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Abstract

The present paper aims to analyse interregional freight transport movements in

Europe in order to forecast spatio-temporal patterns of new transport economic scenarios.

In view of the high dimension of our data-base on transport flows, two different

approaches are compared, viz. the logit model and the neural network model. Logit

models are well-known in the literature; however, applications of logit analysis to large

samples are more rare. Neural networks are nowadays receiving a considerable attention

as a new approach that is able to capture major patterns of flows, on the basis of fuzzy and

incomplete information. In this context an assessment of this method on the basis of a

large amount of data is an interesting research endeavour.

The paper will essentially deal with a research experiment, oriented towards both

calibration/learning procedures and spatial forecasting, in order to compare the two above

methodologies as well as to investigate the potential/limitations of the two above

mentioned different, but related assessment methods. The first results in this framework

highlight the fact that the two models adopted, although methodologically different, are

both able to provide a reasonable spatial mapping of the interregional transport flows

under consideration.
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1. Changes in the European Freight Transport Scene

After the completion of the European market and with the widening of Europe towards

easterly direction, mobility in general has shown a steady increase in Europe. In particular, cross-

border transport has been at a rising edge with annual growth rates exceeding 10 percent, a

process reinforced by the current globalisation trends. The integration of former segmented

markets -and the related liberalisation in the European space- has led to drastic changes in both

goods and passenger transport.

The European Commission has recognised this restructuring phenomenon already several

years ago, an observation which can also be found in the Maastricht Treaty. European networks

are seen as the backbone of integration forces, while changes in the morphology of the networks

are expected to generate system-wide impacts. Clearly, the emphasis on the potential of these

networks for competitiveness and cohesion provokes various questions on the relative efficiency

and substitutability of the different modes of this network. This issue is particularly important, as

the competition between different modes and the social acceptability of modal choices are not

only determined by the direct operational costs, but also by environmental externalities.

As a result, there is an increasing interest in the issue of intermodal competition and

complementarity. For surface transport in Europe, especially the competitive position of rail vis-à-

vis road is at stake. This holds increasingly also for commodity transport. It needs to be added

however, that the analysis of freight transport in Europe is fraught with many difficulties, as

freight is not a homogeneous commodity, but is composed of an extremely diversified set of

goods with specific haulage requirements and logistic needs. This means that a commodity -

specific approach is necessary to analyse in depth implications of changes in network

configurations. This approach will also be adopted in the present paper.

The aim of the present paper is to investigate freight flow patterns in Europe from a

multiregional perspective, by looking into the modal choice for these goods from the viewpoint of

freight costs and transport time. In this paper, two competing models, viz. a discrete choice model

and a neural network model, wil be employed to map out the spatial flow patterns in an

explanatory context. This offers also a possibility to compare the relative performance of those

models. A selection of Dutch regions and Italian regions will be used to test the predictive power

of the models concerned. Next, a sensitivity analysis will be carried out in order to investigate the
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expected consequences of a rise in transport costs, e.g. as a consequence of a European

environmental tax on freight costs.

2. The Models Used

The present paper aims to analyse interregional freight transport movements in Europe as

well as to  forecast resulting spatio-temporal flow patterns on the basis of new transport economic

scenarios. For this purpose, a modal split analysis will be carried out by means of two statistical

models, namely the logit model and the neural network model. A binary logit model will be

discussed in Section 2.1, while a feedforward neural network model will be presented in Section

2.2.

2.1 The Logit Approach

A widely adopted approach for modal split analysis is the logit model (see e.g. Ben-Akiva

and Lerman, 1985). Recent experiments using logit models / spatial interaction models in order to

map out the freight transport in Europe have been carried out by Tavasszy(1996), who showed the

suitability of logit models also for the goods transport sector (where data are more ‘fuzzy’ and

incomplete compared to the passenger sector). Logit models are discrete choice models, which are

used for modeling a choice from a set of mutually exclusive and exhaustive alternatives. It is

assumed that the decision-maker chooses the alternative with the highest utility among the set of

alternatives. The utility of an alternative is determined by a utility function, which consists of

independent attributes of the alternative concerned and the relevant parameters. In a logit

approach the concept of random utility is adopted, which means that the true utilities of the

alternatives are considered to be random variables, i.e.,

U f Xin i m in= +( ), ε   (1)

where

 Uin = the utility of alternative i for individual n

f Xi m( ),  = a function of attributes m related to alternative i

εin  = a random disturbance term.
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By maximizing then the stochastic utility (1), the probability that an alternative is chosen is

defined as the probability that it has the highest utility among all relevant alternatives (see e.g.

