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Abstract

Estimation using simul ation techniques may be very time consuming. Specification testsfor structural sta-
bility often require more than one of such computationally demanding estimators. Typically one for the sam-
ple, one for the post-sample and one for the combination of sample and post-sample is required. This paper
describes structural stability tests for use with the Efficient Method of Moments technique. Computationally
attractive post-sample estimators and test-statistics for structural stability are proposed. These computation-
ally attractive test-statistics are modifications of the Lagrange Multiplier, Likelihood Ratio and Wald tests for
structural stability and of the Hansen-type test statistics for structural stability. The modification ensures the
same asymptotic optimality properties against certain local alternatives as those based on efficient computa-
tionally intensive estimators for the post-sample. However no time consuming estimators are needed for the
post-sample and for the combination of sample and post-sample. Evaluation of these tests has been performed
in the context of a stochastic volatility model for the S& P500.
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1 Introduction

Indirect inference, as described in Gourieroux et al. (1993) or the Efficient Method of Moments (EMM) as de-
scribed in Gallant and Tauchen (1996), may be of great help in case the likelihood of a model is intractable.
These techniquesrequire arepeated evaluation of very complex functionsunder simulation and are thereforein
general very time consuming. Consequently, computationally attractive structural stability tests and updates of
the estimates may beof interest with thearrival of post-sampledata. Specification testsfor structural stability of -
ten require more than one of such computationally demanding estimators. Typically, onefor the sample, onefor
the post-sample and one for the combination of sample and post-sampleisrequired. In this paper computation-
ally attractive structural stability tests and updates of the estimatesfor EMM are proposed. Aswill be motivated
in the next section the author judges the EMM technique superior to the original indirect inference technique
of Gourieroux et al. (1993) from a viewpoint of efficiency and stability. Therefore the findings are presented
for EMM only. The samerational e can easily be transcribed to an indirect inference setting aswell. Because of
its lack of efficiency, it is doubtful whether for substantial problems satisfying results will be obtained with the
original indirect inference approach.

Therational e for indirect inference techniquesisthat there is some auxiliary model whichisrelatively easy
to estimateandisrichin the sensethat it mimicsthe propertiesof the structural model to acertain degree. More-
over, to obtain the full maximum likelihood efficiency of EMM, it isrequired that the auxiliary model in some
sense embedsthe structural model, see Gallant & Long (1997), Gallant and Tauchen (1996) and Tauchen (1996)
for details. Thisauxiliary model will be used to evaluate the data at hand. Next, datawill be simulated from the
original model. Finally the parametersare calibrated in asuch away that the dynamic properties of the auxiliary
model under the real dataand under the simulated data match.

Since auxiliary models will be in general easy to estimate, it is relatively easy to make an update of the
auxiliary parameters with the arrival of new data. From this shift in the estimates of the auxiliary parameter
estimates we may deduce afirst order approximation for the shift in the structural parameters, yielding one-step
linearized EMM estimators. Moreimportant than thesefirst order approximationsaretest-statisticsfor structural
stability that can be based on such first order approximations.

Several tests for structural stability have been proposed in the GMM literature: LM/LR/Wald type test for
structural stability (Andrewsand Fair (1988)), the Hansen J-test for structural stability (Ghyselsand Hall (1990hb))
and the Prediction tests (Ghysels & Hall (1990a)). In a GMM context each of these test-statistics has optimal
local power in acertain relevant direction of misspecification. These test statistics are easily transcribed to an
EMM/Indirect inference context. Their optimality propertiesalso carry over.

With the exception of the prediction tests, which have been analysed in an EMM context in Van der Sluis
(1997a)!, all these tests statistics require very demanding EMM estimates for the structural parameters, other
than that of the sample: an EMM estimate of the post-sample and an EMM estimate of the combination of sam-
ple and post-sample is required. In this paper ssmple modifications of the LM/LR/Wald test-statistics and of
the J-test for structural stability, are proposed that require only root-n consistent estimators and still have the
same optimal power in the same direction as the originals. Of course their small sample properties will differ.

LA different class of stability testsviz. post sample prediction test (PSP), for EMM was proposed in Van der Sluis (1997a). Thistest was
firstintroduced for GMM by Ghyselsand Hall (1990a) and Hof man and Pagan (1989). Thenature of thisPSP test isalready computationally
dtractive, since only EMM estimates for the sample are required. Therefore there is no need to consider modifications of the PSP test. In
particular the PSP test arises as a special case here.



These madifications hinge on work of Ahn (1995) in thefield of GMM specification testing. In Ahn (1995) test
statistics are designed for any root-n consistent estimators that have the same asymptotic power properties as
those computed with GMM estimators. These results are transcribed to the EMM case. As aroot-n consistent
estimator for example a ssmple one-step linearized EMM estimator may be used. Naturally, the first-order ap-
proximationsto the structural model are root-n consistent. In the application in this paper also other estimators,
like Bayesian estimators which are computationally more attractive than the EMM estimator are plugged in.
The plan of the paper isasfollows. Section 2 will provide a short overview of EMM. This sectionismainly
included to introduce some notation. For a better understanding of the method the reader is strongly recom-
mended to consult Gallant & Tauchen (1996) and Tauchen (1996). Section 3 will introducethe first order EMM
approximationsto the estimators of the structural model. Section 4 containsthe derived computationally attrac-
tive specification tests. Besidesthat, formulae are given for the exact test statistics and noncentrality parameters.
In section 5 data from the S& P500 in the context of stochastic volatility models are considered. The breakpoint
is set at Black Monday 1987. Instability is associated with different volatility regimes. Besides the first order
approximations, in this context the Bayesian method of Kim et al. (1996) providesvery fast and possibly accu-
rate estimators. The modesof these Bayesian posteriorsaretaken asroot-n consistent estimatorsin the classical
sense (seee.g. Barndorff-Nielsen & Cox (1994)) and plugged into the test-statistics for structural stability. The
outcomes are interpreted. Easily available estimators and tests for structural stability are very much of interest
in this context, because stochastic volatility models can be used for the pricing of options, see Hull & White
(1987). The parameters of the stochastic volatility models are important determinantsin option pricing formu-
lae. Since the estimation of a stochastic volatility model using EMM is very time consuming and the next step
of determining the option pricesis very time consuming aswell, thisisan important issue. Section 6 concludes.

2 Efficient Method of Moments

In the original indirect inference setup of Gourieroux et al. (1993) the connection between the auxiliary model
and the structural model is established through the parameters of the auxiliary model. Gallant and Tauchen
(1996) solvetheefficiency problemsindirect inference has by proposing the efficient method of moments (EMM)
technique. Here the connection between the auxiliary model and the dynamic model is achieved by means of
the scores of the auxiliary model, where strict guidelines are given for the choice of the auxiliary model. This
method does not only yield efficient estimates but also provides a more stable set-up: scores are better compa:
rable over different models than parameters are. In short the EMM method goes as follows:. the sequence of
densities for the structural model will be denoted

{p1(21 | 0), {pe(ye | Itﬁ)}to;o:ﬁ

The sequence of densities for the auxiliary processwill be denoted as

{fi(wr | B),{ fe(y: | wtﬂ)}fﬂ}

where z; and w; are observable endogenous variables. We impose assumptions 1 and 2 from Gallant & Long
(1997) on the structural model. These are technical assumptionsthat imply standard properties of quasi maxi-
mum likelihood estimators and properties of estimators based on Hermite expansions which will be explained
below. Let us define

m(9, ) = / / % o f(y | w, B)ply | . 8)dyp(z | 6)dx
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the expected score of theauxiliary model under the dynamic model. Theexpectationiswritteninintegral formto
anticipate on the fact the we will approximatethisintegral by standard Monte Carlo techniques. Thesimulation
approach solely consists of calculating this function as

1 X 9
ma(0.8) =5 X 550 F(5-(6) |0 (6).9)

T:=1
Let n denote the sample size, the EMM estimator is defined as

~ ~

w(Zy) = argminmy (8, 5,)(Z,) "' m (6, 5)

>

where 7,, is aweighting matrix and Bn denotes an estimator for the parameter of the auxiliary model. The op-
timal weighting matrix hereis obviously

n

Iy = nliﬂéo Vo[% Z{%ln fe(ye | we, B7)}]
t:=1

where 3* is a (pseudo) true value.
With the theory of misspecified models (White (1994)) one can prove consistency for the parameters of the
auxiliary model under several assumptions posed in Gallant & Tauchen (1996),

lim (3, — 8*) =0as.

