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Abstract

Estimation using simulation techniques may be very time consuming. Specification tests for structural sta-

bility often require more than one of such computationally demanding estimators. Typically one for the sam-

ple, one for the post-sample and one for the combination of sample and post-sample is required. This paper

describes structural stability tests for use with the Efficient Method of Moments technique. Computationally

attractive post-sample estimators and test-statistics for structural stability are proposed. These computation-

ally attractive test-statistics are modifications of the Lagrange Multiplier, Likelihood Ratio and Wald tests for

structural stability and of the Hansen-type test statistics for structural stability. The modification ensures the

same asymptotic optimality properties against certain local alternatives as those based on efficient computa-

tionally intensive estimators for the post-sample. However no time consuming estimators are needed for the

post-sample and for the combination of sample and post-sample. Evaluation of these tests has been performed

in the context of a stochastic volatility model for the S&P500.
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1 Introduction

Indirect inference, as described in Gourieroux et al. (1993) or the Efficient Method of Moments (EMM) as de-

scribed in Gallant and Tauchen (1996), may be of great help in case the likelihood of a model is intractable.

These techniques require a repeated evaluation of very complex functions under simulation and are therefore in

general very time consuming. Consequently, computationally attractive structural stability tests and updates of

the estimates may be of interest with the arrival of post-sample data. Specification tests for structural stability of-

ten require more than one of such computationally demanding estimators. Typically, one for the sample, one for

the post-sample and one for the combination of sample and post-sample is required. In this paper computation-

ally attractive structural stability tests and updates of the estimates for EMM are proposed. As will be motivated

in the next section the author judges the EMM technique superior to the original indirect inference technique

of Gourieroux et al. (1993) from a viewpoint of efficiency and stability. Therefore the findings are presented

for EMM only. The same rationale can easily be transcribed to an indirect inference setting as well. Because of

its lack of efficiency, it is doubtful whether for substantial problems satisfying results will be obtained with the

original indirect inference approach.

The rationale for indirect inference techniques is that there is some auxiliary model which is relatively easy

to estimate and is rich in the sense that it mimics the properties of the structural model to a certain degree. More-

over, to obtain the full maximum likelihood efficiency of EMM, it is required that the auxiliary model in some

sense embeds the structural model, see Gallant & Long (1997), Gallant and Tauchen (1996) and Tauchen (1996)

for details. This auxiliary model will be used to evaluate the data at hand. Next, data will be simulated from the

original model. Finally the parameters are calibrated in a such a way that the dynamic properties of the auxiliary

model under the real data and under the simulated data match.

Since auxiliary models will be in general easy to estimate, it is relatively easy to make an update of the

auxiliary parameters with the arrival of new data. From this shift in the estimates of the auxiliary parameter

estimates we may deduce a first order approximation for the shift in the structural parameters, yielding one-step

linearized EMM estimators. More important than these first order approximations are test-statistics for structural

stability that can be based on such first order approximations.

Several tests for structural stability have been proposed in the GMM literature: LM/LR/Wald type test for

structural stability (Andrews and Fair (1988)), the Hansen J-test for structural stability (Ghysels and Hall (1990b))

and the Prediction tests (Ghysels & Hall (1990a)). In a GMM context each of these test-statistics has optimal

local power in a certain relevant direction of misspecification. These test statistics are easily transcribed to an

EMM/Indirect inference context. Their optimality properties also carry over.

With the exception of the prediction tests, which have been analysed in an EMM context in Van der Sluis

(1997a)1, all these tests statistics require very demanding EMM estimates for the structural parameters, other

than that of the sample: an EMM estimate of the post-sample and an EMM estimate of the combination of sam-

ple and post-sample is required. In this paper simple modifications of the LM/LR/Wald test-statistics and of

the J-test for structural stability, are proposed that require only root-n consistent estimators and still have the

same optimal power in the same direction as the originals. Of course their small sample properties will differ.

1A different class of stability tests viz. post sample prediction test (PSP), for EMM was proposed in Van der Sluis (1997a). This test was

first introduced for GMM by Ghysels and Hall (1990a) and Hofman and Pagan (1989). The nature of this PSP test is already computationally

attractive, since only EMM estimates for the sample are required. Therefore there is no need to consider modifications of the PSP test. In

particular the PSP test arises as a special case here.
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These modifications hinge on work of Ahn (1995) in the field of GMM specification testing. In Ahn (1995) test

statistics are designed for any root-n consistent estimators that have the same asymptotic power properties as

those computed with GMM estimators. These results are transcribed to the EMM case. As a root-n consistent

estimator for example a simple one-step linearized EMM estimator may be used. Naturally, the first-order ap-

proximations to the structural model are root-n consistent. In the application in this paper also other estimators,

like Bayesian estimators which are computationally more attractive than the EMM estimator are plugged in.

The plan of the paper is as follows. Section 2 will provide a short overview of EMM. This section is mainly

included to introduce some notation. For a better understanding of the method the reader is strongly recom-

mended to consult Gallant & Tauchen (1996) and Tauchen (1996). Section 3 will introduce the first orderEMM

approximations to the estimators of the structural model. Section 4 contains the derived computationally attrac-

tive specification tests. Besides that, formulae are given for the exact test statistics and noncentrality parameters.

In section 5 data from the S&P500 in the context of stochastic volatility models are considered. The breakpoint

is set at Black Monday 1987. Instability is associated with different volatility regimes. Besides the first order

approximations, in this context the Bayesian method of Kim et al. (1996) provides very fast and possibly accu-

rate estimators. The modes of these Bayesian posteriors are taken as root-n consistent estimators in the classical

sense (see e.g. Barndorff-Nielsen & Cox (1994)) and plugged into the test-statistics for structural stability. The

outcomes are interpreted. Easily available estimators and tests for structural stability are very much of interest

in this context, because stochastic volatility models can be used for the pricing of options, see Hull & White

(1987). The parameters of the stochastic volatility models are important determinants in option pricing formu-

lae. Since the estimation of a stochastic volatility model using EMM is very time consuming and the next step

of determining the option prices is very time consuming as well, this is an important issue. Section 6 concludes.

2 Efficient Method of Moments

In the original indirect inference setup of Gourieroux et al. (1993) the connection between the auxiliary model

and the structural model is established through the parameters of the auxiliary model. Gallant and Tauchen

(1996) solve the efficiency problems indirect inference has by proposing the efficient method of moments (EMM)

technique. Here the connection between the auxiliary model and the dynamic model is achieved by means of

the scores of the auxiliary model, where strict guidelines are given for the choice of the auxiliary model. This

method does not only yield efficient estimates but also provides a more stable set-up: scores are better compa-

rable over different models than parameters are. In short the EMM method goes as follows: the sequence of

densities for the structural model will be denoted

fp1(x1 j �); fpt(yt j xt; �)g1t:=1g

The sequence of densities for the auxiliary process will be denoted as

ff1(w1 j �); fft(yt j wt; �)g1t:=1g

where xt and wt are observable endogenous variables. We impose assumptions 1 and 2 from Gallant & Long

(1997) on the structural model. These are technical assumptions that imply standard properties of quasi maxi-

mum likelihood estimators and properties of estimators based on Hermite expansions which will be explained

below. Let us define

m(�; �) :=

Z Z
@

@�
ln f(y j w; �)p(y j x; �)dyp(x j �)dx
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the expected score of the auxiliary model under the dynamic model. The expectation is written in integral form to

anticipate on the fact the we will approximate this integral by standard Monte Carlo techniques. The simulation

approach solely consists of calculating this function as

mN (�; �) :=
1

N

NX
� :=1

@

@�
ln f(y� (�) j w� (�); �)

Let n denote the sample size, the EMM estimator is defined as

b�n(In) := argmin
�2�

m
0

N (�; b�n)(In)�1mN (�; b�n)
where In is a weighting matrix and b�n denotes an estimator for the parameter of the auxiliary model. The op-

timal weighting matrix here is obviously

I0 = lim
n!1

V0[
1p
n

nX
t:=1

f @

@�
ln ft(yt j wt; �

�)g]

where �� is a (pseudo) true value.

With the theory of misspecified models (White (1994)) one can prove consistency for the parameters of the

auxiliary model under several assumptions posed in Gallant & Tauchen (1996),

lim
n!1

(b�n � ��) = 0 a.s.

and asymptotic normality p
n(b�n � ��)

d! N(0; (J0)�1(I0)(J0)�1)

Here

In = V0[
1p
n

nX
t:=1

(
@

@�
ln ft(eyt j ewt; b�n)]

Jn = � @

@�
m

0

N (�0; b�n)
where �0 denotes the (pseudo) true value. Obviously,

lim
n!1

In = I0
lim
n!1

Jn = J0

One can also prove for the scores p
nmN (�0; b�n) d! N(0; I0)

Hence consistency and asymptotic normality of the estimator of the structural parameters b�n follow:

p
n(b�n(I0)� �0)

d! N(0; [M0

0(I0)�1M0]
�1)

where M0 :=
@

@�
0 m(�0; �

�).

