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1. Introduction

Gordon Tullock's seminal contribution in the area of rent-seeking, and wasteful over-
dissipation in particular, has not had the influence outside of Public Choice that it deserves. The
purpose of this paper is to point out that even though his original analysis of overdissipation is
technically flawed, the definition of overdissipation can be modified to explain instances in
which rational rent-seekers spend more to win a prize than the prize is worth.

Specifically, since Tullock's seminal paper in 1967 most of the literature has focused on
the degree to which the competition for rent dissipates that rent. While this literature extends
across several fields', it is concentrated to a large extent in the field of public choice?, where a
standard tool in the theoretical analysis of rent-seeking is Tullock's rent-seeking game (1975,
1980). In this game, n risk-neutral players enjoy complete information and simultaneously
submit nonnegative bids for a prize worth Q dollars. Letting (x,, ... , X,) > 0 denote the bids of

players 1 through n, the probability player i wins the prize is given by

1/n ifx, =x, =..=x =0

n
PXpssX,) = 3 R

S otherwise
Zn XR
(Lj=1 %

'See, for instance Posner (1975) and Fudenberg and Tirole (1987) in industrial
organization, and Krueger (1974) and Bhagwati (1982) in international trade.

*See surveys by Brooks and Heijdra (1989), Nitzan (1994), or Rowley (1991).

2



Hence, the payoff to player i from submitting a bid of x; when the other n-1 players submit bids
of X, = (X, Xy, oo » X;_ 1> Xi 1 15 - X,,) 1S glVen by
U (%3, X)) = pi(x5, x3) Q - X5
Henceforth, we will refer to this symmetric, simultaneous-move game of complete information
as the Tullock game.
By the end of the 1970s, two competing postulates emerged about rent-seeking games:
Posner's Rent Dissipation Postulate: In equilibrium, the total expenditures of rent-seekers
equals the value of the prize.
Tullock's Rent Dissipation Postulate: In equilibrium, rent-seeking expenditures exceed the

value of the prize when R > n/(n - 1).

Posner's postulate (1975) relies on a strong free-entry assumption: If existing rent-seekers were
in the aggregate spending less than the value of the prize, their expected profits would be
positive. This would induce entry by other rent-seekers until profits are driven to zero. Tullock's
postulate is based on the Tullock game and his observation that when R > n/(n - 1), the sum of
the solutions to each player's first order conditions exceeds the value of the prize Q. Tullock
(1980, 1984, 1985, 1987, 1989) devoted considerable attention to this possibility, presumably

because of the strong implication for excessive social waste.> Indeed, as R increased, the amount

*Tullock (1989) noted regarding the overdissipation result ... "when I demonstrated that
perfect calculation leads to decidedly odd results even in a competitive market with free entry, I
astonished myself." He went on to note that the original (1980) paper "was rejected by the
Journal of Political Economy on the argument that it could not possibly be true that a competitive
market would reach these results." In explaining why experiments run with MBA students for
n=2 and R= 3 did not yield overdissipation on average he reasoned "it is clear that the people
concerned are not making correct calculations," and "it seems to me that ... these people do not
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of overdissipation would tend to infinity. A large literature emerged in an attempt to eliminate
the apparent overdissipation of rents by altering the Tullock game.* Contributions in this line of
research include Corcoran (1984), Corcoran and Karels (1985), Higgins, et al. (1987), Michaels
(1988), Allard (1988), Leininger (1993), Leininger and Yang (1994) and Nitzan (1991)).

It is now widely recognized (Hillman and Samet (1987), Baye, et al. (1989, 1993, 1994,
1996)) that expected overdissipation is not part of a Nash equilibrium to the Tullock game for
any value of R, even as R approaches infinity. The reason is that the Tullock game has a pure
strategy Nash equilibrium if and only if R < n/(n-1). For R > n/(n-1) the symmetric solution to
the players' first order conditions for expected payoff maximization does not yield a global
maximum; at this solution players have a negative expected payoff, which is dominated by
bidding zero. Thus, Tullock's postulate is based on a false premise.

In light of this, it is perhaps surprising that we demonstrate below that the overdissipation
postulate for which Tullock is most frequently criticized can, in fact, be defended on theoretical
grounds within the confines of his original model! The defense, it turns out, relies on the fact
that when the Tullock parameter exceeds n/(n - 1) the Nash equilibrium involves mixed-
strategies. Specifically, Baye, Kovenock, and de Vries (1994) show that equilibrium mixed

strategies in the Tullock game do not permit overdissipation in expectation: the expected total

understand the game."

