EmmPack 1.01: C/C++ code for use with Ox for estimation of
univariate stochastic volatility models with the efficient method
of moments

Pieter J. van der Sluis
Department of Actuarial Science and Econometrics
University of Amsterdam
and
Tinbergen Institute

February 12, 1998

Abstract

Econometric estimation using simulation techniques, such as the efficient method of moments, may be
time consuming. The use of ordinary matrix programming languages such as Gauss, Matlab, Ox or S-plus
will very often cause extra delay. For the Efficient Method of Moments implemented to estimate stochastic
volatility modelsthiswill surely bethe case. Therefore the author made a C/C++ library containing the bulk of
the procedures needed in the implemention of the efficient method of moments technique for abroad range of
univariate stochastic volatility models. Asasideeffect of the Efficient Method of Moments, EGARCH models
with avariety of nonnormal distributions can be estimated with this package. |mplementations have been made
for the Intel Pentium platform under Windows and for the IBM RS/6000 platform under AlIX. The library is
dynamically linked to Ox under Windows and statically under AlX. The speed improvements are considerable
compared with pure Ox code. The paper serves as amanual for thislibrary. 1t describes the efficient method
of moments for this specific case of stochastic volatility models. It describesthe program. Some examplesare
given from other work of the author. Technicalities are given in the appendices
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1 Introduction

Even with the current state of computing power the estimation of stochastic volatility models (see Ghysels et
al. (1996) and section 2 bel ow) using simulation techniques such as the efficient method of moments (EMM, see
Gallant and Tauchen (1996) and section 3 below) may till be very time-consuming. Thisisamplified by thefact
that many econometriciansusefor their applied work matrix oriented programming languages, suchasGAUSS,
MATLAB, S-PLUS or more recently Ox (Doornik (1996)). See e.g. Cribari-Neto (1996) for a comparison
of GAUSS, Ox and S-PLUS. As long as the estimation involves mainly matrix manipulations without any
substantial for-next or do-while loops, which is the case for linear models such as regression, AR and VAR
models, there is no loss of computing power. Thereis also no loss in computing power in case the devel opers
of the matrix language have provided the researcher with a hard coded built-in procedure for doing a certain
time consuming job. However, thereisabig loss of computing time as soon as the solution to a certain problem
involves loops, such as the Kalman filter, where a system of Riccati equationsis evaluated recursively, or the
EMM estimation techniquethat we are dealing with in this paper, where the score of aspecific complex auxiliary
model is evaluated under the structural model, in order to calibrate the parameters of the structural model. With
EMM with awell specified auxiliary model, one can obtain maximum likelihood efficiency' of the parameters
for modelswhere direct maximum likelihood is not feasible.

One faces a substantial loss of computational speed for two reasons: (i) A matrix oriented language is not
good at doing loops. (ii) Kalman filter techniques or EMM are not yet standard procedures of these matrix ori-
ented programming languages. One solution may be to hard code the whole program in C, Fortran, Modula 2
or Pascal. This hasthe drawback that the programmer has the continuousfeeling that he or she is reinventing
thewhedl. The econometrician hasto do many thingsthat do not belong to hisor her core competence, therefore
from an economi ¢ perspectivethe marginal benefits of less computing costs may not be on equal footingwith the
marginal lossesin human capital?. One possiblesolutionto thisisto link hard coded proceduresthat contain the
loops, to the matrix programming language, combining the facilities of the matrix programming language with
the speed of a (relatively) low level programming language. Under Ox this link can be implemented dynam-
ically using dynamic link libraries (DLL’s) on Windows based platforms (Windows 3.xx, Windows 95 and
Windows NT) or statically on mainframe computersunder AIX, UNIX, SUN and many others®. Theselibraries
basically extend the matrix language with some procedures. For Ox this has been donefor the Kalman filter by
Koopman et al. (1997, SffPack) and for several Bayesian procedures to estimate stochastic volatility models
by Shephard (1996a, SvPack), among others. Here time consuming procedureswere hard coded in C/C++ and
linked to the matrix programming language Ox. Exactly thisis done here for the EMM estimation technique
for awide class of stochastic volatility models using dynamic link libraries for Windows and statically on the

L1t should be noted that very often maximum likelihood delivers not only first-order asymptotic efficiency but also second-order asymp-
totic efficiency. Inthis paper wewill limit ourselvesto first-order asymptotic efficiency and the regular case: an estimator that has maximum
likelihood efficiency means that this estimator has the same variance-covariance matrix of the asymptotic normal distribution*of the maxi-
mum likelihood estimator. For EMM there are no results yet regarding higher-order efficiency.

2 An example where C/C++ codeis provided in this context is Danielsson (1996a) where C/C++ source code for the estimation of abasic
stochastic volatility model is given.

3For an extensive list of different platforms for which Ox is available, see section 4. Since the list is still growing, for an up to date list
see

http : //www.nuff.ox.ac.uk/Users/Doornik



RS/6000 under AIX*.

The program is called EmmPack. Unlike its name it does not only provide code to estimate stochastic
volatility modelsviaEMM. Asaconsegquence of the EMM methodol ogy one can al so use the packageto estimate
by maximum likelihood the auxiliary SemiNonParametric models, for which, in the case of stochastic volatility
models, we have specified an EGARCH leading term. This meansthat this program can also be used to quickly
estimate EGARCH models with disturbance terms that follow avariety of non-normal distributions.