n—oo

and asymptotic normality
V(B — B%) 5 N(0,(J0) " (Zo)(Fo) ™)

Here
I = Vol S wn il | i, B
n = 0\/ﬁt::1 aﬂ t\Yt ty POn
1o} , —~
I = _%mN(0076n>

where 6, denotes the (pseudo) true value. Obvioudly,

lim 7, = T,

n— o0

lim jn = jO

One can a'so provefor the scores
Vimy (80, Ba) % N(0,)

Hence consistency and asymptotic normality of the estimator of the structural parameters 9,, follow:
Vi(B(To) = 60) = N(0,[Mo(Zo) ™' Mo] ™)

where My = %m(eo, ﬂx)

In order to obtain full maximum likelihood efficiency it is required that the auxiliary model in some sense
embeds the structural model. The semi-nonparametric (SNP) density of Gallant & Nychka (1987)? may be a

2Building on earlier work of Phillips (1983). See also Fenton & Gallant (1996a+b) for recent results on SNP densities.



good choice, see Gallant & Tauchen (1996) and Gallant & Long (1997). Theauxiliary model isbuilt asfollows.
Let y;(0o) denote the process under investigation, ju:(8p) := E;—1[y:(fo)], the conditional mean, o2 () :=
Var;_1[y:(Ao) — 11+ (8p)] the conditional varianceand z; (Ag) := [y:(80) — 11¢(60)] - [07 (80)] ~'/? the standardized
process. The SNP density now takes the following form

[PI (Ztvﬂ?t)]Q o(zt)

\/_f (w, )2 P(u)du

where ¢ denotes the standard normal density, « := (y;—1, ..., y:—1,) and the polynomials

f(z1;0) =

K. K. K,
Pr(z,2¢) := E ai(we)z": g E aljxt
2:=0 2:=0 7:=0

A specific formfor the polynomialsistaken, namely orthogonal Hermite polynomials(see Gallant et al. (1991)
and Andersen & Lund (1997)). Relevant formulae for the derivatives can be found in Abramowitz & Stegun
(1972) and Fenton & Gallant (1996a). The model o2(6) and 1 (6) is chosen as aleading termin the Hermite
expansion to relieve the expansion of some of its task, improving its small sample properties. We note that the
SNP density offersavery convenient way of modelling. It omitsthe curse of dimensionality often encountered
in the area of non parametric models while sharing many of the optimality properties of the Kernel estimators
of Silverman (1986).

In this paper structural stability is of interest, therefore the following nomenclature is employed: nwill
denote the number of observations in the sample and n, will denote the number of observations in the post-
sample. The auxiliary estimator that employs sample data only, will be denoted Bnl . The auxiliary estimator
that employs post-sample dataonly will be denoted an . Likewisethe EMM estimators §n1 and §n2 aredenoted.
Furthermore estimators that are based on both sample and post-sampl e data are denoted B,LIMQ and §n1+n2 .

In specification testing the following estimator for 6, will often be of (theoretical) interest, see e.g. Rothen-
berg (1973)

B ens 1= argminlmy (8. 5 ) I3 v (8. By ) + iy (8, By T v (B, B, )

where fn,. denotes a consistent estimator for the asymptotic covariance matrix of m (6, Bn,. ), Z; fori=1,2.

In this paper we will take p := dim(6), the dimension of the parameters of the structural model, ¢; :=
dim(f3, ), thedimension of the parameters of the auxiliary model for the sampleand ¢ := dim(3), the dimen-
sion of the parameters of the auxiliary model for the post-sample. The number of moment conditions for the
sample ¢; and for the post-sample ¢» will be determined using several criteria. For EMM, it is necessary that ¢;
increaseswith n; and g withnsy. Notein thisrespect the conceptual differencewith GMM. It will automatically
happen that ¢; and ¢» will increase with ny and n», respectively, using any of the model specification criteria
such as the Akaike Information Criterion (AIC, Akaike (1973)), the Schwarz Criterion (BIC, Schwarz (1978))
or the Hannan-Quinn Criterion (HQC, Hannan & Quinn (1979) and Quinn (1980))2. The theory of model se-
lection in the context of SNP modelsis not very well developed yet. Results in Eastwood (1991) may lead to

SBAIC=TInL - |8]

BIC=TInL —0.58|InT

HQC=TInL — |f|InlnT

In this context, L denotes the loglikelihood of the auxiliary model in the optimum, 7" denotes the number of observations and | 3| the
number of freely estimated auxiliary parameters. For some properties in the context of multivariate time-series see L titkepohl (1990).



believe AIC isoptimal in this case. However, asfor multivariate ARMA models, the AIC may overfit the model
to noise in the data so we may be better off by following the BIC or the HQC. The same findings were reported
in Andersen & Lund (1997). In their seminal paper Gallant & Tauchen (1996) rely on the BIC in their applica-
tions. If testing by abattery of specification testsindicates that the BIC-optimal model isinadequate, see Bansal
et al. (1995) and Tauchen et al. (1996), the model is further expanded.

3 Updating based on different auxiliary models for sample and post-
sample

Say we haveasampleof sizen; and esti mators@n1 and Bnl based onthissampleat hand. Thearrival of new data
of size n» or the desire to apply tests for structural stability, may force us to redo the whole EMM estimation
in order to obtain a§n2 for the post-sample or to obtain a§n1+n2 or §n1+n2 for the combined data set. This
may be very time consuming. However in general estimation of Bng will not cost much too much computing
time. Note that the auxiliary model need not be the same for sample and post-sample. At timen; we already
havem (§n1 , Bnl ). Transcription of the one-step linearized GMM estimator yields aone-step linearized EMM
estimator

0y, = Oy = Vo ' (B ) M8y, Bra) (Zn) ™'y (B B
where V() := M} (6, B, )(Zn,) "L M(6, Bo,).-
Property 1 Application of lemma 4 of Newey (1985) yields
VB, —62) = 0,(1)
Pooling of the estimatorsin an optimal way may bedonein several different ways. Thepoolingsin theorems
1till 4 are all based on Taylor expansions around consistent estimators under the null. Theorem 1 is based on

a Taylor expansion around §n1 and §n2, theorem 2 around §n1, theorem 3 around §n1 and 5;2 and theorem 4
around 0% .

Theorem 1 The pooled estimator given by
Briiny = V1On,) + V2(00,)] " (B, B, + Va(B, ),
=M Oy, B N T0) " By By ) = MOy, B )(Z2) 1By, B,
is asymptotically equivalent with 6, ., .
Theorem 2 The estimator

Oy = Wi(00)) + Va0 )] 100, )0, + Vo (B0, )80,
_M;(§n1 ) BTH )(Il)ilm(gru ) BTM) - M’Q(gru P Bn’_’ )(12)71m(§n1 ) Bn’_’ )]
is asymptotically equivalent with 6,,, ., .

Theorem 3 The estimator

é\lll

ni+n2

= V1(0n,) + V200,017 V1(001)00, + V2 (6,,)0,
_M’l(gm ) Bm )(Il)_lm(gm ) B\nl) - M;(gfm ) an )(12)_17”(@;2 ) an )]

is asymptotically equivalent with 5n1+n2



Theorem 4 The estimator

~

O s =0 —D1(05,) Ve (05, M (85, B ) (Z0) " m(85, s By )+ Mo (85, By ) (Z2) T (85, By )]
is asymptotically equivalent with 5n1+n2

A conceptually different update strategy is based on the specification (via AIC, HQC or BIC) of an overall
auxiliary model for the sample and post-sample. We are thusinterested in the estimator

~

Ony+n, = arg gg({)l m (8, Bry s )Zy,m(6, Brytms)

Taylor expansion around §n1 gives

0, ins = argminm’ By, By )+ M2 Oy B on) (000, )) Tt m' B By )+ Muga By By )00,
This comes down to ordinary GLS and therefore an explicit expression for é\,{l 1, isfound

é\rirl»ng = 0711 - [M1+2(6n1 ) ﬂnrl-nz )117-5-12/\/11+2(0n1 ) ﬁnl-l-nz )]_1M1+2 (0n1 ) ﬂnr‘rna )If-&Qm(en1 ’ ﬂnﬁ-na)

The usua arguments provide asymptotic equivalence of @,{1 +n, and Broytms-
Intuitively, an estimator based on an estimate of the auxiliary parameter of the combined sample and the
post-sample, such as é\,{l ny» Will give a better approximation to §n1+n2 than an approximation that is based
. Reversely, tests for structural
stability based on estimators of the auxiliary model for the separate sample and post-sample will have higher

on auxiliary estimators of the separate sample and post-sample such as !!!

ni+na

power than tests that are solely based on auxiliary estimators for the combined sample and post-sample. Future
research is needed in order to substantiate thisintuition.

