unobserved variables which have to be integrated out of the likelihood. This is typically

intractable both numerical and analytical since for every observation there is such a �t: Standard Kalman filter

techniques cannot be applied since the latent process is non-Gaussian and the resulting state-space form does

not have a conjugate filter.

Many variations on (1) are possible. In van der Sluis (1997a and b) a rather broad class of models has been

proposed namely

yt = �t�t (2)

ln�2t = ! +

pX
i=1


iL
i ln�2t + ��(1 +

qX
j=1

�jL
j)�t"

�t

�t+1

#
� NIID(0;

"
1 �

� 1

#
);�1 � � � 1; t = 1; : : : ; n

In the program this model is referred to as the ASARMAV(p; q) model10. The asymmetric component arising

from the correlation parameter � has also been considered in Harvey and Shephard (1996). The inclusion of

MA parameters is a novelty11. Exactly model (2) is the model the author claims that can be estimated by the

package. Also estimation of several other models with EmmPack is discussed in van der Sluis (1997c). In

these models the �t follow a wide variety of non-Gaussian models

The following model have been supported by the package: SARMAV(1; 0), SARMAV(2; 0), SARMAV(3; 0),

SARMAV(1; 1), SARMAV(1; 2), ASARMAV(1,0), ASARMAV(2; 0), ASARMAV(3; 0), ASARMAV(1; 1) and

ASARMAV(1; 2). The user can built his own procedures following the structure given in section 4.

In a next version of this program conditional mean terms like yt = �t+�t�t can be dealt with. This may be

interesting for modeling the term structure of interest rates, see Andersen and Lund (1996,1997). For now the

user should prewhiten his data so in order to take care of a time dependent mean. Multi-variate extensions of this

model (2) are currently investigated in van der Sluis (1997d) and in Jiang and van der Sluis (1997), where the

paper van der Sluis (1997d) will be accompanied by the programMemmPack, which is a multivariate extension

of EmmPack.

3 Efficient Method of Moments

Gallant and Tauchen (1996)12 solve the efficiency problems moment-based techniques generally have by propos-

ing the efficient method of moments (EMM) technique. The structural model is estimated by using an auxiliary

model. The connection between the auxiliary model and the structural model is achieved by means of the scores

of the auxiliary model (score calibration), where strict guidelines are given for the choice of the auxiliary model

such that maximum likelihood efficiency is attained. For the program we are only concerned with case 2 in Gal-

lant and Tauchen (1996). In short the EMM method goes as follows: the sequence of densities for the structural

model will be denoted

fp1(x1 j �); fpt(yt j xt; �)g1t:=1g
10Asymmetric Stochastic AutoRegressive Moving Average Volatility
11It is a novelty in the sense that this model can actually be estimated. In Harvey et al. (1994) the ARMA specification was already

suggested.
12See also Tauchen (1997)
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The sequence of densities for the auxiliary process will be denoted as

ff1(w1 j �); fft(yt j wt; �)g1t:=1g

where xt and wt are observable endogenous variables. In particular the xt will be a vector of lagged yt and

the wt will also be a vector of lagged yt: The lag-length may differ therefore a different symbol is chosen. We

impose assumptions 1 and 2 in Gallant and Long (1997) on the structural model, these are technical assump-

tions that imply standard properties of quasi maximum likelihood estimators and properties of estimators based

on Hermite expansions which will be explained below. Important is that the structural model is stationary and

ergodic. The reader is referred to the original papers for details. Define

m(�; �) :=

Z Z
@

@�
ln f(y j w; �)p(y j x; �)dyp(x j �)dx

the expected score of the auxiliary model under the dynamic model. The expectation is written in integral form

to anticipate on the fact this integral is approximated by standard Monte Carlo techniques:

mN (�; �) :=
1

N

NX
� :=1

@

@�
ln f(y� (�) j w� (�); �)

where y� (�) are drawings from the structural model. Let n denote the sample size, the EMM estimator is defined

as b�n(In) := argmin
�2�

m
0

N (�; b�n)(In)�1mN (�; b�n)
where In is a weighting matrix and b�n denotes an estimator for the parameter of the auxiliary model. The op-

timal weighting matrix here is obviously

I0 = lim
n!1

V0[
1p
n

nX
t:=1

f @
@�

ln ft(yt j wt; ��)g]

where �� is a (pseudo) true value. The small sample pendant is

In = V0[
1p
n

nX
t:=1

f @
@�

ln ft(eyt j ewt; b�n)g]
In the program In is estimated using the outer product gradient.

