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Abstract
In this paper, a dynamic model of road traffic congestion is presented, with an elastic
overall demand for morning peak road usage, and with the congestion technology used
being ‘flow congestion’. It is demonstrated that in such a case, the optimal time-varying
toll should include a ‘flat’, time-invariant component when road users share the same
desired arrival time. This has important consequences for the design of optimal toll
schemes in reality, because it implies that optimal tolls cannot be set if the regulator has
no information on the road users’ desired arrival times.





1. Introduction

Road traffic congestion and road pricing have been studied by economists for a long time
already, with seminal contributions provided by, for instance, Pigou (1920), Knight (1924),
Walters (1961) and Vickrey (1969). Various approaches in modelling traffic congestion
have been taken, most of which are static in nature (see, for instance, Else, 1981, Evans,
1992, Verhoef et al., 1995ab, 1996ab). However, it has often been emphasized that road
traffic congestion in reality is an essentially dynamic process, the modelling of which
would therefore require a dynamic approach. Two families of such dynamic approaches
can be distinguished. The first one is the so-called ‘bottleneck approach’, originally
developed by Vickrey (1969), and later on refined end extended in various directions by
Arnott et al., 1990ab, 1991ab, 1992, 1993, 1994), Braid (1989, 1996), and others (see
Arnott et al., 1997, for a comprehensive overview). In this approach, commuters jointly
using a road network wish to be at work at the same time, but due to a limited capacity
somewhere in the network (the bottleneck), this is physically impossible, and schedule
delay costs are therefore unavoidable. In the unregulated equilibrium, a queue builds up
and decays during the morning peak, whereas in the optimum, travel delays – which are a
pure loss in this approach – are completely avoided and only schedule delay costs remain
(at least, on a one-link network). Although the bottleneck approach may offer a realistic
representation of congestion for some situations (e.g., at bridges or tunnels), it is not
necessarily the best modelling approach in all cases; in particular because it is rather rigid
in assuming that drivers either drive at the free-flow speed, or have a zero speed when
waiting in the queue. The second approach, originally proposed by Henderson (1974,
1981) uses ‘flow congestion’, and is capable of dealing with situations in which speeds
decrease to still positive values due to congestion. In this model, travel delays to some
extent remain existent also in the social optimum (see Chu, 1995, for an interesting
comparison between these two approaches).

In both models, the distribution of travel delays and scheduling costs over the peak
and the duration of the peak in the unregulated equilibrium and the social optimum are
determined endogenously. An important equilibrating principle in both approaches is that
private costs of road usage, consisting of travel time costs, schedule delay costs, and the
toll in case one is levied, should not vary over the peak. Otherwise, some drivers could
benefit from choosing a different departure time, and the system could not be in
equilibrium. Furthermore, both models have in common that the optimal toll is time-
dependent, reaching its peak for the drivers arriving at the desired arrival time.

Probably because of the complexities resulting from a dynamic modelling
approach, these models typically assume an inelastic demand for road usage, with the
exceptions of Braid (1989) and Arnott et al. (1993). It is therefore not surprising that the
optimal time-varying tolls typically start at zero in the beginning of the peak and return to
zero at the end. Any additional flat toll component would merely imply a lump-sum tax,
with no impact on travel behaviour.
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In this paper, a dynamic model of road traffic congestion is presented, with the
congestion technology used being flow congestion, and with an elastic overall demand for
morning peak road usage. Such elasticity of demand could result, inter alia, from the
availability of alternative transport modes. It will be demonstrated that in such a case, the
optimal time-varying toll should include a ‘flat’, time-invariant component when road
users share the same desired arrival time. This has important consequences for the design
of optimal toll schemes in reality, because it implies that optimal tolls cannot be set if the
regulator has no information on the road users’ desired arrival times. In particular, a non-
zero optimal toll is still in order when ‘observable’ congestion, in terms of travel time
delays, has gone to zero. The reason that this flat toll has not been derived in the literature
so far is the typical practice to concentrate only on ‘instantaneous’ external costs of travel
time delays, caused by direct interaction of road users, and to ignore the ‘inter-temporal’
externality that users impose on all other users throughout the peak, which is caused by the
impact of the total level of road usage, over the entire peak, on equilibrium travel times at
each instant during this peak. Furthermore, the flat toll component is relevant only with
elastic demand, and the study of road traffic congestion with elastic demand has so far
been restricted to exercises with the bottleneck model only. As is hypothesized in the
appendix, the flat toll component may vanish for the case of bottleneck congestion.
Clearly, now that electronic road pricing, allowing time-varying tolling, is likely to be
introduced soon at various places, this conclusion is not only of academic relevance, but
may have great practical importance as well.