The plan of the paper will be asfollows. In section 2 a cursory introduction to stochastic volatility models
isprovided. In section 3 a cursory introduction to EMM is provided. These two sections are merely provided to
introduce some notation and nomenclature. The reader who is unfamiliar with any of these subjects, is advised
to consult the above mentioned references and the references mentioned in these sections. Section 4 presents
some of the key features of Ox. Here we also explain how to get the program installed and working. Section
5 provides some empirical examples taken from van der Sluis (1997aand 1997b). Section 6 concludes. In the
appendices details about the actual implementation are provided.

2 Stochastic Volatility Model

Stochastic volatility models have become quite popular in the econometrics and finance literature. Key refer-
ences on estimation of stochastic volatility modelsinclude: Harvey et al. (1994), Harvey and Shephard (1996),
Fridman and Harris (1997) and Sandmann and Koopman (1997) for Kalman filter techniques®. Jacquier et al.
(1994), Schotman and Mahieu (1994), Kim et al. (1996) on Bayesian methods®, Danielsson (1994) and Daniels-
son and Richard (1993) on Simulated Maximum Likelihood methods’. Finally, Gallant and Tauchen (1996)
and Gallant et al. (1994) are the main references for EMM methods®. These have been the most successful
techniques. We also mention Andersen and Sarensen (1996) for GMM techniques and Monfardini (1996) for
indirect inference technique ala Gourieroux et al. (1993).. For foundations of stochastic volatility models see
Clark (1973), Tauchen and Pitts (1983), Taylor (1986) and Hull and White (1987). Review articles have been
provided by Ghyselset al. (1996) and Shephard (1996b).°.
A stochastic volatility model in its basic discrete time format reads

Ot€¢ (1)

Yt
lno} = wH+ylnol, +om

e, ~ IN(0,1),t=1,....n

Thismodel has served as the benchmark and starting point of the bulk of the econometricliterature on stochastic
volatility models. Note that this model isin discrete form, EmmPack is designed to deal with discrete models.
However one may may modify some of the ox-codein emm.ox and make it also applicableto continuous-time
models. The reason why model (1) cannot be estimated by standard maximum likelihood lies in the fact that

4This code is available from the author on request. For other platforms contact the author.

50n Kaman filter techniques in this context we also mention Ruiz (1994).

60n Bayesian methods in this context we also mention Shephard (1996a)’s SvPack.

7 See also Danielsson (1996a,b), Richard and Zhang(1995a,b) for more on SML methods in this context. Danielsson (1996a) actually
contains the source code.

8 Other references on EMM in this context are Andersen and Lund (1996), Andersen and Lund (1997), Gallant and Long (1997) and Van

der Sluis (1997a,b,c) and Andersen et al. (1997)
9See also Taylor (1994), Andersen (1994) and Andersen (1992).



the o; are latent or unobserved variables which have to be integrated out of the likelihood. This s typically
intractable both numerical and analytical since for every observation thereis such ac;. Standard Kalman filter
techniques cannot be applied since the latent process is non-Gaussian and the resulting state-space form does
not have a conjugatefilter.

Many variationson (1) are possible. In van der Sluis (1997aand b) arather broad class of models has been
proposed namely

Yt = O %)
P . q .
Ino? = w+z'yiLllnat2 +an(1+ZCjLJ)nt
=1 7j=1
€ A
~ NIID(0, J—1<A<1,t=1,....n
Me+1 1

In the program this model is referred to as the ASARMAV(p, ¢) model!°. The asymmetric component arising
from the correlation parameter A has also been considered in Harvey and Shephard (1996). The inclusion of
MA parameters is a novelty'!. Exactly model (2) is the mode! the author claims that can be estimated by the
package. Also estimation of several other models with EmmPack is discussed in van der Sluis (1997c). In
these models the ¢; follow awide variety of non-Gaussian models

Thefollowing model havebeen supported by the package: SARMAV(1, 0), SARMAV(2,0), SARMAV(3, 0),
SARMAV(1, 1), SARMAV(1, 2), ASARMAV(1,0), ASARMAV(2,0), ASARMAV(3,0), ASARMAV(1,1) and
ASARMAV(1, 2). The user can built his own procedures following the structure given in section 4.

Inanext version of this program conditional mean termslike y; = u; + o€, can be dealt with. Thismay be
interesting for modeling the term structure of interest rates, see Andersen and Lund (1996,1997). For now the
user should prewhiten his dataso in order to take care of atime dependent mean. Multi-variate extensionsof this
model (2) are currently investigated in van der Sluis (1997d) and in Jiang and van der Sluis (1997), where the
paper van der Sluis (1997d) will be accompani ed by the programMemmPack, whichisamultivariateextension
of EmmPack.