The main result is consistency and asymptotic normality of the EMM estimator of the structural parametersb�n follows: p
n(b�n(I0)� �0)

d! N(0; [M0

0(I0)�1M0]
�1)

where M0 := @
@�0

m(�0; �
�).

In order to obtain maximum likelihood efficiency it is required that the auxiliary model in some sense embeds

the structural model. The semi-nonparametric (SNP) density of Gallant and Nycka (1987)13 may be a good

choice, see Gallant and Tauchen (1996) and Gallant and Long (1997). The auxiliary model is built as follows.

The process yt(�0) is the process under investigation, �t(��) := Et�1[yt(�0)]; is the conditional mean of the

auxiliary model, �2t (�
�) := Vart�1[yt(�0) � �t(�

�)] is the conditional variance and zt(��) := [yt(�0) �
�t(�

�)] � [�2t (��)]�1=2 is the standardized process. The SNP density now takes the following form

f(yt;�) =
1p
�2t

[PK(zt; xt)]
2�(zt)R

[PK(u; xt)]2�(u)du
(3)

13Building on earlier work of Phillips (1983). See also Fenton & Gallant (1996a, b) for recent results on SNP densities.
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where � denotes the standard normal density, x := (yt�1; :::; yt�L) and the polynomials

PK(z; xt) :=

KzX
i:=0

ai(xt)z
i :=

KzX
i:=0

[

KxX
j:=0

aijx
j
t ]z

i

A specific form for the polynomials is taken, namely orthogonal Hermite polynomials (see Gallant et al. (1991)

and Andersen and Lund (1997)). Relevant formulae for the derivatives can be found in Abramowitz and Stegun

(1972) and Fenton and Gallant (1996a) and in appendix A below. The model �2t (�) and �t(�) is chosen as a

leading term in the Hermite expansion to relieve the expansion of some of its task, improving its small sample

properties. This version of EmmPack contains no models for �t(�) however one may modify the Ox source

code in order to include processes for the mean. The easiest way is to filter out a time dependent mean and to

give this prewhitened data as input to the program. For �2t (�) an EGARCH(p; q) model was used see appendix

A for the relevant formulas.

In this paper we will take p := dim(�); q := dim(�): The number of moment conditions q may be deter-

mined using several criteria. For EMM, it is necessary that q increases with n:Note in this respect the conceptual

difference with GMM. It will automatically happen that q increases with n using any of the model specification

criteria such as the Akaike Information Criterion (AIC, Akaike (1973)), the Schwarz Criterion (BIC, Schwarz

(1978)) or the Hannan-Quinn Criterion (HQC, Hannan and Quinn (1979) and Quinn (1980)). The theory of

model selection in the context of SNP models is not very well developed yet. Results in Eastwood (1991) may

lead to believe AIC is optimal in this case. However, as for multivariate ARMA models, the AIC may overfit

the model to noise in the data so we may be better off by following the BIC or HQC. The same findings were

reported in Andersen and Lund (1997). In their paper Gallant and Tauchen (1996) rely on the BIC in their ap-

plications. Recent Monte Carlo results in Andersen et al. (1997) and van der Sluis (1997c) show that for pure

(E)GARCH (so Kx = Kz = 0) models “E”MM provides rather efficient estmates for the Gaussian SAR-

MAV(1,0) and ASARMAV(1,0) ,models. The small sample properties of EMM with this class of non-Gaussian

auxiliary models is unknown. For SV models with an nonnormal error structure it is likely that an high order

Hermite polynomial is needed. As argued in van der Sluis (1997c) Monte Carlo experiments with high order

Hermite polynomials are thought to be computationally infeasible at the current state of computer technology.

In figure 3 the progressive nature of the computing times with higher order Hermite polynomials is displayed.

For more on the the choice of an auxiliary model the interested reader is referred to Andersen et al. (1997) and

van der Sluis (1997a,b and c). The procedure diagnos returns a summary of the auxiliary estimations. Among

the parameters itself, standard errors and t�values, the following model selection criteria for maximization are

provided AIC (Akaike (1973)), BIC (Schwarz (1978)) and HQC (Hannan-Quinn (1979) and Quinn (1980)).

These criteria may be used to determine the order of the auxiliary model14.