The plan of this paper is as follows. Section 2 introduces the demand side of the
model, which is well in line with earlier dynamic models of peak-hour congestion. Section
3 solves the model for the case of inelastic demand. The congestion technology used is
‘flow congestion’, as in the Henderson approach. Section 4 considers elastic demand; and
Section 5 presents a simple numerical illustration, showing the non-triviality of the flat toll.
Finally, Section 6 concludes.

2. The demand side of the model and the implications for equilibria

Suppose that a number of commuters consider using the same one-link road network of
length L to get from home to work. In what follows, a slightly different definition for the
various relevant values of time than is common in the literature will be used. In particular,
instead of using a value of travel time as such, it is assumed that this value arises because,
when travelling, people are not able to spend time at home or at work. The value of time at
home is constant and is denoted α. Letting t denote arrival time, the value of time at work
before the desired arrival time t* is constant and denoted β, and after t* it is also constant
and denoted γ. In order to make t* indeed the desired arrival time, it has to be assumed that
β<α<γ. The parameters α, β, γ, and t* are equal across individuals. The free-flow speed on
the road is denoted S*, and when driving alone, a user would spend the minimum possible
travel time T*=L/S* on the road. The minimum possible total travel costs (including travel
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time and schedule delay costs) would arise if there were only one user, who is able to drive
at speed S* and would choose her arrival time t so as the maximize the total value of time
enjoyed. This occurs if the arrival time is exactly at t*: travelling earlier and arriving at t
would imply an additional loss of (α–β)(t*–t), and arriving later implies an additional loss
of (γ–α)(t–t*). This single user would incur the minimum possible total travel costs of
α⋅L/S*, compared to the hypothetical situation in which L=0 and travelling is not
necessary.

In general, assuming that users do not consider speed variations during the trip as
an additional source of disutility in itself, but only care about the total time spend travelling
as preventing them from being either at home or at work, and of course care about actual
arrival times, an individual’s travel cost for arriving at t, after a trip with average speed S,
can be written as:

(1)

where L/St=Tt gives the travel time, which may vary according to the time of arrival t due
to changes in average speeds St experienced, and δ is a dummy taking on the value of 1 in
case of early arrival (t<t*) and the value of 0 in case of late arrival (t>t*). Equation (1) can
most easily be verified by considering deviations from the minimum possible travel cost
implied by driving at speed S* and arriving at t*. Arriving at t instead of t* implies
additional scheduling costs of (α–β)(t*–t) for t<t* and (γ–α)(t–t*) for t>t*. Furthermore,
driving at a lower average speed than S* implies that one should depart earlier to arrive at t,
yielding additional costs valued at α.

In the unregulated no-toll equilibrium, these travel costs should not vary over time,
at least not as long as the road is actually used, because otherwise some drivers could
benefit from unilaterally changing their arrival time. Denoting the change over time with a
dot, this implies that in the no-toll equilibrium:

(2)

Solving the implied differential equation for St gives the following equilibrium pattern of
average speeds, experienced by drivers arriving at t, over the peak:

(3)

where Ai give constants to be determined. To determine these, it is observed that the very
first (and very last) driver should have speed S*, because otherwise they could make a non-
marginal gain by departing earlier (later), drive at S* and arriving only marginally earlier
(later) than they would have by choosing to drive under congestion. Denoting the arrival
times of the first and last driver(s) as tF and tL respectively, (3) can be solved as:
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(4a)

(4b)