* In addition, numerous studies focus on the special case where R = 1 (see, for instance,
Ellingsen (1991), Nitzan (1991), Paul and Wilhite (1991)). In this case, the solution to the first-
order conditions do indeed yield a Nash equilibrium, but there is not overdissipation in the
corresponding equilibrium.



amount spent competing for rents cannot exceed the value of the prize.” However, since the
equilibrium involves mixed-strategies, it turns out that for particular realizations of the mixed
strategies the total amount spent competing for rents can exceed the value of the prize! In fact,
we show below that the cross-sectional incidence of overdissipation may be quite high. For a
symmetric perfectly discriminating contest (R = ), the probability of overdissipation in a
symmetric equilibrium is roughly one-half, ranging from exactly one-half in the two player case
to approximately .44 as the number of players approaches infinity.

The implication of this is straightforward: even when rent-seekers have complete
information and are "perfect calculators," roughly one-half of the time they will spend more in
the aggregate than the prize is worth. Roughly equally frequently they will, as a group, spend
less than it is worth. This stochastic nature of the overdissipation of rents when R > n/(n - 1) is
the conceptual innovation that we examine in Sections 2 and 3 of this paper. Given the ironic
nature of this "defense" of the Tullock postulate -- ironic because Tullock criticizes mixed-
strategies in his 1987 and 1995 comments -- we conclude with a discussion of the merits of his
comments on our 1994 paper.

2. Defining the Overdissipation of Rents.

For the two player case, Tullock postulated that equilibrium entails the overdissipation of
rents when R > 2. As we noted in the introduction, in this case the only Nash equilibria to the
Tullock game are in nondegenerate mixed-strategies. For this reason, it is necessary to

distinguish between the expected level of rent dissipation that arises based on the ex ante

*Baye, Kovenock and de Vries (1994) analyze the case of n =2 and R > 2. The method of
proof is similar forn > 2 and R >n/(n - 1).



strategies employed by players, and the level of rent dissipation that arises ex post (that is, for
particular realizations of the strategies). In addition, it is useful to distinguish situations where
the group as a whole spends more than the value of the prize (either in an ex ante or ex post
sense) from those in which one or more individuals each spend more than the value of the prize.

This gives rise to four alternative notions of the overdissipation of rents:

(EIO) Expected Individual Overdissipation occurs if an individual player's expected
bid exceeds the value of the prize.

(EAO) Expected Aggregate Overdissipation occurs if the expected sum of the
payments by the players exceeds the value of the prize.

(PIO) Probabilistic Individual Overdissipation occurs if there is a positive probability
that an individual player bids more than the value of the prize.

(PAO) Probabilistic Aggregate Overdissipation occurs if there is a positive probability

that the sum of all players' bids exceed the value of the prize.

The following result is immediate and shows the relation among these four definitions of

overdissipation.

Proposition 1: For the Tullock game,
(a) EIO = EAO = PAO;

(b) EIO = PIO — PAO.



Thus, for the Tullock game, the broadest of the definitions of overdissipation is PAO, and the
most narrow is EIO. Notice that the contrapositive of Proposition 1 implies that if there is not
probabilistic aggregate overdissipation, then there is not overdissipation in the other three senses
either.

3. Equilibrium Overdissipation in the Tullock Model?

We begin with

Proposition 2: There do not exist equilibria to the Tullock game in which EAO, EIO, or

PIO arise.

The formal proof of this proposition merely involves extending the results in Baye,
Kovenock and de Vries (1994) from the two player case to the n-player case, and is thus omitted.
The essential intuition can be seen by noting that a player can guarantee a payoff of at least zero
by bidding zero. Hence, no equilibrium strategy can involve PIO, since bids above Q guarantee a
negative payoff, and hence are strictly dominated. Similarly, no equilibrium can involve EIO
because EIO requires PIO. Finally, since the above argument implies that U, (x;, x;) > 0 for
every i, summing over all players and noting that the prize is awarded with probability one
implies that no equilibrium can involve EAO. Furthermore, these arguments are valid for both
pure and nondegenerate mixed-strategy equilibria.