3 Efficient Method of M oments

Gallant and Tauchen (1996)'2 solvetheefficiency problemsmoment-based techniquesgeneral ly have by propos-
ing the efficient method of moments (EMM) technique. The structural model is estimated by using an auxiliary
model. The connection between the auxiliary model and the structural model is achieved by means of the scores
of the auxiliary model (score calibration), where strict guidelinesare given for the choi ce of the auxiliary model
such that maximum likelihood efficiency isattained. For the program we are only concerned with case 2 in Gal-
lant and Tauchen (1996). In short the EMM method goes asfollows: the sequence of densitiesfor the structural
model will be denoted
{p1(z1 | 60), {pe(ye | 26,0) ), }
10 Asymmetric Stochastic AutoRegressive Moving Average Vol atility

111t is a novelty in the sense that this model can actually be estimated. In Harvey et al. (1994) the ARMA specification was aready

suggested.
12 See also Tauchen (1997)




The sequence of densities for the auxiliary process will be denoted as

{f1(w1 | B)a{ft(yt | wtvﬂ)}:;o:1}

where z; and w; are observable endogenous variables. In particular the 2, will be a vector of lagged y; and
the w, will also be avector of lagged y;. The lag-length may differ therefore a different symbol is chosen. We
impose assumptions 1 and 2 in Gallant and Long (1997) on the structural model, these are technical assump-
tionsthat imply standard properties of quasi maximum likelihood estimators and properties of estimators based
on Hermite expansions which will be explained below. Important is that the structural model is stationary and
ergodic. The reader isreferred to the original papersfor details. Define

5= [ / n f(y | w, B)ply | ,0)dyp(x | 6)d

the expected score of the auxiliary model under the dynamic model. The expectation iswritten in integral form
to anticipate on the fact thisintegral is approximated by standard Monte Carlo techniques:

(96 Z%lnf?h’()|wr(> )

T:=1
wherey.-(0) aredrawingsfromthe structural model. Let n denotethe samplesize, the EMM estimator isdefined
as
6, (T,) = argminmy (0, 5,)(Zn) " muy (6, Br)
S

where 7,, is aweighting matrix and Bn denotes an estimator for the parameter of the auxiliary model. The op-
timal weighting matrix here is obviously

Zo = lim Vj fz{aﬂlnft ye | we, B}

n—oo
t:=1

where 3* isa (pseudo) true value. The small sample pendant is

I, = Vil 2{86 In £,(3 | @ a)}]

t:=1
In the program 7, is estimated using the outer product gradient.

Themain result is consistency and asymptotic normality of the EMM estimator of the structural parameters
6,, follows:

ViBa(To) = 80) = N (0, [Mo(Zo) " Mo] 1)
where My := % 9 m(6y, 5*).

In order to obtain maximum/likelihood efficiency it isrequired that the auxiliary model in some sense embeds
the structural model. The semi-nonparametric (SNP) density of Gallant and Nycka (1987)'3 may be a good
choice, see Gallant and Tauchen (1996) and Gallant and Long (1997). The auxiliary model is built as follows.
The process y; (0o ) is the process under investigation, .t (3*) := E¢—1[y:(6p)], is the conditional mean of the
auxiliary model, o2(3*) := Var,_1[y:(6o) — ut(3*)] is the conditional variance and z,(3*) := [y:(fo) —
we(B4)] - [02(B*)] /2 isthe standardized process. The SNP density now takes the following form

1 [Plx(7t7xt)]2¢(zt)

o2 [Pk (u, 24)]?p(u)du

13Building on earlier work of Phillips (1983). See also Fenton & Gallant (19964, b) for recent results on SNP densities.
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where ¢ denotes the standard normal density, = := (y;_1, ..., y:— 1) and the polynomials

K. K. K, _
Pr(z,24) := Z a;(z)z" = Z[Z a;;xl]z"
:=0 2:=0 7:=0

A specific formfor the polynomialsistaken, namely orthogonal Hermite polynomials(see Gallant et al. (1991)
and Andersen and Lund (1997)). Relevant formulae for the derivatives can be found in Abramowitz and Stegun
(1972) and Fenton and Gallant (1996a) and in appendix A below. The model ¢Z(3) and u.(3) is chosen asa
leading term in the Hermite expansion to relieve the expansion of some of its task, improving its small sample
properties. This version of EmmPack contains no models for p+(3) however one may modify the Ox source
code in order to include processes for the mean. The easiest way is to filter out a time dependent mean and to
givethis prewhitened dataasinput to the program. For o2 (3) an EGARCH(p, ¢) model was used see appendix
A for the relevant formulas.

In this paper we will take p := dim(#), ¢ := dim(3). The number of moment conditions ¢ may be deter-
mined using several criteria. For EMM, it isnecessary that ¢ increaseswith n. Notein thisrespect the conceptual
differencewith GMM. It will automatically happen that ¢ increaseswith » using any of the model specification
criteria such as the Akaike Information Criterion (AIC, Akaike (1973)), the Schwarz Criterion (BIC, Schwarz
(1978)) or the Hannan-Quinn Criterion (HQC, Hannan and Quinn (1979) and Quinn (1980)). The theory of
model selection in the context of SNP modelsis not very well developed yet. Resultsin Eastwood (1991) may
lead to believe AIC is optimal in this case. However, as for multivariate ARMA models, the AIC may overfit
the model to noise in the data so we may be better off by following the BIC or HQC. The same findings were
reported in Andersen and Lund (1997). In their paper Gallant and Tauchen (1996) rely on the BIC in their ap-
plications. Recent Monte Carlo resultsin Andersen et al. (1997) and van der Sluis (1997c) show that for pure
(E)GARCH (s0 K, = K, = 0) models “E"MM provides rather efficient estmates for the Gaussian SAR-
MAV/(1,0) and ASARMAV(1,0) ,models. The small sample properties of EMM with this class of non-Gaussian
auxiliary modelsis unknown. For SV models with an nonnormal error structure it is likely that an high order
Hermite polynomial is needed. As argued in van der Sluis (1997c) Monte Carlo experiments with high order
Hermite polynomials are thought to be computationally infeasible at the current state of computer technology.
In figure 3 the progressive nature of the computing times with higher order Hermite polynomialsis displayed.
For more on the the choice of an auxiliary model the interested reader isreferred to Andersen et al. (1997) and
van der Sluis (1997a,b and c). The procedure diagnos returns a summary of the auxiliary estimations. Among
the parametersitself, standard errors and t—values, the following model selection criteriafor maximization are
provided AIC (Akaike (1973)), BIC (Schwarz (1978)) and HQC (Hannan-Quinn (1979) and Quinn (1980)).
These criteriamay be used to determine the order of the auxiliary model 4.