4 Stability testing

Following, among others, Newey (1985), Ghysels and Hall (1990b) and Ahn (1995) for GMM, we identify the
following individual null hypothesesfor the EMM case.

H(l) : m(e(),ﬂl):O,vteTl

H(z) : m(go,ﬂz>:0, VtGTQ

Hg : 90 = 50
where the function m is the expected score of the auxiliary model under the dynamic model as defined in the
previous section. The stability hypothesisis defined as

Hj : Hy, H2 and H3 hold

The asymptotic power of the test depends on which of the individual null-hypothesesis violated. Define the
following alternative hypotheses

H4 : Atleast oneof Hi, H2 and H3 does not hold
HE . H} holds, at least one of H2 and H} does not hold

HG . Hi and H2 hold, H3 does not hold



Thisleads to the following local aternatives

Hln . \/n_lm(l%,ﬂl) = 51 + O(].)
H2 © nam(o, B2) = 62 + o(1)
H ' m(Bon,B2) =0, /na(Bon — o) =6

Let H := {(HL,H2)}>_,, HE = {(H},H2)}°_; and HY := {(H},H3)}>°_,. The usual Hansen J—test
may be used to test Hi. However, Ghysels and Hall (1990b) show that in the context of structural stability this
test has no power against local alternativesthat are of theform HY . In Ghyselsand Hall (1990a) a modification
of the Hansen test is proposed, the JSS test. Thistest has optimal power against H;.

Several interesting asymptotic equivalenciesfor the Wald/LR/LM typetests for structural stability proposed
by Andrews and Fair (1988) can be given. The upshot is that any of their statistics has maximum local power
against alternatives of the form HY .

Ahn (1995) shows, building on earlier work of Newey (1985) that the PSP test for GMM is an optimal
GMM test that has maximum power toward HZ . In the context of EMM these PSP statistics areinvestigatedin
an accompanying paper, Van der Sluis (19973).

Assaid, inaGMM context a modification of the Hansen test is proposed by Ghyselsand Hall (1990a). For
EMM we define the following analogy

JSS = nlmlN(anl+nzvgn1>(fn1 >_1mN(§n1+n273n1> + nzmlN(gn1+n2 ) an)(:/Z\n2>_1mN(5n1+n273n2>

this statistic is already computationally attractive since only 5n1 +n, Must be determined. However, for usein
an update setting amodified version will be proposed.

For EMM thefollowingWald, LR and LM typetestsfor structural stability are proposed. Theseareanalogies
with the test statistics for structural stability proposed in Andrews and Fair (1988). Note the presence of the
computationally unattractive estimators §n2 and 5n1+n2 in the expressions for the test-statistics bel ow.

Wt = (0n, = 00) [V (By) + 12V (80)] 7 By — B1y)
LR ¢ = [namiy (Bns s B ) Toa) " 0 By oms By +
021y (B Bua) Tna) ™y By s B =
[y By B )T ) iy (B By ) +
n21my (B, Bn) (o)~ 1 By, B )]
LM = mamy Otz Bon) (Lad) ™ Ma By B Vi O )My (B B ) T ) 10 (B s Br) +
n2my By o) (L) ™ M2 By B )V (B )Mo By B ) Tons) ™ 1y By By )
For GMM, Newey (1985) shows that the W,LR and LM tests are asymptotically equivalent. Trivialy, thesere-
sults carry over to an EMM setting. Furthermore these tests have optimal local asymptotic power against alter-
nativesof different form than the PSP test for EMM* see Van der Sluis (1997a). The PSP test has optimal local
asymptotic power against alternatives of the form H” . As said above the JSS test has optimal local asymptotic

power againgt yet another class of alternatives, H;*.
A class of modified J-testsis proposed here.

4For completeness’ sake: the PSP test for EMM reads

PSP := namy (Ony , Bno ) {Zna + kM2 (0ny s By M By, By ) M1 (B By )]~ M8y, By )}~ e (O, By )



Definition 1 For any root-n consistent estimator 9

-~ ’ ~ ~ ~ o~

ISS*(8) == num'y (8, By )Ty ) " (8, By ) + n2miny (8, Bry) (L) "t (8, By) — T (B)

where

anN ﬁn. An.) K@Bm)][z n;V ZHM 0 ﬁn.)( nz) lmN(é\vB\n;)]

=1 =1 =1

This modification is based on the following property

Property 2 Under H;* this JSS* (5) is asymptotically identical to JSS. (Proof: trivial from Ahn (1995) for the
GMM case).

A class of modified LM/LR/Wald test is also proposed.

Definition 2 For any root-n. consistent estimator 8, the statistic P(6 9) is defined as
—~ 2 A~ A~ —~ o~ A~ —~ -~ —~ ~
= ZnimN(eaBn;)(Zni>_1Mi(97Bniﬁ};l(e)Mi(evBni)(zn(')_lmN(evﬂnz) - (6)

here ¥(f) is taken as above.

This modification is based on the following properties which have been first proposed in the GMM case by
Ahn (1995):

Property 3 For any root-n consistent estimator 9, P& ) is asymptotically identical to the LR statistic.
Property 4 P(6,,, n,) equals(!) the LM statistic.
Property 5 P(6,,,) isasymptotically identical to the W statistic.

Application of Newey (1985) proposition 3 tells us that P(5n1+n2) has maximum power against HY. Be-
cause of the asymptotic equival ence between any P(@) and the Wald, LR and the LM statistic, we define for
EMM the following computationally attractive Wald, LR and LM type tests for structural stability which have
maximum power against HY’

W = P(On,)
LR*(6) := P(f)for any root-n consistent 6

LM = P(n,4n.)

QD) )

The W* test requires only the computation of §n1 and therefore it is computationally attractive. The LM*
test also requires only one computationally intensive EMM-optimization round for the samplein order to find

under HF we have PSPgyw has anoncentral qu distribution with noncentrality parameter Apsp,,,, > given by

Apsp —(52 [IQ—CZM2(90,52 ZM 00751) 1M (00752)} 12(90’5i)}1'_)_162
:=1

ng
ny+ng’

See Van der Sluis (1997a) for details and for an application in the context of exchange rates.

whereco := limp; ny—oo



0, +n,- Compared to the original form of the LM test which requires three optimization rounds namely for
§n1 , 5@ and 5n1+n2 , thisisan enormous gain. However using 5n1+n2 doesnot fit into the updating framework,
Bn,.and the factor ¢; := lim,,;, n,—oo nlrj_"ng

All P(0) statistics have a noncentral Xf, with noncentrality parameter Ap given by

presented here. Let 3; := plim

n; — 00

Ap 1 = (51/\/1/2(907@)12_1[12 — caM> (6o, 32) -
[t M (B0, BT M (6o, B1) + oMy (6o, 52) T3 Ma(Bo, 52)] " -
M;(90752)]I§1M2(907ﬂz>5

If p = ¢2 the P(#) and PSP tests in Van der Sluis (1997a) are asymptotically identical. For ¢; > p the
PSP tests have more degrees of freedom than the P(6) based tests where the noncentrality parameters are equal
under HY'. Consequently the P(#) statistics have higher power against H . On the other hand the PSP test has
maximum power towardsHP? .

