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Pricing Double Barrier Options:
An Analytical Approach

Abstract

Double barrier options have become popular instruments in derivative markets. Sev-

eral papers have already analysed double knock-out call and put options using di�erent

methods. In a recent paper, Geman and Yor (1996) derive expressions for the Laplace

transform of the double barrrier option price. However, they have to resort to numerical

inversion of the Laplace transform to obtain option prices. In this paper, we are able to

solve, using contour integration, the inverse of the Laplace transforms analytically thereby

eliminating the need for numerical inversion routines. To our knowledge, this is one of

the �rst applications of contour integration to option pricing problems. To illustrate the

power of this method, we derive analytical valuation formulas for a much wider variety

of double barrier options than has been treated in the literature so far. Many of these

variants are nowadays being traded in the markets. Especially, options which pay a �xed

amount of money (a \rebate") as soon as one of the barriers is hit and double barrier

knock-in options.

KeyWords: double barrier options, option pricing, partial di�erential equations, Laplace

transform, Cauchy's Residue Theorem.
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1. Introduction

Barrier options have become very popular instruments in derivative markets. It is rel-

atively straightforward to price and hedge \single barrier" options. Valuation formulas

have been available in the literature for quite a while, see Merton (1973) or Goldman et

al. (1979). The valuation and hedging formulas have been incorporated in standard mar-

ket software for options traders and clients. In fact, most derivatives �rms view \single

barrier" options nowadays more like vanilla than exotic options.

One of the reasons why barrier options have become so popular, is the fact that they

are cheaper than standard options, but o�er a similar kind of protection. A natural

extension to \single barrier" options is to consider double barrier options. These are

options which have a barrier above and below the price of the underlying, and the option

gets knocked in or out as soon as one of the two barriers is hit.

Several papers have already analysed double knock-out call and put options using

di�erent methods. Kunitomo and Ikeda (1992) derive the probability density for staying

between two (exponentially) curved boundaries. They express the density as an in�nite

sum of normal density functions, and the prices for double knock-out call and puts are

derived by integrating with respect to this density. Furthermore they show that each of

the terms in the in�nite sums fall to zero very rapidly, hence only a small number of terms

needs to be evaluated to obtain an accurate value.

In a recent paper, Geman and Yor (1996) derive expressions for the Laplace transform

of the double barrrier option price. They invert the Laplace transform numerically to

obtain option prices.

These papers deal, however, with only one type of double barrier option: double

barrier knock-out calls and puts. In the markets a much wider variety of double bar-

rier options is being traded. Especially, options which pay a �xed amount of money (a

\rebate") as soon as one of the barriers is hit and double barrier knock-in options.

In this paper we derive analytical formulas for pricing a wide variety of double barrier

options. We �nd formulas for options which give a constant payo� either \at hit" or at

maturity, we derive pricing formulas for double barrier options where the �nal payo� can

be expressed as any power of the underlying value and we �nd valuation formulas for

knock-in options.
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We derive our results by considering, just like Geman and Yor (1996), Laplace trans-

forms. Unlike Geman and Yor (1996), we do not consider the Laplace tranform of the

option price, but the Laplace transform of the density functions of hitting the upper or

lower barrier. We are able to �nd analytical expressions for the density functions, using

contour integration, thereby eliminating the need for numerical inversion routines. Op-

tion prices are then calculated by integrating the option payo� with respect to the density

functions. To our knowledge this is one of the �rst applications of contour integration to

the area of option pricing theory.

The paper is organised as follows. In Section 2 we review well known results on how

the probability density function for staying between two barriers can be expressed in

several ways. In Section 3 we derive our analytical expressions for the probability density

of the �rst passage time for the upper and lower barriers. In Section 4 we derive some

pricing formulas for di�erent kinds of double barrier options. In Section 5 we compare

our results to Kunitomo and Ikeda (1992) for double barrier knock-out options whith no

rebate, and to the Crank-Nicholson �nite di�erence method for double barrier options

with do pay a rebate at hit. Finally, we conclude in Section 6.
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2. Transition Density Function

If we make the assumption (which is standard) that the underlying asset of the option

can be modeled as a geometric Brownian motion, we can model the log of the asset price

(under the equivalent martingale measure) by the following stochastic di�erential equation

dz = �dt+ � dW; (1)

where � and � are constants.