In short, the following algorithm was used

(i) Determine the order of the EGARCH process. For this particular EGARCH process calculate
B. Set the corresponding weighting matrix 7, equal to the outer product of the scores, i.e.

% POHE [a_aﬁ In fi(ye|we, B\nﬂ[a_aﬁ In fi(ye|we, 3n)]l
(i) Determine avaluefor 6 : )

(iii) Simulate y ¥ (A) and y2 (8) using antithetic variables (see appendix C)

14 For some properties in the context of multivariate time-series see L iitkepohl (1990).



(iv) Calculate my (8, 5,) = 5 Sony [ In fu(yl (B)we, Ba) + 2 In fu(yd (B)|wy, Ba)]
(v) Repeat (ii) till (iv) until the quantity m y (8, 3,)(Z,,) *mn (8, 3,,) is minimised

Weset N = 50,000 and as explained in van der Sluis (1997b) for the stochastic volatility models consid-
ered here no starting values have to be used?®.

We end this section by stating the J-test for overidentifying restrictions for EMM (see Gallant, Hsieh and
Tauchen (1994)). Under the null that the structural model is true one may deduce:

~ o~

n- mlN(eann)(fn)ilmN(é\mBn) < X%@|_|9|
and the direction of the misspecification may be indicated by the quasi-t ratios

fn = §;1\/ﬁmN(§n7 Bn)
S, = [diag(Z, — M, (M, T M,) "L M,)]/?

Here T, is distributed ast|g|—|g|- These statistics are provided by EmmPack.

4 Description of EmmPack and Ox

The Ox matrix programming language is new to the market of econometric software. It isby far the fastest ma-
trix oriented programming language see Cribari-Neto (1997). Several other advantages are: it is a very open
language, its syntax is very similar to C/C++ and there are currently versionsfor DOS, Windows 3.xx, Win-
dows 95, Windows NT, AlX, SunOs, Solaris, HP-UX, Irix, Linux and Unix. Most of these versionsarefree.
There are no differences between these versions, except that only in the Windows version one can use Ox’s
sister program Givewin which provides several graphic capabilities. Another small differenceis that for some
versionsone cannot dynamically link C/C++ codeto Ox, for these platformsone hasto resort to statical linking
which is not more difficult but less elegant. One may also try to link the library to the more common programs
as GAUSS or Matlab. One should probably have to write a DLL which trandlates exported C/C++ functions
fromthe Ox DLL to C/C++ functionsthat can beimported from GAUSS or Matlab. How the C/C++ functions
areexported froman OX DLL can befoundin Doornik (1996) pp 286-328. It should be mentioned that the DLL
in EmmPack uses mathematical C/C++ function from Ox, so one should own a copy Ox. Therefore one may
better save the trouble and directly use Ox.

TheDLL isoptimized for the Intel Pentium. For the RS/6000 the author has used the IBM compiler which
should generate very efficient code on the RS/6000. In spite of thisit isworth mentioning that the gainin speed

15 Two antithetic seriesare used, each of size 50,000: Experimentation has shown that for the score-generator used herevirtually no Monte
Carlo variance is presented for simuated series of this size. With virtually no Monte Carlo variance the author means that the estimates are

the save for four digits when different simulated series are used. Smaller sizes, say 5,000 could be used for getting fast estimates.
16The model is started up in

Yyo = €000,

mof o~ N@/(1=D p)e2(1+Y =D sH7H
i=1 j=1 i=1

q P
€0 ~ N(0,1), Corr(eg,Inod) = )\/\J (1+ Z(f)(l - Zp'i-’)—l
j=1 i=1



on bhoth the Intel and the RS/6000 was immense, with the highest relative gain on the Intel. On a P5-166
with 32 MB under Win95 it took in pure Ox 1.20a code 117.7 seconds to evaluate an EGARCH(1, 1)-H(5, 0)
for 2 x 5,000 antithetic variables. With the C/C++ code in a DLL it took only 9.5 seconds under the same
configuration: atwelve-fold improvement. Whereas this gain in speed is considerabl e this does not mean that
one should always program in C/C++ or any other low level programming language. Only for the types of
problemsthat we are dealing with in this particular problem, namely aloop with allocations, hard-coding gives
an enormous speed improvements.
EmmPack can be downloaded from

http://ww. fee. uva. nl / vak_groep/ AKE/ vdsl ui s. ht m

Thefiles are zipped as emmpack.zip. One can unzip them with a utility such as pkunzp. Thisfile containsthe
following: s&p500.mat, xr.mat, emm.dll, sv_model.oxo, sv_model.h, max1sid.oxo, max1sid.h, emm.h,
and the central program, emm.ox, containing modifiable Ox source code.