The JSS* or JSS statistics have a noncentral Xgl tga—p distribution with noncentrality parameter \jss-

given by
Misse 1= 6y 5[T; 3 — Ty 3 My oM oI 3 My o] 7MY LT3 361
where
Mis : =[a My (6o, B1), caMy(b, B2)]
1172 L= diag(IhIQ)

bio o = (Ve Vb

Asusual thereisaconnection between the fficiency of the estimator and the power of atest. The non-centrality
parameter often reveals this connection. Following Tauchen (1996) in his exposition of the full efficiency of
estimators, let V,* be the asymptotic variance-covariance matrix of the ML estimator of ;. Let V;;i,Li be
the asymptotic variance-covariance matrix of the EMM estimator based on a score f with lags K; and L; and
observationsn;

Property 6 Theorem2in Gallant & Long (1997), we have that, under certain conditions, for any i :

lim lim V;' =V, 'asn; — o0

(;—oo L;—o0 Ki L
In our case thisresult extends to the noncentrality parameter of the P statistics

Property 7

! —
lim Ap =c16 V), 16a5n1,n2—>oo
K1,K2,L1,La—o0

(Proof: simple algebraic manipulations)

By the Cramer-Rao inequality we have that conditionally on ¢;, the highest asymptotic power is achievedin
the limiting case, yielding in a uniformly most powerful test. Consequently, we should increase ¢; with n; and
¢z With ns.

Itisnot very likely that for the Ajss+ such property exists. Maybe further research will be more conclusive
on this. The main thing to note here is that the JSS test becomes more stringent with an increasing number of

10



moment conditions. In many applicationsthe test will probably becometoo stringent and it may be wise to test
for structural stability using only a subset of the moment conditions. The sameistrue for the PSP test in Van
der Sluis (1997a). A full Monte Carlo study will be needed to assess the finite sample properties of these tests
and it may turn out that it is wise to adjust the critical values of these tests. Another possibility isto apply the
same techniques as in Liu and Zhang (1996) to these stability tests. In this paper a new specification tests is
proposed that minimizes the inference bias of the Hansen overidentifying .J test caused by the approximation
error in the auxiliary model.

It should be noted that any root-n consistent estimator may be plugged into the modifications of the test-
statistics. This makes it possible to plug in estimates from different estimation techniques. Note that in case
we choose for the LM/LR/Wald tests our momentsin an optimal way, that is following the EMM methodol ogy,
asymptotically the highest power possibleis obtained, namely the power associated with the Cramer-Rao lower
bound from maximum likelihood, while leaving the hypothesis HS unchanged. A different choice of the mo-
ment conditions for the JSS test and the PSP test induces different overidentifying restrictions, so different
alternative hypotheses.

5 Application to stochastic volatility models

The following classes of stochastic volatility models are considered. The reader is advised to consult Ghysels
et al. (1995) in case of nonfamiliarity with these type of models. Stochastic volatility models are mainly used
to model the conditional heteroskedasticity in financia time-series, such as stock prices, exchange rates and
interest rates. The main differencewith ARCH type of modelsisthe fact that some elementsin the specification
are latent. Thefirst class of stochastic volatility modelswe consider is the following

Yt = O€¢

Inof =w+ 30, pilno?_; +me+ 30 Gne—s
e ~ NID(0,1), 7 ~ N|D(07a727)

t=1,...,T

For obviousreasonsthis class of modelswill be referred to as SARMAV(p, ¢) models®. In the recent literature
mainly the SARMAV(1, 0) model isconsidered. Inthecurrent application thisclass of model will also mainly be
considered. Several modifications of this model are considered. One modification isthe SARMAV(p, ¢)—t(v)
model. This class of models may capture more of the excess kurtosis observed in financia time-series. This
model reads

Yt = O¢€¢

Inof =w+ 37 pil'lnof +oy(1+ 25:1 GL )me

€~ t,/\/555,m ~ NID(0, af,)

t=1,...,T
where v istreated as a parameter to be estimated. Since financial time-series often show asymmetric behaviour
an asymmetric modification of the SARMAV models may be considered: the ASARMAV® model. This model

5 Stochastic AutoRegressive Moving Average Volatility models
6 Asymmetric Stochastic AutoRegressive Moving Average Volatility. A different form of the specification may be of more interest,

namely where e; 1 and n; are correlated.
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is defined as follows

Yt = Ot€¢

Inof =w+ 37 pil'lnof +oy(1+ 25:1 GL e

€ ~ NID(O7 1),7% ~ '\”D(O7 1),C0rl’(et,1,nt) = )\, -1 S A S 1
t=1,...,T

This model only differs from the SARMAV specification that the e;_, and r, are correlated. This alows for
asymmetric behaviour or skewness asin EGARCH models. Trivially, the SARMAV model is a special case of
the ASARMAV model with A = 0. Asfor standard ARMA models, stationarity isgoverned by the p parameters,
so for stationarity the roots of 1-p; 2! — p222 — ... — p,zP must lie outside the unit circle.

Stochastic volatility models arise in option pricing. The issue of stability testing may be thought of as one
were financial institutions are calculating option prices from the estimates of a stochastic volatility model (see
Hull & White (1987)). With the arrival of new datathereisadilemma. Should the financial ingtitution estimate
the stochastic volatility model again in order the obtain more up to date option prices or not? This question may
be answered by the above computationally attractive test statistics.

Thedataare daily data of the S&P500. In the next subsections the score generator, the data, some practical
issues on the implementation of EMM and the results are successively presented.

5.1 Scoregenerator

As explained in section 2, the class of auxiliary models are taken from the SNP class of models of Gallant &
Nychka (1987), building on earlier work of Phillips (1983). It isreported in the literature that the performance
of the SNP model is very much enhanced in case a parametric model is used as aleading term. The parametric
model istaken fromthe EGARCH class of models (Nelson (1991)). With GARCH models (Bollerslev (1986))
aproblem arises concerning stationarity. Onitself thisisnot aproblem see Nelson & Cao (1991) and Kleibergen
& Van Dijk (1993), but for EMM it is, since EMM hinges on concepts as ergodicity and stationarity, it must be
guaranteed that the simulated series generates a stable score-generator. For parameter values outside the most
stringent parameter space this cannot be guaranteed. For a more extensive discussion of thisissue, referenceis
made to Andersen & Lund (1997) and Van der Sluis (1997a). Moreover, for GARCH models parameter esti-
mates will often turn out to be on this most stringent IGARCH boundary. On this IGARCH boundary the error
variances becomeinfinite. Because of this property acomparison of along simulated IGARCH series with real
financia datashowsthat IGARCH modelsarerather far fromrealistic. Pure ARCH models (Engle (1982)) were
not considered because often many ARCH parameters are needed to capture all the persistent heteroskedastic-
ity in the data. This plethoraof parameters may cause the same problems as reported in Andersen & Sgrensen
(1996). Inthis paper stochastic volatility modelsare estimated by means of GMM. Andersen & Sgrensen report
that the use of too many moments drastically deteriorates GMM estimation.

Another argument for the use of the EGARCH model isthefact that it isin some sense a closer approxima-
tion to astochastic volatility model, see Nelson & Foster (1994). The last argument is the fact that EGARCH
model is aricher model consequently there are more directions of misspecification captured by tests that are
based on these models. For examplethe EGARCH model on itself is able to capture asymmetry, the GARCH
model is not. Therefore changesin asymmetry are not picked up by tests based on a GARCH score generator,
whereas the EGARCH score generator might pick up some of the changesin asymmetry.
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The EGARCH class of modelsis defined as

Yt = O€¢

of =exp{ag + Y0 vilno? 4+ (1+Z)_ ;L) k1201 + k2(|2e1] — Elze1])]}
e ~ NID(0, 1)

t=1,...,T

Extensive analysis of these type of models can befound in Bollerdev et al. (1994). The stationarity conditions
can be derived in exactly the same way asin the ARMA modelsalaBox-Jenkins, so only the v parameters mat-
ter for stationarity. For more complicated stochastic volatility models than the one considered here EGARCH
models were successfully used as a leading term in the score generator in Andersen & Lund (1996 & 1997).
Themetaphor window for alikelihood function of Poirier (1991) may also be appropriateinthisrespect. The
EGARCH(p, q)-H(K,., K.) model servesasawindow by whichwe view theworld. Hereworld isamethaphor
for aSARMAV model, which is of course arather narrow view on the world. If the window is soiled, we need
to wash or abandon it. The choice of the window determines our perspective of the world. In the case of an
EGARCH(p, q)-H(K.., K .) thefollowing panoramaisgiven: The~y parametersgiveusaideaof thepersistence
inthe data, in particular >-7_, ~; will serve as ameasure of persistence. The «y parameter is ameasure of the
unconditional variance. Theterm 1 + Y"7_, «; reflects the short-run sensitivity to innovations. The term x4
reflects the asymmetric vol atility effect that is often present in financial time series. The k-, parameter measures
the changesin z; in reaction with the conditional heteroskedasticity. In case K, = 0, letting K, > 0 inducesa
time-homogeneousnon-Gaussian error structure. Thecase K, > 0 induces heterogeneousinnovation densities
beyond the EGARCH model. Since we believe the EGARCH model captures al this heterogeneity, K, > 0
will not be necessary. Thiswas a so very much supported by our empirical findings. To the author’sknowledge
there are no guidelines provided yet for assessment of theindividual coefficients of the Hermite polynomial.