In order to obtain full maximum likelihood efficiency it is required that the auxiliary model in some sense

embeds the structural model. The semi-nonparametric (SNP) density of Gallant & Nychka (1987)2 may be a

2Building on earlier work of Phillips (1983). See also Fenton & Gallant (1996a+b) for recent results on SNP densities.
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good choice, see Gallant & Tauchen (1996) and Gallant & Long (1997). The auxiliary model is built as follows.

Let yt(�0) denote the process under investigation, �t(�0) := Et�1[yt(�0)]; the conditional mean, �2t (�0) :=

Vart�1[yt(�0)��t(�0)] the conditional variance and zt(�0) := [yt(�0)��t(�0)]�[�2t (�0)]�1=2 the standardized

process. The SNP density now takes the following form

f(zt; �) =
1p
�2t

[PK(zt; xt)]
2�(zt)R

[PK(u; xt)]2�(u)du

where � denotes the standard normal density, x := (yt�1; :::; yt�L) and the polynomials

PK(z; xt) :=

KzX
i:=0

ai(xt)z
i :=

KzX
i:=0

[

KxX
j:=0

aijx
j
t ]z

i

A specific form for the polynomials is taken, namely orthogonal Hermite polynomials (see Gallant et al. (1991)

and Andersen & Lund (1997)). Relevant formulae for the derivatives can be found in Abramowitz & Stegun

(1972) and Fenton & Gallant (1996a). The model �2t (�) and �t(�) is chosen as a leading term in the Hermite

expansion to relieve the expansion of some of its task, improving its small sample properties. We note that the

SNP density offers a very convenient way of modelling. It omits the curse of dimensionality often encountered

in the area of non parametric models while sharing many of the optimality properties of the Kernel estimators

of Silverman (1986).

In this paper structural stability is of interest, therefore the following nomenclature is employed: n1will

denote the number of observations in the sample and n2 will denote the number of observations in the post-

sample. The auxiliary estimator that employs sample data only, will be denoted b�n1 : The auxiliary estimator

that employs post-sample data only will be denoted b�n2 : Likewise the EMM estimators b�n1 and b�n2 are denoted.

Furthermore estimators that are based on both sample and post-sample data are denoted b�n1+n2 and b�n1+n2 :
In specification testing the following estimator for �0 will often be of (theoretical) interest, see e.g. Rothen-

berg (1973)

e�n1+n2 := argmin
�2�

[m
0

N (�; b�n1)bI�1n1
mN (�; b�n1) +m

0

N(�; b�n2)bI�1n2
mN (�; b�n2)]

where bIni denotes a consistent estimator for the asymptotic covariance matrix of mN(�0; b�ni); Ii for i = 1; 2:

In this paper we will take p := dim(�); the dimension of the parameters of the structural model, q1 :=

dim(�1); the dimension of the parameters of the auxiliary model for the sample and q2 := dim(�2); the dimen-

sion of the parameters of the auxiliary model for the post-sample. The number of moment conditions for the

sample q1 and for the post-sample q2 will be determined using several criteria. For EMM, it is necessary that q1

increases with n1 and q2 with n2:Note in this respect the conceptual difference with GMM. It will automatically

happen that q1 and q2 will increase with n1 and n2, respectively, using any of the model specification criteria

such as the Akaike Information Criterion (AIC, Akaike (1973)), the Schwarz Criterion (BIC, Schwarz (1978))

or the Hannan-Quinn Criterion (HQC, Hannan & Quinn (1979) and Quinn (1980))3. The theory of model se-

lection in the context of SNP models is not very well developed yet. Results in Eastwood (1991) may lead to

3AIC= T lnL� j�j

BIC= T lnL� 0:5j�j lnT

HQC= T lnL� j�j ln lnT

In this context, L denotes the loglikelihood of the auxiliary model in the optimum, T denotes the number of observations and j�j the

number of freely estimated auxiliary parameters. For some properties in the context of multivariate time-series see Lütkepohl (1990).
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believe AIC is optimal in this case. However, as for multivariate ARMA models, the AIC may overfit the model

to noise in the data so we may be better off by following the BIC or the HQC. The same findings were reported

in Andersen & Lund (1997). In their seminal paper Gallant & Tauchen (1996) rely on the BIC in their applica-

tions. If testing by a battery of specification tests indicates that the BIC-optimal model is inadequate, see Bansal

et al. (1995) and Tauchen et al. (1996), the model is further expanded.

3 Updating based on different auxiliary models for sample and post-

sample

Say we have a sample of sizen1 and estimators b�n1 and b�n1 based on this sample at hand. The arrival of new data

of size n2 or the desire to apply tests for structural stability, may force us to redo the whole EMM estimation

in order to obtain a b�n2 for the post-sample or to obtain a b�n1+n2 or e�n1+n2 for the combined data set. This

may be very time consuming. However in general estimation of b�n2 will not cost much too much computing

time. Note that the auxiliary model need not be the same for sample and post-sample. At time n1 we already

have mN (b�n1 ; b�n1): Transcription of the one-step linearized GMM estimator yields a one-step linearized EMM

estimator b��n2 := b�n1 � bV�12 (b�n1)M2(b�n1 ; b�n2)0(In2)�1mN (b�n1 ; b�n2)
where bVi(�) :=M0

i(�;
b�ni)(bIni)�1Mi(�; b�ni):

Property 1 Application of lemma 4 of Newey (1985) yields

p
n2(b��n2 � �2) = op(1)

Pooling of the estimators in an optimal way may be done in several different ways. The poolings in theorems

1 till 4 are all based on Taylor expansions around consistent estimators under the null. Theorem 1 is based on

a Taylor expansion around b�n1 and b�n2 ; theorem 2 around b�n1 ; theorem 3 around b�n1 and b��n2 and theorem 4

around b��n2 :
Theorem 1 The pooled estimator given by

b�I
n1+n2 = [bV1(b�n1) + bV2(b�n2)]�1[bV1(b�n1)b�n1 + bV2(b�n2)b�n2

�M0

1(
b�n1 ; b�n1)(I1)�1m(b�n1 ; b�n1)�M0

2(
b�n2 ; b�n2)(I2)�1m(b�n2 ; b�n2)]

is asymptotically equivalent with e�n1+n2 :
Theorem 2 The estimator

b�II
n1+n2

= [bV1(b�n1) + bV2(b�n1)]�1[bV1(b�n1)b�n1 + bV2(b�n1)b�n1
�M0

1(
b�n1 ; b�n1)(I1)�1m(b�n1 ; b�n1)�M0

2(
b�n1 ; b�n2)(I2)�1m(b�n1 ; b�n2)]

is asymptotically equivalent with e�n1+n2 :
Theorem 3 The estimator

b�III
n1+n2

= [bV1(b�n1) + bV2(b��n2)]�1[bV1(b�n1)b�n1 + bV2(b��n2)b��n2
�M0

1(
b�n1 ; b�n1)(I1)�1m(b�n1 ; b�n1)�M0

2(
b��n2 ; b�n2)(I2)�1m(b��n2 ; b�n2)]

is asymptotically equivalent with e�n1+n2
6



Theorem 4 The estimator

b�IV
n1+n2

:= b��n2�[bV1(b��n2)+bV2(b��n2)]�1[M0

1(
b��n2 ; b�n1)(I1)�1m(b��n2 ; b�n1)+M0

2(
b��n2 ; b�n2)(I2)�1m(b��n2 ; b�n2)]

is asymptotically equivalent with e�n1+n2
A conceptually different update strategy is based on the specification (via AIC, HQC or BIC) of an overall

auxiliary model for the sample and post-sample. We are thus interested in the estimator

b�n1+n2 = argmin
�2�

m
0

(�; b�n1+n2)I�11+2m(�; b�n1+n2)
Taylor expansion around b�n1 gives

b�V
n1+n2

= argmin
�2�

[m
0

(b�n1 ; b�n1+n2)+M1+2(b�n1 ; b�n1+n2)(��b�n1)]0I�11+2[m
0

(b�n1 ; b�n1+n2)+M1+2(b�n1 ; b�n1+n2)(��b�n1)]
This comes down to ordinary GLS and therefore an explicit expression for b�V

n1+n2
is found

b�V
n1+n2

= b�n1 � [M0

1+2(
b�n1 ; b�n1+n2)I�11+2M1+2(b�n1 ; b�n1+n2)]�1M0

1+2(
b�n1 ; b�n1+n2)I�11+2m(b�n1 ; b�n1+n2)

The usual arguments provide asymptotic equivalence of b�V
n1+n2

and b�n1+n2 :
Intuitively, an estimator based on an estimate of the auxiliary parameter of the combined sample and the

post-sample, such as b�V
n1+n2 ; will give a better approximation to b�n1+n2 than an approximation that is based

on auxiliary estimators of the separate sample and post-sample such as b�III
n1+n2

. Reversely, tests for structural

stability based on estimators of the auxiliary model for the separate sample and post-sample will have higher

power than tests that are solely based on auxiliary estimators for the combined sample and post-sample. Future

research is needed in order to substantiate this intuition.