It is clear from (4ab) that in equilibrium, average speeds experienced start at a value of S*

for the driver(s) arriving at tF, subsequently decrease and reach their minimum at t*, and
then increase until they reach S* again at tL. Furthermore, since only one speed can prevail
at t*, the entire duration of the peak can be split into two periods of generally unequal
lengths according to:

(5)

Equations (4ab) can be substituted into (1) to obtain the following expressions for the
travel costs over time:

(6a)

(6b)

It is easily checked that the costs implied by (6ab) are constant over time, as required, and
are equal to:

(7)

From (7), it follows that ‘it takes a peak to have congestion’: if the peak has no positive
duration so that tF=t*=tL, all drivers have the minimum possible total travel cost of α⋅L/S*.
Likewise, higher travel costs occur only if tF<t*<tL.

The same steps can be taken to find the equilibrium pattern of speeds in case
tolling, possibly time-varying, is applied. Denoting the total toll incurred during the trip
when arriving at time t as τt, the private cost including the toll can be written as kt=ct+τt:

(8)

In the toll equilibrium, these private costs including the toll should be constant:
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As long as the tolls are not decreasing in time at tF and increasing in time at tL, also now the
first and last driver should drive at speed S*, for the same reason as before. This
information is used in finding the solution to the differential equation (9), which is solved
in the same way as (2). The following solution is obtained:

(10a)

(10b)

where τF and τL denote the tolls at tF and tL, respectively. Substitution of (10ab) in (8)
yields the following expressions for the travel costs, including the toll, over time:

It is again easily checked that the travel costs including the toll, implied by (11ab), are
indeed constant over time and are equal to:

(12)

It is worth emphasising that the term τt has dropped out of (12), which is a direct
consequence of the equilibrium property of private costs including the toll being constant
over time.

Before switching to the supply side of the model, it is worthwhile considering the
question of whether overtaking is possible in the no-toll and time-varying toll equilibria.
Only the latter case is considered, since the no-toll equilibrium is simply a special case of
the time-varying toll equilibrium where the toll is constant at a zero level. Overtaking in
this model means that the driver being overtaken has a later arrival time and an earlier
departure time than someone else. With t still denoting arrival times, let tD,t denote the
departure time of a driver arriving at t. The relation between t and tD,t is: tD,t=t-L/St.
Substituting (10ab) into this expression, it can be derived that, in the time-varying toll
equilibrium, the implied change in tD,t due to a change in the arrival time t is given by:
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For the no-toll equilibrium, the second terms drop out, and since the remaining terms are
positive, it is clear that overtaking does not occur in the no-toll equilibrium. The fact that
the remaining term is smaller than 1 before t*, and greater than 1 after t*, reflects the
decrease and increase in average speeds before and after t*. Finally, it turns out that
overtaking could in principle be induced by time varying tolls if they decrease sufficiently
rapidly in time. Before t*, this is unlikely in any case, as one would expect increasing tolls.
After t*, overtaking could be induced if the tolls decrease so rapidly that it becomes
worthwhile to postpone the arrival time infinitely because the savings in toll exceed the
value of time at work after t*. This, of course, is also an unlikely event in any optimal
tolling scheme. Most important, in either case, overtaking can only be induced if tolls
decrease so rapidly over time that all trips are postponed infinitely, and overtaking is
therefore inconsistent with positive road usage.

3. Optimal time-varying tolls with inelastic demand

The analysis in the previous section applies to any specific form of congestion technology.
The users only care about arrival times and total travel times and tolls incurred over the
entire trip, regardless of whether actual speeds and toll rates vary during the trip. Such
variations during a trip could be modelled with the framework presented above. In order to
find the optimal pattern of speeds, tolls and road usage over time, under the restriction of
the behavioural responses to tolls as outlined in the previous section, the supply side of the
model should be made explicit. Various approaches can be taken here, even if the choice
set is restricted to flow congestion, as opposed to bottleneck congestion (Small, 1992 (pp.
61-74), gives an overview of both dynamic and static representations of congestion
technology). Apart from the hydro-dynamic fluid model, which is difficult to apply
economically and to solve analytically (see Newell, 1988), two extreme variants would be
(1) a model in which ‘group velocity’ is infinite and all vehicles on the link have the same
speed at each instant, depending on the total number of vehicles present on the entire link,
regardless of their exact position on the link; and (2) a model with zero ‘group velocity’, in
which the speed of a vehicle depends only on the number of vehicles which depart and
arrive at the same instants as the vehicle itself, so that different speeds can apply
simultaneously at different places along the link. The second approach is taken by
Henderson (1974, 1981) and Chu (1995), and will also be followed here. It is of course
difficult to say which of the approaches is more realistic; taking the latter approach has as
an advantage that the analysis is at least comparable with previous efforts in the dynamic
modelling of road traffic congestion.