Ben-Akiva and Lerman, 1985, Cramer, 1991 and McFadden, 1977).

Since in our case two discrete choices -rail (t) and road (c)- will be considered, a binary

logit model is adopted. Then the following assumption is made concerning the random term:
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For the sake of convenience, also the following assumption is made: µ = 1. Thus the logit model

for modal split choice of the train versus the car between two regions i and j has the following

formulation:
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and where:

P
t

ij  = the probability of choosing the train from region i  to region j (i  ≠ j);

U
t
ij = the utility connected with the rail mode (t) on the link ij;

U
c
ij = the utility related to the road mode (c) on the link ij;

X
m

ij1, = the attribute ‘time’ for mode m in the utility function for the link ij;

X ij

m
  2 , = the attribute ‘cost’ for mode m in the utility function for the link ij;

β1 ,β2 = the parameters related to the attributes time and cost, respectively, for the

   mode train;

β 3 ,β 4 = the parameters related to the attributes time and cost, respectively, for the

   mode road.
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The binary logit model has become in the meantime a standard analytical tool in discrete choice

modelling. The results of this logit model for an empirical case on European freight transport will

be given in Section 3.

2.2 The Neural Network Approach

Neural network (NN) analysis has in recent years become a popular analysis tool (see for

reviews Himanen et al., 1997). NNs replicates human brain functions and are thus considered as

‘intelligent’, since they learn and generalize by examples (see e.g. Reggiani et al., 1997). NNs

have been widely applied to the area of transport engineering, in particular in relation to traffic

control problems and accidents (see Himanen et al., 1997). However, only a few experiments

exists in the field of transport economics or transport route / mode / destination choice (see e.g.

Nijkamp et al., 1996 and Schintler and Olurotimi, 1997). Our experiments aim to explore also this

novel research direction.

Following the majority of applications on NNs, in this study a two-layer feedforward,

totally connected NN will be used in order to analyse the freight transport modal split problem.

The methodological structure of the main steps related to the application of a feedforward NN is

described in Reggiani and Tritapepe (1997) (see also Figure 1). Concisely, it consists of three

stages: a) definition of network architecture; b) learning phase; c) forecasting phase. It is

necessary to define the right architecture of the network, i.e. the number of units on the relevant

levels. Usually, the input and output units depend on the number of input and output variables

which define the problem. In our application one possible NN architecture contains 4 input units

which correspond to the attributes time and cost related to each transport mode (rail and road) and

one output unit corresponding to the probability of choosing one mode1 (e.g., the rail mode). In

the past years we have witnessed an increasing acceptance of NN models in social science

research, including transportation science. Section 3 will offer empirical results obtained by

applying an NN model to European freight flow data.

                                                          
1 The choice probability of the other mode is just the complement.
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bias unit
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hidden units ( first layer)

input data

output data

Figure 1 Feedforward Neural Network architecture

3. Empirical Application

In this section the experiments with the logit and the neural network approach (see

Subsection 2.1 and 2.2) will be presented and discussed. In Subsection 3.1 a concise description

of the data set will be given. The experiments carried out by means of the logit approach and the

neural network approach are presented in Subsections 3.2 and 3.3, respectively. Then the two

approaches will be mutually compared in Subsection 3.4.

3.1 The Data

The data set2 contains the freight flows and the attributes related to each link between 108

European regions3 for the year 1986. The attributes considered are ‘time’ and ‘cost’ between each

link (ij) with reference to each transport mode. In particular, each observation of the data set

pertains to variables related to each link (ij). Furthermore, the flow distribution in the matrices

concerned refers to one particular kind of goods, viz. food.

