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Abstract

The purpose of this paper is to formally describe new optimization mod-

els for distributed telecommunication networks. Modern distributed networks

put more focus on the processing of information and less on the actual trans-

portation of data than we are traditionally used to in telecommunications.

This paper introduces new approaches for modelling decision support at op-

erational, tactical and strategic levels. This is done by �rst de�ning the tech-

nological framework we are working within. One of the main advantages of

this framework is its inherent exibility, which enables us to do dynamic plan-

ning and consider uncertainty when decisions are made. When we present the

models, emphasis is placed on the modelling discussions around the shift of

focus towards processing, the new technological aspects, and how to utilize

exibility to cope with uncertainty.

Keywords: distributed networks, telecommunication, services, stochastic program-
ming, stochastic integer programming, stochastic modelling, optimization.

1 Introduction

New possibilities for providing services in distributed telecommunication networks
have appeared as a consequence of two developments: technological advances and
the introduction of free competition in telecom markets. These have contributed to
changes in the rules of the game for the telecommunications industry. Competition
has become harder, new players enter the scene and the roles of old players change.
The technological innovations constitute the fundament for the modelling approach
to decision support in distributed telecommunications systems, presented in this
paper.

Digital technology, modern packet switched high-speed networks, together with
standardization of software, equipment, and interfaces between the `objects' present
in the network, are some of the main factors in the technological push that has
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opened the possibilities for distributed telecommunications networks. One of the
main di�erences between new distributed networks and traditional centralized tele-
communication networks are the enormous number of services that can be provided
and the increased exibility in resource allocation.

As far as services are concerned, there is a shift of focus from transportation of
information between network nodes to processing which takes place at the nodes.
At the same time the investment cost of transportation capacities has decreased as
�ber optic technology has become standard. New high speed network architectures,
like B-ISDN, and packet switched data transmission concepts, like ATM, have been
developed (see for example [8, 28]). This means that the limited resource in the
distributed networks will often be the computing resources, such as the processing
capacity at the network nodes.

The increasing exibility that modern telecommunications networks give for in-
vestments, con�guration and resource allocation are excellent mechanisms for deal-
ing with uncertainty. There is, clearly, a lot of uncertainty found in both investment
and the operation of these networks. If this had not been so, the need for more
exibility would not have been one of the forces underlying their developing.

As far as the literature is concerned, a reference on the technological aspects of
distributed networks is [24]. However, this reference is neither telecommunications
nor optimization oriented. A large number of optimization models with applications
within telecommunications exist, see for example [15, 16, 29]. There are also papers
dealing with aspects of speci�c new services introduced into modern telecommu-
nications networks, like video on demand [1, 5]. The theory of queuing networks
has been applied to transportation aspects of communications networks, see for ex-
ample [25]. Then, some stochastic programming approaches are designed to treat
uncertainty [13, 33]. When it comes to robustness and reliable routing an example
is found in [14]. A common feature of all above cases is that the main focus is on
transportation of data and the resources related to transportation. In fact we are
not aware of any literature dealing with optimization models for distributed net-
works that focus on distributed aspects and the services' use of processing capacity
at the network nodes.

New technology means that there is a need for introducing optimization models
at a higher layer in the communications network. The purpose of this paper is to
present examples of models which cover new aspects of strategic and operational
planning, as a result of distribution and the change of focus towards processing
of information. Emphasis is placed on models where services and processing of
information at computing nodes is treated in preference to those dealing with the
transportation and routing of information. It is also obvious that these models
should be able to treat the uncertainty that originally triggered the requirement for
more exible communications networks.

This paper presents models with operational, tactical and strategic time hori-
zons. Section 2 de�nes the necessary technological terms and the framework we
operate within. At the operational level consideration is given to the problem of
how to utilize network resources in order to meet the demand both now and in the
near future (Section 3). At the strategic level we look at the problem of investing
in computers in the distributed network (Section 4). At the tactical/strategic level,
we treat the question of where to place computer resources in a region in the dis-
tributed network (Section 5). When discussing uncertainty in this paper, we use
basic terminology and concepts from stochastic programming (see for example [18]).

This section closes by introducing some notation used in the rest of the paper.
First of all we denote the n-dimensional vector space of non-negative real numbers
byRn

+. Similarly the n-dimensional vector space of non-negative integers is Zn

+, and
for binaries Bn. Stochastic parameters are always denoted by Greek letters accented
with a tilde, e.g. ~�, whereas � is a realization of the same stochastic parameter.
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2 The technological framework

Aspects of distribution are crucial to the optimization models that follow in later
sections. Therefore we will briey describe a telecommunications model of the dis-
tributed framework in which we study dynamic decision-making under uncertainty.

Several standardization initiatives for distributed telecommunications architec-
tures and concepts are presently in progress. One of these is the Telecommunications

Information Networking Architecture Consortium (TINA-C)[6, 30] scheduled to be
completed in 1997. The goal for TINA-C is, among other things, specifying the
requirements for the infrastructure in which services can be developed, provided,
tested and managed.

This section is based on the TINA-C documentation for which [3, 7, 27] are
introductions. The basis for parts of TINA-C has been the Information Networking
Architecture (INA) of Bellcore[2, 31].

2.1 From transportation to processing

Modern distributed telecommunications networks have an underlying traditional
transportation network, with nodes capable of routing and switching data. Services
capable of processing information are o�ered through computers by the software
running on these computers. Here, the term service is used to encompass a set
of software applications together with the set of resources required for processing,
interconnecting in order to make the software cooperate in the desired manner, and
passing information between the users of the service. Typical examples of resources
are: switches, servers, transmission options, routers, and computers.

The important characteristics of a service come from the resources it uses. While
traditional services tend to use more of the resources in the transportation network,
we believe that the extensive growth in newer services will come from those requiring
more resources in the computers running the applications used by the services. The
limited resource in the computers providing the service may well be the processing
capacity available in the computer. If we are short on computing resources, this
means that we are not able to o�er some of the requested services. In the traditional
transportation network we typically have routing, switching and link capacities as
the limiting resources, with time delays and loss of services as the consequence of
network congestion.

2.2 A distributed network model

We may model the relationship between the transportation network, the computing
nodes with processing resources and the applications used to build services as shown
in Figure 1.

The model consists of three planes. In the upper plane we have the set of in-
teracting applications. An example of interaction between applications is shown
by the solid lines in the application plane. In the bottom plane we have a set of
interconnected networks describing the physical connectivity between the applica-
tions. The computing nodes where the applications reside, can be seen as the \glue"
which binds the distributed application architecture and the network architecture
together. Because of the underlying networks, we have virtual all-to-all links on the
computing nodes plane.

In Figure 1, interaction with other objects in the same plane is shown by the
solid lines. Mappings to other planes are shown by the broken lines. Note that
the mappings between the three planes may be many-to-many mappings, i.e. one
processing node may accommodate several applications and several identical copies
of an application may reside at di�erent nodes.
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Applications

Computing nodes

Networks

Figure 1: The relationship between the transportation networks, the computing

nodes and service applications.

