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Abstract

An alternative to estimation of microeconometric models under the assumption of normality
of the distribution of the disturbances is semi-nonparametric maximum likelihood estima-
tion. In a particular class of this kind of models, the density function of the disturbances is
approximated by a Hermite series. In this paper we will discuss this approach in the context
of a popular microeconometric model (the sample selection model) and we apply the model
to a truncated switching regression model with endogenous regimes. A new choice of base
functions of the Hermite series is presented and the semi-nonparametric approach is used to
examine sensitivity to the assumption of normality of estimation results of a model for rent
assistance and housing demand in Koning (1995).



1 Introduction

Maximum likelihoodis the most popular estimation method in microeconometrics. The method
yields consistent (in fact, asymptotically efficient) estimators if the model is specified cor-
rectly. However, correct specification may not be known beforehand. Two major sources
of misspecification are incorrect specification of the functional form of the relationship un-
der study (for example, omitting exogenous variables or misspecification of the functional
form) and misspecification of the stochastic structure of the model (for example, neglect-
ing heteroscedasticity or misspecification of the distribution of the random variables). The
maximum likelihood estimator is generally inconsistent in both cases. In this paper we fo-
cus on one particular form of misspecification: misspecification of the distribution of the
disturbances. We retain the assumption of correct specification of the functional form of the
relationship.

Starting with Manski (1975), semi-parametric methods have been proposed for specific
microeconometric models. These models do not require complete distributional assump-
tions or less restrictive distributional assumptions than the assumption of normality (for
example, the conditional mean of the distribution of the disturbances is 0). These meth-
ods yield consistent estimates of the parameters of interest without a complete specifica-
tion of the distribution of the stochastic variables in the model. A recent survey of methods
available is Powell (1994). Recently, Gallant and Nychka (1987) have introduced a semi-
nonparametric estimation method that estimates the density function of the disturbances
along with the other parameters of the model. An advantage of this method is that it is of
general applicability, it is not specific to one particular model. The basic idea is to approx-
imate the unknown density function by a Hermite series. A requirement for consistency of
the method is that the number of terms in the series increases with the sample size, and
hence, the approximation becomes better as the sample size increases. To our knowledge,
this method has been applied only a few times so experience with the method is limited. The
aim of this paper is to document some simulation experience with the method. The method
is also applied to a specific application. In Koning and Ridder (1993) a model for rent assis-
tance and housing demand is estimated under the assumption of normality of the stochastic
variables in the model. In this paper we will examine the sensitivity of these results to the
normality assumption

The setup of this paper is as follows. In section 2 we give an introduction to the semi-
nonparametric maximum likelihood estimation method of Gallant and Nychka (1987). The
Hermite form density is compared to the (multivariate) normal density function. In section 3
we deal with the sample selection model and some simulation results are presented there. In
section 4 we estimate the housing demand model of Koning and Ridder (1993) and Koning
(1995) semi-nonparametrically. This model is a truncated switching regression model with
endogenous regimes and the method has not been applied to such a model before. We end
with some concluding remarks concerning our experience with the Gallant-Nychka method.
Technical matters and derivations are relegated to Appendices.

2 Semi-nonparametric Maximum Likelihood Estimation

In this section we discuss the semi-nonparametric maximum likelihood method introduced
by Gallant and Nychka (1987). The estimation method is based on the approximation of
the (unknown) density function by a Hermite series. In the first part of this section we re-
capitulate the estimation approach of Gallant and Nychka (1987) and in the second part we
compare Hermite series with bivariate normal distributions.

Elaborating on a paper by Phillips (1983), Gallant and Nychka proposed approximat-
ing the unknown density in a model by a Hermite series. Phillips (1983) showed that an
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extended rational approximant (ERA) of the form

h(ε) = P2(ε)

Q2(ε)
φ2(ε | τ, 6) (1)

can approximate any density function arbitrarily well. In equation (1), P(ε) and Q(ε) are
polynomials and φ(ε | τ, 6) is the multivariate normal density function with mean τ and
covariance matrix 6. Of course, equation (1) is not a proper density function if the polyno-
mials P and Q are not restricted such that h integrates to 1. Gallant and Nychka restrict the
density h(ε) to a subclass HK which consists of densities of the Hermite form

h(ε) = P2
K (ε − τ)φ2(ε | τ, 1) (2)

with 1 a diagonal matrix. PK (·) is a polynomial of degree K . Gallant and Nychka show that,
by increasing the number of terms K of the polynomial, a large classH of density functions
can be approximated arbitrarily well. The true density function is assumed to be a member
of the class H. Conditions defining H precisely are given in Gallant and Nychka. For our
purposes it suffices to note that the fattest tails allowed are t -like tails and the thinnest tails
allowed are thinner than normal-like tails. Any sort of skewness and kurtosis (especially in
that part of the distribution where most probability mass is observed) is allowed, only very
violently oscillatory densities are excluded fromH. Of course, it is also possible to assume
that the true density is a member of HK and hence, to interpret HK as a flexible class of
density functions. The latter interpretation is especially appealing if one wants to examine
the sensitivity of estimation results obtained by assuming normality to this distributional as-
sumption because it allows one to use the standard framework of inference. In equation (2),
the normal density is used as the base class for HK but this is not necessary: any density
with a moment generating function could be used.