Since 108 areas have been considered, the data set should ideally contain 11664 observations

(according to the previous remarks on our observations). However, our data set contains finally

                                                          
2 The data set has been kindly provided by NEA Transport Research and Training, Rijswijk.
3 See Table 11 and Figure 2.
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 4409 observations because of the following considerations (by analysing the data set):

·    the intra-area freight flows are zero;

· for each link, only the transport movements towards one direction i → j have been considered;

· only the links where the flows and the attributes (of both road and rail) are different from zero

have been considered (i.e., empty cells are excluded).

The data set has been randomly subdivided into three sub-sets:

- a training set containing 2992 observations, i.e. about 68% of the data-set;

- a cross-validation set containing 447 observations, i.e. about 10% of the data-set;

- a test set containing 970 observations, i.e. about 22% of the data-set.

3.2 Experiments by means of a logit approach

As mentioned before, a binary logit model has been used in order to analyse a modal split

problem between road and rail in relation to the interregional food transport between 108 regions

in Europe. In Subsection 3.2.1, the calibration results and an evaluation of the logit model will be

presented. Then the spatial forecasting of the calibrated logit model will be performed and

evaluated in Subsection 3.2.2.

3.2.1 Calibrating the binary logit model

First, the logit model has been calibrated in order to estimate the unknown parameters in

the utility function. For this purpose, a data set, which is the learning set combined with the cross-

validation set, has been used. Concerning the logit model structure, two cases are considered; in

Case A, the two competing transport modes rail and road are supposed to have the same

parameter for a given attribute (i.e. β 1= β 3 , β2  = β4 ), while in Case B each transport mode has

different parameters for a given attribute. The logit model has been calibrated by using the

LIMDEP software. The estimated parameters resulting from the calibration stage are presented in

Tables 1 and 2 for Case A and Case B, respectively.
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Next, the goodness-of-fit of the model has been evaluated using two statistical indicators:

the likelihood-ratio (ρ2 )4 and the t-test. The related results are also presented in Tables 1 and 2.

Variables coefficient std error  t - ratio

time β1 -0.00952 0.3514E-05 -2707.83

cost β2 -0.06493 0.1535E-04 -4229.71

Log likelihood = -0.2750E+08

χ2 ( 2 ) =  0.1348E+09

ρ2 =  0.71023

Table 1. The Results related to Case A

variables   coefficient std error  t - ratio

time β1 -0.00806 0.4825E-05 -1670.67

β3 -0.00802 0.5258E-05 -1525.31

cost β2 -0.06208 0.2303E-04 -2696.35

β4 -0.05567 0.6843E-04 -813.498

log likelihood = -0.2739E+08

χ2 ( 2 ) =  0.1350E+09

ρ2 =  0.71138

Table 2. The Results related to Case B

The t-test indicates that the two parameters are significantly different from zero in both

cases (see Table 1 and Table 2). Also the value of ρ2 indicates that the calibrated logit models are

performing reasonably well for the two cases. Table 2 also indicates that β1 has almost the same

value as β3. This is also the case for β2 and β4.  However, the calculated ρ2 for Case B is slightly

better than for Case A, which suggests that Case B performs slightly better than Case A.

                                                          
4 The definition of the statistical indicator ρ λ λ β

2
01= − ( / )( ) ( ) , whereλ ( )0  = the value of the log likelihood function when

all weights are zero andλ β( ) = the value of the log likelihood function at its maximum (see Ben-Akiva and Lerman, 1985).
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3.2.2 Spatial forecasting performance of the binary logit model

The binary logit model, as calibrated in the previous subsection, can be used to make

spatial forecasts on the basis of various transport economic scenarios. For this predictive purpose,

both the data set used in the calibration stage and the test set which is not used in the calibration

stage, are employed.

In order to analyse the spatial forecasting performance of the binary logit model, the

statistical indicators R2 and ARV5 will be used. The coefficient of determination R2 is usually

adopted in the calibration procedure for logit models, while the Average Relative Variance

(ARV) is more commonly used for neural network models (see e.g. Fischer and Gopal, 1994).