The case we want to consider is more complicated. We want to value a double barrier

options. This can be modeled by assuming that the process z is killed as soon as it hits

one of the two barriers. Suppose we have two barriers, the lower barrier is at 0, the upper

barrier at the level l. This speci�cation is general, since we can always shift the process

z by a constant such that the lower barrier is placed at 0.

The two barriers are so called absorbing barriers, since the process z is killed as soon

as it hits one of the barriers.

Let us consider the transition density function p(t; x; s; y). It describes the probability

density that the process z starts at time t at z(t) = x and survives until time s and ends

up at z(s) = y. Of course we have, t � s and 0 � x; y � l.

This transition density function satis�es the forward and backward equations, see

Arnold (1992). The backward equation is given by (with subscripts denoting derivatives)

pt + �px +
1
2
�2pxx = 0; (2)

subject to the boundary conditions p(t; 0; :; :) = p(t; l; :; :) = 0, and p(s; x; s; y) = �(y�x),

where � is the Dirac delta function.

The last condition is standard, and states that the density function must collapse into

a delta-function at time t = s, since there is no uncertainty left in the process. The �rst

two conditions specify the absorbing barriers at 0 and l. If the process hits one of the

barriers, it gets killed and there is no probability of making it back to y at time s.

The forward equation is given by

�ps � �py +
1
2
�2pyy = 0; (3)

subject to the boundary conditions p(:; :; s; 0) = p(:; :; s; l) = 0, and p(t; x; t; y) = �(x�y).
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The solution to the backward or forward equation can be represented in several ways.

Kunitomo and Ikeda (1992) use the representation which is obtained by the \method

of images", and express the probability density in terms of a doubly in�nite sum of

normal density functions. It is also well known, see for example Cox and Miller (1965),

Chapter 5.7, that another representation of the solution can be obtained by the method

of \separation of variables". The solution is then represented in terms of a Fourier series:

p(t; x; s; y) = e
�

�2
(y�x)2

l

1X
k=1

e��k(s�t) sin(k�
x

l
) sin(k�

y

l
)

�k =
1

2

�
�2

�2
+

k2�2�2

l2

�
:

(4)

Substitution in the backward equation (2) or the forward equation (3) will con�rm that

this is indeed a valid solution, that satis�es the boundary conditions. Furthermore, the

series representation is absolutely convergent, hence we are allowed to perform di�erenti-

ation and integration on a term-by-term basis.

The choice for represention (4) of the solution, has the additional advantage that an-

alytical expressions (on a term-by-term basis) can be found for calculating options prices.

Hence, there is no need to work with approximations, as in the case of the cumulative

normal distribution function.

The solution (4) looks very complicated to evaluate. However, the term �k grows quadrat-

ically in k, hence expf��k(s� t)g vanishes to zero very rapidly for increasing k. So, only

very few terms have to be summed to obtain an accurate answer.
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3. Barrier Densities

We have now characterised the density function of surviving until time s. This densitiy is

used for pricing double knock-out options which get nulli�ed as soon as one of the barriers

gets hit.

We are also interested in the density functions of hitting the upper and the lower

barrier. These densities are used for pricing options which have a non-zero payo� as soon

as one of the barriers is hit.

Let g+(t; x; s) denote the probability density function of �rst hitting the upper barrier

at time s before the lower barrier is hit, given that the process started at (t; x). Let

g�(t; x; s) denote the probability density of �rst hitting the lower barrier, before the

upper barrier is hit.