In short, the following algorithm was used

(i) Determine the order of the EGARCH process. For this particular EGARCH process calculateb�: Set the corresponding weighting matrix bIn equal to the outer product of the scores, i.e.
1
n

Pn
t:=1[

@
@� ln ft(ytjwt; b�n)][ @@� ln ft(ytjwt; b�n)]0

(ii) Determine a value for � : b�
(iii) Simulate yN1 (b�) and yN2 (b�) using antithetic variables (see appendix C)

14For some properties in the context of multivariate time-series see Lütkepohl (1990).
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(iv) Calculate mN (b�; b�n) = 1
2N

PN
t:=1[

@
@� ln ft(y

N
1 (b�)jwt; b�n) + @

@� ln ft(y
N
2 (b�)jwt; b�n)]

(v) Repeat (ii) till (iv) until the quantity m
0

N (b�; b�n)(bIn)�1mN (b�; b�n) is minimised

We set N = 50; 00015 and as explained in van der Sluis (1997b) for the stochastic volatility models consid-

ered here no starting values have to be used16.

We end this section by stating the J-test for overidentifying restrictions for EMM (see Gallant, Hsieh and

Tauchen (1994)). Under the null that the structural model is true one may deduce:

n �m0

N (b�n; b�n)(bIn)�1mN (b�n; b�n) d! �2j�j�j�j

and the direction of the misspecification may be indicated by the quasi-t ratios

bTn := bS�1
n

p
nmN(b�n; b�n)bSn := [diag(bIn � cMn(cM0

n
bI�1
n
cMn)

�1 cM0

n)]
1=2

Here bTn is distributed as tj�j�j�j: These statistics are provided by EmmPack.

4 Description of EmmPack and Ox

The Ox matrix programming language is new to the market of econometric software. It is by far the fastest ma-

trix oriented programming language see Cribari-Neto (1997). Several other advantages are: it is a very open

language, its syntax is very similar to C/C++ and there are currently versions for DOS, Windows 3.xx, Win-

dows 95, Windows NT, AIX, SunOs, Solaris, HP-UX, Irix, Linux and Unix. Most of these versions are free.

There are no differences between these versions, except that only in the Windows version one can use Ox’s

sister program Givewin which provides several graphic capabilities. Another small difference is that for some

versions one cannot dynamically link C/C++ code to Ox, for these platforms one has to resort to statical linking

which is not more difficult but less elegant. One may also try to link the library to the more common programs

as GAUSS or Matlab. One should probably have to write a DLL which translates exported C/C++ functions

from the Ox DLL to C/C++ functions that can be imported from GAUSS or Matlab. How the C/C++ functions

are exported from an OX DLL can be found in Doornik (1996) pp 286-328. It should be mentioned that the DLL

in EmmPack uses mathematical C/C++ function from Ox, so one should own a copy Ox. Therefore one may

better save the trouble and directly use Ox.

The DLL is optimized for the Intel Pentium. For the RS/6000 the author has used the IBM compiler which

should generate very efficient code on the RS/6000. In spite of this it is worth mentioning that the gain in speed

15Two antithetic series are used, each of size 50,000: Experimentation has shown that for the score-generator used here virtually no Monte

Carlo variance is presented for simuated series of this size. With virtually no Monte Carlo variance the author means that the estimates are

the save for four digits when different simulated series are used. Smaller sizes, say 5,000 could be used for getting fast estimates.
16The model is started up in

y0 = �0�0;

ln �20 � N(!=(1 �

pX
i=1

�i); �
2

�(1 +

qX
j=1

�2j )(1 �

pX
i=1

�2i )
�1)

�0 � N(0; 1); Corr(�0; ln�
2

0
) = �=

vuut(1 +

qX
j=1

�2
j
)(1 �

pX
i=1

�2
i
)�1

7



on both the Intel and the RS/6000 was immense, with the highest relative gain on the Intel. On a P5-166

with 32 MB under Win95 it took in pure Ox 1.20a code 117.7 seconds to evaluate an EGARCH(1; 1)-H(5; 0)

for 2 � 5; 000 antithetic variables. With the C/C++ code in a DLL it took only 9.5 seconds under the same

configuration: a twelve-fold improvement. Whereas this gain in speed is considerable this does not mean that

one should always program in C/C++ or any other low level programming language. Only for the types of

problems that we are dealing with in this particular problem, namely a loop with allocations, hard-coding gives

an enormous speed improvements.

EmmPack can be downloaded from

http://www.fee.uva.nl/vak groep/AKE/vdsluis.htm

The files are zipped as emmpack.zip. One can unzip them with a utility such as pkunzip. This file contains the

following: s&p500.mat, xr.mat, emm.dll, sv model.oxo, sv model.h, max1sid.oxo, max1sid.h, emm.h,

and the central program, emm.ox, containing modifiable Ox source code.