4 Stability testing

Following, among others, Newey (1985), Ghysels and Hall (1990b) and Ahn (1995) for GMM, we identify the

following individual null hypotheses for the EMM case.

H
1
0 : m(�0; �1) = 0; 8 t 2 T1

H
2
0 : m(�0; �2) = 0; 8 t 2 T2

H
3
0 : �0 = �0

where the function m is the expected score of the auxiliary model under the dynamic model as defined in the

previous section. The stability hypothesis is defined as

H
s
0 : H

1
0;H

2
0 and H3

0 hold

The asymptotic power of the test depends on which of the individual null-hypotheses is violated. Define the

following alternative hypotheses

H
A
A : At least one of H1

0;H
2
0 and H3

0 does not hold

H
B
A : H

1
0 holds, at least one of H2

0 and H3
0 does not hold

H
C
A : H

1
0 and H2

0 hold, H3
0 does not hold
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This leads to the following local alternatives

H
1
n :

p
n1m(�0; �1) = �1 + o(1)

H
2
n :

p
n2m(�0; �2) = �2 + o(1)

H
3
n : m(�0n; �2) = 0;

p
n2(�0n � �0) = �

Let HA
l := f(H1

n;H
2
n)g1n:=1; HB

l := f(H1
0;H

2
n)g1n:=1 and HC

l := f(H1
0;H

3
n)g1n:=1: The usual Hansen J�test

may be used to test Hs
0: However, Ghysels and Hall (1990b) show that in the context of structural stability this

test has no power against local alternatives that are of the form HC
l . In Ghysels and Hall (1990a) a modification

of the Hansen test is proposed, the JSS test. This test has optimal power against HA
l :

Several interesting asymptotic equivalencies for the Wald/LR/LM type tests for structural stability proposed

by Andrews and Fair (1988) can be given. The upshot is that any of their statistics has maximum local power

against alternatives of the form HC
l :

Ahn (1995) shows, building on earlier work of Newey (1985) that the PSP test for GMM is an optimal

GMM test that has maximum power toward HB
l : In the context of EMM these PSP statistics are investigated in

an accompanying paper, Van der Sluis (1997a).

As said, in a GMM context a modification of the Hansen test is proposed by Ghysels and Hall (1990a). For

EMM we define the following analogy

JSS := n1m
0

N(e�n1+n2 ; b�n1)(bIn1 )�1mN (e�n1+n2 ; b�n1) + n2m
0

N (e�n1+n2 ; b�n2)(bIn2)�1mN (e�n1+n2 ; b�n2)
this statistic is already computationally attractive since only e�n1+n2 must be determined. However, for use in

an update setting a modified version will be proposed.

For EMM the following Wald, LR and LM type tests for structural stability are proposed. These are analogies

with the test statistics for structural stability proposed in Andrews and Fair (1988). Note the presence of the

computationally unattractive estimators b�n2 and e�n1+n2 in the expressions for the test-statistics below.

W : = (b�n2 � b�n1)0 [n1bV�11 (b�n1) + n2[bV2(b�n2)]�1(b�n2 � b�n1)
LR : = [n1m

0

N (e�n1+n2 ; b�n1)(bIn1)�1mN(e�n1+n2 ; b�n1) +
n2m

0

N (e�n1+n2 ; b�n2)(bIn2)�1mN (e�n1+n2 ; b�n2)]�
[n1m

0

N(b�n1 ; b�n1)(bIn1)�1mN (b�n1 ; b�n1) +
n2m

0

N (b�n2 ; b�n2)(bIn2)�1mN (b�n1 ; b�n1)]
LM : = n1m

0

N (e�n1+n2 ; b�n1)(bIn1)�1M1(b�n1 ; b�n1)bV�11 (b�n1)M0

1(
b�n1 ; b�n1)(bIn1 )�1mN (e�n1+n2 ; b�n1) +

n2m
0

N (e�n1+n2 ; b�n2)(bIn2)�1M2(b�n2 ; b�n2)bV�12 (b�n2)M0

2(
b�n2 ; b�n2)(bIn2)�1mN (e�n1+n2 ; b�n2)

For GMM, Newey (1985) shows that the W,LR and LM tests are asymptotically equivalent. Trivially, these re-

sults carry over to an EMM setting. Furthermore these tests have optimal local asymptotic power against alter-

natives of different form than the PSP test for EMM4 see Van der Sluis (1997a). The PSP test has optimal local

asymptotic power against alternatives of the form HB
l : As said above the JSS test has optimal local asymptotic

power against yet another class of alternatives, HA
l :

A class of modified J-tests is proposed here.

4For completeness’ sake: the PSP test for EMM reads

PSP := n2m
0

N (b�n1 ; b�n2)fbIn2 + kM2(b�n1 ; b�n2)[M0

1(b�n1 ; b�n1)bI�1n1
M1(b�n1 ; b�n1)]�1M0

2(b�n1 ; b�n2)g�1mN (b�n1 ; b�n2)
8



Definition 1 For any root-n consistent estimator b� :

JSS
�(b�) := n1m

0

N (b�; b�n1)(bIn1)�1mN (b�; b�n1) + n2m
0

N (b�; b�n2)(bIn2 )�1mN (b�; b�n2)�	(b�)
where

	(b�) := [

2X
i:=1

nim
0

N (b�; b�ni)(bIni)�1Mi(b�; b�ni)][ 2X
i:=1

nibVi(b�)]�1[ 2X
i:=1

niM
0

i(
b�; b�ni)(bIni)�1mN (b�; b�ni)]

This modification is based on the following property

Property 2 Under HA
l this JSS�(b�) is asymptotically identical to JSS: (Proof: trivial from Ahn (1995) for the

GMM case).

A class of modified LM/LR/Wald test is also proposed.

Definition 2 For any root-n consistent estimator b�; the statistic P(b�) is defined as

P(b�) = 2X
i=1

nim
0

N (b�; b�ni)(bIni)�1Mi(b�; b�ni)bV�1i (b�)M0

i(
b�; b�ni)(bIni)�1mN (b�; b�ni)�	(b�)

here 	(b�) is taken as above.

This modification is based on the following properties which have been first proposed in the GMM case by

Ahn (1995):

Property 3 For any root-n consistent estimator b�, P(b�) is asymptotically identical to the LR statistic.

Property 4 P(e�n1+n2) equals(!) the LM statistic.

Property 5 P(b�n1) is asymptotically identical to the W statistic.

Application of Newey (1985) proposition 3 tells us that P(e�n1+n2) has maximum power against HC
l : Be-

cause of the asymptotic equivalence between any P(b�) and the Wald, LR and the LM statistic, we define for

EMM the following computationally attractive Wald, LR and LM type tests for structural stability which have

maximum power against HC
l

W
� := P(b�n1)

LR
�(b�) := P(b�) for any root-n consistent b�

LM = P(e�n1+n2)
The W� test requires only the computation of b�n1 and therefore it is computationally attractive. The LM�

test also requires only one computationally intensive EMM-optimization round for the sample in order to find

under HB
l

we have PSPEMM has a noncentral �2q2 distribution with noncentrality parameter �PSPEMM ; given by

�PSP := �
0

2I
�1

2
[I2 � c2M2(�0; �2)[

2X
i:=1

M
0

i(�0; �i)I
�1

i
Mi(�0; �2)]

�1M
0

2(�0; �i)]I
�1

2
�2

where c2 := limn1;n2!1
n2

n1+n2
:

See Van der Sluis (1997a) for details and for an application in the context of exchange rates.
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e�n1+n2 : Compared to the original form of the LM test which requires three optimization rounds namely forb�n1 ; b�n2 and e�n1+n2 ; this is an enormous gain. However using e�n1+n2 does not fit into the updating framework,

presented here. Let �i := plimni!1
b�niand the factor ci := limn1;n2!1

ni
n1+n2

All P(�) statistics have a noncentral �2p with noncentrality parameter �P given by