Given the fact that the process z can either hit the upper barrier, or the lower barrier,

or survive, we can derive the following identity for all T > t

Z T

t

g+(t; x; s) ds+

Z T

t

g�(t; x; s) ds+

Z l

0

p(t; x;T; y) dy � 1: (5)

Taking the derivative with respect to T yields

g+(t; x;T ) + g�(t; x;T ) = �
@

@T

Z l

0

p(t; x;T; y) dy: (6)

Using this expression, we can express the sum of the two densities using (4) as follows

g+(t; x; s) + g�(t; x; s) = e
�

�2
(l�x)�

2

l2

1X
k=1

e��k(s�t)k� sin(k�
l� x

l
)

+e�
�

�2
x�

2

l2

1X
k=1

e��k(s�t)k� sin(k�
x

l
):

(7)

Although we have tentatively grouped the terms, we cannot determine from this expression

what the individual barrier densities are. To derive expressions for the individual densities

we have to use a di�erent approach.

3.1. Derivation of g+

The density g+(t; x; s) must satisfy the backward equation:

g+t + �g+x + 1
2
�2g+xx = 0: (8)
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Due to the fact that � and � are constants, we know that the function g+ depends only

on s� t. If we set � = s� t, with � � 0, we can write g+(t; x; s) = g+(�; x), which solves

�g+� + �g+x + 1
2
�2g+xx = 0; (9)

subject to the boundary conditions g+(�; l) = �(� ), g+(0; x) = �(l� x) and g+(�; 0) = 0.

To obtain a solution for (9) we consider the Laplace transform1 
+(x)


+(x; v) =

Z
1

0

e�v�g+(�; x) d�;

for any v � 0. Substituting 
+ into (9) and the boundary conditions yields an ordinary

di�erential equation

�v
+ + �
+x + 1
2
�2
+xx = 0; (10)

subject to the boundary conditions 
+(0) = 0 and 
+(l) = 1.

By considering the Laplace transform, we have managed to reduce the partial di�er-

ential equation (9) to the second order ordinary di�erential equation (10). Di�erential

equations of this kind are easy to solve. It is well known (or substitution will con�rm)

that the solution can be expressed as


+(x) = e�
�

�2
x
�
A sinh(�x) +B cosh(�x)

�
; (11)

with � = 1
�2

p
�2 + 2�2v. The constants A and B have to be determined from the

boundary conditions. Solving for the boundary conditions yields: B = 0 and A =

expf �

�2
lg= sinh(�l). Hence, the solution to (10) and the boundary conditions is given

by

�(v) =
1

�2

p
�2 + 2�2v


+(x; v) = e
�

�2
(l�x) sinh

�
�(v)x

�
sinh

�
�(v)l

� : (12)

We have written �(v) to emphasize the dependence of � on v.

To obtain the density for the upper barrier g+, we now have to invert the Laplace transform


+. This can be done using Bromwich's Integral (see, Du�y (1994), Chapter 2.1.)

g+(�; x) =
1

2�i

Z c+i1

c�i1

e�z
+(x; z) dz; (13)

1 For an introduction to methods for solving partial di�erential equations, see Williams (1980) or

Du�y (1994).
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where c lies to the right of any of the singularities of the function 
+. Note, that from

this moment on, we view 
+(x; z) as a function in the complex variable z, with x as a

parameter.

The integral (13) can be evaluated as follows. We can transform the (line)integral into

a contour integral by adding a circular arc in the second and third quadrant. (This arc

goes counter-clockwise from the positive imaginary axis to the negative imaginary axis.)

The contribution of this arc vanishes when it's radius goes to in�nity.