However, we will consider here the indicator ARV also for our logit model in order to carry out a

comparison with the NN approach. Both the R2 and the ARV indicators have been calculated for

the two cases, as well as for the test set. Especially the test set shows significant results. It will be

also used subsequently to explore the NN’s performance. The probabilities of train and car are

used in calculating the statistical indicators. The results are presented in Table 3 and Table 4 for

case A and B successively.

 size of data set 3439 observations 970 observations

ARV 0.302 0.203

R2 0.816 0.835

Table 3. The Results related to Case A

size of  data set 3439 observations 970 observations

ARV 0.267 0.185

R2 0.865 0.887

Table 4. The Results related to Case B

                                                          

5 The definition of the statistical indicatorA R V
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y = the observed transport flow using car, 
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y = the transport flow using car, predicted by the adopted model and y = the

average of the observed transport flow using car (see Fischer and Gopal, 1994).
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It should be noted that the ARV measure should ideally approach zero, while the R2

measure should approach one, if the estimates tend to be accurate. Concerning the general results

presented in Table 3 and Table 4, the binary logit model appears to have a good predictive ability;

in particular, Case B turns out to perform better than Case A for different numbers of

observations. Therefore, only the results of Case B will be illustrated in Subsection 3.4 and in

Section 4 where the logit model will be compared with the NN model.

3.3 Experiments by means of a neural network approach

As mentioned in Subsection 3.2, the modal split problem will also be analysed by means of

a more recently developed statistical model, viz the feedforward neural network model (see

Subsection 2.2).

It has already been mentioned that the whole data set contains 4409 observations (examples

or patterns). The following general considerations apply to the experiment undertaken here:

· The training for the neural net model (and the calibration for the logit model) has been carried

out by using the training set.

· The performance measure has been evaluated by using the test set (spatial forecasting).

· The attributes (time and cost denoted by Vj ) have been transformed (in a value range between

[0-1]) by means of the following functions:

V Vj
f

j= −exp( . * )0002 (7)

The variables are defined as follows:

TCij
f : transformed rail cost for link (ij);

TTij
f : transformed rail time for link (ij);

RCij
f : transformed road cost for link (ij);

RTij
f : transformed road time for link (ij);

Tij  : total freight flow related to link (ij);

Tij
train : total rail flow related to link (ij);

pij
train : rail mode probability for link (ij), in relation to the following relationship:
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T p Tij
train

ij
train

ij= * . (8)

Concerning the number of hidden units, they have empirically been defined by taking into

account the number of observations in the data set as well as by carrying out a large number of

experiments. In regard to the parameters defining the neural architecture, they have been

determined after several empirical experiments. Finally, the parameters of the NNs are set as

follows:

· number of hidden units: 8

· learning rate a = 0.9

· momentum factor l = 0.05

· epoch size:  1

· initial weight values: randomly between [-0.1;0.1]

It should be noted that by using a feedforward NN it is necessary to cope with the overfitting

problem. Consequently, in the experiments the cross-validating technique (by using the cross-

validation subset) has been used in order to avoid such a problem (for details on the overfitting

problem and the cross-validating technique, see e.g. Fischer and Gopal, 1994, Reggiani and

Tritapepe, 1997).

The results related to the above mentioned experiment will now be presented. In general, by

using a statistical model for forecasting, the first step is to evaluate the predictive quality of the

model, i.e. to determine how well the model learned to approximate the unknown input-output

function for arbitrary values of input units, while the final aim of our work is to evaluate the

freight transport movements in Europe in order to forecast spatio-temporal patterns on the basis of

new transport economic scenarios. The present section will particularly analyse this first research

stage, i.e. the spatial forecasting of the model adopted. The predictive quality will be evaluated -

by means of a performance measure - by using  the test set which had been set apart and not yet

used for the calibration (learning) phase, as mentioned above.

The predictive performance of an NN can be judged by means of the statistical indicator

ARV (see Nijkamp et al.,  1996a and Subsection 3.2.2); the result of the test statistic is the

following:
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A R VN N = 0 176.