Interestingly, however, the Tullock game does exhibit probabilistic aggregate

overdissipation when R exceeds n/(n-1):



Proposition 3: Suppose R >n/(n-1). Then in any Nash equilibrium to the Tullock

game, PAO arises.

Proposition 3 follows directly from that fact that equilibria to the Tullock's original game
involve non-degenerate mixed-strategies if R > n/(n-1). It indicates that an incidence of aggregate
overdissipation is indeed possible in the original Tullock framework, but only in those instances
where the equilibrium involves nondegenerate mixed-strategies and when one looks at aggregate
ex post expenditures. To illustrate that the actual incidence of overdissipation due to PAO can be
quite high, we use as a benchmark the perfectly discriminating (Hillman and Riley (1989)) or
first-price all-pay auction (Baye et al. (1989, 1993, 1996)) version of the Tullock game. This
game form is the limiting case of the Tullock game when R = «; thus, the probability that player 1
wins the prize is one if player i submits the highest bid and zero otherwise.® The R = « case is a
useful benchmark because Baye, Kovenock, and de Vries (1993) have shown that at this level of
R the expected level of rent dissipation is maximized. Furthermore, when R =  there is
complete rent dissipation in the sense of EAO (the expected sum of the bids exactly equals the
value of the prize).

Without loss of generality, suppose the value of the prize, Q, equals 1. Hence the payoff

to player 1 as a function of the vector of bids of all n players is

%In the case of a tie among m players for the highest bid, each has a probability (1/m) of
winning the prize.



-X; if 3j such that X, > X

with m-1 others

I - x ifxl.>ijj¢i.

For n = 2 the unique equilibrium of this game is symmetric (Hillman and Riley, 1989). Forn> 2
there is a continuum of asymmetric equilibria as well as a unique symmetric equilibrium (Baye,
Kovenock and de Vries, 1996). We focus here on the symmetric mixed-strategy equilibrium,
which involves players randomizing according to a continuous mixed strategy with associated
cumulative distribution function F(x) = x ™D on [0,1]. This symmetric equilibrium fully
dissipates rents in the sense of EAO, as do all of the asymmetric equilibria (Baye, Kovenock, and
de Vries, 1996).

Since each player's bid is a random draw from F and the value of the prize is one, there
cannot be overdissipation in the sense of either EAO, EIO, or PIO (this illustrates Proposition 2).
However, notice that there is a positive probability that the sum of the realizations of the players'
bids exceeds 1, i.e. the assumed value of the prize.

To see this, let z = x, + x, + ... + X, denote the sum of the bids. Notice that z is a random
variable induced by the mixed strategies employed by the players, so let G(Z) = Prob{z < Z} be
its cumulative distribution function. The probability of overdissipation is given by the

probability that the sum of the bids exceeds unity, which is Prob{z> 1} =1 - G(1). The



symmetric Nash equilibrium mixed strategies imply that each x; has a density f(x;) = ax;* ' on [0, 1],
where a = 1/(n - 1). Hence,
B n 1 _a-1 l-x, _a-1 l-x,-x, ;..-x a-1
G() =a fo X, fo X, fo U Xy dxy dxy - dx, (1)
We now state the following general result:
Proposition 4. Suppose R = and n > 2 in the original simultaneous-move Tullock

game. Then in any symmetric equilibrium we have PAO € [0.44, 0.5]. More specifically:

a. The probability of aggregate overdissipation is
1 -Gy =1 - (”—‘1) F(L) " 2)
n n-1

where I'(7) = f : x""' e ™ dx is the Gamma function;

b. The probability of overdissipation is monotonically decreasing in the
number of players;

c. The probability of overdissipation is maximized in the two player case in
which the probability of overdissipation is exactly ¥2;’

d. In the limit as the number of players tends to infinity, the probability of

overdissipation tends to 1- ¢ ~ .44, where v is Euler's constant.® Hence,
the probability of overdissipation is bounded from below by .44.

Proof: See the Appendix.

’For n = 3 this probability is 1 - /6 = 0.48, while for n = 4 it is approximately 0.466.