The value of the contour integral we have constructed can now be determined by

Cauchy's Residue Theorem (see, Du�y (1994), Chapter 1.4):

Cauchy's Residue Theorem. If f(z) is analytic inside a closed contour C (taken in

the positive sense) except at points zk where f has singularities, thenI
C

f(z) dz = 2�i
X
k

Residue of f(z) at zk:

As is well known from complex function theory, the residue of a singularity zk equals the

coe�cient a�1 from the Laurent expansion

f(z) =

1X
n=�1

an(z � zk)
n (14)

around a singularity zk. The positive part of the summation is the familiar Taylor expan-

sion, the negative part involves negative powers of z � zk and gives the behaviour at the

singularity.

The largest negative power in the Laurent expansion, gives the order of the singularity.

For a �rst order singularity (the only case we will encounter here), the residue can be

computed as

Res(zk) = lim
z!zk

(z � zk)f(z): (15)

This results follows directly after substituting into the Laurent expansion, and applying

De l'Hospital's Rule.

Since the arc we have added to transform the line-integral (13) into a contour integral

makes no contribution to the integral, the line-integral must be equal, by the Residue

Theorem, to the sum of the residues of the singularities enclosed in the contour.
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Let us therefore �nd the singularities of the function e�z
+(x; z). Singularities can

only be caused, if the term in the denominator of 
+ goes to zero. Using the identity

sinh(z) = �i sin(iz), we �nd that sinh
�
�(z)l

�
is zero if i�(z)l = k�, for k integer. Solving

for z yields

zk = �
1

2

�
�2

�2
+

k2�2�2

l2

�
: (16)

So, for k = 0; 1; 2; : : : we have identi�ed all the singularities zk of the function e�z
+(x; z).

The residue for each singularity zk can be obtained via

Res(zk) = lim
z!zk

e�ze
�

�2
(l�x) sinh(�x)

z � zk

sinh(�l)

= lim
z!zk

e�ze
�

�2
(l�x) sinh(�x)

1

cosh(�l)@�
@z
l

= e�zke
�

�2
(l�x) sinh(k�i

x

l
)(�1)k

�2

l2
k�i

= e�zke
�

�2
(l�x)�

2

l2
k� sin(k�

l� x

l
):

(17)

Thus, summing up all of the residues gives the following expression for the density function

of hitting the upper barrier g+(t; x; s) (remember that we set � = s� t):

g+(t; x; s) = e
�

�2
(l�x)�

2

l2

1X
k=1

ezk(s�t)k� sin(k�
l� x

l
): (18)

3.2. Derivation of g�

An expression for the density g� can be derived in a similar fashion. The Laplace trans-

form 
� satis�es also the ordinary diferential equation (10), however with respect to the

boundary conditions 
�(0) = 1 and 
�(l) = 0. Solving the di�erential equation with

respect to these boundary conditions yields


�(x; v) = e�
�

�2
x sinh

�
�(v)(l� x)

�
sinh

�
�(v)l

� : (19)

We see that 
�(x) = expf�2 �

�2
xg
+(l � x). Hence, by substitution into (18) we obtain

immediately

g�(t; x; s) = e�
�

�2
x�

2

l2

1X
k=1

ezk(s�t)k� sin(k�
x

l
): (20)

It is easy to verify that the sum of g+ and g� is indeed equal to the expression (7) derived

before.
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4. Valuation Formulas

With the analytical expressions we have derived for the transition density p and the barrier

densities g+ and g� we can calculate prices for various types of double barrier options.

In the cases we will analyse, we take the underlying to be an F/X-rate.2 Let S(t) be

the spot exchange rate today. Let rd be the domestic interest rate, rf the foreign interest

rate and � the volatility of the exchange rate. Let U be the upper barrier and L be the

lower barrier with L < S(t) < U .

If we divide by L and take logarithms we obtain for s > t that z(s) = log(S(s)=L)

where z is the process de�ned in (1) with x = z(t) = log(S(t)=L) and l = log(U=L).

The drift-term � of the process z (under the equivalent martingale measure) is equal to

� = rd � rf �
1
2
�2. For all options we denote the maturity date by T .