�P : = �
0M0

2(�0; �2)I�12 [I2 � c2M2(�0; �2) �
[c1M

0

1(�0; �1)I�11 M1(�0; �1) + c2M
0

2(�0; �2)I�12 M2(�0; �2)]
�1 �

M0

2(�0; �2)]I�12 M2(�0; �2)�

If p = q2 the P(�) and PSP tests in Van der Sluis (1997a) are asymptotically identical. For q2 > p the

PSP tests have more degrees of freedom than the P(�) based tests where the noncentrality parameters are equal

under HC
l . Consequently the P(�) statistics have higher power against HC

l : On the other hand the PSP test has

maximum power towards HB
l :

The JSS� or JSS statistics have a noncentral �2q1+q2�p distribution with noncentrality parameter �JSS�

given by

�JSS� := �
0

1;2[I�11;2 � I�11;2M1;2[M
0

1;2I�11;2M1;2]
�1M0

1;2I�11;2 ]�1;2

where

M1;2 : = [c1M
0

1(�0; �1); c2M
0

2(�0; �2)]
0

I1;2 : = diag(I1; I2)
�1;2 : = [

p
c1�

0

1;
p
c2�

0

2]
0

As usual there is a connection between the efficiency of the estimator and the power of a test. The non-centrality

parameter often reveals this connection. Following Tauchen (1996) in his exposition of the full efficiency of

estimators, let V�10 be the asymptotic variance-covariance matrix of the ML estimator of �0: Let V�1fKi;Li
be

the asymptotic variance-covariance matrix of the EMM estimator based on a score f with lags Ki and Li and

observations ni

Property 6 Theorem 2 in Gallant & Long (1997), we have that, under certain conditions, for any i :

lim
Ki!1

lim
Li!1

V�1fKi;Li
= V�10 as ni !1

In our case this result extends to the noncentrality parameter of the P statistics

Property 7

lim
K1;K2;L1;L2!1

�P = c1�
0V�10 � as n1; n2 !1

(Proof: simple algebraic manipulations)

By the Cramer-Rao inequality we have that conditionally on ci; the highest asymptotic power is achieved in

the limiting case, yielding in a uniformly most powerful test. Consequently, we should increase q1 with n1 and

q2 with n2:

It is not very likely that for the �JSS� such property exists. Maybe further research will be more conclusive

on this. The main thing to note here is that the JSS test becomes more stringent with an increasing number of

10



moment conditions. In many applications the test will probably become too stringent and it may be wise to test

for structural stability using only a subset of the moment conditions. The same is true for the PSP test in Van

der Sluis (1997a). A full Monte Carlo study will be needed to assess the finite sample properties of these tests

and it may turn out that it is wise to adjust the critical values of these tests. Another possibility is to apply the

same techniques as in Liu and Zhang (1996) to these stability tests. In this paper a new specification tests is

proposed that minimizes the inference bias of the Hansen overidentifying J test caused by the approximation

error in the auxiliary model.

It should be noted that any root-n consistent estimator may be plugged into the modifications of the test-

statistics. This makes it possible to plug in estimates from different estimation techniques. Note that in case

we choose for the LM/LR/Wald tests our moments in an optimal way, that is following the EMM methodology,

asymptotically the highest power possible is obtained, namely the power associated with the Cramer-Rao lower

bound from maximum likelihood, while leaving the hypothesis HC
A unchanged. A different choice of the mo-

ment conditions for the JSS test and the PSP test induces different overidentifying restrictions, so different

alternative hypotheses.

5 Application to stochastic volatility models

The following classes of stochastic volatility models are considered. The reader is advised to consult Ghysels

et al. (1995) in case of nonfamiliarity with these type of models. Stochastic volatility models are mainly used

to model the conditional heteroskedasticity in financial time-series, such as stock prices, exchange rates and

interest rates. The main difference with ARCH type of models is the fact that some elements in the specification

are latent. The first class of stochastic volatility models we consider is the following

yt = �t�t

ln�2t = ! +
Pp

i=1 �i ln�
2
t�i + �t +

Pq
i=1 �i�t�i

�t � NID(0; 1); �t � NID(0; �2�)

t = 1; : : : ; T

For obvious reasons this class of models will be referred to as SARMAV(p; q) models5. In the recent literature

mainly the SARMAV(1; 0)model is considered. In the current application this class of model will also mainly be

considered. Several modifications of this model are considered. One modification is the SARMAV(p; q)�t(�)
model. This class of models may capture more of the excess kurtosis observed in financial time-series. This

model reads
yt = �t�t

ln�2t = ! +
Pp

i=1 �iL
i ln�2t + ��(1 +

Pq
j=1 �jL

j)�t

�t � t�=
q

�
��2

; �t � NID(0; �2�)

t = 1; : : : ; T

where � is treated as a parameter to be estimated. Since financial time-series often show asymmetric behaviour

an asymmetric modification of the SARMAV models may be considered: the ASARMAV6 model. This model

5Stochastic AutoRegressive Moving Average Volatility models
6Asymmetric Stochastic AutoRegressive Moving Average Volatility. A different form of the specification may be of more interest,

namely where �t�1 and �t are correlated.
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is defined as follows

yt = �t�t

ln�2t = ! +
Pp

i=1 �iL
i ln�2t + ��(1 +

Pq
j=1 �jL

j)�t

�t � NID(0; 1); �t � NID(0; 1);Corr(�t�1; �t) = �; � 1 � � � 1

t = 1; : : : ; T

This model only differs from the SARMAV specification that the �t�1 and �t are correlated. This allows for

asymmetric behaviour or skewness as in EGARCH models. Trivially, the SARMAV model is a special case of

the ASARMAV model with � = 0:As for standard ARMA models, stationarity is governed by the � parameters,

so for stationarity the roots of 1-�1z1 � �2z
2 � :::� �pz

p must lie outside the unit circle.

Stochastic volatility models arise in option pricing. The issue of stability testing may be thought of as one

were financial institutions are calculating option prices from the estimates of a stochastic volatility model (see

Hull & White (1987)). With the arrival of new data there is a dilemma. Should the financial institution estimate

the stochastic volatility model again in order the obtain more up to date option prices or not? This question may

be answered by the above computationally attractive test statistics.

The data are daily data of the S&P500. In the next subsections the score generator, the data, some practical

issues on the implementation of EMM and the results are successively presented.

5.1 Score generator

As explained in section 2, the class of auxiliary models are taken from the SNP class of models of Gallant &

Nychka (1987), building on earlier work of Phillips (1983). It is reported in the literature that the performance

of the SNP model is very much enhanced in case a parametric model is used as a leading term. The parametric

model is taken from the EGARCH class of models (Nelson (1991)). With GARCH models (Bollerslev (1986))

a problem arises concerning stationarity. On itself this is not a problem see Nelson & Cao (1991) and Kleibergen

& Van Dijk (1993), but for EMM it is, since EMM hinges on concepts as ergodicity and stationarity, it must be

guaranteed that the simulated series generates a stable score-generator. For parameter values outside the most

stringent parameter space this cannot be guaranteed. For a more extensive discussion of this issue, reference is

made to Andersen & Lund (1997) and Van der Sluis (1997a). Moreover, for GARCH models parameter esti-

mates will often turn out to be on this most stringent IGARCH boundary. On this IGARCH boundary the error

variances become infinite. Because of this property a comparison of a long simulated IGARCH series with real

financial data shows that IGARCH models are rather far from realistic. Pure ARCH models (Engle (1982)) were

not considered because often many ARCH parameters are needed to capture all the persistent heteroskedastic-

ity in the data. This plethora of parameters may cause the same problems as reported in Andersen & Sørensen

(1996). In this paper stochastic volatility models are estimated by means of GMM. Andersen & Sørensen report

that the use of too many moments drastically deteriorates GMM estimation.

Another argument for the use of the EGARCH model is the fact that it is in some sense a closer approxima-

tion to a stochastic volatility model, see Nelson & Foster (1994). The last argument is the fact that EGARCH

model is a richer model consequently there are more directions of misspecification captured by tests that are

based on these models. For example the EGARCH model on itself is able to capture asymmetry, the GARCH

model is not. Therefore changes in asymmetry are not picked up by tests based on a GARCH score generator,

whereas the EGARCH score generator might pick up some of the changes in asymmetry.
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The EGARCH class of models is defined as

yt = �t�t

�2t = expf�0 +
Pp

i=1 
i ln�
2
t�i + (1 + �

q
i:=1�iL

i)[�1zt�1 + �2(jzt�1j � Ejzt�1j)]g
�t � NID(0; 1)

t = 1; : : : ; T

Extensive analysis of these type of models can be found in Bollerslev et al. (1994). The stationarity conditions

can be derived in exactly the same way as in the ARMA models à la Box-Jenkins, so only the 
 parameters mat-

ter for stationarity. For more complicated stochastic volatility models than the one considered here EGARCH

models were successfully used as a leading term in the score generator in Andersen & Lund (1996 & 1997).