¥See Abramovitz and Stegun (1965). Formally, vy is defined by

1 1 1
= [im l+—+—+-+=-Jog hl.
Y hﬂm[ 7 3 7 g h]
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Proposition 4 makes it clear that Tullock's postulate is, in a sense, correct: in the
aggregate, rent-seekers may frequently spend more to win a prize than the prize is worth. This
result helps explain why PAO is confirmed in some of the published experimental literature (cf.
Millner and Pratt, 1989, 1990) as well as informal experiments we have run at Tilburg
University, Erasmus University, Penn State, Purdue, Texas A&M University, and the New
Economic School in Moscow. The theoretical and empirical literatures can be reconciled
because when
R >n/(n - 1), equilibria of the Tullock game involve nondegenerate mixed-strategies.

4. Other Rent-Seeking Contests

It is of interest to apply our new definitions of overdissipation to other types of contests.
This will also make it clear why it is useful to make a distinction between individual and
aggregate overdissipation.

Consider, for instance, the (stationary) symmetric equilibrium of the two person
symmetric war of attrition, which is equivalent to a second-price all-pay auction. Assume that
the value of the prize and the cost to each player per unit of time spent fighting both equal one,
and that there is no discounting. Each player's symmetric equilibrium strategy in this game is
mixed and is represented by the cdf, G(t) = 1 - e*. This gives the probability that the player stops
fighting before t. In the interpretation as an all-pay auction it is the probability the player bids
below t. The game ends at the minimum realized stopping time. The time elapsed equals the
cost incurred by each player. Hence, the distribution of the cost incurred by each player fighting
for the prize is the distribution of the minimum order statistic G, (t) = 1 - [1-G(t)]*=1 - e,

which also gives the distribution of the game's termination time.
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The expected payoff to each player in this equilibrium is zero. Since each player incurs a
cost of 1 per unit of time until the game ends, if the game stops after t = 1/2, the aggregate cost of
the contest will exceed the value of the prize; overdissipation will arise. Hence, PAO
characterizes the symmetric equilibrium. Aggregate overdissipation occurs with probability
1-G,,(1/2) =¢"' = .368, which is lower than in the first-price all-pay auction.

The war of attrition, unlike the first-price all-pay auction, also has the property that the
probability of overdissipation by a single player is nonzero, i.e. P10 is also a property of the
symmetric equilibrium. In this equilibrium, if the game ends after t = 1 each player's individual
cost is greater than the value of the prize. This event has probability 1 - G_, (1) =e? = .135.

This makes it clear that Tullock's original postulate is, in a way, correct; every individual
player can make payments that are greater than the value of the prize. Individual overdissipation,
however, cannot occur in the game Tullock examined (in which all players pay their own bids) or
in the manner Tullock described (ex ante expectation).

Another rent-seeking contest in which it is possible for individual players to make
payments greater than the value of the prize is the sad-loser auction. In this auction each player i
simultaneously bids x;. The highest bidder wins the prize (of value 1) and is refunded her bid.
The remaining bidders forfeit their bids.

This type of auction might be viewed as a reduced-form for situations, such as contests
for procurement contracts, in which the bids represent pre-award (prototype) development costs,
and the winning bidder can recoup these costs under the terms of the contract. In the two bidder
case the individual players' symmetric equilibrium bidding strategies are G(x) = x/(1 + x), which

has an unbounded mean. Each player earns a zero payoff in expectation. The aggregate payment
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in the game is the minimum order statistic, which has a distribution G_, (x) = 1 - [1/(1+x)]
Hence the probability of aggregate overdissipation is 1 - G,;(1) = 1/4. Since only the loser pays,
this is also the probability that there is individual overdissipation by some player. Hence, PIO
and thus also PAO characterize the symmetric equilibrium to this game.

Like the first price all-pay auction, the war of attrition and the sad loser auction are
contests with complete information. Of course, if we allow for incomplete information it should
not seem surprising that overdissipation is possible, and that the probability of overdissipation
will depend on the distributional assumptions maintained when transforming the game to one of
complete, but imperfect information in which types are chosen by nature. Due to the lack of a
clear benchmark model, we omit a formal analysis at this stage.

5. Reply to Tullock

Gordon Tullock has done the profession a great service by pointing to the need to
understand how institutions affect the wasteful expenditure of resources on rent seeking. The
purpose of this section is to reply to some of the comments Tullock has published (cf Tullock,
1987, 1989, 1995) on papers that provide solutions to questions raised in his original paper (cf
Hillman and Samet, 1987; Baye, Kovenock and de Vries, 1994).