4.1. Constant payo� at maturity

The simplest kind of double barrier is an option which pays a constant amount at the

maturity of the option. Suppose we receive an amount KU if the upper barrier is hit �rst,

an amount KL if the lower barrier is hit �rst and an amount K is neither barrier is hit

during the life. All amounts are payed at maturity T . The value VCPM(t) of this option

is equal to

VCPM(t) = e�rd(T�t)
�
KUP

+(T ) +KLP
�(T ) +K

�
1� P+(T )� P�(T )

��
; (21)

where P+(T ) and P�(T ) denote the probability of hitting �rst the upper and the lower

barrier respectively before time T . The probability of surviving until time T is given by

(5) as 1 � P+ � P�. To �nd P+ and P� we have to integrate over the barrier densities.

To �nd an expression for these integrals we rewrite them as

P�(T ) =

Z T

t

g�(t; x; s) ds =

Z
1

t

g�(t; x; s) ds�

Z
1

T

g�(t; x; s) ds

= 
�(x; 0)�

Z
1

T

g�(t; x; s) ds:

(22)

2 In stead of an F/X-rate, the formulas can also be applied to equity or commodities with a continuous

dividend-yield �, by setting rf = �.
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Integrating on a term-by-term basis, we �nd for

P+(T ) = e
�

�2
(l�x)

 
sinh( �

�2
x)

sinh( �

�2
l)
�

�2

l2

1X
k=1

e��k(T�t)

�k
k� sin(k�

l� x

l
)

!
;

P�(T ) = e�
�

�2
x

 
sinh( �

�2
(l� x))

sinh( �

�2
l)

�
�2

l2

1X
k=1

e��k(T�t)

�k
k� sin(k�

x

l
)

!
:

(23)

4.2. Rebate at hit

A more realistic payo� scheme, which is used often in knock-out options, is to o�er a

rebate as soon as the option hits one of the barriers. Suppose we receive an amount KU

at the moment the upper barrier is hit �rst. The value VRAHU(t) is given by

VRAHU(t) = KU

Z T

t

e�rd(s�t)g+(t; x; s) ds: (24)

Solving this integral involves �nding a primitive for terms of the form e�rd(s�t)e��k(s�t).

We obtain a value for the integral in a simpler way, if we bring rd inside the �k as follows

rd + �k =
1

2

�
2�2rd + �2

�2
+

k2�2�2

l2

�
=

1

2

�
�02

�2
+

k2�2�2

l2

�
= �0k (25)

with

�0 =
p
�2 + 2�2rd (26)

If we denote g0+ as the barrier density with drift �0, then we obtain

VRAHU(t) = KUe
���0

�2
(l�x)

Z T

t

g0+(t; x; s) ds

= KUe
�

�2
(l�x)

 
sinh( �

0

�2
x)

sinh( �
0

�2
l)
�

�2

l2

1X
k=1

e��
0

k
(T�t)

�0k
k� sin(k�

l� x

l
)

!
:

(27)

Similarly, we �nd that the value of an amount KL received as soon as the lower barrier is

hit �rst, can be expressed as

VRAHL(t) = KLe
�
���0

�2
x

Z T

t

g0�(t; x; s) ds

= KLe
�

�

�2
x

 
sinh( �

0

�2
(l � x))

sinh( �
0

�2
l)

�
�2

l2

1X
k=1

e��
0

k
(T�t)

�0k
k� sin(k�

x

l
)

!
:

(28)
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4.3. Double knock-out

Another payo� we want to consider, are double knock-out options.3 Suppose we have a

double knock-out call, with a payo� maxfS(T )�K; 0g, if the price of S hit neither barrier

during the life [t; T ] of the option. The value at t is given by

VDKOC(t) = e�rd(T�t)
Z l

0

maxfLey �K; 0gp(t; x;T; y) dy: (29)

The option is in-the-money for Ley > K () y > log(K=L) = d. If we assume 0 � d � l