We will further assume that any application can run on any computing node,
subject to the availability of resources for that application. Applications may be
moved or copied between nodes with no limitation on how often this may occur.
The mapping between applications and processing nodes is therefore dynamic.

In many contexts the mapping between computing nodes and the networks will
be stable. However, systems are emerging where even the mapping between nodes
and networks is dynamic, for example in the form of computing nodes residing in
mobile terminals or low orbit satellites.

Note that the distributed network model described above is a useful model for the
Internet. The upper plane corresponding to the Web; the middle plane representing
the servers; and the bottom plane being the international structure of telephone and
data networks.

2.3 Distribution transparencies

A set of transparencies is proposed as described in the TINA-C documentation [3,
17], in order to formalize some of the requirements for a distributed network . They
are important with respect to the ability to adapt to changes, the availability of
services and the exibility in service deployment, provision and management. These
transparencies, together with the distributed network model we have described,
constitute the basis for the optimization models that are presented below in Sections
3, 4 and 5.

� Access transparency. Every application reveals a standardized interface to
other applications, independent of where cooperating applications are placed.
Applications which together constitute a service can thus be placed on di�er-
ent computers, without this a�ecting the interaction between them and the
access they have to each other.
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� Location transparency. This hides the location of applications from each other.
Applications can interact while their locations change over time, without the
other applications noticing it. The system supports mechanisms for locating
application instances, and this allows the exible placement of applications
over time.

� Migration transparency. This is an extension to the location and access trans-
parencies above which allows dynamic relocation of application instances. Re-
location can take place while services are interacting with each other. This
transparency gives us the possibility to completely move an application while
it is in use and interacting with other applications. Handover in mobile tele-
communication is a typical example.

� Concurrency transparency. This transparency allows several applications to
interact with the same instance of another application at the same time. The
fact that other applications use the same instance is hidden.

� Failure transparency. This makes sure that errors generated by one instance
of the application are hidden from other applications and users.

� Replication transparency. This hides the replication of one application to
other computers, from other applications. This means that it is not possible
to know which instance of an application we are actually using.

2.4 Abstract infrastructure

The engineering model [17] from TINA-C is used to describe any distributed system
as a set of engineering objects interacting through an abstract infrastructure, the
Distributed Processing Environment (DPE). This abstract infrastructure exists on
every computer in the network and provides a layer between the computer's native
computing and communication environment and the services composed of applica-
tions. The mechanisms necessary to implement the transparencies above are hidden
in the implementation of the DPE. The infrastructure and functionality provided
by the DPE is the same for all hardware platforms and all services.

The above description of the abstract infrastructure implicitly assumes the ex-
istence of some repositories for data storage. We now include a short description of
three repositories here, because they justify the validity of the transparencies above,
and facilitate understanding of the models that follow later.

� The speci�cation repository contains templates for services and interfaces and
identi�es the relationships between them.

� A trader is a repository which contains information about available interfaces
and application instances. Each trader has a domain where it is working and
a domain can have several traders. Traders interact with each other to make
sure that requests for applications can be met independently of where both
the application instances and the users reside. Similarly, they ensure that the
applications communicate with the correct interfaces. Hence the traders make
it possible to assume that our applications can interact to make a complete
service, without knowing each other's location or physical hardware platform.

� A relocator keeps track of objects which move while processing. In addition
it provides information for the trader that is necessary to �nd the requested
objects, or alternatively, replicas of it.
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2.5 Roles

We will identify some of the roles of agents that are found in a distributed network.
We only include the roles that have an impact on the models addressed in this
paper.

The customers are people or software requesting services. New market segments
open as service providers are able to o�er services that do not exist today. The
capabilities of the new distributed networks together with deregulation suggests
that not only will the customers be di�erent from traditional telecom users but the
telecom operator's �eld of operation can be di�erent.

A service provider o�ers services to customers. Providing a service can be done
by anyone who has a PC which runs a DPE and is connected to a network. We can
therefore assume that the number of service providers will be large and that the dif-
ferences between traditional software providers and providers of telecommunications
services will be blurred and probably disappear.

A network provider provides a transportation network with routing and switch-
ing capabilities to customers and service providers. Some or all of the network nodes
are computing nodes with a DPE. They correspond to computing nodes in Figure 1.
The network providers thereby act as hosts for the service providers' applications,
both when it comes to computing resources like processing capacity and when it
comes to transportation resources.

The fall of monopolies and deregulation all over the world opens the possibility
of many network and service providers operating in the same market. It is here
important to note that a network provider does not necessarily act as a service
provider, and the service providers do not necessarily own any of the processing or
transmission equipment they use.

3 Service provision

The �rst model we will consider is that of dynamically allocating the use of pro-
cessing resources at the computing nodes in order to meet customer requests for
services. This should be done to utilize the resources in the best possible way, and
may include the option to reject requests.

For modelling purposes we will assume in the rest of this paper that the mapping
between networks and processing nodes is static. We can then regard a set of
processing nodes connected to the underlying networks in a �xed manner. Then
we have a set of applications which are dynamically allocated to the nodes and
connected to each other through the underlying computing nodes and a physical
network structure as in Figure 1.

Before we completely de�ne the problem, we must look closer at the services,
how they use resources, and how distribution transparencies inuence resource al-
location.

3.1 Services and subservices

Let us �rst de�ne the term subservice and relate it to services. A service has already
been de�ned as a set of applications and their required resources. For the purpose
of modelling, we now de�ne a subservice to be a collection of applications that
always run on the same computing node. A subservice can hence be regarded the
smallest object we consider for which the distribution transparencies are valid. The
other objects included in our models are computers running a DPE, known as the
computing nodes, and (complete) services, composed of subservices.

If the node has the necessary resources to run the subservice and a decision is
made to make it available at the node, the subservice cannot usually be used to
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meet the demand immediately. There is a setup time in which the subservice can
be collected from a speci�cation repository, loaded into the memory and initialized,
before it can be used to serve requests.

We assume that all subservices are available for installment at all nodes. When
a subservice is installed at a node, we assume that the only limit on the number
of requests that can be served by it, is the node capacity. For a given service
we have an estimate of demand: the number of customer requests for the service
at the di�erent nodes in the virtual network. The use of the limited resources in
the network is described by the use of resources by complete services through the
subservices they are composed of. The resource requirement for a given subservice
depends on which service is using it.

In this paper we assume that the resource use of a subservice increases linearly
with the number of customers using it at the same time. In addition the subservice
uses a �xed amount of the node resources whenever it is installed on the node, even
when it is not satisfying a single request. This is a �xed resource use induced by
having the software running and ready to meet requests in real time. Also note
that there may be a delay between the time the service provider decides to remove
a service and the time its �xed resource use is released.