The metaphor window for a likelihood function of Poirier (1991) may also be appropriate in this respect. The

EGARCH(p; q)-H(Kx;Kz) model serves as a window by which we view the world. Here world is a methaphor

for a SARMAV model, which is of course a rather narrow view on the world. If the window is soiled, we need

to wash or abandon it. The choice of the window determines our perspective of the world. In the case of an

EGARCH(p; q)-H(Kx;Kz) the following panorama is given: The 
 parameters give us a idea of the persistence

in the data, in particular
Pp

i=1 
i will serve as a measure of persistence. The �0 parameter is a measure of the

unconditional variance. The term 1 +
Pq

i=1 �i reflects the short-run sensitivity to innovations. The term �1

reflects the asymmetric volatility effect that is often present in financial time series. The �2 parameter measures

the changes in zt in reaction with the conditional heteroskedasticity. In case Kx = 0, letting Kz > 0 induces a

time-homogeneous non-Gaussian error structure. The case Kx > 0 induces heterogeneous innovation densities

beyond the EGARCH model. Since we believe the EGARCH model captures all this heterogeneity, Kx > 0

will not be necessary. This was also very much supported by our empirical findings. To the author’s knowledge

there are no guidelines provided yet for assessment of the individual coefficients of the Hermite polynomial.

5.2 The data

The data under investigation are raw daily end of day quotes of the S&P500 index. The breakpoint is not set

at, but two weeks after Black Monday in October 1987. This is done because inspection of the data reveals that

in the aftermath of Black Monday the market was still very volatile. Taking Black Monday as a breakpoint for

structural stability tests may be interesting for various reasons. The awareness that a crash of this size can occur

may change the animal spirits of the investors. Less hypothetically: the Black Monday crash induced a change

in the institutions of the trading mechanisms and a revision of many computer programs for automatic trading.

Revision of the assumptions underlying program trading may be the main source for a structural break. In the

early 1980s computerized programs for automatic trading became rather popular. Program trading is used for

three types of investments: portfolio insurance (hedging), stock index arbitrage and speculative trading. These

types of programs surely made the market more efficient, however some assumptions underlying program trad-

ing were proven wrong on Black Monday. Insurance, Arbitrage and Speculation are based on the fact that stock

index futures follow actual stock prices. During Black Monday this did not happen. Small gaps between futures

and stock prices are used for the so-called riskless arbitrage. Big gaps may seem to be a dream come true for

arbitrageurs and speculators, however for arbitrage or opposite trading, an order on the futures market and on the

stock market must be executed simultaneously. This was not possible with a very high volume, moreover con-

ditions were changing constantly, therefore many arbitrageurs and speculators ceased trading. In 1988 several

regulations were set on program trading.
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Data were available up to December 1993. Our post-sample thus consists of 1322 data points, starting date:

beginning of November 1987 end date: end of December 1993. The sample was chosen to be of the same size

as the post-sample, ranging from early September 1981 till two weeks after Black Monday 1987. Both data

sets were first differenced in 100*log(data). The series are plotted in figure 1. Some preliminary data analysis

is provided in table 1. The skewness and kurtosis are both much higher for the sample than they are for the

post-sample. This is very much due to Black Monday and its aftermath. As we see from the correlograms in

figure 2a and 2b, there may be some autocorrelation of the yt be present in the data. However, only a very few

autocorrelations are marginally significant on a 5% level. However for samples of this size a 5% significance

level may be too high. In addition to this, the only lag that is marginally significant in both sample and post-

sample is lag number five. This lag may correspond with the day of the week effect. There are at least three

possible ways to deal with this issue. The first one is the take this effect into account in the model. This means

an increase of the dimension of the problem with two, which will substantially increase the computing time. The

second option may be to filter all the correlation out. However this may cause other unwanted problems. The

third one is to do nothing. Such behaviour is supported by Theoretical Finance and considering the correlation

is very small, the effect on the volatility process may very well be futile. Simulations from a pure stochastic

volatility model show also the same kind of autocorrelograms for yt. The test should therefore be whether the

zt are autocorrelated not the yt: This will be investigated in section 5.4.

5.3 Implementation

Coding was done in Ox 1.11 (Doornik (1996))7 and in C/C++. The code is extensively described and made

available in Van der Sluis (1997b). The code was executed on a P5-90, a P5-133 and on several nodes of a

SP2 at SARA8. The SP2 consists of 76 nodes where each node represents one IBM RS/6000 processor. With

the current implementation of Ox for the RS/6000, the speed of one of such a node can be compared to twice

a P5-133 for some particular Ox benchmark program. Since each node consists of 512 Mb RAM, less paging

is needed, which speeds up the process. In principle one node can be used exclusively. For this problem it was

very important to hard code the bulk of the Ox procedures in C. Linking them to Ox by means of a dynamic link

library on Windows based machines. Static linking had to be used on the SP2. The reported computing times

in this paper are based on the OX/C program EmmPack 1.0 (Van der Sluis (1997b)). It is worth mentioning

that the C code on the RS/6000 turned out to be less efficient than the C code on the Pentium machines. This

makes that for Ox/C programs a P5-133 and a RS/6000 are comparable in speed. It is also worth mentioning

that parallellisation techniques on the SP2 are under investigation.

In the Monte Carlo computation of the expectation of the score generator, a variance reduction technique

called antithetic variables was used, see Ross (1990) for a general context and Andersen & Lund (1996a) for a

specific context. This means that y1(�) and y2(�) are simulated using antithetic variables, e.g. � and ��: Also

in the calculation of the test-statistics this technique has been employed. A dramatic decrease of the variance

is obtained. The precision of the expectation in the antithetic variables case, is currently under investigation.

Using antithetic variables leads to a dramatic decrease of computing time and memory allocation. Computing

time which is still very long. For example, with N = 2 � 50; 000; which may be somewhat economical, one

BFGS9 iteration, including numerical derivatives, takes, for the simplest model SARMAV(1; 0) model, with an

7Some prelimary data analysis was done in PcGive (Hendry & Doornik (1996)) and in Gauss 3.14.
8Stichting Academisch Rekencentrum Amsterdam
9Quasi-Newton method developed by Broyden-Fletcher-Goldfarb-Shanno.
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EGARCH(1; 2)-H(5; 0) auxiliary model, takes approximately fifteen minutes on a P5-133. Depending on the

starting values usually more than 15 iterations are needed10. Typically N = 2 � 50; 000 is at least necessary

to obtain four or five digit accuracy in the estimates, this means roughly about 4 hours on one RS/6000 for a

complete maximization.. An extra half an hour for the computation of all the numerical derivatives (M) matrices

and test-statistics, makes it indeed a very demanding estimation method. .

Opposed to the generic case in Gallant & Tauchen (1996) in this specific case no starting values are needed to

start up the stochastic volatility model. Parallel to ARMA time series models, the ASARMAV model is started

up as11

y0 = �0�0;

ln�20 � N(!=(1�
pX

i=1

�i); �
2
�(1 +

qX
j=1

�2j )(1�
pX

i=1

�2i )
�1)

�0 � N(0; 1); Corr(�0; ln�
2
0) = �=

vuut(1 +

qX
j=1

�2j )(1�
pX

i=1

�2i )
�1

Since stationarity is assumed12 and for this model the marginal distribution of y0 is known, there is no need to

use starting values here. Antithetic variables are also used for determining (y0; �0):

Another practical issue is the fact that the absolute function in the EGARCH model causes severe numerical

problems. This is caused by the fact that the absolute function is non-differentiable in zero. The function jzj is

therefore replaced by a function which gives a very close approximation to the absolute function and is smooth

around zero13. In the EGARCH model the term Ejztj is approximated by
q

2
�
; treating zt as Gaussian, this

approximation is futile.

Besides the first-order approximationsm, the other ”computationally attractive” estimators were obtained

from the integration sampler of Kim et al. (1996) using the OX/C program as documented in Shephard (1996).

For the sample sizes in this paper computing times for these estimators are typically in terms of minutes rather

than hours or days as they are currently for EMM. This may be due to the fact that the evaluation of the EGARCH-

H score vector is probably more complex than the evaluations needed in one of the Shephard (1996) procedures.

