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Abstract

This paper is concerned with linear dynamic factor
models. In such models the observed process is decom-
posed into a structured part called the latent process,
and a remainder that is called noise. The observed vari-
ables are treated in a symmetric way, so that no dis-
tinction between inputs and outputs is required. This
motivates the condition that also the prior assumptions
on the noise are symmetric in nature. We investigate
the relation between optimal models and the spectrum
of the observed process. This concerns in particular
properties of continuity and consistency. Several possi-
ble noise specifications and measures of fit are consid-
ered.

1 Imtroduction

In this paper we are concerned with the identification
of linear systems. The most commonly used models
in system identification are ARMA and ARMAX mod-
els, we refer to [15], [3] and [11]. An ARMA model is
symmetric and non-open, in the sense that all observed
variables are treated in a symmetric way and that they
are completely described by the model. On the other
side, ARMAX models are non-symmetric and open, as
a distinction is made between inputs and outputs and
the noise is added to the outputs, and the inputs are
not modelled.

We will consider linear factor models where the noise
model is symmetric and where we have a deterministic,
symmetric and open system model. In a sense these
models combine the symmetry which 1s inherent in, for
example, ARMA models, with the flexibility of models
that leave certain process aspects unexplained, as for
example in input-output models.
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Of course, the classical ARMA and ARMAX models
are appropriate in a great number of cases. For in-
stance, 1f we are interested in predicting the outputs
from the inputs then the ARMAX setting 1s appropri-
ate. On the other hand, there are also situations where
this approach can not be justified and may lead to prej-
udiced results.

e A prediction based error model is not appropri-
ate, for example, if we are interested in the ‘true’
underlying system and there is noise on the in-
puts and the outputs.

e There may be uncertainty about the number of
system equations or about the classification of the
system variables into inputs and outputs. In this
case we have to perform a more symmetric way
of system modelling, which in turn demands a
symmetric noise model.

e In multivariate time series analysis one is con-
fronted with the so-called curse of dimensionality.
One method of reducing the dimension of the pa-
rameter space for the system model is dynamic
factor analysis. This is an essential aspect of the
approach described here.

Factor models have been used in statistics, psychomet-
rics and econometrics for a long time, see [8], [1], [9].
The theory 1s most well-developed for the case of static
models. Most applications are also reported within this
framework, although there are also contributions on the
identification of dynamic factor models, see [10], [7],
[4]. Within the area of systems and control there is
recently an increasing interest in symmetric modelling.
We mention the introduction of the behavioural ap-
proach in systems theory in [19], [21], the attention for
the Frisch problem, see [16], [18], [2], and low-noise
modelling as proposed in [14]. Most contributions on
factor models in this area deal either with the mathe-
matical structure of dynamic models or with data mod-
elling by means of static models. In an, in a certain
sense, nonparametric framework results on the identi-
fication of dynamic factor models within a stochastic
setting have been presented in [5], [6]. Procedures for
symmetric time series modelling within a deterministic
behavioural framework have been proposed in [20], [12],

and [17].



In this paper we try to integrate the above two frame-
works, i.e., stochastic factor models and determinis-
tic behavioural modelling. The model class consists
of stochastic dynamic factor models where the latent
process satisfies deterministic behavioural laws. This
means that stochastic structure is added to the deter-
ministic behavioural framework, which provides addi-
tional tools of analysis. On the other hand, our ap-
proach allows for an analysis of dynamic factor mod-
els in terms of finite dimensional systems, as opposed
to the nonparametric results that were previously ob-
tained.

We now give an outline of the topics treated in this
paper. A dynamic factor model is of the form

w=w-+w (1)

where w is the observed process, w is an (in gen-
eral unobserved) latent process satisfying exact lin-
ear dynamic equations, and % is the noise process.
The restrictions on w can be expressed in terms of
linear deterministic system behaviours as introduced
in [19], [21]. The noise process represents the error re-
sulting from the approximation of the observations w
by the latent process w.

The central question considered in this paper is how
to obtain the restrictions satisfied by the latent pro-
cess from the observations. Without imposing fur-
ther conditions, no solutions can be excluded from the
knowledge of the observed process alone. This means
that we have to impose additional assumptions on the
noise structure in order to make meaningful statements
about the underlying system. In particular we consider
optimal models, which under a given bound on the
complexity of the linear restrictions, have the smallest
possible error.