3.2 Location of demand and transparencies

The distribution transparencies from Section 2.3 indicate that the location of the
subservice instances used to meet requests is not important from either the point
of view of the interacting subservices or that of the customers. Customers have no
preferences when it comes to the service instances they use, but only to the quality
of the service. We assume that all nodes have the same capability of running all
services. More speci�cally the quality of service is not a�ected by properties of
di�erent computing nodes. The distribution transparencies therefore give rise to
a lot of exibility when it comes to allocating resources in the network, and are
crucial to the problem described in this section.

The location of subservices clearly does matter when information generated or
processed by services is to be transported in the underlying transportation networks.
It is exactly in this transportation phase that one of the most important sources
for too low quality of service is hidden: namely time delay as a consequence of
congested networks.

It is natural to assume that the network provider can interact with the service
provider to deploy the service to a node nearby the customers, in order to reduce
the overhead from the transportation of data. The important question is then if in
this setting and given our assumptions, it is sensible to integrate into our decision
models representation of the actual underlying cooperation and the information
ows that depend on the allocation of services to the nodes. Even if the inclusion
of information ows in service provision models may at �rst sight seem necessary,
there are several reasons why the opposite can be true.

Firstly, in cases where the service provider is not the network provider, an agent
o�ering services may not know the physical location of his own subservices, because
of migration and replication transparencies. It is also reasonable to believe that
service providers, who rent computer capacity from network providers, can use
this capacity to set up any service they like. Network providers responsible for
the transportation network therefore cannot necessarily control which services are
running at which locations.

Secondly, a service provider may not know the location of all of the users or
even subservices of his service because this information can be hidden by the trans-
parencies and the use of traders.
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Thirdly, we have indicated that there is a shift in focus, where services go from
being mainly transportation oriented to being processing oriented. Inn keeping with
the focus of this paper we assume that the processing capacity is the limiting factor,
not the transportation.

Under the fundamental assumptions that we have a global distributed network
where distribution transparencies are valid, and processing capacity is the limiting
resource, we have the following strict interpretation of the e�ect of distribution
transparencies on resource allocation at an operational level:

Demand for processing capacity can be served at any node independent
of the location of demand, without reducing quality of service.

Based on the above discussion, this would imply the following underlying as-
sumption:

We assume that the underlying transportation networks have enough

capacity and good enough routing schemes to keep the time delay down

on transportation of generated information, independent of the allocation

of requests for subservices to nodes in the global network.

It is easy to imagine that the strict interpretation given above can create situa-
tions which appear peculiar. For example a typical service request can include two
customers and a particular subservice instance. Assume the customers are located
in Amsterdam, and the subservice they request is placed in Oslo. If the subservice
is mainly transportation of information which is not processed, we can assume that
most information is routed locally in the backbone network in the best possible
way, without having to pass through Oslo. The subservices that are likely to create
strange information ows are the ones that have both a lot of information trans-
ported and also processing of the information. The links between the included cities
must then be of such capacity that the transportation of information through Oslo
does not diminish the quality of service. If this assumption is not valid, the strict
interpretation of the e�ect of the transparencies has to be reconsidered.

A mild version of the previous assumption can also be presented :

In regions of the network, the demand for processing capacity can be
served at any node in the region independent of the location of demand,
without reducing the quality of service.

with the corresponding underlying link capacity assumption:

We assume that within regions of the global network, the transporta-

tion networks have enough capacity and good enough routing schemes

to keep the time delay down on transportation of generated information,

independent of the allocation of requests for subservices to nodes.

It is important to note that the size of the bounded regions above does not
depend on physical distance, but rather the underlying transportation networks of
the network providers in question and their alliances. Also note that the regions
do not overlap. We notice that under the �rst assumption, we only have one such
region, namely the whole world.

Both of the above assumptions can lead to the models presented in Section 3.3
and Section 3.6. If we believe that the processing capacity at the nodes is the
limiting resource, at least the weak interpretation is necessary to fully utilize the
possibilities created by the distributed environment for dynamic resource allocation.

The main e�ect on modelling the resource allocation from the above, is that
both the customer and the service provider are indi�erent to which node meets the
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demand for a particular request. We do not have to model any information ows
generated by a request, only the demand for the services. The actual locations
of customers are thus irrelevant to the problem of allocating node resources. This
means that the demand for services can be aggregated both over the customers and
all the locations in at least a region in the network providing the service.

3.3 A deterministic service provision model

We are now able to specify in more detail the service provider's problem. Let us
�rst describe a static model assuming deterministic demand and no lead time for
installing subservices. The service provider has a set of computers available where
he can install subservices. He also faces the demand for the subservices. The
problem we want to model here is how to allocate subservices to computing nodes.
This is done to best utilize the resources the service provider has available in order
to meet the demand for his services. Making available too many subservices at a
node means there will be no capacity left to serve the demand for them. Providing
too few may imply that there is the capacity to serve demand, but not the ability.

Let us here assume that the available amount of the limited resource is large
enough to accommodate the requests for all customers, given correct con�guration.
Complete services are only implicitly included in the model through the resource use
of the required subservices. Such an approach is feasible, given the latter assumption
that we do not have to reject any customer request. We do not risk rejecting half
a request for a complete service (for example sound but not picture in video on
demand).

Let I be the set of computing (supply) nodes and J the set of subservices
(demand nodes). If necessary we use I and J as their cardinality. The zero-one
variable z(i; j) indicates whether or not node i contains subservice j. The capacity
reduction associated with installing this service is denoted r(i; j) and we assume
it is in Z1

+. In many cases it is natural to think that the �xed resource use is
independent of the node so that r(i; j) = r(j). The integer variable x(i; j) denotes
the amount of demand for the resource generated by service j and met at node i.
The capacity of the resource at node i is s(i) 2 Z1

+. The demand for the limited
resource generated by subservice j is �(j), where we assume �(j) 2 Z1

+. We �rst
assume that all parameters de�ned above are deterministic. When we require that
all demands must be met, the main objective is to �nd a feasible solution.

This can be modelled as a linear mixed-integer programming problem (MIP)
[26]. The feasible region of the deterministic subservice provision problem without
rejections is then:

X

j2J

r(i; j)z(i; j) +
X

j2J

x(i; j) � s(i); i 2 I;

X

i2I

x(i; j) = �(j); j 2 J ;

Mz(i; j)� x(i; j) � 0; (i; j) 2 I � J;

z(i; j) 2 B1;x(i; j) 2 Z1
+; (i; j) 2 I � J :

The constantM(i; j) = minfs(i)�r(i; j); d(j)g. The �rst two sets of constraints
correspond to classical transportation network constraints with the addition of the
supply capacity reduction. The third set of constraints ensures that a processing
capacity at a node cannot be used to meet demand for a subservice, unless the
subservice is installed there. Integrality requirements on the x variables can be
dropped due to the fact that the right-hand side is integer and the constraint matrix
is totally unimodular [32] when the z variables are �xed.
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This network is called a Transportation Network with Supply Eating Arcs (TSEA)
[10]. We do not give a stochastic version of this model because the following model
is strongly related to it, but more relevant. It is interesting to note that the deter-
ministic feasibility problem of TSEA is NP { complete in the strong sense [10]. In
this reference an algorithm is also presented to solve the TSEA feasibility problem
when r(i; j) = r(j).