Because, in this approach, the speed of a certain vehicle is constant during the trip,
one can economize on mathematical complexity by using a congestion function of the type
T=T(n) (∂T/∂n>0), giving the total travel time as a function of the number of vehicles (n)
departing and arriving jointly, rather than working with the traditional type of function
S=S(n) (∂S/∂n<0), showing how average speeds decrease with increasing numbers of
vehicles travelling jointly. Since T(n)=L/S(n) by definition, it is evident that there is a one-
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to-one mapping between the two types of functions, and the choice of working with T(n)
can be made without loss of generality.

For reasons of exposition, first the optimal tolls are derived for a given total number
of road users N; so, under the assumption of inelastic demand. This will provide
information on how a given number of users is to be distributed most efficiently over time,
which is a matter of social cost minimization. The tolling principle derived will
subsequently be used in the next section when considering the case of elastic demand.
Whichever value of N turns out to be optimal there, it will be clear that also with elastic
demand, efficiency requires the optimally determined number of road users to be
distributed optimally over time; that is, against minimum social costs. The optimization
problem of minimizing the social costs of having N users completing their trips is:

(14)

This is a degenerate isoperimetric dynamic optimization problem with fixed endpoints
T(nF)=T(nL)=T*=L/S*: the first and last driver should have the minimum travel time T*,
which will prove to be valid below because the optimal time-varying tolls are found to be
increasing (decreasing) in time at tF (tL); and free initial and terminal times tF and tL, which
will have to be determined optimally in solving the problem. The integral constraint
secures that total usage is indeed equal to N, and is specified in the negative so that the
Lagrangian multiplier will be positive and can therefore be readily interpreted as a shadow
price. The Lagrange integrand F for this problem is:

(15)

and the Euler-Lagrange equation for
this degenerate problem is:

(16)
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This, in combination with (16), implies that in order to minimize the social costs, the
‘marginal instantaneous social travel costs’ should be constant over time. In other words:
the total travel costs cannot be reduced by moving one of the users in time. The fixed
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endpoint transversality conditions state that the Lagrange integrand should take on the
value of zero at the initial and terminal time, and thus provide the following solution for
the multiplier λ:

(17)

Equation (17) fixes the optimal level of the marginal instantaneous social travel costs at the
level that also applies for the first and last driver(s). Inserting (17) into (16) yields:

(18a)

(18b)

At the same time, rewriting (10ab) in terms of Tt yields:

(19a)

(19b)

so that the following result is obtained for the optimal pattern of tolls over time:

(20a)

(20b)

So, differences in tolls over time reflect differences in marginal external instantaneous
travel delay costs. This secures that the marginal instantaneous social travel costs are
constant over time, as is required by (16). Note that the implication of (20ab) that marginal
external instantaneous travel delay costs be zero at tF and tL is consistent with the boundary
conditions that traffic should have the free-flow speed at these instants.

The average social travel costs ct under optimal time-varying tolling  can be found
by substitution of (20ab), and of the identity that kt=ct+τt into (12):
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(21b)

Hence, although the marginal instantaneous social travel costs are constant over time,
average social costs are not.

Having derived the optimal pattern of the time-varying toll for any total number of
users N, the stage is now set to solve for the optimal N, as well as the optimal tF, tL, τF, and
τL in the next section.