Unless you are an oxpert, it is wise to create a directory \ox\packages\emm\ and move the emm.ox
fileto this directory. Next, place the files sv_models.oxo, sv_.models.h, max1sid.oxo and max1sid.h to the
directory \ox\include\ and move the files emm.dll to the directory \ox\bin\. Additional description of the
program can be found in the source code emm.ox.

A few thingsto note here: emm.dll contains a dynamic link library for the Windows 3.xx, Windows 95
and Windows NT operating systems. Theserequire Ox version 1.20a. The AIX version is available on request
from the author. The sv_models.oxo and max1sid.oxo contain compiled Ox code. The maxlsid.oxo isa
modification of the maximize.oxo codethat isincluded in the official release of Ox, except that instead of two-
sided derivativesonly one-sided derivativesaretaken in the BFGS algorithm. Although less accurateit istwice
asfast, which isvery important in this application. Theloss of accuracy is not relevant for the problem at hand
(see also section 5). The file sv_models.oxo containsthe Ox compiled code of several proceduresto generate
antithetic series from stochastic volatility models. Thereis no need to hard code these procedures, because the
author extensively used hard-coded built in proceduresfrom Ox. So therewill be virtually no gain, maybe even
aloss, in hard coding these procedures. These are not al the stochastic volatility models that can be estimated
with this program. The user can use his own. In the module sv_models.oxo the following procedures have
been currently provided:

e sarmav10(const total,const theta)
e sarmav20(const total,const theta)
¢ sarmav30(const total,const theta)
e sarmavll(const total,const theta)
e sarmavl12(const total,const theta)
e asarmavl10(const total,const theta)
e asarmav20(const total,const theta)

e asarmav30(const total,const theta)



e asarmavll(const total,const theta)

e asarmavl12(const total,const theta)

in: an integer total denoting the number of variables you want to ssimulate, theta a vector of pa-
rameters. The first element of theta denotes the w variable, the next variables denote the ARMA
variables. Then comes the o, variable. If applicable the last element is the asymmetry variable \.
out: returns atotal x 2 series of antithetic variables'” from the specified process.

Before estimating the structural stochastic volatility model, one has to specify an auxiliary EGARCH-H
model. As mentioned before, one can also use this program for estimating EGARCH-H models. As described
above the auxilary models are taken from the SNP densitieswith an EGARCH(p, ¢) leading term. In the pro-
gram the integers k_x, k_z, p and q refer to the variables k.., k., p and ¢ respectively, as defined in appendix
A. Theorder of input and output of the variablesisfollows: {ag, a1, ..., ag, 71, -.-s ¥p, K0, K1, O} Where @ isa
matrix defined as

1 a1 Gk,0
ao1 Ak, 1

O =
ok, Q1k, - Ok, k.

In the program this matrix isvectorized as (1, ao1, ---, @ok. , @10, -+, A1k, , ---, Gk, k. ) DY the procedure decomp.
Other proceduresthat are included in the source-code of emm.ox include:
o likeli(const vP, const adFunc, const avScore, const amHessian)

Thisfunctionisthelikelihood of the auxiliary EGARCH-H model, with in and output in the generic
format as on page 114 of Doornik (1996)

e gradproc(const vP)

This function returns the score of the auxiliary model, the auxiliary parameter vector vP denotes
the parameters of the auxiliary model in which the score has to be evaluated.

e createin(const vP)
This function returns the outer product of the scoresin the auxiliary parameter vector vP.
e diagnos(const |, const paras, const diags, const file_diagnos)

Thefunctionwrites several diagnostic statisticsfor the auxiliary model to an openfilefile_diagnos.
Here | denotestheloglikelihood in the optimum, paras denotesthe parametersin the optimum and
diags isthe outer product of the scoresin the optimum. Details are also given in the next section.

7 For an explanation and motivation of antithetic variables appendix C below.



e dist(const vP, const adFunc, const avScore, const amHessian)

This function returns the value of the minimum chi-squared criterium of the EMM estimation of
the structural model. Itsformat is the same as on page 114 of Doornik (1996).

e jtest(const I,const inv_l, const tot, const m_hat, const M_hat)

Thefunction J test returnsavector of which thefirst element denotesthe value of the J test and the
other elementstheindividual t—valuesas described in section 3. Theinputsarel, inv_l, tot, m_hat
and M_hat which are mnemonicsfor Z,, 7,1, n, my 6y, 3,) and M,,(8,,, 3,,) respectively.

e gradproc_theta2 (const adFunc, const sv_theta)

Thisfunction returnsthe score of auxiliary model at the parametersof the structural model sv_theta,
i.e. m(f, En). It is of the same format as on page 125 and 126 in Doornik (1996) and therefore by
using this function with the Ox procedure NumJacobian we may calculate the numerical deriva-
tive of m(6, 3,,) with respect to 8, i.e. M.,(6, 3,,).

After the auxiliary model isfitted the global variable z containsthe z;(3) from the auxiliary model. These
may be used for specification tests. More information on the procedures and the variables can be found in
the source file emm.ox. Thefile s&p500.mat contains the S&P500 series that are analysed in van der Sluis
(1997b) and the file xr.mat contains the exchange rate series that have been analysed in van der Sluis (19973).