The rationale of using the mode of the Bayesian posteriors as a root-n consistent estimator in a classical sense

can be found in Barndorff-Nielsen and Cox (1994)14. For details on the procedures the readers is advised to

consult Kim et al. (1996) and Shephard (1996) and the references therein. In the application here their settings

are closely followed and the integration sampler is used as it generally has lowest inefficiency measure15.

10One technique the author found useful is to use in the first say, twenty, iterations less replications, say N = 2 � 10; 000 and then to

use a higher number of replications, say N = 2� 50; 000 when more precision is needed.
11The case � = 0; is trivial from ordinary time-series models. The case � 6= 0 is straightforward algebra. Note that in the stationary

region it is always the case that
q

(1 +
Pq

j=1
�2
j
)(1�

Pp

i=1
�2
i
)�1 � 1: Taking care of the fact that jCorr(�0; ln�20)j should be� 1:

12Parallel to the stationarity condition for the ARMA and EGARCH model, the stationarity condition for the ASARMAV model is that

the roots of the polynomial 1� �1z � : : :� �pz
p must lie outside the unit circle.

13A good choice is given in Andersen & Lund (1996a) here jzj is replaced by b(z) where b(z) = jzj for jzj � �=2K and b(z) =

(�=2 � cos(Kz))=K for jzj < �=2K and set e.g. K = 100:
14One can even argue that these modes of the Bayesian procedures have Maximum Likelihood properties in a classical sense. However,

we choose to stay on the safe side and take only the property of root-n consistency as this a sufficient condition.
15Here inefficiency has a different, namely Bayesian, meaning than it has in the rest of the paper. The interested reader should consult

the original papers.
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5.4 Results

At first, an auxiliary model must be specified to the sample, the post-sample and the combined sample and

post-sample. In table 2 and 3 several model selection criteria are given. As discussed in section 2 our main

guide is the BIC. As argued in section 5.1 an EGARCH model was taken as a leading term. For the sample the

EGARCH(1; 2)-H(5; 0) model was chosen as a score-generator, estimates for this optimal model are given in

table 4. For the post-sample the results for the EGARCH(1; 1) and EGARCH(1; 2) leading terms are given in

table 5 and 6. The BIC is in favour of an EGARCH(1; 1)-H(8; 0) model. The estimates that were obtained for

the optimal auxiliary model of the post-sample are given in figure 7. For the combination of sample and post-

sample the model selection criteria are displayed in table 8 and table 9. The estimates are given in table 10. Here

the BIC is in favour of the EGARCH(1; 2)-H(8; 0) model. We observe that the persistence parameter 
1 in the

post-sample is higher than the persistence in the sample. The asymmertry, governed by �1; is slightly higher in

the sample than it is in the post-sample. The �2 parameter is much higher in the sample than in the post-sample.

It is hard to assess the properties of the SNP terms here, we mention that many terms are significantly different

from zero so we have estimated a density that is different from the Gaussian density.

The structural model was specified according to the following strategy: first some preliminary analysis was

done using series ofN = 2�10; 000 in the Monte Carlo evaluation. After that the model was estimated withN =

2 � 50; 000 and these estimates are reported. The first structural model that was considered is a SARMAV(1,0)

model. The J�test as given in table 13 is too high. However in the EMM literature it is very often the case that the

J�test is too high. Van der Sluis (1997a) is an exception on this rule. In this paper the stochastic volatility model

is, according to the J�test, accepted for exchange rates using the same types of auxiliary models. Liu and Zhang

(1996) identify a possible cause of the fact that the overidentifying tests is too high and give a remedy. From

the individual elements of the score vector, as given in table 15, we learn that almost every term is significantly

different from zero.

The next model that was considered is the SARMAV(1,0)-t model16. This model converged badly as was

also reported for about the same model in Gallant et al. (1994). The number of degrees of freedom seemed to

converge to infinity. This model is still under investigation by the author but is abandoned in this paper. The

next model is the ASARMAV(1,0) model which can incorporate asymmetry. The J�test is lower than that of

the SARMAV(1,0) but still too high as can be seen from table 13. Also observe from table 15 and 16 that some

of the individual elements of the J test that correspond to the EGARCH parameters are significantly different

from zero for the SARMAV(1,0) model, but are not significantly different from zero for the ASARMAV(1,0)

model. This highlights the diagnostic capabilities of EMM-based test procedures. The ASARMAV(1,0) model

still does not pass the test because of the nonparametric part. Finally, the non-markovian SARMAV(1,1) gave

no substantial decrease of the Hansen J-test. We therefore decided not to consider the ASARMAV(1,0) and

SARMAV(1,1) in the rest of the paper and to postpone a study of these types of asymmetric and non-markovian

models to a later stage17. Therefore we decided to consider only the SARMAV(1,0) model with respect to the

tests for structural stability. This is also convenient because the Bayesian procedure that we will use below are

only implemented for the SARMAV(1,0).

16The author simultaneously estimated (!; �; ��; v): The error terms �t were scaled to have a variance approximately equal to one. Such

was achieved by dividing the �t by their theoretical variance �
��2

.
17Note assumptions 1 and 2 in Gallant & Long (1997) allow for the use non-markovian structural models.
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Parameter estimates18 and t�values for the SARMAV(1,0) estimated by EMM are

yt = �t�t

ln�2t = �:006
(1:12)

+ :975
(50:0)

ln�2t�1+ :101
(2:08)

�t

Figure 3 provides a plot of two antithetic simulated series of the same size as the sample in the optimum. Com-

parison of the simulated series and the real sample tells us that this model cannot generate such extreme values

as Black Monday. Also several longer series of 100,000 (about 400 years of daily data!) were plotted and it is

revealed that in all these 400 years an extreme value such as Black Monday is not even by far generated. Like-

wise a pure EGARCH model at the estimated parameter values will never be able to generate such an outlier.

In the EGARCH case the outliers must be generated by the SNP part of the error-term. This explains partly

why the individual elements in the J�test as displayed in table 15 and 16, are significantly different from their

neutral values.

More importantly from table 12 we can see that the SARMAV(1,0) does not capture the excess kurtosis and

skewness that are present in the data (see table 1). In table 12 theoretical and where needed simulated char-

acteristics of the models in the optimum are provided. For the SARMAV(p; q) and SARMAV(p; q) � tv the

theoretical values of the mean, standard deviations, skewness and kurtosis are known, see appendix B. These

theoretical values are respectively 0, expf !
2(1��)

+
�2�

4(1��2)
g (= :9398) ,0 and 3 expf 2!

1��
+

2�2�
(1��2)

(= 4:485)

for the SARMAV(1; 0) model in the optimum.

The integration sampler of Kim et al. (1996) provides us19 with relatively fast parameter estimates of the

post-sample. These posterior modes are

yt = �t�t

ln�2t = �:007 + :979 ln�2t�1 + :136�t

Note that the Bayesian estimates for the post-sample are almost equal to the EMM estimates of the sample. Only

the stochastic volatility is higher which may be reasonable considering the volatility on the market after Black

Monday. The first order approximations are given in table 11. Note that the estimates for �� are slightly higher

than in the sample, but lower than the Bayesian estimates for the post-sample. The other parameters are all about

the same, except for number IV. There is also an indication that the unconditional volatility !=(1� �) is about

the same over sample and post-sample. The stochastic component in the volatility becomes a little bigger over

the post-sample.

The tests for structural stability are given in tables 14, 17 and 18. The tests JSS like and PSP tests all give

rejections at any reasonable level, whereas the Wald like tests are rather low and will give acceptance at some

reasonable level. Only in the LR case the outcome of the test is dependent on the estimator for the post-sample

that is used. The LR test based on the Bayesian procedure reject whereas the others reject at a 0.05 level. This

is clearly due to the higher estimate of �� the Bayesian procedure generated. High values for the J, JSS and

PSP tests seem to be usual for models estimated by EMM, probably due to the rather stringent nature of the

overidentifying restrictions, but also due to the fact that the EGARCH(1; 2)-H(5; 0) model with 11 parameters

probably describes this data set much better than a SARMAV(1; 0) model with only 3 parameters.

Individual t�values of the components of the test-statistics have been given in table 15. We observe that for

the J test almost every element is significantly different from zero. For the PSP test the outcomes are not that
18Using N = 2 � 50; 000
19Ox-procedures were kindly provided by Neil Shephard.
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clear. The general conclusion is that for the S&P500 data set the SV models for both sample and post-sample

are misspecified. This source of mispecification is mainly detected by the moment based tests and not by the

tests for parameter variation. More importantly this source of misspecification is not due to the extreme Black

Monday outlier but is also present in the more ”decent” post-sample. This can also be seen from a comparison

of the values of the auxiliary parameters of the sample and post-sample. Further research in this direction will

certainly be needed.