4. Optimal time-varying tolls with elastic demand

Earlier attempts to model traffic congestion in a dynamic framework with elastic demand
are, to the best of my knowledge, restricted to exercises with the bottleneck model. Both
Braid (1989) and Arnott et al. (1993) conclude that the optimal tolls at the very beginning
and end of the peak – τF and τL in the above notation – should be zero. Chu (1995),
although using a model with inelastic demand, strongly suggests that this should also hold
for models with flow congestion, when stating “Since there is no travel delay at i′ [tF in the
present notation] or u′ [tL], the optimal toll must be zero there” (p. 331). Also in the present
model, there are no travel delays at tF and tL, suggesting that Chu’s reasoning would also
apply here.

However, such reasoning focuses on instantaneous externalities through direct
interactions on the road only, and ignores the inter-temporal externality that road users
pose upon each other. In particular, one could argue that taking away one user from the
network would lead to a new optimal pattern of usage and social costs over the entire peak,
implying that not only those users who are driving at exactly the same time as the one that
is taken away will benefit, but, after the new equilibrium has established, all drivers will. In
order to see whether this is the case, one should solve the model presented in the previous
section for the optimal N, tF, tL, τF, and τL, knowing that the optimal distribution of users
and tolls over time should also in this case be consistent with (16) and (20ab). When
switching to elastic demand, N is of course no longer fixed. This implies that also the
Lagrangian multiplier λ is no longer fixed, but becomes an endogenous variable λ(N).
Furthermore, an inverse demand relation D(N) should be introduced, where total benefits
can be found as the area under the demand curve up to N: 0∫ND(N) dn. Using the
expressions for average social costs obtained in (21ab), the social optimization problem –
given the condition that optimal time varying tolls according to (20ab) are used – becomes:
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The first-order condition is:

(23)

which can be rewritten as:

(24)

and, because α⋅nt⋅∂T/∂nt is equal to zero at tF and tL, and ∂nt goes to zero more quickly than
∂(α⋅nt⋅∂T/∂nt) also as:

(25)

Using (16), (25) can finally be written as:

(26)

At the same time, (12) shows that, under time-varying tolling, the private costs of road
usage including the toll, is constant over time and is equal to (after substitution of  (17)):

(27)

Knowing that road users will keep on entering the road up to the point where D(N)=k(N),
the following optimal tax rules for τF and τL can therefore be derived:

(28)

(see also the Appendix for a graphical illustration of the crucial result that marginal social
costs exceed λ(N)). Inserting (28) in (20), the following expression for the optimal time-
varying toll can finally be derived:

(29)

Clearly then, in addition to the time-varying component in the toll as derived in Section 3,
covering the instantaneous marginal external travel delay costs, also a ‘flat’, time-invariant
toll component should be present, covering the inter-temporal externality which is equal to
the marginal external costs that a user imposes on all other users, because of the impact of
the total usage N on equilibrium travel times, and hence instantaneous travel costs, at all
instants.
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This conclusion has important implications. In particular, it implies that optimal
tolls not only depend on the actual situation observed on the network: at tF and tL, where no
observable congestion occurs, a positive toll is still in order. Instead, apart from observing
what is going on the road, the regulator needs to have information on the distribution of
desired arrival times before being able to set tolls optimally, because the underlying reason
of the fixed component in the optimal time-varying toll in (29) is the assumed equality of
desired arrival times. This can most easily be understood by considering the extreme
example in which the actual arrival rates obtained by using (20) with τF=τL=0 would
happen to coincide with the distribution of desired arrival times. In that case, (20) indeed
produces the optimal pattern of road usage over time, whereas at the same time we know
that the optimum is an equilibrium because no user has the incentive to change arrival
times. Any additional flat toll would then reduce overall welfare.

5. A simple numerical illustration

This section presents an admittedly simple numerical illustration of the flat component of
the optimal time-varying toll. It should be emphasized that the purpose of the simulation
model presented is not to give any realistic representation of the dynamics of road traffic
congestion; the only purpose is to present a system that contains the relevant elements to
the model discussed above, and that can reproduce the flat toll component in an
analytically tractable mathematical formulation.
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Table 1. Some equilibrium values of the simulation model

In the first instance, the inverse demand is assumed to be linear and given by:
(30)

and the function giving travel times as a function of nt is piecewise linear:
(31)

where the kink is needed to avoid zero usage at tF and tL. By setting α–β=γ–α=v, a
symmetric system is created that allows us to study ‘half the peak’ only, knowing that the
other half is an exact mirror image. This allows us to set t*=0 and consider positive t only;
to avoid confusion, the single terminal time is denoted tE. The demand curve for this half of
the peak becomes:

(32)

The average cost function can then be written as:

(33)

Using that average costs should be constant over time in the no-toll equilibrium, and that
marginal instantaneous social travel costs should be constant over time with optimal time-
varying tolls, the expressions presented in Table 1 can be derived (where TC denotes total
costs). These expressions were used in the simulation model, which generated the curves in
Figures 1-3.