Like a good lawyer, Gordon Tullock knows that if you can't win the game you're playing
you have to find another game to play. This is his basic approach in his critique of our and
earlier papers that examine the Tullock postulate. Briefly, in Baye, Kovenock and de Vries
(1994) we show that when individuals have the chance to opt out of a game and receive a payoff

of zero (by spending zero), then no Nash equilibrium in the Tullock game can yield an individual
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an expected payoff of less than zero. In turn, this implies that overdissipation cannot occur in
expectation, either individually or in the aggregate.

When confronted with a proof that, on average, there is no overdissipation of rents in any
Nash equilibrium of his game, Tullock's strategy is to write comments that either (1) attack the
game form, or (2) challenge the mixed-strategy solution concept. Importantly, we showed in
Section 3 above that these tactics are unnecessary: the aggregate incidence of overdissipation
can be quite high in those situations (and only those situations) where the equilibrium is in
mixed-strategies!

A. The Game Form.

Four of the issues raised by Tullock's (1995) comment involve changing the game form
appearing in Baye, Kovenock and de Vries (1994). Specifically, Tullock suggests changing the
game to permit (1) An exogenous sequencing of moves, (2) risk aversion, (3) "entry," and (4)
different currencies . Obviously, changing the structure of a game can change the equilibrium.
Our "solution" is relevant for Tullock's original simultaneous move game with complete
information and risk-neutral players; we merely took as given the move-structure, risk neutrality,
and information specified in Tullock's original paper. Tullock's response to the answer we
provide in our (1994) paper is to change the question!

i. Sequencing of Moves

Specifically, we focused on a simultaneous move setting because this is the move-
structure specified in Tullock's original formulation of the problem. We recognize that this
specification is not innocuous; it has been well-known since Stackelberg that games with an

exogenous sequencing of moves can yield outcomes that differ from simultaneous move games.
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Contrary to the claims of Tullock (1995) this is not merely an issue of pure versus mixed
strategies. Sequential and simultaneous move games are different games. The issue that arises,
however, is what determines the sequencing of moves. The issue of endogenous sequencing of
moves has been thoroughly addressed in the industrial organization literature by Daughety and
Reinganum (1994) Deneckere and Kovenock (1992), and Hamilton and Slutsky (1990), among
others. These methods have been applied by Leininger and Yang (1994) to analyze the
endogenous sequencing of moves in rent-seeking games. One lesson from this literature is that
in order to obtain an endogenous sequencing one often must utilize a rather unnatural game form
in which, either by brute-force alternating sequencing or by allowing players to precommit not to
move in a period, simultaneous moves are avoided. Whether one prefers the endogenous
sequencing or simultaneous move approach is then often a matter of taste in game forms.
Regardless, moving from a simultaneous to sequential move setting will not lead to the
overdissipation of rents in the sense of EAO or EIO.

ii. Risk Aversion

We also recognize that equilibrium is sensitive to the assumed risk-preferences of players.
Our sole motivation for assuming risk-neutrality was because that was the assumption made in
Tullock's original formulation. Our methods can easily be extended to analyze rent-seeking
games with utility concave in money, as in Skaperdas and Gan (1995). Tullock's point that a
player might want to deviate from a mixed strategy solution in order to bankrupt an opponent
(see Tullock (1995, p. 26)) involves changing the preferences of players in the game. Tullock's
original formulation does not assume that players derive utility from bankrupting their

opponents. Obviously, if one changes Tullock's original payoff functions to include a cost of
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bankruptcy (or a benefit to bankrupting the opponent), the solution will change. We do not
purport to offer a solution for arbitrary specifications of player preferences, but rather a solution
to the game where preferences are as originally specified by Tullock. Regardless, risk-aversion
alone cannot lead to overdissipation in expectation, and one might reasonably expect risk
aversion to reduce the probability that aggregate overdissipation occurs in a mixed-strategy
equilibrium.

iii. Entry

Tullock also suggests changing the game to allow a previous entry stage. We did not

formally analyze an entry game because Tullock's original game treats the number of players as
fixed. However, logic similar to that in our 1994 paper implies that there will never exist
overdissipation in a Nash equilibrium in the sense of EAO or EIO. It is well-known from work
on entry in industrial organization that entry costs can yield underdissipation of rent in
expectation. Mixed strategy equilibria at the entry stage or exogenous uncertainty can lead to
overdissipation in the sense of PIO or PAO.

iv. Currency

Tullock also proposes changing the game to allow players to make expenditures in
different currencies. This proposed change, as it turns out, does not materially affect the nature
of the game, provided one properly interprets the modified game. In particular, the original
Tullock game (and thus our solution) assumes a common unit of account. Thus, x, and x, denote
expenditures in dollars, say. Notice that if player 1 is an American and player 2 a German, a
dollar payment of x, by the German is, in terms of DM, x,” = Ax,, where A is the exchange rate.