(the other cases are trivial) then we get

VDKOC(t) = e�rd(T�t)
Z l

d

(Ley �K)p(t; x;T; y) dy

= e�rd(T�t)
�
L

Z l

d

eyp(t; x;T; y) dy �K

Z l

d

p(t; x;T; y) dy

�
:

(30)

Both integrals involve �nding the primitive for terms of the form eay sin(by). The primitive

for these terms is given byZ
eay sin(by) dy = eay

a sin(by)� b cos(by)

a2 + b2
:

Hence, if we set Q(�; y) =
R
e�yp(t; x;T; y) dy, we obtain for Q

Q(�; y) =
2

l
e

�

�2
(y�x)

e�y
1X
k=1

e��k(T�t) sin(k�
x

l
)

 
( �

�2
+ �) sin(k� y

l
)� k�

l
cos(k� y

l
)

( �

�2
+ �)2 + k2�2

l2

!
:

(31)

The value of the double knock-out call can now be expressed as

VDKOC(t) = e�rd(T�t)
�
L
�
Q(1; l)�Q(1; d)

�
�K

�
Q(0; l)�Q(0; d)

��
: (32)

The value of a double knock-out put is given by

VDKOP(t) = e�rd(T�t)
Z d

0

(K � Ley)p(t; x;T; y) dy

= e�rd(T�t)
�
K

Z d

0

p(t; x;T; y) dy � L

Z d

0

eyp(t; x;T; y) dy

�
;

(33)

3 An alternative method of deriving the expressions given in this section, is to invert the Laplace

transform of the option price given in (2.11) of Geman and Yor (1996) using a contour integration. This

would involve a tedious calculation, which we avoid in the derivation of this section.
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which can be expressed as

VDKOP(t) = e�rd(T�t)
�
K
�
Q(0; d) �Q(0; 0)

�
� L

�
Q(1; d) �Q(1; 0)

��
: (34)

The derivation given above, also holds for options which have a payo� wich depends

on S(T )�. Normal call and put payo�s have � = 1. However, a so-called \bull/bear"

contract has a payo� of maxf0; S(T )�K
S(T )

g = maxf0; 1�KS(T )�1g, which can be valued in

our framework with � = �1.

4.4. Knock-in options

Thus far, we have only considered knock-out options. However, we can also consider

double-barrier knock-in options. A knock-in option can be viewed as a \rebate-at-hit"

option. However, at the time one of the barriers is hit, not a constant amount is payed,

but a payo� equal to a standard Black-Scholes (1973) formula. For example, a double

barrier knock-in option with knocks in a call if the upper barrier is hit �rst, or knocks in

a put of the lower barrier is hit �rst has a value given by

VDKI(t) =

Z T

t

e�rd(s�t)C(s;U)g+(t; x; s) ds+

Z T

t

e�rd(s�t)P(s;L)g�(t; x; s) ds; (35)

where C(s;U) denotes the (Black-Scholes) value of a call-option at time s, with spot-price

S(s) = U , and P(s;L) denotes the put option. The integrals above cannot be solved

analytically, but using a numerical integration routine it is straightforward to obtain an

accurate value for the one-dimensional integrals.
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5. Numerical Implementation

If we want to use the formulas given above to calculate prices of double barrier options,

we have to truncate the in�nite sums to a �nite number of terms. Fortunately, the

expf��k(s� t)g terms decline very fast to zero.

To determine the number of terms needed, we propose the following. Set � to a small

number, say � = 10�10. We can then �nd the number k, for which expf��k(s � t)g < �.

This number is given by

k >

vuut�2 log �
s�t

�
�2

�2

�2�2

l2

: (36)

If we set k� to the smallest integer that satis�es the inequality, we truncate our sums at

k�. The error we now make is of order �.