5.2 Thedata

The data under investigation are raw daily end of day quotes of the S& P500 index. The breakpoint is not set
at, but two weeks after Black Monday in October 1987. Thisis done because inspection of the datarevealsthat
in the aftermath of Black Monday the market was still very volatile. Taking Black Monday as a breakpoint for
structural stability tests may beinteresting for variousreasons. The awarenessthat a crash of this size can occur
may change the animal spirits of theinvestors. Less hypothetically: the Black Monday crash induced a change
in the ingtitutions of the trading mechanisms and a revision of many computer programs for automatic trading.
Revision of the assumptions underlying program trading may be the main source for a structural break. In the
early 1980s computerized programs for automatic trading became rather popular. Program trading is used for
three types of investments. portfolio insurance (hedging), stock index arbitrage and speculativetrading. These
types of programs surely made the market more efficient, however some assumptions underlying program trad-
ing were provenwrong on Black Monday. Insurance, Arbitrage and Speculation are based on the fact that stock
index futuresfollow actual stock prices. During Black Monday this did not happen. Small gaps between futures
and stock prices are used for the so-called riskless arbitrage. Big gaps may seem to be a dream come true for
arbitrageursand speculators, however for arbitrage or oppositetrading, an order on the futuresmarket and on the
stock market must be executed simultaneously. Thiswas not possible with avery high volume, moreover con-
ditions were changing constantly, therefore many arbitrageurs and specul ators ceased trading. In 1988 several
regulationswere set on program trading.
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Datawere available up to December 1993. Our post-samplethus consists of 1322 data points, starting date:
beginning of November 1987 end date: end of December 1993. The sample was chosen to be of the same size
as the post-sample, ranging from early September 1981 till two weeks after Black Monday 1987. Both data
sets were first differenced in 100*log(data). The series are plotted in figure 1. Some preliminary data analysis
is provided in table 1. The skewness and kurtosis are both much higher for the sample than they are for the
post-sample. Thisis very much dueto Black Monday and its aftermath. As we see from the correlogramsin
figure 2a and 2b, there may be some autocorrelation of the y; be present in the data. However, only avery few
autocorrelations are marginally significant on a 5% level. However for samples of this size a 5% significance
level may be too high. In addition to this, the only lag that is marginally significant in both sample and post-
sample is lag number five. Thislag may correspond with the day of the week effect. There are at least three
possible ways to deal with thisissue. Thefirst oneis the take this effect into account in the model. This means
anincrease of the dimension of the problem with two, which will substantially increase the computingtime. The
second option may be to filter all the correlation out. However this may cause other unwanted problems. The
third one isto do nothing. Such behaviour is supported by Theoretical Finance and considering the correlation
is very small, the effect on the volatility process may very well be futile. Simulations from a pure stochastic
volatility model show also the same kind of autocorrelogramsfor y;. The test should therefore be whether the
z; are autocorrelated not the ;. Thiswill be investigated in section 5.4.

5.3 Implementation

Coding was donein Ox 1.11 (Doornik (1996))7 and in C/C++. The code is extensively described and made
available in Van der Sluis (1997b). The code was executed on a P5-90, a P5-133 and on several nodes of a
SP2 at SARA8. The SP2 consists of 76 nodes where each node represents one IBM RS/6000 processor. With
the current implementation of Ox for the RS/6000, the speed of one of such a hode can be compared to twice
a P5-133 for some particular Ox benchmark program. Since each node consists of 512 Mb RAM, less paging
is needed, which speeds up the process. In principle one node can be used exclusively. For this problem it was
very important to hard code the bulk of the Ox proceduresin C. Linking them to Ox by means of adynamiclink
library on Windows based machines. Static linking had to be used on the SP2. The reported computing times
in this paper are based on the OX/C program EmmPack 1.0 (Van der Sluis (1997h)). It is worth mentioning
that the C code on the RS/6000 turned out to be less efficient than the C code on the Pentium machines. This
makesthat for Ox/C programsaP5-133 and a RS/6000 are comparablein speed. It is also worth mentioning
that parallellisation techniques on the SP2 are under investigation.

In the Monte Carlo computation of the expectation of the score generator, a variance reduction technique
called antithetic variables was used, see Ross (1990) for a general context and Andersen & Lund (1996a) for a
specific context. Thismeansthat y; (#) and y-(6) are simulated using antithetic variables, e.g. ¢ and —e. Also
in the calculation of the test-statistics this technique has been employed. A dramatic decrease of the variance
is obtained. The precision of the expectation in the antithetic variables case, is currently under investigation.
Using antithetic variables leads to a dramatic decrease of computing time and memory allocation. Computing
time which is still very long. For example, with N = 2 x 50, 000, which may be somewhat economical, one
BFGS? iteration, including numerical derivatives, takes, for the simplest model SARMAV(1,0) model, with an

7Some prelimary data analysis was done in PcGive (Hendry & Doornik (1996)) and in Gauss 3.14.
8 Stichting Academisch Rekencentrum Amsterdam
9 Quasi-Newton method developed by Broyden-Fletcher-Gol dfarb-Shanno.
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EGARCH(1, 2)-H(5,0) auxiliary model, takes approximately fifteen minutes on a P5-133. Depending on the
starting values usually more than 15 iterations are needed'®. Typically N = 2 x 50,000 is at least necessary
to obtain four or five digit accuracy in the estimates, this means roughly about 4 hours on one RS/6000 for a
completemaximization.. Anextrahalf an hour for thecomputation of al thenumerical derivatives(M) matrices
and test-statistics, makesit indeed a very demanding estimation method. .

Opposedto thegeneric casein Gallant & Tauchen (1996) in this specific case no starting values are needed to
start up the stochastic volatility model. Parallel to ARMA time series models, the ASARMAV model is started
up ast!

Yo = €000,
/4 q /4
oy ~ Nw/(1=Y p)or(1+> 1=> p))™")
i=1 j=1 i=1
q P
e ~ N(0,1), Corr(eg,lnog) = A/, | (1+ > )AL= p?)~*
Jj=1 =1

Since stationarity is assumed'? and for this model the marginal distribution of y, is known, thereis no need to
use starting values here. Antithetic variables are also used for determining (yo, 0p)-

Another practical issueisthefact that the absolute functionin the EGARCH model causes severe numerical
problems. Thisis caused by the fact that the absolute function is non-differentiablein zero. The function |z| is
therefore replaced by afunction which givesa very close approximation to the absolute function and is smooth
around zero'®. In the EGARCH model the term E|z| is approximated by \/§ , treating z; as Gaussian, this
approximationisfutile.

Besides the first-order approximationsm, the other ” computationally attractive” estimators were obtained
from theintegration sampler of Kim et al. (1996) using the OX/C program as documented in Shephard (1996).
For the sample sizesin this paper computing times for these estimators are typically in terms of minutes rather
than hoursor daysasthey arecurrently for EMM. Thismay bedueto thefact that the eval uation of the EGARCH-
H scorevector is probably more complex than the eval uations needed in one of the Shephard (1996) procedures.
Therationale of using the mode of the Bayesian posteriors as aroot-n consistent estimator in a classical sense
can be found in Barndorff-Nielsen and Cox (1994)'“. For details on the procedures the readers is advised to
consult Kim et al. (1996) and Shephard (1996) and the referencestherein. In the application here their settings
are closely followed and the integration sampler is used as it generally has lowest inefficiency measure!®.

10 One technique the author found useful is to use in the first say, twenty, iterations less replications, say N = 2 x 10, 000 and then to
use a higher number of replications, say N = 2 x 50, 000 when more precision is needed.

1 Thecase A = 0, istrivial from ordinary time-series models. The case A # 0 is straightforward algebra. Note that in the stationary
region it is always the case that \/(1 + 23:1 g]i-’)(1 — Zle p?)~1 > 1. Taking care of thefact that |Corr(eo, In 02 )| shouldbe < 1.

12pgralle to the stationarity condition for the ARMA and EGARCH model, the stationarity condition for the ASARMAV model is that

the roots of the polynomia 1 — p1z — ... — pp2zP must lie outside the unit circle.