3.4 Uncertainty

We have mentioned before that one of the main advantages o�ered by the distribu-
tion transparencies is the possibility of dynamically changing the resource allocation.
This ability to change is even more important when we try to consider uncertainty
of demand in our models. Demand is clearly completely inherent in the service
provision problem, both in demand and in prices for subservices and rejections. In
the treatment of uncertainty here and in the rest of the paper, we use terminology
from stochastic programming (see for example [18]).

The demand for processing capacity is generated by the demand for complete
services. When we map demand from complete services to subservices, we do this
by using an estimate of the number of units of processing capacity generated by the
service through use of the subservice. The uncertain demand for the resource can
then be interpreted in at least three ways:

� A probability distribution for the demand for services is mapped to probability
distributions for the use of resources by the subservices. This is done using
the average resource requirement generated through the service's use of the
subservices.5

� Deterministic demand for services is mapped to a distribution for resource
use, where the resource requirement generated from the services' use of the
di�erent subservices is uncertain.

� A combination of the two preceding possibilities: a distribution for the ser-
vices demand is mapped to a probability distribution for resource use through
probability distributions for the use of subservices.

The main point is that the distribution of resource use is generated from the
estimate of future demand for complete services and their use of resources using the
subservices they are composed of.

The time frame of this model could be from milliseconds to minutes, depending
on the lead time for setting up services and the duration of demand uctuations.
We assume that the uncertain parameters are not known when decisions concerning
which services to provide at which nodes are taken, but the uncertainty resolves
itself during this lead time. When the services are available to meet the demand,
we know the values of all uncertain parameters, in particular, we know the demand.

The state of the system of computers running services can be described by the
current demand for the resource, a list of the running subservices, and a probability
distribution of resource use generated by the di�erent subservices at some future
point in time. With respect to the demand distributions for complete services,
we can make some very useful assumptions. First of all, in most system states
the demand distributions imply that there will be no trouble meeting demand.
Otherwise, the investment problem is not properly solved. We are not interested in
these cases. Instead, we are more interested in cases where there is going to be so
much demand for the limited resource that careful planning is necessary to avoid
rejections. Such a situation arises when there is an unexpected peak in demand for
a service or subservice.
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Secondly, we assume that only one of the services can peak at any time. This
means that in our distributions for the subservice resource use in the next period, we
can assume that at most one of the services peaks, or alternatively, that very few of
the subservices will be a�ected by the peak. The conditional probability distribution
concerning which service, if any, is going to peak in the next time period is based on
the system state at the moment, and in particular on the observed tra�c patterns.

In the case of discrete distributions, described for example in terms of scenarios,
the above discussion indicates that the individual scenarios typically only show
peaks in a few of the subservices, depending on which service peaks in that scenario.
Some of the subservices may peak in all the scenarios, but some of them will also only
be signi�cantly a�ected if one speci�c service peaks. So, in general, our distribution
is such that the di�erences between scenarios can be large. If not, uncertainty would
probably not be important.

3.5 Rejection of customers

It is easy to imagine scenarios where the node capacities are too small for the entire
demand to be met. This is especially in the case of stochastic demand, but can even
occur in the case where the demand is known. In such scenarios we have to allow
for some of the customers being rejected. By rejection we mean that the service
provider will not meet a request for a service or subservice himself. In practice
this means that the customer will have to �nd another service provider, or that the
service provider or a trader performs this task for him. The last option is more
likely to appear when a subservice is rejected that is only part of a complete service
that the service provider wants to o�er.

In any case there is a cost connected to rejections. In a competitive market we
can always assume this cost to be the market price for the rejected subservice. This
should be the same for all subservices of equal quality, even for di�erent providers.

3.6 Subservice arrangement under uncertainty

We will now formalize this in a model. In the following, we assume that there
is a setup time for a subservice in which it uses the �xed capacity requirement,
but cannot serve requests. Also when the service provider decides to shut down a
subservice, there is a delay before the �xed resource use is released. This capacity
thus cannot be immediately used to meet demand for other subservices.

Let us treat this as a dynamic decision process with two stages and uncertain
demand. In the �rst stage we decide which subservices to o�er, given uncertain de-
mand. In the second stage uncertainty has resolved, and the subservices we installed
are available to meet demand. The following example indicates why uncertainty and
dynamics must be included in the model.

Example 1: The e�ect of uncertainty on decisions

As an example assume that we have only one node with a capacity of 200 resource
units, and three subservices, (A, B, C) for which there are rejection costs (20, 15,
15) per rejected unit of the resource. The �xed resource use when providing the
subservices is (40, 20, 10). Uncertain demand for the resource as generated by the
subservices, is described by two possible future scenarios, S1 and S2, having equal
probability. The demand vector in S1 is (80, 0, 70), and in S2 it is (0, 150, 70).
Hence subservice C has a deterministic demand of 70, and either subservice A or
subservice B has a peak in demand with a probability of 0:5.

Let us �rst try to look at this in view of deterministic analysis. In the notation of
the preceding model, we say that x = (x(A); x(B); x(C)) and z = (z(A); z(B); z(C)).
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The optimal solution for S1 is z = (1; 0; 1) and x = (80; 0; 70). The rejection cost
is 0. The optimal solution for S2 is z = (0; 1; 1) and x = (0; 150; 20). The rejection
cost is 750, due to partial rejection of subservice C. This does not give us an im-
plementable solution, because in one case subservice A is installed and in the other
subservice B.

So what if we use expected demand, (40, 75, 70) as data, and treat it as if it
was deterministic when making decisions. The optimal deterministic solution is
then to install subservices B and C , and set x = (0; 75; 70) with a rejection cost
of 40 � 20 = 800. The rejection cost found in this way does not generally give
any indication of the expected rejection cost the decision implies. Because of the
uncertainty of demand, the interesting part of this solution is only its �rst-stage
decision, z. Given that we have subservices B and C installed, we need to minimize
the actual rejection costs when uncertainty resolves. In scenario S1 we meet the
entire demand for subservice C, meaning x = (0; 0; 70) and in S2 we meet the entire
demand for subservice B and as much as possible for subservice C, x = (0; 150; 20).
Thus the true expected rejection cost is 0:5 � 80 � 20+0:5 � 50 � 15= 1175 given our
decisions from the �rst stage.

If we instead would have installed subservices A and B, the expected rejection
cost would have been 0:5�70�15+0:5�70�15 = 1050. With A and C installed the
expected cost is 0:5�0+0:5�150�15 = 1125. Finally, if we had installed subservices
A, B and C the expected rejection cost is 0:5 � 20 � 15 + 0:5 � (20 + 70) � 15 = 825.
This is also the solution leading to the minimal expected rejection cost. As we can
see the solution we found from deterministic analysis in this case was the worst and
gave an expected rejection cost that was 42% higher than the optimal one.