It is then evident that the above ARV indicator, emerging from NN, gives a better result than the

ARV indicator emerging from the logit analysis. Tables 3 and 4 present also the values of ARV =

0.203 and ARV = 0.185 -both greater than 0.176- and show thus a better performance of the NN

approach. This result is rather promising and gives sufficient confidence in the validity of the NN

approach for spatial analysis.

3.4 Comparison of the Logit and Neural Network Approach

In this subsection, the spatial forecasting performance of the two alternative approaches

adopted will be compared and evaluated.

By using the test set, which was not used for the calibration procedure, in our procedure

both the binary logit and the neural network model have been employed to predict the freight

flows for link (ij). This performance has been evaluated using the statistical indicator ARV.

In light of the enormous number of commodity flows we will not present the estimates for

all interregional flows in Europe, but only for three illustrative types of flows, viz. from Dutch

regions to Europe as a whole and vice versa, and from Europe to Italian regions. Tables 5, 6 and 7

illustrate the predictions made by the two distinct approaches.

Food Transport Flows rel. prediction error
Regions LOGIT real NN LOGIT NN
Breda 170981 181032 176781 -5,6% -2,3%
Eindhoven 904321 968534 945732 -6,6% -2,4%
Maastricht 252429 264424 255930 -4,5% -3,2%

Total 1327732 1413990 1378442 -6,1% -2,5%

Table 5 Food Transport Flows from Dutch regions to Europe

Food Transport Flows rel. prediction error
Regions LOGIT real NN LOGIT NN
Breda 15837 15922 15634 -0,5% -1,8%
Eindhoven 121918 119772 122434 1,8% 2,2%
Maastricht 59550 59880 60010 -0,6% 0,2%

Total 197304 195574 198077 0,9% 1,3%

Table  6 Food Transport Flows from Europe to Dutch regions
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Food Transport Flows rel. prediction error
Regions LOGIT real NN LOGIT NN
Ancona 898 921 888 -2,5% -3,6%
Bari 16722 16925 16040 -1,2% -5,2%
Bologna 71272 68916 72920 3,4% 5,8%
Cagliari 4072 4019 4010 1,3% -0,2%
Florence 27052 27488 26756 -1,6% -2,7%
Milan 60781 59977 59482 1,3% -0,8%
Naples 55916 54720 57807 2,2% 5,6%
Palermo 29344 29221 29018 0,4% -0,7%
Pescara 8939 8895 8471 0,5% -4,8%

Reggio di Calabria 1384 1375 1324 0,6% -3,7%
Rome 13879 14504 13756 -4,3% -5,2%
Turin 106438 105414 108563 1,0% 3,0%

Venice 8776 9280 9155 -5,4% -1,4%

Total 405472 401655 408189 1,3% -0,2%

Table 7 Food Transport Flows from Europe to Italian regions

Table 5 presents the predictions for the export flows of foodstuff from three regions in the

Netherlands (Breda, Eindhoven and Maastricht). Both approaches predict a slightly smaller

transport flow than the observed flow; however the predictions made by the logit model are less

accurate than those predicted by the NN model.

Analogously, the predicted import flows from Europe to the same three regions in the

Netherlands are presented in Table 6. This table indicates that the logit results are slightly more

accurate than the NN results. In the case of Maastricht the logit prediction is slightly smaller than

the observed value, while the neural network prediction is slightly higher.

Next, we have focused our attention on the import flows from Europe to Italian regions.

The predicted import flows to thirteen Italian regions are shown in Table 7. The NN model again

appears to make on average slightly more accurate predictions than the binary logit model,

although at the individual (regional) level the logit model also gives a good approximation.

Finally, Table 8 shows the ARV indicators, which have been calculated for both the logit

and the NN approach (see also the previous sections).

ARV
NN 0.176

Logit 0.185

Table 8. Comparison of Logit and NN performance
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According to the ARV indicator, the NN approach for forecasting spatial flows performs overall

slightly better than the logit approach.