Asfor al nonlinear optimization problems: be aware of local optima. The author encountered somein this
context. One can check thisby trying at different paramete values, possibly with alower valueof N. A sensible
choice may beto set N = 20, 000.

5 Application

In this section two examples of the performance of EmmPack 1.01 are given. In van der Sluis (19974) the
British Pound / Canadian Dollar exchange rates were investigated. In van der Sluis (1997b and c) the S&P500
was investigated. Both series are in 100* log differences. Figure 1 shows the exchange rates. Figure 2 shows
the S&P500. Salient features of these data sets are provided in table 1.

Calculationswere performed on Pentiums'® and on several nodes of the SP2 at SARA!?. It was found that
using anti-thetic variatesthereis no reason to take morethan N = 2 % 50, 000. In the program the variable V is
called tau. The outcomesare stablein four or fivedigitsin casetheinitial seed is set differently. The author has
the opinion that a simulation method should provide estimates that are virtually independent of initial seed and
therefore the Monte Carlo variance should be virtually zero. The specification search of the auxilliary model is

18To be precise, at the time of writing, the author had a Pentium 90 with 16 Mb of RAM and a Pentium 133 with 24 Mb of EDO RAM

a hisdisposal. The P90 ran under Windows 3.1 and the P133 ran under Windows 95.
19 Stichting Academisch Rekencentrum Amsterdam. The SP2 consists of 76 parallel IBM RS/6000 processors, running under AIX 4.1.4.

The SP2 at SARA has 76 nodes, which makes it the largest one in Europe. The SP2's theoretical maximum rate is 20 Gigaflops/s. Four of
the nodes are wide nodes with 512 Mbyte of memory each. Two wide nodes function as fileservers with 180 Gbyte of disk space. Among
the 72 thin nodes, 58 are equipped with 128 Mbyte internal memory, the remaining 14 with 256 Mbyte. Each thin node is equipped with
4.4 Ghyte local disk space, primarily intended for scratch files. For long term data storage a Magstar tape robot is available with a total
capacity of 5.5 Terabyte (5.5 million Megabyte).
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described in the above papers. The upshot isthat for the exchange rates an EGARCH(1, 3)-H(4, 0) was found
to be BIC-optimal for the S&P500 an EGARCH(1, 2)-H(5, 0)was found to be BIC-optimal.

TotheexchangeratesaSARMAV(1,0), aSARMAV(2, 0) andaSARMAV(3, 0) werefitted. Tothe S&P500
datasetaSARMAV(1, 0) andaSARMAV(1, 1) wasfitted. Thefollowing results®® for theexchangerate models
were obtained for the SARMAV(1, 0) model

Yt = Ot€¢
Ing? =—.103 + .894 Ing? |+ .270 n;
(—4.20)  (34.9) (17.4)
for the SARMAV(2, 0) model
Yt = Ot€¢

Ino? =—.160 + .268 Ino?_,+ .570 Ino2_, .415 n,
(—=9.32)  (58.5) (127) (34.4)

and for the SARMAV(3, 0) model
Yt = Ot€¢
Ino?2 =—.094 + 1.20lno2 ,— 1.14 Ino? .851 In o2 267
e (—5.84) + (311) 1ot (—335) oot (108) ot (31.9) e

The estimates for the S&P500 series for the SARMAV(1, 0) model

Yt = Ot€¢
Ing2 =—.006 + .975 Ing? ,+ .101 n;
(=1.12)  (50.0) (2.08)
and for the SARMAV(1, 1) model
Yt = Ot€¢
Inof =—.007 + 973 Ino?_, + (1+ .839 L) .058 1,
(—.048)  (28.6) (24737) (54.3)

As far specification of the (A)SARMAV model is concerned we only report the Hansen J-test here in tables
2 and 3. For other specification tests in this context see van der Sluis (1997aand b). Although a P-valueisa
monotonic function of the actual evidence against Hy, it is very dangerousto choose the best model of these
specifications on basis of the P-values (see Berger and Delampady (1987)). Different criteriawill certainly be
found in future research. For amore in-depth discussion of the above models the reader should consult van der
Sluis (1997a) for the exchange rates and van der Sluis (1997b and c) for the S&P500 series.

6 Conclusion

This paper documentsthe software package EmmPack 1.01. A widevariety of stochastic volatility modelscan
be estimated, although there are several limitationsto the program. No auxiliary processfor the mean isimple-
mented in the C library yet and only univariate models can be considered. Currently the author isexpanding his
codein these two directions. A multivariate generalization isinvestigated in van der Sluis (1997d). Some gen-
eralizations of the stochastic volatility model (2) can also be estimated with EmmPack 1.01 see van der Sluis
(1997c). However, the user should keep in mind that the auxiliary model should embed the stochastic volatility
model that one wants to estimate. The mailbox is open for any comments.