Gallant and Nychka parameterize h(ε) as

h∗(ε) =
(

K∑
i1,...,in=0

αi1 ···in (ε1 − τ1)
i1 · · · (εn − τn)

in

)2

× exp
(− [

(ε1 − τ1)
2/δ2

1 + · · · + (εn − τn)
2/δ2

n

])
=

K∑
i1 ,...,in , j1,..., jn=0

αi1 ···in α j1··· jn (ε1 − τ1)
i1+ j1 · · · (εn − τn)

in+ jn

× exp
(− [

(ε1 − τ1)
2/δ2

1 + · · · + (εn − τn)
2/δ2

n

])
(3)

Because of the squaring in equation (3), no additional restrictions on the parameters are nec-
essary to ensure that h∗(ε) is nonnegative. Additional restrictions on the parameters of the
density are required for identification of other parameters in a model but these restrictions
depend on the type of model at hand. The parameters cannot be chosen freely, some restric-
tions will be needed to ensure integration to 1. These restrictionscan take the form of explicit
restrictions on the parameters of the density. However, for computational convenience we
follow Gabler, Laisney, and Lechner (1993) by scaling the density. Define S by

S =
∫

IRn

K∑
i1,...,in , j1,..., jn=0

αi1 ···in α j1 ··· jn (ε1 − τ1)
i1+ j1 · · · (εn − τn)

in + jn

× exp
(− [

(ε1 − τ1)
2/δ2

1 + · · · + (εn − τn)
2/δ2

n

])
dε1 · · ·dεn (4)

Now the following scaled density integrates to 1 by the definition of S:

h(ε) = h∗(ε)/S. (5)

We will refer to densities of the type (5) as snp-densities. It is clear that α in equation (5) is
identified up to a scale only, so a normalization is necessary. In particular applications, addi-
tional restrictions will be needed to achieve identification, see below. For most applications
it will be convenient to set τ to 0 which we will do from now on (unless stated otherwise).
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Because the normal density serves as a benchmark in most microeconometric applica-
tions, we will compare the Hermite form equation (5) with the normal density. First, we
consider the univariate case (n = 1). We normalize the vector with α-coefficients by set-
ting α0 = (2π)−1/4 it is clear that the h(ε) reduces to the normal density function if the other
α’s are 0. If we want to calculate the moments of the Hermite form density it is convenient
to introduce some additional notation. Let the (K + 1)× (K + 1) matrix Q(l) be defined by
its typical element1:

Q(l)
i j =

∫ ∞

−∞
εi+ j+l−2 exp(−ε2/δ2)dε

In this notation, the scalar S in equation (4) is equal to S = α′Q(0)α. The elements of Q(l)

can be determined explicitly using the recursion formulae in Appendix A. In this notation,
characteristics of the Hermite form density are:

Eε = α′ Q(1)α/S (6)

Eε2 = α′Q(2)α/S (7)

Eε3 = α′Q(3)α/S (8)

Eε4 = α′Q(4)α/S (9)

The main diagonal of Q(l) consists of zeros if l is odd and hence it is possible to impose
restrictions on the density such that the mean is equal to 0, etc. Using the recursion for-
mula given in Appendix A it is easy to derive explicit expressions for the moments of the
snp-density. Even though they are not particularly insightful, one sees that if K ≥ 2 the co-
efficients of skewness and kurtosis2 are no longer restricted to 0 and 3 as is the case of the
normal distribution. In figure 1 and figure 2 we plot the snp-density with K = 2 and K = 3.
α0 is set to (2π)−1/4 and α2 is set to −α0/3 (K = 2) and − 6α0α3+30α2α3

2α0+6α2
(K = 3) so that the

mean of ε is 0 in all cases.
The snp-density is difficult to characterize for the bivariate (n = 2) case. From equa-

tion (4) it is clear that the snp-density reduces to a bivariate normal density with mean 0

and covariance matrix
(

2δ2
1 0

0 2δ2
2

)
if α00 = 1 and all other α-parameters are 0. We graph

the density surface and some contour lines for the case K = 1 for some different values
of α10, α01, and α11

3 in figures 3 to 5. From these graphs it is clear that a wide variety of
densities can be generated by varying the α-parameters even if K is as low as 1. In interest-
ing question is whether a bivariate normal density with unrestricted covariance is a special
case of a bivariate snp-density with K = 1. It turns out that given the covariance matrix of
a normal density one is able to choose the α-parameters such that the bivariate snp-density
has identical first and second moments. However, the form of the marginal distributions of
this snp-density differs markedly from the marginal normal distribution4. Hence, the bivari-
ate snp-density (5) is not particularly suitable for testing the normality assumption: either
the covariance or the marginal distributions are misspecified if the true density is bivariate
normal and K = 1.