Here the possibility of a peak in demand for subservice A and the resulting high
rejection cost in this scenario, more than outweighs the expected marginal value of
any alternative use of the resource units involved. This was not discovered through
deterministic analysis.

Now we turn to the mathematical model again. We base the problem formula-
tion on the previous model in Section 3.3 and the above discussion. In the static
deterministic case the di�erence from the model in Section 3.3 and the current one
is only that we relax the demand constraint by introducing a slack variable t(j) for
every subservice j. This can be interpreted as the rejections. For this deterministic
formulation of the problem a large class of facets is known [9].

In the stochastic case prices can be uncertain as well as demand. Let ~�(j) be
the cost of rejecting demand for the resource created by subservice j (note that an
alternative interpretation is to let ~� represent the di�erence between the price the
service provider has to pay to a competitor and the price he obtains from selling the
service on the market). If all �(j) are set to 1 (scaling of equal costs), the objective
will be to minimize the number of rejected requests for the resource.

To allow rejection of subservices creates some modelling problems since there is
no connection in the model to the demand-generating complete services. Therefore
we risk rejecting only a part of a complete service for several requests, instead of
rejecting entire requests for complete services, as would be natural. To avoid this
risk, we have to make some assumptions. In view of the distribution transparencies
and the DPE functionality described earlier, it will be reasonable to assume that
traders will be able to perform the task of identifying other instances of the subser-
vice that the service provider is not able to o�er, but which can be used by the set
of complete services he wants to present to his customers. In short, a request to the
trader repository will normally be to ask it to locate a subservice instance owned
by him. In cases where this is not possible, the request becomes that of �nding
this subservice with another service provider. One way of interpreting the above is
to say that subservices that are rejected are either hired from other providers, or
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served in another region of our provider's operating area. The rejection cost can
then be interpreted as the cost of getting the subservice elsewhere.

Here we give an example of a two-stage formulation of the stochastic service
provision problem. Note that the rejection variable t(j) is eliminated from the
formulation.

Minimize Q(z))

s:t:
X

j2J

r(i; j)z(i; j) � s(i); i 2 I;

z(i; j) 2 B1; (i; j) 2 I � J ;

where
Q(z) = E[q(z)]

where the expectation is taken over the stochastic parameters ~� and ~�, and

q(z) = min
X

j2J

�(j)[�(j)�
X

i2I

x(i; j)]+

s.t. X

j2J

x(i; j) � s(i)�
X

j2J

r(i; j)z(i; j) = s�
z
(i); i 2 I;

x(i; j) � Mz(i; j); (i; j) 2 I � J ;

x(i; j) 2 R1
+; (i; j) 2 I � J :

The second stage problem is a particularly simple bipartite transportation prob-
lem with cost coe�cients only on the arcs used to reject demand. The structure of
the objective function can be utilized when solving the model, for example as in [34].
The �rst stage is a binary knapsack problem with several independent knapsacks.

One should also note that the �rst-stage constraints are redundant, since they
are represented in a stronger form in the second stage. On the other hand, since the
�rst-stage constraints imply s�

z
(i) � 0 8i 2 I, this can be regarded as a stochastic

integer programming model with relatively complete continues recourse (see for
example [18, 35]).

3.7 Extensions of the models

In the previous models we implicitly assumed that the service provider had full
knowledge of the sizes of all the available computing nodes. This is not always the
case. Another extreme possibility is that he has no knowledge.

We can imagine that, in some cases, the network provider who owns the comput-
ers on which the subservices are running, is free to replicate and migrate the subser-
vice instances running on his infrastructure. In hiding the complete infrastructure
from the service provider, just letting him see it as one node, he is completely free
to utilize his resources. Even though the service provider thinks he runs exactly
one instance of his subservices, he may in reality run several, and the number and
locations may vary over time. The migration and replication is then a choice made
by the network provider. The extra induced costs this implies when it comes to
�xed resource use, is hidden in this case from the service provider by migration and
replication transparencies. Still it is reasonable to believe that the service provider
should consider the original �xed resource use connected to o�ering the service, but
only induced once.

Alternatively, we can assume that the network provider is free to replicate and
migrate instances, and that the service provider pays for all �xed resource use. In the
�rst approach the network provider gets a lot of exibility when it comes to utilizing
his resources, by letting the service provider think he has one node available. The
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price he pays is to cover the cost of replication and migration himself. In the second
case the network provider gets the same advantages and the service provider pays.

The service provision problem of the �rst case is modelled and discussed in [36].
This model is similar to the one in Section 3.6 with only one computing node. Note
that the problem for the network provider, including replications and migrations,
is equivalent to the model without rejections presented in Section 3.3.

It may also be useful to model rejection of requests for complete services. In
other words we then model a situation where the service provider is or wants to be
the only provider of all or some of the subservices constituting a complete service.
Models representing this problem can be found in [36]. In case there are no customer
rejections, there is no di�erence from the earlier models.

In the preceding two-stage models we have implicitly assumed that two stages
are enough to model the detection of a peak in demand, a reaction by allocating
services to nodes and time for uncertainty to resolve. There are several reasons
why in some cases we may need more than two stages here. Firstly, it is possible
that the length of a peak exceeds the lead time of setting up services so that the
reallocation of services is possible before the top of the peak is reached. This means
that there is increased exibility in the decision process which a two-stage model
cannot capture.

Secondly, we know that the services can use di�erent subservices in a sequential
as well as a parallel manner. This means that the subservices that are used in
the beginning of the peak, may be di�erent from the ones used at the end of the
peak. Assigning capacity to all these subservices throughout the whole period of
decision, may therefore not be a good utilization of the limited resource. The two-
stage models capture the parallel aspects of subservice use, but not the sequential
aspects.

Thirdly, we have assumed that before a new peak arrives, there has been enough
time for the current one to be handled. If this is not true, more than two time periods
may be needed.

It is possible to imagine that subservices can be shut down releasing the used
capacity immediately. This will inuence the models presented here. Likewise,
another approach can be to assume that prior to the peaks in demand, the service
system is in a robust state. The goal will then be to meet demand during the
peak and return to a robust state with the smallest e�ort of recon�guration and
reallocation of requests. An initial attempt to model these two variants is given in
[36].

4 Node investment

We now turn to consider strategic investments in the underlying infrastructure
on which we run the services. The area where the network provider operate is
divided into non-overlapping regions. We will assume that the regions are given,
that distribution transparencies are valid, and that the location of a service inside a
region should not inuence the quality of the service to the customer. The regions
can for example be similar to the ones we discussed at an operational level in
Section 3.2, where processing capacity was the limited resource. Assume that the
market for processing capacities is deregulated and competitive, so that several
network providers exist. In addition assume that in the market of transportation
capacities between regions, we have perfect competition. None of the actors can
individually inuence prices of transportation capacities on these links.