20¢— values are between brackets

11



Disclaimer

THIS SOFTWARE AND SOURCE CODE ARE DISTRIBUTED "ASIS” AND WITHOUT WARRANTIES
AS TO PERFORMANCE OF MERCHANTABILITY OR ANY OTHER WARRANTIES WHETHER EX-
PRESSED ORIMPLIED. BECAUSE OF THE VARIOUSHARDWARE AND SOFTWARE ENVIRONMENTS
INTOWHICH THESE ITEMSMAY BE PUT, NOWARRANTY OF FITNESS FOR A PARTICULAR PUR-
POSE |S OFFERED. WHILE EVERY EFFORT HAS BEEN MADE TO TEST THE PRODUCT IN A WIDE
VARIETY OF OPERATING ENVIRONMENTS, GOOD PROCEDURE DICTATESTHAT ANY PROGRAM
BE THOROUGHLY TESTED WITH NON-CRITICAL DATA BEFORERELYINGON IT. THEUSERMUST
ASSUME THE ENTIRE RISK OF USING THE PROGRAM. ANY LIABILITY OFTHEAUTHORWILL BE
LIMITED EXCLUSIVELY TO PRODUCT REPLACEMENT.
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A Description of the auxiliary model

In this appendix the class of auxiliary models that is used in EmmPack will be described. Asin section 3
consider the stochastic process y.(6y). The model for the conditional mean is ¢ (3) := E;_1[y:(8)]. The zero
mean process is then defined as €,(3) := y:(8) — u:(3). The model for the conditional variance as o2(3) :=
Var;_i[e:(3)] = E;_1]€2(B)]. Thisleadsto the standardized process: z: () := €:(3)[o2(B)] /2. Let f(z;m)
be the density for z;(3), and let  denote the nuisance parametersn € H C RF,

Lety := (8',n') . Theloglikelihood of y; equals

li(ye, ) == hl[f{%(ﬂ); 77}] - O'BIH[U?(ﬂ)]vt =12,..

By thepredictionerror decompositionweget thefollowing expressionfor thelikelihood of full ssmple L1 (y1, ..., y7r; ¢) :=

ST L(ye; 1) Let the score function be Sz (yy, ..., y7; 1) := S iy Vli(ye; 0)
For conditional mean and variance parameters we get

Vole(ye;9) = flze(B);m ™" f'[2(8); MV s2(B) — 0.50, *(8) Voo (B)

here f'[z(8); ] := 28 and V52,(8) = —Vam(B)o; (8) = 0.56(B)o, *(8)V a2 (B)
In EmmPack we specify the standard normal density for z;. Now there are no nuisance parameters so ¢ =
(3. The gradient becomes

Voli(ye; B) = Ve (B)ee(B)oy *(B) + 0.5V 507 (B)oy *(B)ler ()0, *(8) — 1]

It is known that in many models the normal distribution cannot capture all the excess kurtosis that is often ob-
served in financial markets. An aternative may be to use Student’s ¢ distribution or the Generalized Error Dis-
tribution (GED) of Nelson (1991). However since we will use a SNP density for the z; we follow the easiest
way and use the Gaussian density.

In this version of EmmPack, the leading term of the SNP model, specified by p.(3) and 2(3) will be,
wi(B) = 0ando?(3) followingthe EGARCH model of Nelson (1991). A formal representation of the EGARCH(p, q)
model is given by

Yt

P
o? exp{w + Z% Ino? ,+(1+a L+ ...+ agL)[k12e 1 + k2 (b(ze1) — /2/7)]}

=1

Otz

hereb( ) denotesatwo timesdifferentiable approximationto the absol utevaluefunction, | z|.?! Thisisimportant
for numerical reasons. Interpretationthe coefficient of the EGARCH parametersisasfollows. The~y parameters
giveusaideaof the persistencein thedata, in particular -7, ~; will serve asameasure of persistence. Thew
parameter is a measure of the unconditional variance. Theterm 1 + -7 | «; reflects the short-run sensitivity
toinnovations. Theterm ; reflectsthe asymmetric volatility effect that is often present in financial time series.
Finally, the ko parameter measures the changesin z; in reaction with the conditional heteroskedasticity.

21 A good choiceiseg. b(z) = |z| for |z| > /2K and b(z) = (7/2 — cos(K z))/K for |z| < m/2K and set eg. K = 100.
The derivatives areb'(z) = —1forz < —w/2K, b(z) = 1for z > 7 /2K, bl(z) =sin(Kz) for |z| < /2K
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The SNP density based on the Gaussian distribution is given by formula (3). For identification we need
agp = 1. Let K = max(K,,K,). Inwhat follows M = 1or M = 0.Incase K, = 0, letting K, > 0
inducesatime-homogeneousnon-Gaussian error structure. Thecase K. > 0 inducesheterogeneousinnovation
densities beyond the EGARCH model. Since we believe the EGARCH model captures all this heterogeneity,
K, > 0 will not be necessary. Thiswas also very much supported by our empirical findings. To the author’'s
knowledge there are no guidelines provided yet for assessment of the individual coefficients of the polynomial.
For computational ease we employ polynomialsthat are of Hermite form:

[i/2] i
He;(z) = S 212
e( ) jzo( ) ]'2](1_2])'
0 i#y
He,; He: exp{—=22Ydz =
/ i expd ) { V2wl =

Let

He; (z) := (i!) 7'/ He,(2)

A niceresult of thisnormalization is that

[ B otz = { 0 rA
1 1=

The polynomial is now taken as

K.
P(z,2) =) vi()He;(2)
2:=0
where v, (x) isamonomial inz, eg. v:(x) = vi0 + i1z
K.
/P]{(z,x)2¢)(z)dz = Z%(x)Q
1=0

Later on we will need
0zt 0 Yy — 1 O Zt 8(7?