6 Conclusion

After the papers quoted in the above, this paper also offers again a successful application of the EMM technique

of Gallant & Tauchen (1996). The success is very much due to recent results in Gallant & Long (1997) were the

use of non-Markovian score-generators is justified. This result is crucial for a successful application of EMM in

the context of financial time-series with high persistence in the volatility. Markovian score-generators have too

many dimensions and would thus make a practical application unsuccessful. See Andersen & Sørensen (1996)

for numerical evidence in a GMM context. Other fine-tuning of the EMM technique was achieved by the use of

antithetic variables, as was also advocated in Andersen & Lund (1997), and the use of knowledge of the marginal

distribution of the ASARMAV models, omitting the need for long simulated starting values. This knowledge

cannot be used for level ASARMAV models, since for these types of models the stationarity conditions are yet

unknown. Then it is needed to simulate a long series of starting values to ensure stationarity at the particular

parameter values.

Apart from estimation this paper concentrates on tests for structural stability in the context of EMM. In a

related paper Van der Sluis (1997a) a prediction test was derived and applied to stochastic volatility models.

By definition this prediction test do not require computationally intenstive estimators for the post-sample. In

this paper other tests for structural stablity were investigated. Modifications were made to keep the same op-

timality procedures while again no computationally intensive estimators are needed for the post-sample, only

root�n consistency is required. Root�n consistent first order approximations of the EMM estimators were thus

derived. These are plugged into the test statistics. Also other root-n consistent estimators than the first order ap-

proximations proposed here, such as the ones of Kim et al. (1996), were plugged in. In the context of stochastic

volatility models some other estimators that may be plugged in are the Kalman Filter estimator of Harvey et al.

(1994), the Simulated Maximum Likelihood estimator of Danielsson (1994), the Bayesian Gibbs estimator of

Jacquier et al. (1994) and the GMM estimator of Andersen & Sørensen (1996).

From a theoretical viewpoint it is better to calculate every computationally intensive EMM estimates for the

structural parameters of the sample, post-sample and combination, and then perform the exact stability tests as

also provided in the paper. However, in a real-life situation where option traders are every minute or even second

confronted with the arrival of new data a quick assessment of the question whether to update or not to update

the parameters in option pricing models is desirable.

The take-away of the empirical example here is that for this particular data-set the structural model is mis-

specified and the auxiliary model may be better in modeling the data. In case the Wald type tests for structural

stability are used as a general specification test this source of misspecification will not be identified. The JSS

and PSP tests do identify this source of misspecification indicating on a deeper source of misspecification. This

misspecification is not due to the outlier at Black Monday in the sample, the same misspecification is present in
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the post-sample. The unconditional volatily seems to be stable over the sample and post-sample. The idiosyn-

cratic stochastic volatility component seems to be bigger over the post-sample than it is over the sample.

Maybe JSS tests should be considered for subsets of the moment conditions only since these test may be-

come too stringent in the context of EMM. This is also true for the J test and PSP test. Results in this paper

show that using an expanding SNP model with any root-n consistent estimator, these Wald/LM/LR tests are

uniformly most powerful. For the SARMAV(1; 0) a decomposition of the noncentrality parameters for this par-

ticular model may be interesting: structural stability tests may have low power for other directions of misspec-

ification, such as ! and � on the line !=(1� �); where the unconditional variance is equal for the sample and

post-sample but the ! and � are different in the sample and post-sample.

It should be noted that the complexity of the estimation problem is rather high. The complexity of the nu-

merical problem may be even too high for the given state of computer technology. For this reason some of the

conclusions in the paper are rather preliminary, Monte Carlo studies are needed to pass judgement on this in the

future. It is the author’s believe that this will take at least a decade before a full scale Monte Carlo study can be

done in the context of EMM.
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A Appendix

This appendix contains proofs of the theorems set forth in the paper

Proof of theorem 1

Let m12 := [m
0

(�; �1)m
0

(�; �2)]
0

; I1;2 := diag(I1 I2);M1;2 := [M0

1(�; �1)M
0

2(�; �2)]
0

and consider

e�n1+n2 = argmin
�2�

m
0

12I1;2m12

we can write this as

e�n1+n2 = argmin
�2�

[m
0

(�; �1)I�11 m(�; �2) +m
0

2(�; �2)I�12 m2(�; �2)]

we linearise this problem around the consistent estimators b�n1 and b�n2 and consider

b�I
n1+n2

: = argmin
�2�

f[m0

(b�n1 ; �1) +M1(b�n1 ; �1)(� � b�n1)]0I�11 [m
0

(b�n1 ; �1) +M1(b�n1 ; �1)(� � b�n1)] +
[m

0

(b�n2 ; �2) +M2(b�n2 ; �2)(� � b�n2)]0I�12 [m
0

(b�n2 ; �2) +M2(b�n2 ; �2)(� � b�n2)]g
Note that we are back to the well-known case of pooling GLS estimators and therefore

b�I
n1+n2 =

0
@" M1(b�n1 ; �1)

M2(b�n2 ; �2)
#0 "

I1 0

0 I2

#�1 "
M1(b�n1 ; �1)
M2(b�n2 ; �2)

#1A
�1

�

"
M1(b�n1 ; �1)
M2(b�n2 ; �2)

#0 "
I1 0

0 I2

#�1 "
�m(b�n1 ; �1) +M1(b�n1 ; �1)b�n1
�m(b�n2 ; �2) +M2(b�n2 ; �2)b�n2

#

and thus

b�I
n1+n2 = [V1(b�n1) + V2(b�n2)]�1 �

[V1(b�n1)b�n1 + V2(b�n2)b�n2 �M0

1(
b�n1 ; �1)(I1)�1m(b�n1 ; �1)�M0

2(
b�n2 ; �2)(I2)�1m(b�n2 ; �2)]

By standard arguments on Taylor expansions we have b�I
n1+n2

is asymptotically equivalent with e�n1+n2
Proof of theorem 2

The same as the previous proof except a Taylor expansion is taken around b�n1
Proof of theorem 3

The same as the previous proof except a Taylor expansion is taken around b�n1 and b��n2
Proof of theorem 4

The same as the previous proof except a Taylor expansion is taken around b��n2
B Appendix

This appendix somewhat generalizes the results of appendix A in Jacquier, Polson and Rossi (1994). The results

are based on moment generating functions as found in e.g. Abramowitz & Stegun (1970). Let � := !=(1 �

24



Pp
i=1 �i); and �2 := �2�(1+

Pq
j=1 �

2
j )(1�

Pp
i=1 �

2
i )
�1: For the ASARMAV(p; q) model we have for � = 0 :

Eyit = 0 for i odd

Ey2t = E(�2t �
2
t ) = E(�2t )E(�

2
t ) = expf�+

1

2
�2)

Ey4t = E(�4t �
4
t ) = E(�4t )E(�

4
t ) = 3 expf2�+ 2�2)

Ey6t = E(�6t �
6
t ) = E(�6t )E(�

6
t ) = 15 expf3�+

9

2
�2)

Unfortunately for the ASARMAV(p; q) model for � 6= 0 the author does not have a tractable solution yet. For

the SARMAV(p; q)-t� model we find

Eyit = 0 for i odd

Ey2t = E(�2t �
2
t ) = E(�2t )E(�

2
t ) = expf�+

1

2
�2g; � > 2

Ey4t = E(�4t �
4
t ) = E(�4t )E(�

4
t ) =

� � 2

� � 4
9 expf2�+ 2�2); � > 4

Ey6t = E(�6t �
6
t ) = E(�6t )E(�

6
t ) =

(v � 2)2152

(v � 4)(v � 6)
expf3�+

9

2
�2); � > 6

Therefore for the SARMAV(p; q) model the kurtosis equals 3e�
2

and for the SARMAV(p; q)�t� model it equals

9 ��2
��4e

�2 :
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Figure 1: Sample and Post-sample
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Figure 2a: Correlogram of the sample
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Figure 2b: Correlogram of the post-sample

sample post-sample

Mean :068 :042

Std.Dv. 1:19 :934

Skewness �5:36 �:652
Kurtosis 111 8:50

Minimum �22:9 �7:01
Maximum 8:71 3:66

Normality Chiˆ2 1894 453

Table 1: Some descriptive statistics of the sample and post-sample
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q Kz Log Likl AIC HQC BIC