In the numerical example, the following parameter values are chosen: d1=1000;
d2=1; α=10; v=10; k=10; and T=10. A first observation that can be made is that the cost
functions are endogenous; that is, dependent on the question of whether time-varying
tolling is applied. If so, total, marginal and average social costs are lower for a given
number of users. This is shown in Figure 1, where the total costs (TC) with and without
time-varying tolling are depicted for the parameter values given above. In this and the
following figures, curves representing the case with time-varying tolling are marked with
an asterisk and those representing the case without time-varying tolling with an apostrophe.

Figure 2 shows the various market outcomes that can arise in the numerical
example. In this figure, the demand curve D(N), average costs under no-tolling (AC’),
marginal social costs under no-tolling and time-varying tolls (MC’ and MC*), and the
curve λ(N) is given, which is calculated according to (17) with tE calculated according to
the expression in the right column in Table 1. The no-toll equilibrium is given by the
intersection of D and AC’, and implies an overall equilibrium demand of N0. The overall
optimum N* can be achieved by a combination of optimal time-varying tolling with a fixed
component e–d. This flat toll serves to charge for the difference between MC* and λ in the
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optimum. The total welfare gain, compared to the no-toll equilibrium, is given by aef+ejkf,
being the sum of the cost reduction resulting from distributing N* optimally over time, and
the net welfare gain of having N0–N* removed. Without the flat toll, road users would keep
on entering up to the point where D=λ, which is at N1. The welfare gain compared with the
no-toll equilibrium is now ahi+gjki, and thus falls short of the maximum achievable
welfare gain with egh.

Of course, this may seem a rather modest welfare loss due to the absence of a flat
toll. On the one hand, this could be caused by the particular model assumed and the
parameters chosen. More fundamentally, however, this is also partly caused by a
phenomenon that could loosely  be referred  to as ‘diminishing benefits of regulation’.
Should one start by considering
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the welfare gain that can be
achieved with flat tolling only, the second-best optimum N2, to be achieved with a flat toll
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c–b would be found, with a welfare gain, compared with the no-toll equilibrium, of cjk.
The switch towards optimal time-varying tolling then ‘only’ yields the additional welfare
gain of aec.

Finally, Figure 3, showing the course of D–λ and total welfare W (divided by 100),
where total welfare is total benefits minus total costs under time-varying tolling, is
included to demonstrate that indeed, maximum welfare does not occur where D equals λ,
which would be the market outcome with time-varying tolling without a flat component.

6. Conclusion

In this paper, a dynamic model of road traffic congestion was presented, with the
congestion technology used being ‘flow congestion’ (as opposed to ‘bottleneck
congestion’), and an elastic overall demand for morning peak road usage. Such elasticity of
demand could result, inter alia, from the availability of alternative transport modes. It was
demonstrated that in such a case, the optimal time-varying toll should include a ‘flat’, time-
invariant component when road users share the same desired arrival time. This has
important implications for the design of optimal toll schemes in reality, because it implies
that optimal tolls cannot be set if the regulator has no information on the desired arrival
times of the road users. In particular, a non-zero optimal toll is still in place when
‘observable’ congestion, in terms of instantaneous travel time delays, has gone to zero.
Therefore, apart from observing what is going on the road, the regulator needs to have
information on the distribution of desired arrival times before being able to set tolls
optimally, because the underlying reason of the flat component in the optimal time-varying
toll is the assumed equality of desired arrival times. Clearly, now that electronic road
pricing, allowing time-varying tolling, is likely to be introduced soon at various places, this
conclusion is not only of academic relevance, but has great practical importance as well.