13 A good choice is given in Andersen & Lund (1996a) here |z| is replaced by b(z) where b(z) = |z| for |z| > =/2K and b(z) =
(/2 — cos(Kz))/K for |z| < /2K and sete.g. K = 100.

140ne can even argue that these modes of the Bayesian procedures have Maximum Likelihood properties in aclassical sense. However,

we choose to stay on the safe side and take only the property of root-n consistency as this a sufficient condition.
15Here inefficiency has a different, namely Bayesian, meaning than it has in the rest of the paper. The interested reader should consult

the original papers.
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5.4 Results

At first, an auxiliary model must be specified to the sample, the post-sample and the combined sample and
post-sample. In table 2 and 3 several model selection criteria are given. As discussed in section 2 our main
guideisthe BIC. Asargued in section 5.1 an EGARCH model was taken as aleading term. For the sample the
EGARCH(1, 2)-H(5,0) model was chosen as a score-generator, estimates for this optimal model are givenin
table 4. For the post-sample the results for the EGARCH(1, 1) and EGARCH(1, 2) leading terms are given in
table5and 6. The BIC isin favour of an EGARCHY(1, 1)-H(8, 0) model. The estimates that were obtained for
the optimal auxiliary model of the post-sample are given in figure 7. For the combination of sample and post-
samplethe model selection criteriaare displayedintable 8 and table 9. Theestimatesaregivenintable10. Here
the BIC isin favour of the EGARCH(1, 2)-H(8, 0) model. We observe that the persistence parameter ~; in the
post-sampleis higher than the persistencein the sample. The asymmertry, governed by x4, isdightly higherin
the samplethanitisin the post-sample. The k- parameter is much higher in the samplethan in the post-sample.
It ishard to assess the properties of the SNP terms here, we mention that many terms are significantly different
from zero so we have estimated a density that is different from the Gaussian density.

The structural model was specified according to the following strategy: first some preliminary analysis was
doneusing seriesof N = 2x10, 000 inthe Monte Carlo evaluation. After that themodel was estimated with NV =
2 % 50, 000 and these estimates are reported. Thefirst structural model that was considered isa SARMAV(1,0)
model. TheJ—test asgivenintable 13istoo high. Howeverinthe EMM literatureit isvery oftenthe casethat the
J—testistoo high. Vander Sluis(1997a) isan exceptiononthisrule. Inthis paper the stochastic volatility model
is, accordingto the J—test, accepted for exchangerates using the sasmetypes of auxiliary models. Liuand Zhang
(1996) identify a possible cause of the fact that the overidentifying tests is too high and give a remedy. From
theindividual elements of the score vector, asgiven in table 15, we learn that almost every term is significantly
different from zero.

The next mode! that was considered is the SARMAV(1,0)-t model 6. This model converged badly as was
also reported for about the same model in Gallant et al. (1994). The number of degrees of freedom seemed to
convergeto infinity. This model is still under investigation by the author but is abandoned in this paper. The
next model is the ASARMAV(1,0) model which can incorporate asymmetry. The J—test is lower than that of
the SARMAV(1,0) but still too high as can be seen from table 13. Also observe from table 15 and 16 that some
of the individual elements of the J test that correspond to the EGARCH parameters are significantly different
from zero for the SARMAV/(1,0) model, but are not significantly different from zero for the ASARMAV(1,0)
model. Thishighlights the diagnostic capabilities of EMM-based test procedures. The ASARMAV(1,0) model
till does not pass the test because of the nonparametric part. Finally, the non-markovian SARMAV(1,1) gave
no substantial decrease of the Hansen J-test. We therefore decided not to consider the ASARMAV(1,0) and
SARMAV(1,1) intherest of the paper and to postpone a study of these types of asymmetric and non-markovian
modelsto a later stage'”. Therefore we decided to consider only the SARMAV(1,0) model with respect to the
tests for structural stability. Thisis also convenient because the Bayesian procedure that we will use below are
only implemented for the SARMAV(1,0).

16 Theauthor simultaneously estimated (w, p, oy, v). Theerror terms e, were scaled to have avariance approximately equal to one. Such
was achieved by dividing the e; by their theoretical variance —~

v—2"

17Note assumptions 1 and 2 in Gallant & Long (1997) allow for the use non-markovian structural models.
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Parameter estimates'® and ¢ —values for the SARMAV(1,0) estimated by EMM are

Yt = Ot€t
Inog? = —.0064 .975 Ing? ,+ .101 n,
(1.12) (50.0) (2.08)

Figure 3 providesaplot of two antithetic simulated series of the same size as the samplein the optimum. Com-
parison of the simulated series and the real sample tells usthat thismodel cannot generate such extreme values
as Black Monday. Also several longer series of 100,000 (about 400 years of daily datal) were plotted and it is
revealed that in all these 400 years an extreme value such as Black Monday is not even by far generated. Like-
wise a pure EGARCH model at the estimated parameter values will never be able to generate such an outlier.
In the EGARCH case the outliers must be generated by the SNP part of the error-term. This explains partly
why the individual elementsin the J—test asdisplayed in table 15 and 16, are significantly different from their
neutral values.

Moreimportantly from table 12 we can see that the SARMAV/(1,0) does not capture the excess kurtosisand
skewness that are present in the data (see table 1). In table 12 theoretical and where needed simulated char-
acteristics of the models in the optimum are provided. For the SARMAV(p, ¢q) and SARMAV(p, q) — t, the
theoretical values of the mean, standard deviations, skewness and kurtosis are known, see appendix B. These
theoretical values are respectively 0, exp{ﬁ + 4(%@")2)} (=.9398) ,0and 3 exp{fpr + (12_”52) (= 4.485)
for the SARMAV(1, 0) model in the optimum.

The integration sampler of Kim et al. (1996) provides us'® with relatively fast parameter estimates of the

7

post-sample. These posterior modes are

Yt = Oté€t

Ino? = —.007+.9791no> | + .1361,

Notethat the Bayesian estimates for the post-sample are almost equal to the EMM estimates of the sample. Only
the stochastic volatility is higher which may be reasonable considering the volatility on the market after Black
Monday. Thefirst order approximationsare givenin table 11. Note that the estimates for o, are slightly higher
than inthe sample, but lower than the Bayesian estimates for the post-sample. The other parametersareall about
the same, except for number IV. Thereis aso an indication that the unconditiona volatility w/(1 — p) isabout
the same over sample and post-sample. The stochastic component in the volatility becomes alittle bigger over
the post-sample.

Thetests for structural stability are givenin tables 14, 17 and 18. Thetests JSS like and PSP tests all give
rejections at any reasonable level, whereas the Wald like tests are rather low and will give acceptance at some
reasonablelevel. Only inthe LR case the outcome of the test is dependent on the estimator for the post-sample
that is used. The LR test based on the Bayesian procedure reject whereas the others reject at a0.05 level. This
is clearly due to the higher estimate of ,, the Bayesian procedure generated. High values for the J, JSS and
PSP tests seem to be usual for models estimated by EMM, probably due to the rather stringent nature of the
overidentifying restrictions, but also due to the fact that the EGARCH(1, 2)-H(5, 0) model with 11 parameters
probably describes this data set much better than a SARMAV(1, 0) model with only 3 parameters.

Individual t—values of the components of the test-statistics have been givenin table 15. We observethat for
the J test ailmost every element is significantly different from zero. For the PSP test the outcomes are not that

18Using N = 2 % 50, 000
190x-procedures were kindly provided by Neil Shephard.
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clear. The general conclusion is that for the S& P500 data set the SV models for both sample and post-sample
are misspecified. This source of mispecification is mainly detected by the moment based tests and not by the
tests for parameter variation. More importantly this source of misspecification is not due to the extreme Black
Monday outlier but is also present in the more " decent” post-sample. This can also be seen from a comparison
of the values of the auxiliary parameters of the sample and post-sample. Further research in this direction will
certainly be needed.