Unless you are an oxpert, it is wise to create a directory noxnpackagesnemmn and move the emm.ox

file to this directory. Next, place the files sv models.oxo, sv models.h, max1sid.oxo and max1sid.h to the

directory noxnincluden and move the files emm.dll to the directory noxnbinn. Additional description of the

program can be found in the source code emm.ox.

A few things to note here: emm.dll contains a dynamic link library for the Windows 3.xx, Windows 95

and Windows NT operating systems. These require Ox version 1.20a. The AIX version is available on request

from the author. The sv models.oxo and max1sid.oxo contain compiled Ox code. The max1sid.oxo is a

modification of the maximize.oxo code that is included in the official release of Ox, except that instead of two-

sided derivatives only one-sided derivatives are taken in the BFGS algorithm. Although less accurate it is twice

as fast, which is very important in this application. The loss of accuracy is not relevant for the problem at hand

(see also section 5). The file sv models.oxo contains the Ox compiled code of several procedures to generate

antithetic series from stochastic volatility models. There is no need to hard code these procedures, because the

author extensively used hard-coded built in procedures from Ox. So there will be virtually no gain, maybe even

a loss, in hard coding these procedures. These are not all the stochastic volatility models that can be estimated

with this program. The user can use his own. In the module sv models.oxo the following procedures have

been currently provided:

� sarmav10(const total,const theta)

� sarmav20(const total,const theta)

� sarmav30(const total,const theta)

� sarmav11(const total,const theta)

� sarmav12(const total,const theta)

� asarmav10(const total,const theta)

� asarmav20(const total,const theta)

� asarmav30(const total,const theta)

8



� asarmav11(const total,const theta)

� asarmav12(const total,const theta)

in: an integer total denoting the number of variables you want to simulate, theta a vector of pa-

rameters. The first element of theta denotes the ! variable, the next variables denote the ARMA

variables. Then comes the �� variable. If applicable the last element is the asymmetry variable �.

out: returns a total�2 series of antithetic variables17 from the specified process.

Before estimating the structural stochastic volatility model, one has to specify an auxiliary EGARCH-H

model. As mentioned before, one can also use this program for estimating EGARCH-H models. As described

above the auxilary models are taken from the SNP densities with an EGARCH(p; q) leading term. In the pro-

gram the integers k x, k z, p and q refer to the variables kx, kz; p and q respectively, as defined in appendix

A. The order of input and output of the variables is follows: f�0; �1; :::; �q; 
1; :::; 
p; �0; �1;�gwhere � is a

matrix defined as

� =

2666664
1 a10 � � � akx0

a01
. . . akx;1

...
. . .

...

a0kz a1kz � � � akx;kz

3777775
In the program this matrix is vectorized as (1; a01; :::; a0kz ; a10; :::; a1kz ; :::; akxkz) by the procedure decomp.

Other procedures that are included in the source-code of emm.ox include:

� likeli(const vP, const adFunc, const avScore, const amHessian)

This function is the likelihood of the auxiliary EGARCH-H model, with in and output in the generic

format as on page 114 of Doornik (1996)

� gradproc(const vP)

This function returns the score of the auxiliary model, the auxiliary parameter vector vP denotes

the parameters of the auxiliary model in which the score has to be evaluated.

� createin(const vP)

This function returns the outer product of the scores in the auxiliary parameter vector vP.

� diagnos(const l, const paras, const diags, const file diagnos)

The function writes several diagnostic statistics for the auxiliary model to an open file file diagnos.

Here l denotes the loglikelihood in the optimum, paras denotes the parameters in the optimum and

diags is the outer product of the scores in the optimum. Details are also given in the next section.

17For an explanation and motivation of antithetic variables appendix C below.
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� dist(const vP, const adFunc, const avScore, const amHessian)

This function returns the value of the minimum chi-squared criterium of the EMM estimation of

the structural model. Its format is the same as on page 114 of Doornik (1996).

� jtest(const I,const inv I, const tot, const m hat, const M hat)

The function J test returns a vector of which the first element denotes the value of the J test and the

other elements the individual t�values as described in section 3. The inputs are I, inv I, tot, m hat

and M hat which are mnemonics for bIn;bI�1
n ; n;mN(b�n; b�n) and Mn(b�n; b�n) respectively.