= e - 4+ — . —=
R = R A ¥ VR v W)
and the recurrencerelation
Hei+1(z) = zHel(z) — iHei_l(z)
Hep(z) = 1
Hei(2) = =z

A differential relation that is useful is given by

g Hel(z)

5, iHe;—1(2)

An individual component of prediction error decomposition of the likelihood function now reads

K.

In fr(ye|ze; ) =In[Pr (2, xt)Ql + Ino(z) — 0.51n(at2)1— ln[z 71-(33)2]
i=0
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Only | and I11 require special treatment as regards the anal ytic expression of the derivative. The remaining part
of the score is simple and well-known. For completeness, expressions of the derivative of part |1 is given in
appendix B. What is |eft are some derivatives which are needed in the score generator or that can be used as
analytical derivatives. Differentiation of part |11

Iln [ Prc(u,z)?p(u)du] _ J[ln Zfizo 7i(2)?] _ 2 i (z) 8%_(1’)
My Oy Zf\:zo vi(r)? = l iqék_/
Jacobian
note 9
7i(2) = 0if ¢y, isaleading term parameter
oYy,
Differentiation of part |
9 2. dPk (z,x)
81nPK(z7x) N Oy
My, Pk (z, )
P (z,x) = Dilz) S OHe(z)
hlli Sk R A J(z)He;(2)} = He;(z) + i
1= W_/ =
Jacobian
where —
o”’Hei(z) 1/28Hel( ) 9z

o0 = (i)~

About the Jacobian agT(Z”) in case v, is not aleading term parameter. For exampleinthe case K, = 1 and all
non-leading term parameters are vectorized as v = (Y00, Y01, V105 V11, - V.0, V&.1) We have

9z oun

0

97i(w)

, wherethe 1 occurs at position 2 — 1 and the z at 2;

Q
3
o8 = O ---

B Derivatives of EGARCH process
If o2 follows an EGARCH(p, q) process then

o V.07 (8) = a7 ()L + 27, 722y Vi i(0) + (1 + i, ail) (k1 Vi zer + k2b (2-1)Vozio1)]

Vo, 07(0) = o (0) 271 - = .( )vajat ((0)+r1zej1+r2{b(z—j-1) \/7]“L (1+370 @i L) {K1Va, 21+
ﬁ2bl(2t71)va,-2t71}]

V.07 (0) = o7 (O)Inof_i+377_, o ,.( oy Ve.0t_ O+ (1 aiL) k1 Vs, 21+ kb (2-1) Vg, 21 )]

Vi, 07 (0) = 07 ()21 5= (e)vmat O+ L) {21461 Vi, 21 4k2b (20-1) Vi, 20-1}]
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o V0P (0) = RFOIT, 7220 Veao?oi(8) + (1 4+ DIy a1 Vet + bzon) — (/2 +
K,le(zt—l)vfczzt—l}]

The recursive formulas must be started up. In the program we set 2, ..., oEp = z'z/n,where z is based

on the current parameter estimates.

C Antithetic Variables

In this context using antithetic variables as a variance reduction technique is very important. See e.g. Ross
(1990, chapter 8), among others, for areview of variance reduction techniques. In short the antithetic variates
technique is based on the fact that if we wish to estimate by simulation § = E[X] on basis of two generated
variables X; and X,. We are better off in case X; and X, are negatively correlated than independent, because

X1+ Xo

V
ar( 5

) [Var(Xl) + Var(Xg) + 2COV(X1, Xz)]

Likewise here in the generation of the stochastic volatility model (2), for one series the variablese; and 7, are
generated and for the other the variables —e; and —n; are used. The scores are now correlated leading to a
considerable variance reduction.
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Figure 1: British Pound / Canadian Dollar exchange rates
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Figure 2: S&P500

XR S&P500
Mean -.005 .068
Std.Dv. .695 1.19
Skewness .269 -5.36
Excess Kurtosis 181 111
Minimum -2.61 -22.9
Maximum 3.12 8.71
Normality Chi"2 85.7 1894
#observations 1019 1322
period 9-1988till 9-1992 | 9-1981 till 10-1987

Table 1: Some preliminary statistics of the series.

21



Jtest | SARMAV(1,0) | SARMAV(1, 1)
J 33.8 336
df 8 7
P-value .000 .000
ao 133 212
ap -1.52 -1.52
s -2.06 -2.05
" -2.30 -2.33
K1 1.85 1.87
Ko -.883 -.875
a0 -357 -359
aso -2.46 -353
aso -.367 -.408
40 -2.40 -2.50
a0 2.74 3.06

Table 2: Hansen J-test and individual ¢-values for the modelsfor the S&P 500
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J-test SARMAV(1,0) | SARMAV(2,0) | SARMAV(3,0)
J 134 11.6 6.87
df 8 7 6
P-value 100 113 .333
Qg -.846 -.847 -.259
aq 397 435 -1.43
Qs - 754 -.950 -1.17
as -2.28 -2.22 -1.31
" 271 .258 -.333
K1 -1.79 -1.78 -1.95
K2 .030 -.755 -.220
aio 951 .942 914
a20 -1.71 -1.38 -.649
aso -1.17 -1.14 -1.25
40 -1.84 -1.37 -.433

Table 3: Hansen J-test and individual ¢-values for the models for the Exchange Rate series
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Figure 3: Times in seconds for calculation of score generator, run on a

P5-166 with 32Mb under Win95.
Times are for N = 2 x 5,000. using EmmPack 1.01.
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