4. Policy Scenario Experiments

As mentioned above, freight transport causes high social costs, which might be charged to

the transportation sector. We will now investigate the consequences of varying the transportation

costs for freight flows. A sensitivity analysis of the previous results based on some economic

scenarios will now be carried out in this section by using again both the binary logit model and

the NN model. Two policy scenarios based on different external costs assignments will be used;

they will concisely be discussed here. Later on, we will present the results related to the sensitivity

analysis for the logit and the neural network approach.

At present, because of severe problems on the road transport network (for example,

congestion), governments are trying to reduce the road usage by imposing policy measures that

serve to increase the cost of road usage (see Verhoef, 1996). An example of a Pigouvian policy

for coping with environmental externalities is the recently increased tax on fuel in the

Netherlands. In so doing, the usage of the road transport network is made less attractive than other

transport networks. In the light of these recent developments, two scenarios have been developed

and considered for an sensitivity analysis;  these are based on the observations in the test set. In

Scenario 1 we assume that a uniform European tax policy for freight transport is adopted and that

the cost attribute related to the road mode is increased by 25 % for all links (ij). Scenario 2

assumes only a national environmental policy, which means that same cost increase is made

exclusively for links (ij) which start or end in Dutch regions.

The conditional predictions for the three Dutch regions are presented in Tables 9 and 10

for the binary logit and the neural network model, respectively. The relative prediction error (see

Tables 9 and 10) is defined as the difference between the predicted flow and the real flow as a

percentage of the real flow. These tables indicate that the binary logit model is relatively more

sensitive to changes in the cost attribute than the NN model. Table 9 also shows that the binary

logit model gives the same predictions in the two scenarios, which is caused by the independence

of irrelevant alternatives feature (IIA) of this discrete choice model. The NN model estimates

appear to give the lowest prediction error.
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It is interesting to note that in the neural network case, and particularly in the case of

inflows from Europe to the Netherlands, the model shows -in the mean value- a slight increase of

flows, despite the cost increase. This result may be plausible by taking into account the increasing

amount of interaction among regional flows as a result of increased efficiency. It would certainly

be relevant to compare these results with more updated data in order to better evaluate the

‘forecasting’ analysis of the two models, since we have used -as a starting point- a test set related

to the year 1986.

However, the above results may be considered valid, in the absence of updated data that

would be able to test our hypothesis of a 25% increase in the costs, given the good performance of

the calibration / test phase. Moreover, these results may offer a ‘range of values’ to policy actors

aiming to evaluate the impact of cost changes on flows, given the intrinsic limits of both  adopted

models.

On the one hand, the large amount of data at an aggregate level, hampers a behavioural

perspective inherent in logit models. On the other hand, the type of architecture adopted in NN

models seems critical for the validity of the results. Consequently, the results of our model may be

used as a benchmark for the results of other models, by offering a more ‘flexible’output to policy

actors.

Food Transport Flows Relative Prediction Error
From NL to Europe real flow pred. flow
Regions a) test set b) scen. 1 c) scen. 2 a) b) c)

Breda 181032 170981 161327 161327 -5,6% -10,9% -10,9%
Eindhoven 968534 904321 861082 861082 -6,6% -11,1% -11,1%
Maastricht 264424 252429 245336 245336 -4,5% -7,2% -7,2%

TOTAL 1413990 1327732 1267745 1267745 -6,1% -10,3% -10,3%

From Europe to NL real flow pred. flow
Regions a) test set b) scen. 1 c) scen. 2 a) b) c)

Breda 15922 15837 15599 15599 -0,5% -2,0% -2,0%
Eindhoven 119772 121918 119056 119056 1,8% -0,6% -0,6%
Maastricht 59880 59550 58363 58363 -0,6% -2,5% -2,5%

TOTAL 195574 197304 193018 193019 0,9% -1,3% -1,3%
Table 9 Results of the sensitivity analysis for the binary logit model (columns b and c)
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Food Transport Flows Relative Prediction Error
From NL to Europe real flow pred. flow
Regions a) test set b) scen. 1 c) scen. 2 a) b) c)

Breda 181032 176781 175783 171600 -2,3% -2,9% -5,2%
Eindhoven 968534 945732 941847 930447 -2,4% -2,8% -3,9%
Maastricht 264424 255930 255261 254181 -3,2% -3,5% -3,9%