This paper has the following structure. In Section 2 we
define the dynamic factor model. For this purpose we
review the behavioural approach in linear system the-
ory. In addition we introduce optimal models, which
minimize the noise under restrictions on the complex-
ity of the latent process. Section 3 is concerned with
consistency of a certain estimator of the set of optimal
models and with the underlying topological problems.
Due to restrictions of space we can only give a flavour
of the problem in the sense that only a few results are
presented and the proofs are omitted. For further in-
formation the reader is refered to [13].

2 Dynamic Factor Models

2.1 Linear Systems
For the formulation of dynamic factor models it is con-
venient to use the behavioural approach as developed

by Willems in [19], [21]. Since this approach may be
not well-known to the reader, we discuss in this section
those aspects that are relevant for our purposes. Read-
ers with an interest for further details and proofs are

referred to [19], [21].

In this subsection w : Z — R? denotes a trajectory
rather than a process, that is, it is a g¢-variate time
series observed in discrete time. The behaviour of a
deterministic system is defined as the set of all trajec-
tories w that may arise within the restrictions imposed
by the system. So a behaviour is a subset B of (R?)%.
Of special interest are behaviours that are linear, time
invariant, and complete. This means that B C (R%)%
is a linear subspace that is invariant under the shift op-
erator o, defined by (o w)(t) := w(t + 1), and that the
behaviour 1s in addition closed in the topology of point-
wise convergence. The last condition means that for a
sequence twy, € B which converges pointwise (in RY) to
Wy € (Rq)z there holds that also wg € B. These condi-
tions imply that the behaviour corresponds to a linear,
time invariant, finite dimensional system. In the sequel
we will simply use the term linear system to refer to a
linear, time invariant, complete behaviour B C (R4)%.

Linear systems can be represented in several ways.
Here we discuss representations in terms of polyno-
mial equations and state space models with driving
variables.

Every linear system can be represented in polynomial
form, as the solution set of the polynomial equations

R(c)w =0 2)

Here R is a polynomial matrix in the shift o. The rep-
resentation of a given system by a polynomial matrix
is highly non-unique.

An alternative representation is in terms of state space
models with driving variables. Every linear system can
be represented as

ocrx = Ar+ Bv, w=Czx+ Dv (3)

Here v 1s an m-dimensional auxiliary vector of unre-
stricted driving variables and x is an n-dimensional vec-
tor of state variables. In contrast with the usual input-
state-output model, here all the external variables are
described as outputs of a system driven by forces which
need not have any external meaning. For a given sys-
tem this kind of representation is highly non-unique.
A representation (3) is called minimal, if for any repre-
sentation with m’ driving variables and n’ states either
m < m' or m =m' and n < n’ holds. The minimal
pair (m,n) is used as a measure of the complexity of
the system 5.



Until now no assumptions were made concerning the
controllability of systems. A system B 1s called con-
trollable if every future in B is attainable from every
past in 5, that is, if for every wy,ws € B there exist
w € B and h > 0 such that @w(t) = @y () for t < 0 and
W(t) = wa(t) for t > k. In terms of the kernel represen-
tations (2) this means that R(z) has constant rank over
z € C. There is a close connection between the notion
of controllability as defined before and the usual notion
in terms of state space models, because minimal state
models (3) of controllable systems B are characterized
by the property that (A, B) is a controllable pair and
(A, C) an observable pair.

For controllable systems the transferfunction
Ps =1~ R'(0)(R(0)R" (7)) R(0) (4)

is the orthogonal projection onto the set of square
summable time series in the behaviour B. Here

R*(0) = R'(c71) is the adjoint of R.

2.2 Factor Models and Spectra

We assume that the observed process w is a ¢-
dimensional, weakly stationary process. A dynamic
factor model is a process decomposition of the form
w = w+ W, where W is the noise process and w is
the latent process that is essentially restricted to a
linear system. The behaviour B of @ is defined as
the smallest linear, time invariant, complete system
which contains almost all process realizations, that is,
P{w(w) € B} = 1. The following result states that this
definition makes sense.

Proposition 1 For every stochastic process the be-
haviour is well-defined.

We call a behaviour nontrivial if B # (R4)%. Dynamic
factor models are defined as follows.

Definition 1 A dynamic factor model of a process w
15 a decomposition w = w+w where the latent pro-
cess w has nontrivial behaviour B, which s called the
behaviour of the factor model.

In this paper we will be mainly concerned with the be-
haviour of factor models, as in many cases this is the
main point of interest in system identification. In or-
der to simplify our analysis of dynamic factor models
we make some additional assumptions on the processes.
Some of these assumptions could be relaxed, but they
are imposed to prevent technical complications that
could obscure the underlying modelling ideas.