To assess the validity of our implementation, we have compiled the following tables. In

these tables, we compare the value of a double knock-out call with the results presented in

Table 3.1 of Kunitomo and Ikeda (1992). Their paper deals with the valuation of double

barrier options with (exponentially) curves boundaries, but the \b" columns in their table

correspond to 
at barriers. However, they consider only knock-out options with no rebate.

To make a comparison in the case where rebates are paid out, we have also imple-

mented a �nite di�erence method (Crank-Nicholson) to solve the Black-Scholes (1973)

partial di�erential equation numerically, with boundary conditions KU at U and KL at

L.

The results are presented in Table 1 (options with maturity equal to one month) and

in Table 2 (options with maturity equal to half a year). The columns \KI" denote the

results obtained by Kunitomo-Ikeda. The columns \Ana" denote our analytical results,

and the columns \FD" denote the values obtained from the �nite di�erence method.

It is clear from the tables, that for options with no rebate, our results are exactly equal

to the results obtained by Kunitomo-Ikeda. It is also clear, that even for a 1000 by 1000

grid, the �nite di�erence method is still not pricing the double barrier options correctly.

However, the pricing errors are relatively small. Geman and Yor (1996) already pointed

out the problems of using Monte Carlo methods for pricing double barrier options. From

the results we have shown it will be clear that also �nite di�erence methods converge

quite slowly when pricing double barrier options. Hence, the analytical results obtained
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also provide a good benchmark for assessing the accuracy of �nite di�erence methods in

this case.

For options that do pay a rebate, we see that our analytical results are close to the

results obtained by the �nite di�erence method. The di�erences in prices can readily be

explained by the inaccuracy of the �nite di�erence method.

6. Conclusions

In this paper we have provided valuation formulas for a wide range of double-barrier knock-

out and knock-in options. We derived Laplace transforms which we inverted analytically

using contour integration. With the analytical expressions obtained, we can e�ciently

calculate values for double-barrier options, without having to resort to numerical inversion

methods.

To our knowledge this has been one of the �rst applications of contour integration to

an option pricing problem. Given the power of this approach, we think that many more

applications will follow.
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Table 1.

Value of Double Knock-Out Call Option if T � t = 1
12

(S = 1000; rd = 0:05; rf = 0:00;K = 1000)

No Rebate Rebate at Hit*

U L KI Ana FDy Ana FDy

1500 500 25.12 25.12 24.57 25.12 24.57

� = 0:2 1200 800 24.76 24.76 24.69 25.12 25.05

1050 950 2.15 2.15 2.15 22.29 22.27

1500 500 36.58 36.58 36.04 36.59 36.04

� = 0:3 1200 800 29.45 29.45 29.40 36.55 36.48

1050 950 0.27 0.27 0.27 25.14 25.12

1500 500 47.85 47.85 47.31 48.05 47.51

� = 0:4 1200 800 25.84 25.84 25.82 47.88 47.80

1050 950 0.02 0.02 0.01 25.34 25.32

* Rebate is equal to intrinsic value of option at barrier.

y Prices calculated on a 1000 by 1000 grid.
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Table 2.

Value of Double Knock-Out Call Option if T � t = 1
2

(S = 1000; rd = 0:05; rf = 0:00;K = 1000)

No Rebate Rebate at Hit*

U L KI Ana FDy Ana FDy

1500 500 66.13 66.13 65.58 68.87 68.26

� = 0:2 1200 800 22.08 22.08 22.08 66.49 66.42

1050 950 0.00 0.00 0.00 26.48 26.45

1500 500 67.88 67.88 67.59 95.97 95.38

� = 0:3 1200 800 9.26 9.26 9.27 86.54 86.47

1050 950 0.00 0.00 0.00 25.66 25.63

1500 500 53.35 53.35 53.24 122.46 121.87

� = 0:4 1200 800 3.14 3.14 3.14 97.57 97.50

1050 950 0.00 0.00 -0.01 25.37 25.34

* Rebate is equal to intrinsic value of option at barrier.

y Prices calculated on a 1000 by 1000 grid.
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