� gradproc theta2 (const adFunc, const sv theta)

This function returns the score of auxiliary model at the parameters of the structural model sv theta,

i.e. m(�; b�n): It is of the same format as on page 125 and 126 in Doornik (1996) and therefore by

using this function with the Ox procedure NumJacobian we may calculate the numerical deriva-

tive of m(�; b�n) with respect to �; i.e. Mn(�; b�n):
After the auxiliary model is fitted the global variable z contains the zt(�) from the auxiliary model. These

may be used for specification tests. More information on the procedures and the variables can be found in

the source file emm.ox. The file s&p500.mat contains the S&P500 series that are analysed in van der Sluis

(1997b) and the file xr.mat contains the exchange rate series that have been analysed in van der Sluis (1997a).

As for all nonlinear optimization problems: be aware of local optima. The author encountered some in this

context. One can check this by trying at different paramete values, possibly with a lower value ofN: A sensible

choice may be to set N = 20; 000:

5 Application

In this section two examples of the performance of EmmPack 1.01 are given. In van der Sluis (1997a) the

British Pound / Canadian Dollar exchange rates were investigated. In van der Sluis (1997b and c) the S&P500

was investigated. Both series are in 100* log differences. Figure 1 shows the exchange rates. Figure 2 shows

the S&P500. Salient features of these data sets are provided in table 1.

Calculations were performed on Pentiums18 and on several nodes of the SP2 at SARA19. It was found that

using anti-thetic variates there is no reason to take more than N = 2 � 50; 000: In the program the variableN is

called tau. The outcomes are stable in four or five digits in case the initial seed is set differently. The author has

the opinion that a simulation method should provide estimates that are virtually independent of initial seed and

therefore the Monte Carlo variance should be virtually zero. The specification search of the auxilliary model is

18To be precise, at the time of writing, the author had a Pentium 90 with 16 Mb of RAM and a Pentium 133 with 24 Mb of EDO RAM

at his disposal. The P90 ran under Windows 3.1 and the P133 ran under Windows 95.
19Stichting Academisch Rekencentrum Amsterdam. The SP2 consists of 76 parallel IBM RS/6000 processors, running under AIX 4.1.4.

The SP2 at SARA has 76 nodes, which makes it the largest one in Europe. The SP2’s theoretical maximum rate is 20 Gigaflops/s. Four of

the nodes are wide nodes with 512 Mbyte of memory each. Two wide nodes function as fileservers with 180 Gbyte of disk space. Among

the 72 thin nodes, 58 are equipped with 128 Mbyte internal memory, the remaining 14 with 256 Mbyte. Each thin node is equipped with

4.4 Gbyte local disk space, primarily intended for scratch files. For long term data storage a Magstar tape robot is available with a total

capacity of 5.5 Terabyte (5.5 million Megabyte).
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described in the above papers. The upshot is that for the exchange rates an EGARCH(1; 3)-H(4; 0) was found

to be BIC-optimal for the S&P500 an EGARCH(1; 2)-H(5; 0)was found to be BIC-optimal.

To the exchange rates a SARMAV(1; 0), a SARMAV(2; 0) and a SARMAV(3; 0)were fitted. To the S&P500

data set a SARMAV(1; 0) and a SARMAV(1; 1) was fitted. The following results20 for the exchange rate models

were obtained for the SARMAV(1; 0) model

yt = �t�t

ln�2t =�:103
(�4:20)

+ :894
(34:9)

ln�2t�1+ :270
(17:4)

�t

for the SARMAV(2; 0) model

yt = �t�t

ln�2t =�:160
(�9:32)

+ :268
(58:5)

ln�2t�1+ :570
(127)

ln�2t�2 :415
(34:4)

�t

and for the SARMAV(3; 0) model

yt = �t�t

ln�2t =�:094
(�5:84)

+ 1:20
(311)

ln�2t�1� 1:14
(�335)

ln�2t�2+ :851
(108)

ln�2t�3+ :267
(31:9)

�t

The estimates for the S&P500 series for the SARMAV(1; 0) model

yt = �t�t

ln�2t =�:006
(�1:12)

+ :975
(50:0)

ln�2t�1+ :101
(2:08)

�t

and for the SARMAV(1; 1) model

yt = �t�t

ln�2t =�:007
(�:048)

+ :973
(28:6)

ln�2t�1 + (1+ :839
(24737)

L) :058
(54:3)

�t

As far specification of the (A)SARMAV model is concerned we only report the Hansen J-test here in tables

2 and 3. For other specification tests in this context see van der Sluis (1997a and b). Although a P -value is a

monotonic function of the actual evidence against H0; it is very dangerous to choose the best model of these

specifications on basis of the P -values (see Berger and Delampady (1987)). Different criteria will certainly be

found in future research. For a more in-depth discussion of the above models the reader should consult van der

Sluis (1997a) for the exchange rates and van der Sluis (1997b and c) for the S&P500 series.