An important reason that this flat toll has not been derived in the literature so far is
the typical practice to concentrate only on ‘instantaneous’ external costs of travel time
delays, caused by direct interaction of road users, and to ignore the ‘inter-temporal’
externality that users impose on all other users throughout the peak, caused by the impact
of the total level of road usage, over the entire peak, on equilibrium travel times at each
instant during this peak. Furthermore, the flat toll component is relevant only with elastic
demand, and the study of road traffic congestion with elastic demand has so far been
restricted to exercises with the bottleneck model only. As is hypothesized in the appendix,
the flat toll component may vanish for the case of bottleneck congestion.

Future research may in particular be directed to alternative formulations of
congestion technology. In particular, the assumption of ‘zero group velocity’, although not
crucial to the result obtained, may be considered as an oversimplification. Such exercises
may provide further information on the relative importance of a flat toll component in
realistic situations.
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Appendix
This appendix gives a brief diagrammatic sketch of the conclusion that marginal social
costs under time-varying tolling are larger than λ, which is the private costs including the
time-varying toll that users would face under time-varying tolling without a flat toll
component; see (21ab) and (20ab). Figure 4 shows the course of λ as a function of the
initial and terminal times tF and tL according to equation (17). The intersection with the
vertical axis is therefore at α⋅T*.

Under time-varying tolling without a flat toll component, each pair of values of the initial
and terminal times tF and tL with equal λ corresponds to one particular equilibrium and one
particular value of N, and the duration of the peak is given by the difference between these
two extreme time values. The c-curves plot for two such pairs of initial and terminal times
(denoted with superscripts 1 and 2) the average social costs as a function of the arrival time
t under time-varying tolling. Due to the optimality principle that marginal instantaneous
travel costs should be constant over time and equal to λ (see (16)), these average cost
social curves lie below the value of λ for that particular pair of tF and tL, which is given by
the dashed horizontal lines. At the same time, these c-curves should intersect with the λ-
curve under absence of a flat toll component, and should lie above this λ-curve between
the intersections, as travel costs at tF<t<tL under congestion are higher than they would
have been if t were tF or tL – which is indicated by the λ-curve. The vertical difference
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Figure 4. Average social costs and λ as a function of t, tF, and tL
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between the dashed horizontal lines and these average cost curves gives the time-varying
toll. Due to the constancy of the values of time α, β and γ, the λ-function is linear in tF and
tL also in a more general model where the congestion function itself is not necessarily
linear. The steeper slope on the right hand side reflects that, in the sketched case, it is
assumed that γ–α>α–β. The linearity of the c-curves, chosen for ease of diagrammatic
representation, is consistent with a linear congestion technology as described in (31).
However, for each flow congestion technology chosen, the c-curves would in any case
intersect with the λ-curve at the relevant tF and tL, and would lie between the λ-curve and
the equilibrium value of λ given by the horizontal dashed lines.

It is now easy to see that marginal social costs are higher than λ. The reason is that
for every marginal increase in N, λ increases and therewith induces a marginal upward
shift in the c-curve, and therewith in average social costs for the entire peak. Without a flat
toll component, the marginal users would only consider λ as the private costs (including
the time-varying toll) of using the road, ignoring the marginal impact on average social
costs at all other instants in the peak than the instant at which she chooses to travel – which
is in fact immaterial, because private costs including the toll will be constant in
equilibrium. The optimal flat toll given in (28) charges exactly for this effect.

Only if the c-curve would have the same slopes, on both sides of t*, as the λ-curve,
and would therefore overlap with this λ-curve, this effect would vanish and λ would
exactly represent marginal social costs. No flat toll component is necessary in that case.
Presumably, in the bottleneck model, where it is optimal to avoid all travel delays, this is
actually the case. This explains that in the bottleneck model with elastic demand, no flat
component is found for the optimal time-varying toll (Braid, 1989; Arnott et al., 1993).
With flow congestion, in contrast, it is always optimal to maintain some travel delays.
Therefore, the c-curve will always lie above the λ-curve, and a positive flat toll component
is therefore always in order with optimal time-varying tolling.