1 1 �1766:0 �1772:0 �1777:8 �1787:5
1 2 �1765:7 �1772:7 �1779:5 �1790:9
1 3 �1748:8 �1756:8 �1764:6 �1777:6
1 4 �1748:6 �1757:6 �1766:3 �1780:9
1 5 �1748:6 �1758:6 �1768:3 �1784:5
1 6 �1721:7 �1732:7 �1743:4 �1761:2
1 7 �1719:6 �1731:6 �1743:3 �1762:7
1 8 �1719:4 �1732:4 �1745:0 �1766:1
1 9 �1757:7 �1771:7 �1785:3 �1808:0
1 10 �1755:6 �1770:6 �1785:1 �1809:5

Table 2: Various model selection criteria for the EGARCH(1; q)-H(Kx; 0) model for the sample

q Kz Log Likl AIC HQC BIC

2 1 �1753:3 �1760:3 �1767:1 �1778:5
2 2 �1753:1 �1761:1 �1768:9 �1781:9
2 3 �1753:4 �1762:4 �1771:1 �1785:7
2 4 �1722:3 �1732:3 �1742:0 �1758:2
2 5 �1718:7 �1729:7 �1740:4 �1758:2
2 6 �1718:4 �1730:4 �1742:1 �1761:5
2 7 �1716:1 �1729:1 �1741:7 �1762:8
2 8 �1711:4 �1725:4 �1739:0 �1761:7
2 9 �1710:6 �1725:6 �1740:2 �1764:5
2 10 �1710:6 �1726:6 �1742:2 �1768:1

Table 3: Various model selection criteria for the EGARCH(1; q)-H(Kz; 0) model for the sample
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parameters t-values

�0 :028 5:56

�1 �:783 �14:4
�2 :484 9:57


1 :959 77:8

�1 �:149 �11:9
�2 :336 18:2

a10 :049 3:52

a20 �:058 �4:27
a30 �:004 :243

a40 :086 5:75

a50 �:039 �2:54

Table 4: Sample estimates for the parameters of the EGARCH(1; 2)-H(5; 0) model.

Kz Log Likl AIC HQC BIC

1 �1706:6 �1712:6 �1718:5 �1728:2
2 �1706:3 �1713:3 �1720:1 �1731:5
3 �1695:1 �1703:1 �1710:9 �1723:9
4 �1660:5 �1669:5 �1678:2 �1692:8
5 �1659:7 �1669:7 �1679:4 �1695:6
6 �1659:6 �1670:6 �1681:3 �1699:1
7 �1650:4 �1662:4 �1674:1 �1693:5
8 �1641:7 �1654:7: �1667:3 �1688:4
9 �1641:3 �1655:3 �1668:9 �1691:6
10 �1641:3 �1656:3 �1670:8 �1695:2

Table 5: Various model selection criteria for the EGARCH(1; 1)-H(Kx; 0) model for the post-sample
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Kz Log Likl AIC HQC BIC

1 �1703:3 �1710:3 �1717:1 �1728:4
2 �1692:9 �1700:9 �1708:7 �1721:6
3 �1691:4 �1700:4 �1709:1 �1723:7
4 �1656:0 �1666:0 �1675:7 �1691:9
5 �1654:9 �1665:9 �1676:6 �1694:4
6 �1652:3 �1664:3 �1675:9 �1695:4
7 �1646:9 �1659:9 �1672:5 �1693:6
8 �1640:1 �1654:1 �1667:7 �1690:4
9 �1639:7 �1654:7 �1669:6 �1693:6
10 �1639:3 �1655:3 �1670:9 �1696:8

Table 6: Various model selection criteria for the EGARCH(1; 2)-H(Kx; 0) model for the post-sample

parameters t-values

�0 :016 13:0

�1 :475 13:5

�2 �:867 �26:1

1 :986 269

�1 �:107 �5:26
�2 :127 12:7

a10 :029 2:10

a20 �:142 �9:85
a30 �:003 �:17
a40 :060 3:94

a50 :028 1:69

a60 �:090 �5:79

Table 7: Post-sample estimates for the parameters of the EGARCH(1; 2)-H(6; 0) model.
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Kz Log Likl AIC HQC BIC

1 �3494:9 �3500:9 �3507:3 �3518:5
2 �3494:4 �3501:4 �3508:9 �3522:0
3 �3481:7 �3489:7 �3498:3 �3513:3
4 �3398:5 �3407:5 �3417:1 �3434:0
5 �3396:2 �3406:2 �3416:9 �3435:6
6 �3396:1 �3407:1 �3418:8 �3439:5
7 �3391:2 �3403:2 �3416:0 �3438:5
8 �3371:5 �3384:5 �3398:3 �3422:7
9 �3371:5 �3385:5 �3400:4 �3426:6
10 �3371:4 �3386:4 �3402:4 �3430:5

Table 8: Various model selection criteria for the EGARCH(1; 1)-H(Kx; 0) model for the combined sample

and post-sample

Kz Log Likl AIC HQC BIC

1 �3484:8 �3491:8 �3499:2 �3512:3
2 �3484:4 �3492:4 �3500:9 �3515:9
3 �3465:0 �3474:0 �3483:6 �3500:4
4 �3391:3 �3401:3 �3412:0 �3430:7
5 �3388:0 �3399:0 �3410:7 �3431:4
6 �3387:3 �3399:3 �3412:1 �3434:6
7 �3376:4 �3389:4 �3403:2 �3427:6
8 �3364:2 �3378:2 �3393:1 �3419:4
9 �3363:9 �3378:9 �3394:9 �3423:0
10 �3363:9 �3379:9 �3396:9 �3426:9

Table 9: Various model selection criteria for the EGARCH(1; 2)-H(Kx; 0) model for the combined sample

and post-sample

31



parameters t-values

�0 :039 22:9

�1 �:210 �8:69
�2 �:195 �8:32

1 :977 265

�1 �:129 �12:0
�2 :240 22:4

a10 :038 3:83

a20 �:164 �16:1
a30 �:014 �1:39
a40 :103 10:2

a50 �:026 �2:29
a60 �:033 �2:91
a70 �:020 �1:66
a80 :049 4:32

Table 10: EGARCH(1; 2)-H(8; 0) model for the combination of sample and post-sample.

Estimation Technique ! � ��

Bayesian �:007 :979 :136

I �:008 :975 :105

II �:008 :975 :104

IV �:012 :974 :115

V �:007 :969 :106

Table 11: Computationally attractive estimates of the SARMAV(1; 0) model
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Model mean std.dv skewness kurtosis minimum maximum

SARMAV(1; 0) 0 :9398 0 3:663 �5:074� 5:821�

ASARMAV(1; 0) 0 :9909 �:2938� 4:881� �7:666� 5:844�

Table 12: Salient features of the structural models considered in the paper. For the SARMAV(p; q) and

ASARMAV(p; q) of the mean, standard deviations, skewness and kurtosis are known, see appendix B, so here

the theoretical values at the optimum are reported. Otherwise the statistics are calculated from a two simulated

antithetic series of size 50,000, these are marked with an asterisk.

Model J P- value df

SARMAV(1; 0) 33:8 :000 8

SARMAV(1; 1) 33:6 :000 7

ASARMAV(1; 0) 24:0 :001 7

Table 13: Hansen J test for overidentifying restrictions for several structural models

Model PSP P- value df

SARMAV(1; 0) 32:06 :0014 12

Table 14: PSP-test for several structural models
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moments J PSP

�0 :133 :083

�1 �1:52 �:159
�2 �2:06 �:099

1 �2:30 �:015
�1 1:85 :295

�2 �:883 :052

a10 �3:57 �1:33
a20 �2:46 :011

a30 �:367 :124

a40 �2:40 �:109
a50 2:74 �:168
a60 - :289

Table 15: t-values for the individual elements of the J test and PSP test for the SARMAV(1; 0) model

moments J

�0 �1:14
�1 :579

�2 �:608

1 �:558
�1 :658

�2 �:420
a10 �3:48
a20 �2:79
a30 �:390
a40 �1:83
a50 2:56

Table 16: t-values for the individual elements of the J test and PSP test for the ASARMAV(1; 0) model
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JSS�(b�n1) JSS�(b�In2) JSS�(b�IIn2) JSS�(b�IVn2 ) JSS�(b�Vn2) JSS�(b�Bn2)
X 67.3 53.2 54.1 53.2 91.4 235

P value .000 .000 .000 .000 .000 .000

df 20 20 20 20 20 20

Table 17: Test statistics for structural stability of the optimal stochastic volatility model

W� =LR�(b�n1) LR�(b�In2) LR�(b�IIn2) LR�(b�IVn2 ) LR�(b�Vn2) LR�(b�Bn2)
.218 3.30 3.78 3.30 .070 21.0

.988 .348 .286 .348 .995 .000

3 3 3 3 3 3

Table 18: Test statistics for structural stability of the optimal stochastic volatility model
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