Similarly, if the prize is Q dollars, the DM equivalent value of the prize is Q* = AQ to the
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German. Thus, it follows that the equilibrium we derived for the case where prizes are
denominated in dollars is still an equilibrium in the case of different currencies, provided the
German can convert DM into dollars and vice versa at an exchange rate that is common
knowledge to all players. For this same reason, our focus on the case where Q = 1 is without
loss of generality as well.

B. The Solution Concept

In light of the results in Section 3, we believe Tullock should reassess his distaste for
mixed-strategy Nash equilibria. There are well-reasoned justifications of mixed-strategy Nash
equilibria appearing in the literature (see, for instance, Brandenburger (1992)). For those like
Tullock who are searching for a justification for overdissipation, it would seem that a powerful
rationale for using mixed-strategies is that they can generate an incidence of overdissipation.’
Otherwise, Tullock must not only propose an alternative solution concept for his game, but an
alternative justification for the overdissipation of rents. Mixed strategies, as it turns out, provide
both the needed solution concept as well as a defense for the Tullock postulate.

In concluding, we note that there are solution concepts that can rationalize overdissipation
in expectation. For instance, it is possible to find rationalizable strategies that yield
overdissipation in expectation. However, these strategy choices cannot constitute a Nash
equilibrium and, hence, if the choices or conjectures generating them were mutual knowledge, at
least one player would not be playing rationally. Likewise, overdissipation in expectation can

arise in €-equilibria to the Tullock game. However, when Gordon Tullock (1989) claims that the

’Recent work by Che and Gale (1996) shows that the symmetric equilibrium mixed-
strategies that we identify are identical to the pure strategy bidding functions that arise when rent-
seekers face budget constraints and incomplete information about the size of rivals' budgets.
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theory of efficient rent seeking is "based on the theory that people are perfect calculators," and
dismisses experimental work for relying on the computational ability of MBA students who
clearly "are not making correct calculations," it is clear that he has a Nash-like consistency
requirement in mind. Section 3 above shows that incidences of aggregate overdissipation are not
at odds with Nash consistency. Tullock's postulate is indeed correct: perfectly rational
individuals might spend more, in the aggregate, competing for a prize than it is worth. But

Tullock was right for the wrong reason.
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APPENDIX
To evaluate the multiple integral in equation (1) of the text, we use the following lemma:
Lemma Al: Let ¢(w) = fl'wx "(1-w-x)* dx. Then ¢p(w)=(1-w)"™" B(r+1, s+1), where
0

B(r+1, s+1)

f "x "(1-x)* dx is the Beta function.
0

Proof:

d(w) = flfwx "(1-w-x)*dx
0
= (1-w)y ! flt”(l 1y dt
0
= (1-w)y" "' B(r+1,s+1)
by the change of variable t = x/(1-w). Q.E.D.
Proof of Proposition 4:

(a) Applying the Lemma (takingw=1-x,-X, ;-...-X,, r=a-1,s=0, and x =X,) gives us

n a- l-x, _a- I-x,--x a- a
G(1) = a fol X, : fo xn,ll fo x -x; = -x,)" B(a,1)dx, dx;-dx,.

Again, using the Lemma (takingw = 1-x, - ... - X5, r=a- 1, s = a, and X = x,) gives

G(1) =a”" B(a,1) P(a,a+1) fol x:_l fol_x”_w_x“ xf_l (1=, = =x3)* dxydx,,

and withw=1-x,-..-x,,r=a-1,s=2a,and X =x,,

G(1)=a"B(a, B(@ a+D)B(a, 2a+1) [T L [T x T (1, =, e,

Continuing in this fashion we obtain

G(1)

a”" B(a, 1) B(a,a+1) P(a,2a+1) B(a,3a+1) - fl xffl (l—xn)(”’l)a dx,
0

a”" B(a, 1) B(a,a+1) B(a,2a+1) B(a,3a+1) - B(a,(n-1)a+1).
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Note that f(a,b) = %, where I'(¢) = f " x"' e™ dx is the Gamma function. Hence',
at o
G(1) = a” I'aI'(1) TI'(@l'(a+1) I'(@)I'2a+1) I'a)'(n-1)a+1)
[a+1)  T(Qa+) I'Ga+l) [(na+1)
_a" @' _ [fT@F _ M@ ( ! ) INCTNaE
I'(na+1) I'(na+1) I'(na+1) a+l

Using the definition of a gives the form in equation (2) of the text.