When facing future demand for services, a network provider must try to plan
the capacity of the node resources (for example processing capacity) inside regions.
The decisions should ensure that there is enough capacity to meet the demand and

14



at the same time maximize long term pro�t. After investments have been made
and uncertainty has been resolved, he may have to buy extra processing capacity.
On the other hand, he has the option to sell capacity if he over-invested. These are
sound assumptions in a deregulated competitive market with many providers.

Note that given a high enough quality of the service, distribution transparencies
ensure that customers are indi�erent to the location of interacting subservices. The
transparencies also makes trading of processing capacity between regions possible.
It may then be advantageous to utilize this to deliberately plan processing capacity
in such a way that there is a shortage in one region and a surplus in another. This is
clearly even more meaningful when demand is uncertain. This trading of capacities
between regions, can be considered one of the main issues of investment planning
in distributed networks.

4.1 Link capacities

Transportation capacity within regions is not considered here. With given region
boundaries and known processing capacities within each region, the problem of
deciding link capacities within regions can be regarded as a problem of its own.
This problem is of course dependent on the results from the problem we treat here,
and also on the solution of the node location problem we treat in the next section.
In the models we present here, we assume that the price of building the necessary
link infrastructure within the regions is reected in the investment costs of nodes. It
is natural that the cost of the local infrastructure needed increases as the processing
capacity in the region increases. In this paper we will assume that the investment
costs are linear in the node size.

So what is the reason for including link capacities between regions in our models?
This stems from recognizing the fact that a lack/surplus of node capacity in one
region, may lead to an increase in tra�c between regions. The decision of trading
processing capacity between regions at a regular basis, requires that the link between
the regions is not a bottleneck. The desired capacity should be available for sending
information without a time delay leading to loss of service or a reduced quality of
the service. As we have assumed free competition in this market, we know that our
decision taker can take the market price to be valid for an, in practice, unlimited
amount of information. We still recognize, though, that it is costly to use the links.
So if the network provider wants to trade node capacity on the market, he has to
pay for the extra induced need for transportation capacity.

If we place ourselves as decision-makers at the computing nodes plane in Fig-
ure 1, there are virtual all-to-all links for transportation of information between
regions. The virtual links may of course also exist as physical links for one or several
of the underlying transportation networks. We want to plan how much informa-
tion we need to transport between regions, as a consequence of trading processing
capacity in the market. There are several ways to model the induced information
ows that follows from our network provider's surplus/lack of capacity in a region:

1. Model the ows explicitly, i.e. introduce decision variables for ows between
each pair of regions together with variables indicating which surplus region
helps out which shortage region.

2. Distribute the induced information ows from regions with surplus/lack of
processing capacity to all or some neighbouring regions by a deterministic or
average pattern.

3. Model the extra induced information ows from regions with surplus/lack of
processing capacity as distributed stochasticly over the links out of the region.

15



In the �rst case, the solution of the model will give a strategy for which regions
are going to cooperate, and when. This is clearly feasible if we assume that we
are only using our own nodes. In the two latter cases we do not explicitly model
which surplus areas help out which shortage areas. Therefore, we could say that
the shortage of node capacity is covered by buying capacity on the market, and
surplus by selling. This seems like a more exible and general approach. It includes
the possibility of trading capacity both in the region in question and between this
region and others. To be as general as possible, we model the distribution of in-
duced transportation needs from exported/imported node capacities as stochastic
parameters as in case 3 above.

In our deregulated perfect competition market investment costs in transporta-
tion infrastructure should not be directly included in the models. Assume for ex-
ample that a network provider is of the opinion that the market prices he has been
given for future transportation capacity is too high. He may then claim that he
will invest himself and face lower prices than the ones present in the market. This
may be so, but he should still use the market price as an estimate of the cost of
sending information between regions when he plans his node capacities. In the per-
fect competition market we have assumed, the pro�t he can get from investments
in transportation capacity is independent of his investments in nodes. Hence it
should also be treated independently as an investment of its own, and implemented
if pro�table.

When we base our decisions concerning need for transportation capacities solely
on market prices, we need to include some market mechanisms. We have to di�eren-
tiate between buying capacity at the spot-market and making long term contracts
having a �xed price with transportation capacity suppliers. The latter possibility
eliminates uncertainty concerning the price of transportation capacity for the agreed
on use of a virtual link.

4.2 Uncertainty

The following parameters may be uncertain: The demand for processing and link
capacities, prices of capacities in the future spot-market and the information ows
induced by surplus/shortage of processing capacity in the regions. In this paper
we regard transportation costs as known if contracted at the �rst stage. Similarly
investments costs for node capacity is deterministic, as a consequence of using o�-
shelf equipment only.

We have earlier shown how demand-uncertainty inuences decisions in the ser-
vice provision problem. In particular we stressed the negative e�ect of not utilizing
exibility when decisions are made. When it comes to dimensioning processing
capacity and estimating the need of link capacity at a strategic level, long term
demand-uncertainty is important. Flexibility in trading capacity on the market
after uncertainty has resolved, cannot be captured by deterministic analysis. In
recognition of the importance of uncertainty for these types of decisions, we will
therefore go directly to a stochastic model.

4.3 Model for investment in nodes

In the modelling example given here, we will assume that all costs of capacity
increase linearly with the used capacity. This is the case if we assume perfect
competition on the markets for processing as well as for transportation capacities.
Our decision-maker can assume the prices to be valid independent of his and other
individual agents decisions.

In the �rst stage of the model we invest in nodes and contract link capacity. In
the second stage we face the uncertain demand for processing and between-region
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link capacity. Spare capacity can be sold on the market. If capacity is too low,
we will need to buy more capacity on the market. In both cases we may generate
transportation ows out of or into our region.

We now present a stochastic two-stage model. In the following, we use E to
denote the set of possible combinations of (i1; i2) 2 I � I where i1 6= i2.

First stage:

min
X

i2I

f(y(i))y(i) +
X

(i1;i2)2E

c(i1; i2)l(i1; i2) +Q(l; y)

s.t.
(l; y) 2 S;

l(i1; i2) 2 R1
+; 8(i1; i2) 2 E ;

y(i) 2 Z1
+; 8i 2 I;

where l(i1; i2) is the contracted capacity on the virtual link between i1 and i2, and
c(i1; i2) is the corresponding deterministic price. The size of the computers in region
i, is denoted by the integer variable y(i) (if the upper bound on this variable is large,
it may be considered a real decision variable). Here f(i) is the investment cost in
region i. The constraint set for our �rst decisions is de�ned in the feasible region
S.

The function Q is the expected value function of the second stage problem,

Q(l; y) = E[q(l; y)]

where the expectation is taken over the stochastic parameters ~�; ~; ~� ; ~!; ~�; ~� and
~�.