6 Conclusion

This paper documents the software package EmmPack 1.01. A wide variety of stochastic volatility models can

be estimated, although there are several limitations to the program. No auxiliary process for the mean is imple-

mented in the C library yet and only univariate models can be considered. Currently the author is expanding his

code in these two directions. A multivariate generalization is investigated in van der Sluis (1997d). Some gen-

eralizations of the stochastic volatility model (2) can also be estimated with EmmPack 1.01 see van der Sluis

(1997c). However, the user should keep in mind that the auxiliary model should embed the stochastic volatility

model that one wants to estimate. The mailbox is open for any comments.

20t� values are between brackets
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Disclaimer

THIS SOFTWARE AND SOURCE CODE ARE DISTRIBUTED ”AS IS” AND WITHOUT WARRANTIES

AS TO PERFORMANCE OF MERCHANTABILITY OR ANY OTHER WARRANTIES WHETHER EX-

PRESSED OR IMPLIED. BECAUSE OF THE VARIOUS HARDWARE AND SOFTWARE ENVIRONMENTS

INTO WHICH THESE ITEMS MAY BE PUT, NO WARRANTY OF FITNESS FOR A PARTICULAR PUR-

POSE IS OFFERED. WHILE EVERY EFFORT HAS BEEN MADE TO TEST THE PRODUCT IN A WIDE

VARIETY OF OPERATING ENVIRONMENTS, GOOD PROCEDURE DICTATES THAT ANY PROGRAM

BE THOROUGHLY TESTED WITH NON-CRITICAL DATA BEFORE RELYING ON IT. THE USER MUST

ASSUME THE ENTIRE RISK OF USING THE PROGRAM. ANY LIABILITY OF THE AUTHOR WILL BE

LIMITED EXCLUSIVELY TO PRODUCT REPLACEMENT.
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A Description of the auxiliary model

In this appendix the class of auxiliary models that is used in EmmPack will be described. As in section 3

consider the stochastic process yt(�0): The model for the conditional mean is �t(�) := Et�1[yt(�)]: The zero

mean process is then defined as �t(�) := yt(�) � �t(�): The model for the conditional variance as �2t (�) :=

Vart�1[�t(�)] = Et�1[�
2
t (�)]: This leads to the standardized process: zt(�) := �t(�)[�

2
t (�)]

�1=2: Let f(zt; �)

be the density for zt(�); and let � denote the nuisance parameters � 2 H � R
k :

Let  := (�
0

; �
0

)
0

: The loglikelihood of yt equals

lt(yt;  ) := ln[ffzt(�); �g]� 0:5 ln[�2t (�)]; t = 1; 2; :::

By the prediction error decomposition we get the following expression for the likelihood of full sampleLT (y1; :::; yT ; ) :=PT
t=1 lt(yt; ) Let the score function be ST (y1; :::; yT ; ) :=

PT
t=1r lt(yt; )

For conditional mean and variance parameters we get

r�lt(yt; ) = f [zt(�); �]
�1f 0[zt(�); �]r�zt(�)� 0:5��2

t (�)r��
2
t (�)

here f 0[zt(�); �] :=
df [zt(�);�]
dzt(�)

and r�zt(�) = �r��t(�)�
�1
t (�) � 0:5�t(�)�

�3
t (�)r��

2
t (�)

In EmmPack we specify the standard normal density for zt: Now there are no nuisance parameters so  =

�. The gradient becomes

r�lt(yt;�) = r��t(�)�t(�)�
�2
t (�) + 0:5r��

2
t (�)�

�2
t (�)[�t(�)

2��2
t (�) � 1]

It is known that in many models the normal distribution cannot capture all the excess kurtosis that is often ob-

served in financial markets. An alternative may be to use Student’s t distribution or the Generalized Error Dis-

tribution (GED) of Nelson (1991). However since we will use a SNP density for the zt we follow the easiest

way and use the Gaussian density.