1A similar matrix is defined in Gabler, Laisney, and Lechner (1993), p. 64, but their definition contains an error.
The exponent of ε in their paper reads i + j instead of i + j − 2.

2Let µi be the i-th central moment. Then these coefficients are defined as
(

µ3
σ2

)2
and µ4

σ4 respectively.
3Because the scale of the α’s is not determined, we set α00 = 1.
4We had to rely on numerical comparisons as analytical solutions to the equations equating the moments of

both distributions were impossible to find.
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Figure 1: Univariate snp-density, K = 2
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Figure 2: Univariate snp-density, K = 3
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Figure 3: Bivariate snp-density, α01 = 0.1, α10 = −0.1 and α11 = −0.2
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Figure 4: Bivariate snp-density, α01 = 0.1, α10 = 0.1 and α11 = 0

7



Figure 5: Bivariate snp-density, α01 = 0.1, α10 = −0.1 and α11 = 0.2

8



3 Semi-nonparametric Estimation of the Sample Selection
Model

In this section we consider snp-estimation of the sample selection model, introduced by
Heckman (1979). It is also referred to as a Type II Tobit model (Amemiya (1985)). The
sample selection model is a two equations model. The first equation is a regression equa-
tion

yt = β ′
1x1t + ε1t . (10)

However, we observe this equation only for a selected sample. The selection rule is given
by

I ∗
t = β ′

2x2t + ε2t

It =
{

1 I ∗
t > 0

0 I ∗
t ≤ 0 . (11)

The observations in equation (10) are observed for those with It = 1 only. If the condi-
tional expectation of ε1 given It = 1 is not equal to 0, OLS-estimation of equation (10) will
not yield unbiased estimates for β1. For each observation in the sample we observe the ex-
ogenous variables xt = (x ′

1t , x ′
2t)

′, and It . The outcome of the regression equation (10) is
observed only if It = 1.

If one is willing to assume that εt = (ε1t, ε2t)
′ follows a bivariate normal distribution,

one can estimate the parameters of the sample selection model either using Heckman’s two-
stage procedure (Heckman (1979)) or by full information maximum likelihood. However,
according to Greene (1993) these estimates are rather sensitive to the distributional assump-
tion so one would either like to test this distributional assumption or compare the results
obtained under the assumption of normality with other, semi-nonparametric results.

The loglikelihoodfunction for the sample selection model is

`(θ) =
∑
It=1

ln

(∫ ∞

−β′
2 x2t

f (yt − β ′
1x1t, ε2)dε2

)

+
∑
It =0

ln

(∫ −β′
2 x2t

−∞

∫ ∞

−∞
f (ε1, ε2)dε1dε2

)
(12)

where f is the bivariate density of (ε1, ε2)
′. An alternative to estimation under the assump-

tion of normality is, of course, snp-estimation as discussed in the previous section. A clear
advantage of this approach is that it estimates the density of the disturbances consistently
if the number of terms K in the approximation increases with the number of observations.
One choice for the snp-density is h(ε) = h∗(ε)/S with

h∗(ε) =
K∑

i, j,k,l=0

αi j αklε
i+k
1 ε

j+l
2 exp(−[ε2

1/δ
2
1 + ε2

2/δ
2
2]) (13)

and S is a constant ensuring integration to 1. Substituting this density function in the log-
likelihoodfunction, one obtains

`(θ) =
∑
It=1

ln

(
K∑

i, j,k,l=0

αi jαkl (yt − β ′
1x1t)

i+k exp(−(yt − β ′
1x1t)

2/δ2
1)

∫ ∞

−β′
2 x2t

ε
j+l
2 exp(−ε2

2/δ
2
2)dε2

)

+
∑
It =0

ln

(
K∑

i, j,k,l=0

αi jαkl

∫ ∞

−∞
εi+k

1 exp(−ε2
1/δ

2
1)dε1
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∫ −β′
2 x2t

−∞
ε

j+l
2 exp(−ε2

2/δ
2
2)dε2

)

−T ln

(
K∑

i, j,k,l=0

αi jαkl

∫ ∞

−∞
εi+k

1 exp(−ε2
1/δ

2
1)dε1∫ ∞

−∞
ε

j+l
2 exp(−ε2

2/δ
2
2)dε2

)
(14)