1
1+x

(b) To establish monotonicity, let P(x) =Prob { } x;< 1} = [F(l +x)]”x,
where x€[0,1], x = 1/(n-1), and n - 1 denotes number of opponents. It is sufficient to show
that P(x) is monotonic in x. Taking logs gives
log P(x) = - log (1+x) + % log I' (1+x).
Differentiating this expression yields

dlogPx) _ 1 1

1
loc T' (1+x) + = x+1
e = g I' (1+x) . Y (x+1)

where ¥ is the Psi (or Digamma) function (see Abramowitz and Stegun, 1965). Limiting values

are obtained by ' Hopital's rule:

iz [log T'(1+x) - xp(1+x)] ]| , =

X

Y(d+x) - ¢(d+x) - xw/(1+x)| _
2x x=0

1 1
R A I SO R

"In these calculations we make use of the identities I'(t+1) = tI'(t) and I'(n+1) = n!, for t
positive real and n positive integer valued.
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Hence

dlog P& oy - Lyay - - 1s2<0
dx 2

dlog P - L [1ogT(2) - y@)] = - ~ - [0-42] = -08 < 0.
dx 2 2
To evaluate the intermediate values we write
2
dlog P _ 1 1 X" oaT(1x) + xy(l+x) (A1)
dx xz 1+x

and analyze the sign of the terms within the curled brackets on the interval (0,1). Differentiating

the term in brackets yields

SRy () () -
l+x  (1+x)?

XU/ (1+x) + x2—2x—22x2] _
(1+x)

2+x]:

(1+x)?

x [Y'(1+x) -

©(1e) - Lo -
l+x  (1+x)?
We can concentrate on the term inside the last pair of square brackets, and write y = 1+x,

ye (1,2), so that the derivative of the bracketed term becomes:

W) -+ - —
vy

We will show that this term does not change sign as n > 2 increases. Toward this end, note that

24



- et

/ _ 0 te’yt
w(y)—[o 1 dt

Now from the Taylor expansion of the exponential

1 el 1+t+t22+t36+ ...
1 -e? el t+t22 + 36+ ...

1
12241316 + ..

Hence, fort > 0:

t 1 1

= t+ <t +

1 -e’ 1+t2+t%6+... 1+¢2

Thus

/ * + -yt
Vo) < [T e di

= f‘” te ™ dt + f‘”e‘y’dt
0 0

1 . _ 1 ® _
= = tye ™ dt + — e dt
yfo v yfoy

1
— +

1
y: oy

and therefore

Vo) -~ - o

y
Now the proof of monotonicity of P(x) for x € [0,1] is complete as
d log P(x) _ iz )
dx X

where f(x) is the expression between curled brackets in (A1). At the end points
A0) =0, A1) = -0.08<0

while the above analysis showed

25



f(x) < 0 on (0,1] and f/(0) = 0
Combining these gives
fix) <0 on (0,1]
Moreover,
1/x% > 0 on (0,1]
so that

d log P(x) _ L <00n 01
dx x?

Hence log P(x) is decreasing on (0, 1]. Incidently, note that

log P(0) = y(1) =y = - .57
log P(1) = -log 2 = - .69

(c) This part follows directly from part (b).

(d) Setting h =n - 1, it follows that

h
lim, log[l"( 1+%)] = lim,_

log I‘( 1+%H/(1/h),

which by I' Hopital's rule equals

lim,_ | L9 re)| | .
oz z=l+—

The expression % / T'(z) is the Psi or Digamma function (see Abramowitz and Stegun
Z
(1965)) which, when evaluated at z = 1 is equal to -y, where y = .5772 is Euler's constant.

Hence, as h (and hence n) goes to infinity

G(1) = lim, (hi) [P ( h””h et = 5615

+1 h
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Hence, in the limit, the probability of overdissipation is approximately 0.4385.
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