In this version of EmmPack, the leading term of the SNP model, specified by �t(�) and �2t (�) will be,

�t(�) = 0 and�2t (�) following the EGARCH model of Nelson (1991). A formal representation of the EGARCH(p; q)

model is given by

yt = �tzt

�2t = expf! +

pX
i=1


i ln�
2
t�i + (1 + �1L+ :::+ �qL

q)[�1zt�1 + �2hb(zt�1)�
p

2=�i]g

here b(z) denotes a two times differentiable approximation to the absolute value function, jzj:21 This is important

for numerical reasons. Interpretation the coefficient of the EGARCH parameters is as follows: The
 parameters

give us a idea of the persistence in the data, in particular
Pp
i=1 
i will serve as a measure of persistence. The !

parameter is a measure of the unconditional variance. The term 1 +
Pq

i=1 �i reflects the short-run sensitivity

to innovations. The term �1 reflects the asymmetric volatility effect that is often present in financial time series.

Finally, the �2 parameter measures the changes in zt in reaction with the conditional heteroskedasticity.

21A good choice is e.g. b(z) = jzj for jzj � �=2K and b(z) = (�=2 � cos(Kz))=K for jzj < �=2K and set e.g. K = 100:

The derivatives are b
0

(z) = �1 for z < ��=2K; �b(z) = 1 for z > �=2K; b
0

(z) = sin(Kz) for jzj < �=2K
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The SNP density based on the Gaussian distribution is given by formula (3). For identification we need

a00 = 1. Let K = max(Kz;Kx): In what follows M = 1 or M = 0: In case Kx = 0, letting Kz > 0

induces a time-homogeneous non-Gaussian error structure. The caseKx > 0 induces heterogeneous innovation

densities beyond the EGARCH model. Since we believe the EGARCH model captures all this heterogeneity,

Kx > 0 will not be necessary. This was also very much supported by our empirical findings. To the author’s

knowledge there are no guidelines provided yet for assessment of the individual coefficients of the polynomial.

For computational ease we employ polynomials that are of Hermite form:

Hei(z) =

[i=2]X
j=0

(�1)j
i!

j!2j(i� 2j)!
zi�2j

Z
HeiHej expf�1

2
z2gdz =

(
0 i 6= jp
2�i! i = j

Let

Hei(z) := (i!)�1=2Hei(z)

A nice result of this normalization is thatZ
Hei(u)Hej(u)�(u)dz =

(
0 i 6= j

1 i = j

The polynomial is now taken as

PK(z; x) =

KzX
i:=0


i(x)Hei(z)

where 
i(x) is a monomial in x; e.g. 
i(x) = 
i0 + 
i1xZ
PK(z; x)2�(z)dz =

KzX
i=0


i(x)
2

Later on we will need
@zt
@ k

=
@

@ k
(
yt � �tp

�2t
) = �(

1p
�2t

@�t
@ k

+
zt
2�2t

� @�
2
t

@ k
)

and the recurrence relation

Hei+1(z) = zHei(z)� iHei�1(z)

He0(z) = 1

He1(z) = z

A differential relation that is useful is given by

@ Hei(z)

@z
= iHei�1(z)

An individual component of prediction error decomposition of the likelihood function now reads

ln fK(ytjxt; ) =ln[PK(zt; xt)
2]| {z }

I

+ ln�(zt)� 0:5 ln(�2t )| {z }
II

� ln[

KzX
i=0


i(xt)
2]| {z }

III
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Only I and III require special treatment as regards the analytic expression of the derivative. The remaining part

of the score is simple and well-known. For completeness, expressions of the derivative of part II is given in

appendix B. What is left are some derivatives which are needed in the score generator or that can be used as

analytical derivatives. Differentiation of part III

@[ln
R
PK(u; x)2�(u)du]

@ k
=
@[ln

PKz

i=0 
i(x)
2]

@ k
=

2PKz

i=0 
i(x)
2

KzX
i=0


i(x)
@
i(x)

@ k| {z }
Jacobian

note
@
i(x)

@ k
= 0 if  k is a leading term parameter

Differentiation of part I

@ lnPK(z; x)2

@ k
=

2 � @PK (z;x)
@ k

PK(z; x)

@PK(z; x)

@ k
=

@

@ k
f
KzX
i=0


i(x)Hei(z)g =
KzX
i=0

@
i(x)

@ k| {z }
Jacobian

Hei(z) +

KzX
i=0


i(x)
@Hei(z)

@ k

where
@Hei(z)

@ k
= (i!)�1=2 @Hei(z)

@z

@z

@ k

About the Jacobian @
i(x)
@ k

in case  k is not a leading term parameter. For example in the case Kx = 1 and all

non-leading term parameters are vectorized as 
 = (
00; 
01; 
10; 
11; :::; 
Kz0; 
Kz1)
0

we have

@
i(x)

@

=

0BBBBBBBBBBBBBBBB@

0
...