Assumptions

e A1l The processes w, w and w are jointly weakly
stationary, with zero mean.

e A2 The observed process w is purely nondeter-
ministic and has full rank.

e A3 The latent process w and the noise process w
are purely nondeterministic.

e A4 The Wold representations of w, w and w are
absolutely summable.

The assumption Al is imposed for convenience, as this
means that the usual tools of time series analysis and
linear systems theory can be applied. The full rank
assumption in A2 implies that the behaviour of the ob-
served process is unrestricted, so that it can not be
modelled by a factor model without noise. Concerning
assumption A3, note that a latent process with nontriv-
1al behaviour can not be of full rank. We assume that
it is purely nondeterministic, and that the same holds
true for the noise. This seems a reasonable requirement
in view of assumption A2. Finally, assumption A4 is
imposed for technical reasons. It implies that the spec-
tral densities of the processes are continuous functions
on the unit circle.

Stated in terms of behaviours, assumption A3 for the
latent process means the following.

Proposition 2 The behaviour of a purely nondeter-
manistic process is controllable.

Factor models can also be described by means of spec-
tra. A factor model corresponds to a decomposition

Y=Y 4+Y+%. 455 (5)

where X, Y and ¥ denote the spectrum of w, w and
w respectively and Y. is the cross spectrum between
w and w. By assumption, the behaviour of the latent
process w is nontrivial so that 3 is singular.

2.3 Factor Schemes

In general factor models for a given process w are highly
non unique. Here we impose the following alternative
restrictions, which we call factor schemes.

e The factor model is called orthogonal if the la-
tent process and the noise process are mutually
uncorrelated, that is, if E{w(t) w(s)'} = 0 for all
i, s.



e The factor model is called observable if w is a
linear function of w. Stated otherwise, there
holds ¥ = FYF* ¥ = (I — F)S(I — F)* and
Y. = FX(I — F)* for some, possibly noncausal,
transfer function F'.

Even imposing these assumptions does not restrict the
class of underlying observationally equivalent systems
in the sense that for an arbitrary process w, satisfying
assumption A2, every linear system B may correspond
to a factor model. (This may be seen from Theorem 3
below.) So we have to impose additional restrictions
on the noise process in order to make meaningful state-
ments about the underlying system. These restrictions
should be motivated in each practical situation. The
assumption considered here 1s that the factor model is
optimal in the sense explained in the next subsection.
For alternative assumptions see e.g. [13].

2.4 Optimal Models
The quality of factor models is expressed in terms of
the complexity and the goodness of fit of the model.

Definition 2 The complexity of a dynamic factor
model is defined as the pair (m, n), where m is the num-
ber of driving variables and n the number of states of a
minimal state space representation (3) of the behaviour
of the factor model.

The goodness of fit of factor models i1s measured in
terms of the second moments of the noise process w.
As i1s well known, the choice of norms may have an
essential effect on the obtained models. Here we will
restrict the attention to the mean squares norm and
the uniform norm. In the following we use the notation
S for a spectral factor of the noise spectrum ¥ so
that X = 21/2(21/2)*. We define the following norms
for spectral factors, where Apax (Q) denotes the spectral
radius, that 1s, the maximum of the absolute values of
the eigenvalues of a matrix Q.
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IS22, = o ]Amax{i(e‘“)} (7)

Since the results presented below hold treu for both
norms we often use the same symbol || /2 || for both
norms. In general, the fit will improve if the model is
allowed to be more complex. A factor model is opti-
mal if it optimizes the fit || ni/? || under a given con-
straint on the complexity (m,n). The optimality of
models depends of course on the specification of the

factor scheme, that is, on the choice of norms for the
noise and on possible conditions of orthogonality and
observability.

In the following we denote by B(m,n) the set of all
controllable linear systems with m inputs and n states,
by B(m,n) := Ji_, B(m, k) the set of all controllable
linear systems with m inputs and at most n states, and
by B := ! _ U, B(m,n) the set of all controllable
linear systems.

For given spectrum X we denote by B (3;m, n) the set
of behaviours of optimally fitting factor models with m
inputs and at most n states. Note that E*(E; m,n) in
general is not a singleton, however we conjecture that
in many cases the optimal behaviour will be unique.

First assume that the behaviour of the factor model
has been specified a priori, so that the factor equations
are given. The aim is to find a model with minimal
error that satisfies these equations. Let B denote the
given controllable linear system with polynomial rep-
resentation R(o)@w = 0 and let P be the orthogonal
projection defined in (4). The following results hold
true both for the mean squares and for the uniform
norm.