TOTAL 1413990 1378442 1372891 1356228 -2,5% -2,9% -4,1%

From Europe to NL real flow pred. flow
Regions a) test set b) scen. 1 c) scen. 2 a) b) c)

Breda 15922 15634 15598 15508 -1,8% -2,0% -2,6%
Eindhoven 119772 122434 122117 121270 2,2% 2,0% 1,3%
Maastricht 59880 60010 59832 59368 0,2% -0,1% -0,9%

TOTAL 195574 198077 197548 196146 1,3% 1,0% 0,3%
Table 10 Results of the sensitivity analysis for the neural network model (columns b and c)

5. Concluding Remarks

This paper has aimed to depict transport flows of commodities in an interregional

European setting. Based on an extensive (NEA) data set, various estimates of the impacts of costs

on transport movements have been made. The test results show that both the logit and the NN

approach are giving fairly favourable results. In general, NN models seem to perform slightly

better. After this exploratory comparative study of two modelling approaches, it is certainly

opportune to investigate more thoroughly the differences in background of these two research

paradigms. It is well known that the logit model is a particular spatial interaction model that has

its roots in social behaviour of actors, however with the limit of assuming certain properties, like

the well known IIA (Independence from Irrelevant Alternatives) assumption. The NN model is

based on similarily of learning experiments and has certainly a behavioural adjustment potential,

but is less easily interpretable from social science motives, even though recent results show a

compatibility between feedforward NNs and binary logit models (see Schintler and Olurotimi,

1997), feedforward NNs and spatial interaction models (see Fischer and Gopal, 1994) and

feedforward NNs and logistic regression models (see Schumacher et al., 1996). Given its

predictive ability, more research is needed to better investigate the behavioural roots of NN

models.
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Belgium The Netherlands 98 Canary Islands
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1 Antwerp 48 Groningen Portugal
2 Bruxelles 49 Amsterdam 99 Porto
3 Liege 50 Almelo 100 Coimbra
4 Gent 51 Arnhem 101 Lisbon

Danmark 52 Utrecht Austria
5 Copenhagen 53 Rotterdam 102 Innsbruck
6 Odense 54 Eindhoven 103 Linz
7 Aarhus 55 Maastricht 104 Vienna
8 Fredericia 56 Breda 105 Graz

France Germany ( west) Switserland
9 Lille 57 Kiel 106 Geneva

10 Amiens 58 Hamburg 107 Bern
11 Rouen 59 Hannover 108 Zurich
12 Paris 60 Oldenburg
13 Metz 61 Bremen
14 Dijon 62 Essen
15 Lyon 63 Koln
16 Marseille 64 Kassel
17 Montpellier 65 Frankfurt
18 Toulouse 66 Ludwigshafen
19 Bordeaux 67 Stuttgart
20 Rennes 68 Freiburg
21 Tours 69 Nurnberg
22 Clermont-Ferrand 70 Regensburg
23 Reims 71 Munchen

Greece 72 Berlin
24 Thessaloniki United Kingdom
25 Athens 73 Carlisle
26 Patras 74 Newcastle
27 Heraklion 75 Leeds

Italy 76 Manchester
28 Turin 77 Nottingham
29 Milan 78 Birmingham
30 Genoa 79 Cardiff
31 Venice 80 Holyhead
32 Bologna 81 Bristol
33 Florence 82 Cambridge
34 Ancona 83 London
35 Pescara 84 Southampton
36 Rome 85 Glasgow
37 Naples 86 Aberdeen
38 Bari 87 Dumfries
39 Reggio di Calabria 88 Belfast
40 Palermo Spain
41 Cagliari 89 Lugo

Irland 90 Bilbao
42 Dublin 91 Zaragoza
43 Rosslare 92 Barcelona
44 Cork 93 Valencia
45 Galway 94 Sevilla
46 Athlone 95 Madrid

Luxemburg 96 Valladolid
47 Luxemburg 97 Caceres

Table 11 List of the 108 European Regions considered
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 Figure 2 Map of the 108 European Regions considered