0

1

x

0
...

0

1CCCCCCCCCCCCCCCCA
; where the 1 occurs at position 2i� 1 and the x at 2i

B Derivatives of EGARCH process

If �2t follows an EGARCH(p; q) process then

� r!�
2
t (�) = �2t (�)[1 +

Pp
i=1

�i
�2
t�i

(�)
r!�

2
t�i(�) + (1 +

Pq
i=1 �iL

i)(�1r!zt�1 + �2b
0

(zt�1)r!zt�1)]

� r�j�
2
t (�) = �2t (�)[

Pp
i=1

�i
�2
t�i

(�)
r�j�

2
t�i(�)+�1zt�j�1+�2fb(zt�j�1)�

q
2
�g+(1+

Pq
i=1 �iL

i)f�1r�jzt�1+

�2b
0

(zt�1)r�j zt�1g]

� r�i�
2
t (�) = �2t (�)[ln �

2
t�i+

Pp
j=1

�j
�2
t�j

(�)
r�i�

2
t�j(�)+(1+

Pq
i=1 �iL

i)f�1r�izt�1+�2b
0

(zt�1)r�izt�1g]

� r�1�
2
t (�) = �2t (�)[

Pp
i=1

�i
�2
t�i

(�)
r�1�

2
t�i(�)+(1+

Pq
j=1 �jL

j)fzt�1+�1r�1zt�1+�2b
0

(zt�1)r�1zt�1g]
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� r�2�
2
t (�) = �2t (�)[

Pp
i=1

�i
�2
t�i

(�)
r�2�

2
t�i(�) + (1 +

Pq
j=1 �jL

j)f�1r�2zt�1 + b(zt�1) �
q

2
� +

�2b
0

(zt�1)r�2zt�1g]

The recursive formulas must be started up: In the program we set �2�1; :::; �
2
�p = z0z=n;where z is based

on the current parameter estimates.

C Antithetic Variables

In this context using antithetic variables as a variance reduction technique is very important. See e.g. Ross

(1990, chapter 8), among others, for a review of variance reduction techniques. In short the antithetic variates

technique is based on the fact that if we wish to estimate by simulation � = E[X ] on basis of two generated

variablesX1 and X2: We are better off in case X1 and X2 are negatively correlated than independent, because

Var(
X1 +X2

2
) =

1

4
[Var(X1) + Var(X2) + 2Cov(X1; X2)]

Likewise here in the generation of the stochastic volatility model (2), for one series the variables �t and �t are

generated and for the other the variables ��t and ��t are used. The scores are now correlated leading to a

considerable variance reduction.
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Figure 1: British Pound / Canadian Dollar exchange rates
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Figure 2: S&P500

XR S&P500

Mean -.005 .068

Std.Dv. .695 1.19

Skewness .269 -5.36

Excess Kurtosis 1.81 111

Minimum -2.61 -22.9

Maximum 3.12 8.71

Normality Chiˆ2 85.7 1894

#observations 1019 1322

period 9-1988 till 9-1992 9-1981 till 10-1987

Table 1: Some preliminary statistics of the series.
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J-test SARMAV(1; 0) SARMAV(1; 1)

J 33.8 33.6

df 8 7

P -value .000 .000

�0 1.33 .212

�1 -1.52 -1.52

�2 -2.06 -2.05


1 -2.30 -2.33

�1 1.85 1.87

�2 -.883 -.875

a10 -3.57 -3.59

a20 -2.46 -3.53

a30 -.367 -.408

a40 -2.40 -2.50

a50 2.74 3.06

Table 2: Hansen J-test and individual t-values for the models for the S&P 500

22



J-test SARMAV(1; 0) SARMAV(2; 0) SARMAV(3; 0)

J 13.4 11.6 6.87

df 8 7 6

P -value .100 .113 .333

�0 -.846 -.847 -.259

�1 .397 .435 -1.43

�2 -.754 -.950 -1.17

�3 -2.28 -2.22 -1.31


1 .271 .258 -.333

�1 -1.79 -1.78 -1.95

�2 .030 -.755 -.220

a10 .951 .942 .914

a20 -1.71 -1.38 -.649

a30 -1.17 -1.14 -1.25

a40 -1.84 -1.37 -.433

Table 3: Hansen J-test and individual t-values for the models for the Exchange Rate series
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