6 Conclusion

After the papers quoted in the above, this paper al so offers again a successful application of the EMM technique
of Gallant & Tauchen (1996). The successisvery much dueto recent resultsin Gallant & Long (1997) werethe
use of non-Markovian score-generatorsisjustified. Thisresultiscrucial for asuccessful application of EMM in
the context of financial time-serieswith high persistence in the volatility. Markovian score-generators have too
many dimensions and would thus make a practical application unsuccessful. See Andersen & Sgrensen (1996)
for numerical evidencein a GMM context. Other fine-tuning of the EMM technique was achieved by the use of
antithetic variables, aswasal so advocated in Andersen & Lund (1997), and the use of knowledge of themarginal
distribution of the ASARMAV models, omitting the need for long simulated starting values. This knowledge
cannot be used for level ASARMAV models, since for these types of models the stationarity conditions are yet
unknown. Then it is needed to simulate along series of starting values to ensure stationarity at the particular
parameter values.

Apart from estimation this paper concentrates on tests for structural stability in the context of EMM. In a
related paper Van der Sluis (19974) a prediction test was derived and applied to stochastic volatility models.
By definition this prediction test do not require computationally intenstive estimators for the post-sample. In
this paper other tests for structural stablity were investigated. Modifications were made to keep the same op-
timality procedures while again no computationally intensive estimators are needed for the post-sample, only
root—n consistency isrequired. Root—n consistent first order approximationsof the EMM estimatorswere thus
derived. Theseare plugged into thetest statistics. Also other root-n consistent estimatorsthan thefirst order ap-
proximations proposed here, such asthe onesof Kim et al. (1996), were pluggedin. Inthe context of stochastic
volatility models some other estimatorsthat may be plugged in are the Kalman Filter estimator of Harvey et al.
(1994), the Simulated Maximum Likelihood estimator of Danielsson (1994), the Bayesian Gibbs estimator of
Jacquier et al. (1994) and the GMM estimator of Andersen & Sgrensen (1996).

From atheoretical viewpoint it is better to calculate every computationally intensive EMM estimates for the
structural parameters of the sample, post-sample and combination, and then perform the exact stability tests as
also provided inthe paper. However, in areal-life situation where option traders are every minute or even second
confronted with the arrival of new data a quick assessment of the question whether to update or not to update
the parametersin option pricing modelsis desirable.

The take-away of the empirical example hereisthat for this particular data-set the structural model is mis-
specified and the auxiliary model may be better in modeling the data. In case the Wald type tests for structural
stahility are used as a general specification test this source of misspecification will not be identified. The JSS
and PSP tests do identify this source of misspecification indicating on adeeper source of misspecification. This
misspecification is not due to the outlier at Black Monday in the sample, the same misspecification is present in
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the post-sample. The unconditional volatily seemsto be stable over the sample and post-sample. The idiosyn-
cratic stochastic volatility component seems to be bigger over the post-sample than it is over the sample.

Maybe JSS tests should be considered for subsets of the moment conditions only since these test may be-
come too stringent in the context of EMM. Thisis also true for the J test and PSP test. Results in this paper
show that using an expanding SNP model with any root-n consistent estimator, these Wald/LM/LR tests are
uniformly most powerful. For the SARMAV(1, 0) adecomposition of the noncentrality parametersfor this par-
ticular model may be interesting: structural stability tests may havelow power for other directions of misspec-
ification, such asw and p onthelinew/(1 — p), where the unconditional variance is equal for the sample and
post-sample but the w and p are different in the sample and post-sample.

It should be noted that the complexity of the estimation problem is rather high. The complexity of the nu-
merical problem may be even too high for the given state of computer technology. For this reason some of the
conclusionsin the paper are rather preliminary, Monte Carlo studies are needed to passjudgement on thisin the
future. It isthe author’s believe that this will take at least a decade before afull scale Monte Carlo study can be
donein the context of EMM.
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A Appendix

This appendix contains proofs of the theorems set forth in the paper
Proof of theorem 1
Let mqs = [ml (07ﬂ1) m’ (9,52)]’7 17172 = diag(Il 12)7 Mlyg = [M;(e,ﬂl) M;(&ﬂg)]l and consider

!
Ony+n, = arg min UEPYARLUSP

we can writethisas

s ns = argmninlm’ (6, 51) I m(6, B2) + ma (8, 52)T5 ' ma (6, 52)
we linearise this problem around the consistent estimators §n1 and 5@ and consider

é\ln1+n2 : :argrglgig{[ ( nlvﬁl)_‘_Ml( nlvﬁl)(e 0711)] 1 [ ( nlvﬂl)_‘_Ml( 711751)( )]+
[ By, B2) + Mo By, B2) (O — 0n,)) Ty 2 (B, Bo) + Mo (B, B2)(0 — 8]}

Note that we are back to the well-known case of pooling GLS estimators and therefore

7 _ [ (5 5 6) i 0 B [ (5 5 B) ] i
mtne ( nzvﬂZ) 0 IZ ( nzvﬂZ)
[ Ml(aruvﬁl) I Il 0 - [ (é\nmﬂl) +M1(§n17ﬂ1)§n1 ‘|
MOy, B2) 0 I M (O, B2) + Ma(On,, B2)0n
and thus
Oiny = [v1<§m>+V<52>1

[Vl(enl )0 ( )A - Mll(é\rn761)(11)71m(§n1761) - M;(é\nzvﬂZ)(IZ)ilm(é\nza62)]

<

By standard arguments on Taylor expansionswe have 6! is asymptotically equivalent with §n1+n2 |
Proof of theorem 2

The same as the previous proof except a Taylor expansion is taken around §n1 |

Proof of theorem 3

The same as the previous proof except a Taylor expansion is taken around §n1 and 5;2 |

Proof of theorem 4

The same as the previous proof except a Taylor expansion is taken around 5;2 |

ni+no

B Appendix

This appendix somewhat generalizesthe results of appendix A in Jacquier, Polson and Rossi (1994). Theresults
are based on moment generating functions as found in e.g. Abramowitz & Stegun (1970). Let¢ := w/(1 —
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Srypi)yandr? =0 (1+ 300, ¢2)(1— 307, p7)~'. For the ASARMAV(p, ¢) model we havefor A = 0 :

Ey; = Oforiodd

B = E(07e)) = E0})E() = exp{o + 577)
Ey;1 = E(Uff?):E(Uf)E(6§)23eXP{2¢+272)
By} = Eolel) = E(rDE() = 15exp{30 + o)

Unfortunately for the ASARMAV(p, ¢) model for A # 0 the author does not have a tractable solution yet. For
the SARMAV(p, ¢)-t, model we find

Ey; = 0foriodd
1
B = E(r}e) = E()E(?) = exp{o+ 572w > 2
-2
By, = E(ole}) = E(})E(e}) = ——9exp{20 +27%),v > 4
v — 2)2152 9
Ey? = E(0V€’) = E(c?)E(ed) = meXP{3¢+ §T2)a’/ > 6

Thereforefor the SARMAV(p, ¢) model thekurtosi sequals3e” andfor the SARMAV(p, ¢)—t, model it equals

v—2 12
9-—e" .
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Figure 1: Sample and Post-sample

900 1000 1100 1200 1300

15

20

25 30 35

26

Figure 2a: Correlogram of the sample
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Figure 2b: Correlogram of the post-sample

sample | post-sample
Mean .068 .042
Std.Dv. 1.19 934
Skewness —5.36 —.652
Kurtosis 111 8.50
Minimum —-229 —7.01
Maximum 8.71 3.66
Normality Chi"2 1894 453

Table 1: Some descriptive statistics of the sample and post-sample
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K. | LogLikl | AIC HQC BIC

—1766.0 | —1772.0 | —=1777.8 | —1787.5
—1765.7 | =1772.7 | —=1779.5 | —1790.9
—1748.8 | —1756.8 | —1764.6 | —1777.6
—1748.6 | —1757.6 | —1766.3 | —1780.9
—1748.6 | —1758.6 | —1768.3 | —1784.5
—1721.7 | =1732.7 | —1743.4 | —1761.2
—1719.6 | —1731.6 | —1743.3 | —1762.7
—17194 | —1732.4 | —1745.0 | —1766.1
—1757.7 | =1771.7 | —1785.3 | —1808.0
—1755.6 | —1770.6 | —1785.1 | —1809.5

RlRr|Rr|IRP|RIRP|R[RP|R|R|<
Olo|N|lo|jla|d|lw|[N|F

[
o

Table 2: Various model selection criteriafor the EGARCHY(1, ¢)-H(K ., 0) model for the sample

=
N

Log Likl | AIC HQC BIC

—1753.3 | —1760.3 | —1767.1 | —1778.5
—1753.1 | =1761.1 | —1768.9 | —1781.9
—1753.4 | —1762.4 | —1771.1 | —1785.7
—1722.3 | —1732.3 | —1742.0 | —1758.2
—1718.7 | —1729.7 | —1740.4 | —1758.2
—1718.4 | —1730.4 | —1742.1 | —1761.5
—1716.1 | =1729.1 | —1741.7 | —1762.8
—1711.4 | —1725.4 | —1739.0 | —1761.7
—1710.6 | —1725.6 | —1740.2 | —1764.5
—1710.6 | —1726.6 | —1742.2 | —1768.1

NINININININININININ|R
OO N O | W|IN|F

[
o

Table 3: Various model selection criteriafor the EGARCHY(1, ¢)-H(X ., 0) model for the sample
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parameters | t-values
o 028 5.56
Qg —.783 —14.4
Qs 484 9.57
v 959 77.8
K1 —.149 —-11.9
K2 .336 18.2
aio .049 3.52
azo —.058 —4.27
aso —.004 .243
Q40 .086 5.75
aso —.039 —2.54

Table 4: Sample estimates for the parameters of the EGARCH(1, 2)-H(5, 0) model.