The second stage is:

q(l; y) =min
X

i2I

[��(i)�(i) + �(i)x(i)� � �(i)x(i)+]

+
X

(i1;i2)2E

!(i1; i2)[p(i1; i2)
� � p(i1; i2)

+]

s.t.

x(i)� � x+(i) =�(i)� y(i); i 2 I;
p(i1; i2)

� � p(i1; i2)
+

� �1(i1; i2)x(i1)
+ � �2(i1; i2)x(i2)

� =(i1; i2)� l(i1; i2); (i1; i2) 2 E ;
p(i1; i2)

+; p(i1; i2)
� 2 R1

+; (i1; i2) 2 E x(i) 2 R1
+; i 2 I:

The �rst constraint set concerns the processing capacities of the nodes. The
variables x(i)�=x(i)+ represent the processing capacity shortage and surplus in
region i. The stochastic parameter ~�(i) is the future processing capacity need in
region i. The ~�(i) is the uncertain pro�t per demanded capacity unit. Further ~�(i)
and ~�(i) are respectively the cost and revenue experienced if processing capacity is
too small in region i.

The second constraint set concerns the transportation capacities on the virtual
links. Here p+=p� is the surplus/shortage for transportation capacity on virtual
links between di�erent regions. Here ~! is the price when buying and selling link
capacity on the market. The demand for capacity on the virtual link between
i1 and i2 is given by ~(i1; i2). Parameters ~�1 and ~�2 describe how surplus and
shortage capacity in the nodes induce transportation needs. These parameters can
be stochastic.

If we look at the term �� in the second stage objective, we notice that it is a
random constant, namely our pro�t when meeting the demand for resource capacity.
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From an economical point of view this term is crucial because it is normally what
gives a positive result. From an optimization point of view, this stochastic constant
term can be omitted. The �rst-stage objective can be adjusted by its expected
value to give the real cost. Implicitly in this objective is the fact that a network
provider will meet the demand he actually gets for capacity. If this is more than
he has available, he will have to buy capacity on the market. It is implicit in the
formulation that it will always be useful to fully utilize the processing capacity of
the nodes.

If ~�1 = ~�2 the model has two stages with an integer �rst stage and simple
continues recourse in the second, see for example [18, 35]. Otherwise the model has
relatively complete recourse.

4.4 Extensions to the model

Multistage models are better suited if the uncertainty gradually resolves over time
and we are able to change our plans based on this increased knowledge. In that
case the two-stage model we have presented is not able to capture the exibility
inherent in the decision process.

If we do not believe in, or do not want to enforce, the above requirement of
trading processing capacity between regions, we can omit to plan the use of link
capacities between regions in our model. This still assumes that we are trading
processing capacity in the market, but only inside the region where we have sur-
plus/lack of capacity. Clearly, the transportation capacity needs on links between
the regions are still important, but the decisions we are modelling are no longer
connected. The di�erence from above, is that we now assume that the trading of
capacity does not introduce extra capacity needs on links between regions. These
links should therefore not be handled together with strategic planning of node ca-
pacities. An example of such a model can be found in [36].

We assumed here that the market for transportation capacities between regions
has perfect competition. If this is not the case, we have to study more carefully
prices for transporting information over a virtual link. Especially we have to exam-
ine the real physical underlying networks. Investment decisions in transportation
infrastructure may now change market prices.

This extension is not trivial. Remember that one computing node, may be
mapped to several networks. There are several providers of network infrastructure.
Our network provider planning his node capacities, may himself be one of them.
It is here important to realize that there is dynamic (re)allocation of resources in
the physical packet switched transportation networks underneath the computing
nodes. Several di�erent network paths and providers can be utilized simultaneously
to send information between the regions in question. It is clear that there is no direct
mapping between the capacity need of a virtual link and the underlying physical
networks. This implies that the price of transportation capacity experienced by our
decision-maker between two regions, may not in general be treated independently
from the other node providers investments, their capacity needs and their prices.
In addition a single virtual link can in general not be treated isolated when making
decisions concerning capacity in the network.

5 Node location problem

As we will see, the node location problem is related to the problem above but can
also be viewed in its own right. Consider a �xed number of sites where computers
can be installed inside a bounded region of our network. The purpose of these
computers is to meet demand for processing capacity within the region. We also
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assume that each site has a cost/pro�t associated with o�ering a subservice to
customers located at di�erent places in the region, and an investment cost, or �xed
cost, for putting a computer there. At each site the network provider can choose
between computers of di�erent sizes and types. He wants to locate the processing
capacity in the region so as to minimize the cost of installing enough processing and
link capacity to meet the overall demand. Obviously di�erent choices of node sites
can lead to di�erent costs for meeting subservice demand, both as a consequence
of investments made in the transportation infrastructure and as a consequence of
di�erent operating costs.

In the previous section we presented a model which provided an answer to the
question of how large the overall capacity in each region should be. The solution of
that problem can be included in the node location problem as the lower bounds for
the region's installed capacity. It is natural to assume that the regions in question
here are the same as those in the previous problem and the ones discussed at an
operational level in Section 3.2.

In the same way as earlier, we assume that processing capacity is the limiting
resource, and that distribution transparencies are valid. We must include the pos-
sibility of handling demand that exceeds the installed capacity. This can be done
by allowing rejections or trading of processing capacity on the market.

5.1 Transparencies, link capacities and demand

How do we de�ne customers and their locations? Subservices are often requested as
an interaction between two or more customers, possibly at di�erent locations. We
let all virtual links between possible sites in the network correspond to locations
of requests for subservices. We also have the demand which is present at a single
location, reecting the situation that the sites where we can put computers are also
locations of demand. Note that many subservices bring about interactions between
more than two locations. The request would in this case contribute to demand
for the subservice over all links included in the request. In the overall problem we
consider only aggregated demand at each virtual link, but we are able to identify
which subservices generate that demand. We can now specify which part of the
demand for the various subservices at the di�erent locations is to be met at each
particular site.

It is here important to see how this �ts the technological framework we de�ned
earlier in Section 2. When processing was the limiting factor, transportation trans-
parencies made it possible to conclude in Section 3.2 that the location of demand
inside regions was not important at the operational level. We will now try to mini-
mize a cost of meeting demand that is dependent on the locations. If we consider
strategic or tactical planning, there is no doubt that the location of nodes relative
to demand matters. A major reason for this is precisely the exibility in resource
allocation at the nodes that the transparencies introduce at the operational level
and the corresponding need for transportation capacities. There are at least two
di�erent ways of including this in the model:

� We can explicitly model the links between customer locations and their ca-
pacity and installment costs.

� In the price of meeting demand for subservices from a given site, we include the
cost of the necessary transportation infrastructure generated by this choice.

The last approach is selected because there is an enormous amount of e�ort
already put into models for transportation network design. Given the location
of sites, their sizes, and the type/amount of demand we expect at the sites, the
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problem of designing the underlying transportation network is extensively treated
in the literature, see for example [13, 15, 16, 25, 29, 33].