Theorem 3 Let w be a process with spectrum X and
let B be the prescribed behaviour of a factor model.

(i) A latent process with optimal fit is given by Wy =
Psw, with notse spectrum Yo = (I —Pg)X(] —
Pg). The corresponding factor model is observ-
able, but in general not orthogonal.

(ii) Among orthogonal models, a latent process
with optimal fit s given by woy = [I —
Y R*(RY R*)"'Rlw, with corresponding noise
spectrum o = L R*(RER*)"IRY.

The optimal factor model for a given system B is unique
in case of the mean squares norm but in general not in
case of the uniform norm. If we are interested in factor
behaviours only, then the above results show that we
may restrict the attention to observable models. This
leaves four factor schemes of interest, that is, for the
mean squares and the uniform norm and according to
whether orthogonality is imposed or not. We define the
distance between a behaviour and a spectral density as
the fit of the optimal factor model with this behaviour.
That is, the misfit function is given by

A=, 8) = =% | (8)

where ¥ is the noise spectrum of the optimal factor
models for B, given in Theorem 3 and where ié/z de-
notes a spectral factor of y. We use the same notation
for the four different factor schemes.



Using the above result the set E*(E, m,n) of optimal
systems is defined via the minimization of the musfit
d(X, B) over the set B(m, n).

3 Consistency

3.1 System Topology

We introduce the topologies on linear systems and spec-
tra that we will use in our analysis of continuity proper-
ties of factor models. For linear systems the gap metric
is defined in terms of the projections described in (4).

Definition 3 Let By, Bs be linear systems, then the
gap between these systems is defined by

d(BlaBZ):||PBl_PB2||OO (9)

In order to investigate continuity properties we also
need a topology on the set of spectral densities. We
use the metric defined by

d(E1, X)) = [[ X1 = Xz f[eo (10)

Under Assumption A4 the spectra are bounded on the
unit circle, so that this is a well-defined metric.

Proposition 4

(i) The set B(m,n) is the closure of B(m,n) in B.

(ii) The sets B and B(m,n), for n > 0, are not com-
pact.

(iii) The misfit d(X, B) is continuous in (X, B) for all
positive definite spectra X.

3.2 Continuity and Consistency

It is of interest to consider the continuity of optimal
systems. Continuity in this respect 1s connected with
robustness, in the sense that small perturbations in the
data should lead to a small perturbation of optimal
systems.

Proposition 5 The set E*(E,m,n) is upper semi
continuous wn X in the sense that X — Yo, By — By
—x —*
and B, € B (X, m, n) implies that By € B (Xg, m, n).

Next we investigate the consistency of dynamic factor
models when the spectrum is estimated from observed
data. In applications the spectrum of the observed pro-
cess will in general be unknown. Let X7 denote an es-
timator of the process spectrum X that is based on a
sample w(1),...,w(T). Then E*(ET, m,n) is a ‘nat-
ural’ estimate for E*(E,m,n). We assume that the
estimator is strongly consistent in the sense that that
d(X,¥7) — 0 almost surely for T — oo.

Theorem 6 The estimator E*(ET, m, n) of the set of
optimal systems in B(m,n) is ‘upper semiconsistent’,
in the sense that {Br € E*(ET,m,n),BT = Bo} =
{By € E*(E, m,n)} almost surely.

This means that, under the above conditions, the opti-
mal finite sample systems are in the limit also optimal
for the data generating process. However, possibly not
all optimal systems are identified in this way.

4 Conclusion

Dynamic factor models decompose an observed pro-
cess in terms of an underlying latent component and
additional noise. The variables are treated in a com-
pletely symmetric way, and no assumptions on inputs
and outputs are required. The latent process, by as-
sumption, satisfies linear deterministic dynamic rela-
tionships. Two different factor schemes are considered.
If the noise can be assumed to be uncorrelated with
the latent process this is called the orthogonal factor
scheme. This is the usual assumption in the classi-
cal models of factor analysis. In other situations it is
more natural to assume that the factor components are
constructed from the observations. This is called the
observable factor scheme.

We restrict ourselves to optimal factor models. Here
optimal factor models are defined based on the notions
of complexity and goodness of fit. Concerning the iden-
tification of optimal factor models we present results on
consistency.

Several questions deserve further investigation. Of spe-
cial interest is the further analysis of identification pro-
cedures within this framework. Another issue is the
incorporation of prior knowledge, for example concern-
ing the input-output structure of the model. A further
analysis of the probabilistic structure of factor models
is needed in order to develop statistical test procedures,
for example to estimate the complexity of factor models
from observed data.
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