K. | LogLikl | AIC HQC BIC

1 —1706.6 | —1712.6 | —1718.5 | —1728.2
2 —1706.3 | —1713.3 | —1720.1 | —1731.5
3 —-1695.1 | —1703.1 | —1710.9 | —1723.9
4 —1660.5 | —1669.5 | —1678.2 | —1692.8
5 —1659.7 | —1669.7 | —1679.4 | —1695.6
6 —1659.6 | —1670.6 | —1681.3 | —1699.1
7 —1650.4 | —1662.4 | —1674.1 | —1693.5
8 —1641.7 | —1654.7. | —1667.3 | —1688.4
9 —1641.3 | —1655.3 | —1668.9 | —1691.6
10 | —1641.3 | —1656.3 | —1670.8 | —1695.2

Table 5: Various model selection criteriafor the EGARCH(1, 1)-H(K,,,0) model for the post-sample
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K, | LogLikl | AlIC HQC BIC

1 —1703.3 | —1710.3 | —1717.1 | —1728.4
2 —1692.9 | —1700.9 | —1708.7 | —1721.6
3 —-1691.4 | —1700.4 | —1709.1 | —1723.7
4 —1656.0 | —1666.0 | —1675.7 | —1691.9
5 —1654.9 | —1665.9 | —1676.6 | —1694.4
6 —1652.3 | —1664.3 | —1675.9 | —1695.4
7 —1646.9 | —1659.9 | —1672.5 | —1693.6
8 —1640.1 | —1654.1 | —1667.7 | —1690.4
9 —1639.7 | —1654.7 | —1669.6 | —1693.6
10 | —1639.3 | —1655.3 | —1670.9 | —1696.8

Table 6: Various model selection criteriafor the EGARCH(1, 2)-H( X, 0) model for the post-sample

parameters | t-values
Qg .016 13.0
Qg AT75 13.5
Qs —.867 —26.1
v 986 269
K1 —.107 —5.26
K2 127 12.7
aio .029 2.10
asg —.142 —9.85
aso —.003 —.17
Q40 .060 3.94
aso .028 1.69
ago —.090 —5.79

Table 7: Post-sample estimates for the parameters of the EGARCH(1, 2)-H(6, 0) model.
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K, | LogLikl | AlIC HQC BIC

1 —3494.9 | —3500.9 | —3507.3 | —3518.5
2 —3494.4 | —3501.4 | —3508.9 | —3522.0
3 —3481.7 | —3489.7 | —3498.3 | —3513.3
4 —3398.5 | —3407.5 | —3417.1 | —3434.0
5 —3396.2 | —3406.2 | —3416.9 | —3435.6
6 —3396.1 | —3407.1 | —3418.8 | —3439.5
7 —3391.2 | —3403.2 | —3416.0 | —3438.5
8 —3371.5 | —3384.5 | —3398.3 | —3422.7
9 —3371.5 | —3385.5 | —3400.4 | —3426.6
10 | —3371.4 | —3386.4 | —3402.4 | —3430.5

Table 8: Various model selection criteriafor the EGARCH(1, 1)-H(K ., 0) model for the combined sample
and post-sample

K, | LogLikl | AIC HQC BIC

1 —3484.8 | —3491.8 | —3499.2 | —3512.3
2 —3484.4 | —3492.4 | —3500.9 | —3515.9
3 —3465.0 | —3474.0 | —3483.6 | —3500.4
4 —3391.3 | —3401.3 | —3412.0 | —3430.7
5 —3388.0 | —3399.0 | —3410.7 | —3431.4
6 —3387.3 | —3399.3 | —3412.1 | —3434.6
7 —3376.4 | —3389.4 | —3403.2 | —3427.6
8 —3364.2 | —3378.2 | —3393.1 | —3419.4
9 —3363.9 | —3378.9 | —3394.9 | —3423.0
10 | —3363.9 | —3379.9 | —3396.9 | —3426.9

Table 9: Various model selection criteriafor the EGARCH(1, 2)-H(K,, 0) model for the combined sample
and post-sample
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parameters | t-values
Qp .039 22.9
Qg —.210 —8.69
Qs —.195 —8.32
o 977 265
K1 —.129 —12.0
Ko .240 22.4
aio .038 3.83
aso —.164 | —16.1
aso —.014 —-1.39
a4o .103 10.2
aso —.026 —2.29
ago —.033 —2.91
aro —.020 —1.66
aso .049 4.32

Table 10: EGARCH(1, 2)-H(8,0) model for the combination of sample and post-sample.

Estimation Technique | w P oy

Bayesian —.007 | .979 | .136
| —.008 | .975 | .105
1 —.008 | .975 | .104
v —.012 | 974 | .115
\% —.007 | .969 | .106

Table 11: Computationally attractive estimates of the SARMAV(1, 0) model
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Model mean | std.dv | skewness | kurtosis | minimum | maximum
SARMAV(1,0) 0 9398 | O 3.663 —5.074* 5.821*
ASARMAV(1,0) | 0 9909 | —.2938* | 4.881* —7.666* 5.844*

Table 12: Salient features of the structural models considered in the paper. For the SARMAV(p, ¢) and
ASARMAV(p, q) of the mean, standard deviations, skewness and kurtosis are known, see appendix B, so here
the theoretical values at the optimum are reported. Otherwise the statistics are cal culated from atwo simulated

antithetic series of size 50,000, these are marked with an asterisk.

Model J P- value | df
SARMAV(1,0) | 33.8 | .000
SARMAV(1,1) | 33.6 | .000
ASARMAV(1,0) | 24.0 | .001

Table 13: Hansen Jtest for overidentifying restrictions for several structural models

Model PSP P- value | df
SARMAV(LO) 32.06 | .0014 12

Table 14: PSP-test for several structural models
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moments | J PSP

@ 133 | .083
ay —1.52 | —.159
Qs —2.06 | —.099
" -2.30 | —.015
K1 1.85 295
K2 —.883 .052
a1o —-3.57 | —1.33
a2 —246 | 011
aso —.367 124
Q40 —2.40 | —.109
aso 2.74 | —.168
ago - .289

Table 15: ¢t-valuesfor the individual elements of the J test and PSP test for the SARMAV(1,0) model

moments | J

Qo —-1.14
a1 579
Qg —.608
241 —.558
K1 .658
Ko —.420
aig —3.48
as0 —2.79
aso —.390
40 —1.83
aso 2.56

Table 16: t-valuesfor the individual elements of the J test and PSP test for the ASARMAV(1,0) model
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(D (D). Py Py (V. Py

3SS* (9,,) | I5S*(6L,) | Iss*(8LL) [ 3ss* (0LY) [ 9ss*(8Y,) [ 3ss'(92)
X 67.3 53.2 54.1 53.2 91.4 235
P vaue | .000 .000 .000 .000 .000 .000
df 20 20 20 20 20 20

Table 17: Test statistics for structural stability of the optimal stochastic volatility model

=

W* =LR*(8,,,) | LR*(AL ) | LR*(8L]) | LR*(8LV) | LR*(8Y.) | LR*(82)
218 3.30 378 3.30 070 21.0
988 348 286 348 995 .000

3 3 3 3 3 3

Table 18: Test statistics for structural stability of the optimal stochastic volatility model
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