The investment costs of the local transportation infrastructure, can probably be
split in one �xed part depending on the node site (and size) and one variable part
depending on the actual use of the node. We assume in the following that the price
of meeting demand for a subservice from a given site indicates both operational costs
and the variable part of necessary investments in the underlying infrastructure. This
infrastructure must be of such a quality and capacity that when transparencies are
valid at an operational level, the quality of service is independent of the locations of
the subservices within the region. Likewise we include in the investment cost for a
node the �xed part of necessary investments in local transportation infrastructure.

5.2 Interpretation of the chosen approach

The allocation of subservices to sites must not be confused with the allocation we
have already studied at an operational level. The purpose here is just to ensure
that the overall demand for processing capacity can be met. We also recognize
the fact that the total demand for processing capacity, or even the demand for
special subservices, is not necessarily equally distributed over the region. If, at
a tactical level, we say that a node must have a given size to be able to house a
speci�c subservice, this implies that we will dimension the underlying transportation
infrastructure based on this. One should here note that this assignment is not
�xed and is certainly not identical to the assignment of subservices to nodes at an
operational level. We may then instead choose to hide the identity of subservices
and model the demand for processing capacity aggregated over all subservices at
a location. However, this is just a special case of the �rst approach, and we will
therefore treat the �rst.

5.3 The node location model

The important uncertain factors are the demand for subservices (given in terms of
resource use) and the prices of meeting this demand from di�erent locations. Both
operational and investment costs are included in these prices. As in the problems
presented previously, we need a stochastic dynamic model to describe the exibility
in the decision process and treat the uncertainty.

The problem can be formulated as a capacitated facility location model. There
are several ways of modelling this problem. References [12, 19] give overviews of
di�erent formulations and contain a lot of references. The model given here is an
example of one modelling approach. The computers are the facilities, the underlying
network links are the customer locations, and demand for the subservices over the
links should be met to maximize pro�t/minimize cost subject to capacity constraints
on the nodes.

Let y(i) be 1 if computer i is installed and 0 otherwise. The corresponding
investment cost is f(i). It is natural to assume that the capacity of the computers
is limited. We denote by U(i) the capacity of computer i. Let Ul be the overall
amount of capacity the network provider at least need to install in the region, and
Uu the maximum. The lower bound may come from investment models treated
earlier and the upper bound is possibly absent.

The variable x(i; j; e) is the demand for the resource generated by subservice j
over link e that we decide to meet at node i. The set of all links is E . The demand
for the resource generated by subservice j over link e is named ~�(e; j). We denote
the possibly stochastic cost/pro�t of meeting the demand for subservice j over link
e at node i as ~�(i; j; e). This parameter should include the variable cost of installing
or renting infrastructure in the backbone network. As we have argued, this cost

20



may be independent of subservices. In this formulation we have assumed that it is
linear in the use of processing capacity.

The variable t(j) describes how many resource units demanded for subservice j
we choose not to meet. The rejection cost (or, alternatively, the cost of obtaining
the subservice on the market, for example, from another region) is given by ~�(j).

The corresponding stochastic two-stage model can be written as follows. First
stage:

min
X

i2I

f(i)y(i) +Q(y)

Ul �
X

i2I

U(i)y(i) � Uu

Q(y) = E[q(y)]

where the expectation is taken over the stochastic parameters ~�; ~� and ~�.
Second stage:

q(y) = min
X

i2I

X

j2J

X

e2E

�(i; j; e)x(i; j; e) +
X

j2J

X

e2E

�(j)t(e; j)

s.t.
x(i; j; e)��(e; j)y(i); 8(i; j; e) 2 I � J � E ;X

i2I

x(i; j; e) + t(e; j)=�(e; j); 8e; j 2 E � J ;

X

j2J

X

e2E

x(i; j; e)�U(i); 8i 2 I;

x(i; j; e) 2 R1
+; 8(i; j; e) 2 I � J � E ;

y(i) 2 B1; 8i 2 I:

Some references for the stochastic facility location problem are [4, 11, 21, 22, 23,
20].The formulation above is a stochastic integer programming model with binary
�rst stage and relatively complete continues recourse, see for example [18, 35].

5.4 Extensions of the model

When uncertainty concerning demand resolves over time, a two-stage model may
not be able to describe the implied exibility this gives with respect to waiting before
full capacity is installed. To completely capture the dynamics of this problem, may
require more than two time periods.

6 Conclusions

We �rst identi�ed the need for optimization models by considering distributed and
processing oriented aspects of a telecommunications network. The main reason for
this is the introduction of new technology and a shift in the focus of the services
provided in the network from data transport to information processing. The mod-
els we presented were based on a distributed telecommunications framework de�ned
by TINA-C[6, 30]. The distribution transparencies and the abstract infrastructure
de�ned here are crucial for models treating service provision and investment in dis-
tributed networks. The paper discusses decisions for operational resource allocation
at the service providing processing nodes, investment in processing and transporta-
tion capacity and decisions concerning how to distribute processing capacity in a
region of the network.
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The models presented in this paper are above the transportation level of the net-
work. They do not treat detailed design of the transportation network underneath,
but rather include the relations between the distributed computing nodes providing
services and the actual data transported, through the prices and the markets for
transportation capacity.

From the technological framework of TINA-C, and given the assumption that
processing capacity is the limited resource in our network, we conclude that, in
regions of the network, allocation of computer resources to services at an operational
level may be made independent of the location of the demand. In requiring this, we
utilize the increased exibility for dynamically allocating resources in a distributed
network.

Increased exibility clearly inuences the decisions to be made for investments
in infrastructure, both when it comes to processing and transportation capacities.
Strategic and tactical decision models for distributed telecommunication networks,
hence cannot be studied isolated from models concerning dynamic resource alloca-
tion and the assumptions they are based on. A shift in focus at the operational level
from transportation of data to processing of information is also bound to present a
need for modelling new aspects when it comes to investments.

Examples of how some of these new aspects can be treated and assumptions
underlying them are given in this paper. The paper considers both operational,
tactical and strategic decisions, and relate them to each other.

7 Future work

The models presented are an introduction to how modelling new aspects of dis-
tributed networks could be achieved. Several of the models have suggested exten-
sions that may make them a closer match to the real world we are trying to describe.
This is true both when it comes to the technological aspects and modelling the un-
derlying dynamic decision process. Work put into future model development may
be devoted to �nding the best ways to model various aspects, given the reasons
for the models. But we should also try to describe alternative models focusing on
di�erent aspects of distributed networks.

There is no e�cient general method for solving stochastic integer programs. As
for deterministic integer programming, tailored algorithms and solution methods
are necessary to solve the models. This is going to be the main area of work on the
above models in near future.

Also it is clear that a lot of work remains when it comes to describing the
underlying stochastic features of our problems. Finding the necessary data and
their probability distributions is critical for the results the models give, and their
usefulness.

Another area of interest is the problem with the availability of data. The mod-
els presented incorporate decision making for a future distributed communications
network. The data needed are often uncertain at the point of decision. Because
these models also describes a reality and a functionality of networks that are not
present today, the availability of data is also uncertain. Work remains to be done
both when it comes to de�ning what data we should assume are available and how
to collect the data.
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