We have to impose restrictions on the parameters to achive identification. First, we set δ2 =√
2 to ensure identificationof the scale of equation (11). Second, we set α00 = 1 to normalize

the α’s. For K = 0, h(ε) now reduces to a bivariate normal density with zero correlation
between ε1 and ε2. Finally, we could impose restrictions to ensure that the means of ε1 and
ε2 are 0. For K = 1, one obtains the restrictions α01 = 0 and α10 = 0. For K ≥ 2 the
restrictions needed to ensure zero means become very cumbersome. Hence, as suggested
by Melenberg and Van Soest (1993) we do not impose restrictions on the parameters to the
density function of ε to impose a zero mean, but we restrict the intercepts of equation (10)
and equation (11) instead.

It is not possible to test for normality using this particular class of snp-densities. Only
the bivariate normal distribution with no correlation between ε1 and ε2 is a special case.
However, by choosing another base class of density functions in the ERA approximation
in equation (1) we can test for normality, even if the error terms are correlated. Because
any density function with a finite moment generating function can be used as the basis in
approximation (1), we can consider the following family of functions:

h̄∗(ε) =
K∑

i, j,k,l=0

αi j αklε
i+k
1 ε

j+l
2 exp(−ε′6−1ε) (15)

and define a generalized snp-density by h̄(ε) = h̄∗(ε)/S (again, S is the constant that en-
sures integration to 1). A disadvantage of this generalized snp-density is that it does not have
the same computationally attractive properties. A clear advantage is that bivariate normality
(with unrestricted correlation) is a special case of this family (αi j = 0 for all i + j ≥ 1).
Evaluation of integrals will involve evaluation of bivariate normal probabilities, in general.
These problems disappear however in the sample selection model where all relevant inte-
grals are of the form∫ ∞

a
h̄∗(ε)dε2 and∫ b

−∞

∫ ∞

−∞
h̄∗(ε)dε1dε2

Substituting for h̄ we obtain integrals of the type∫ ∞

a
εi

1ε
j
2φ(ε1, ε2)dε2∫ b

−∞

∫ ∞

−∞
εi

1ε
j
2φ(ε1, ε2)dε1dε2

where φ(ε1, ε2) is the bivariate normal density function. Because

φ(ε1, ε2) = φ(ε2|ε1)φ(ε1)

we can rewrite these integrals as

εi
1φ(ε1)

∫ ∞

a
ε

j
2φ(ε2|ε1)dε2∫ b

−∞
ε

j
2φ(ε2)

∫ ∞

−∞
εi

1φ(ε1|ε2)dε1dε2 =
∫ b

−∞
ε

j
2φ(ε2)E(εi

1|ε2)dε2. (16)
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The last integral can be solved easily because

E(εi
1|ε2) = a0 + a1ε2 + · · · + aiε

i
2.

The coefficients a depened on the other parameters of the density function only and they
are independent of ε2. Note that both integrals in equation (16) can be calculated using the
recursion formulas in appendix A.

Even though the use of this generalized snp-density is not necessary to obtain consis-
tent estimates of the parameters of the model (the parameters are estimated consistently if
the model is identified and if the number of terms K increases with the number of observa-
tions), it is possible to test for normality in this model. Because of the special structure of
the sample selection model, we are able to avoid evaluations of bivariate normal integrals,
so the computational cost of this generalization is limited.

We conducted a limited simulation exercise to examine whether this extension has any
promise. We consider the following simulation experiment:

yt = β10 + β11xt + β12wt + ε1t (17)

I ∗
t = β20 + β21zt + β22wt + ε2t (18)

with true parameters β10 = 1, β11 = 0.5, β12 = −0.5, β20 = 1, β21 = −1 and β22 = 1. The
exogenous variables xt and zt are independetly N (0, 3) distributed and wt is distributed
uniformly on [−3, 3]. We perform four experiments, where we vary the distribution of ε

and the number of observations. Within each experiment, we draw 100 samples. We draw

ε from either a bivariate normal distribution with mean 0 and variance matrix
(

4 1
1 1

)
, a

bivariate t -distribution with var ε1 = 4, var ε2 = 1 and cov (ε1, ε2) = 1, or ε is drawn from
a centered χ2-distribution5. All simulations were performed on Pentium workstations using
the MAXLIK-library of GAUSS.

For each sample, we estimated the model based on a normal density, an snp-density of
the form (13) with 1, 2 and 3 terms and an snp-density of the form (15) with 1 and 2 terms.
The results are presented in detail in Appendix B. The case of normal disturbances is pre-
sented in tables 5 and 6, the case of t -disturbances in tables 7 and 8, and the case of the
χ2-disturbances is presented in tables 9 and 10.

It is remarkable how well standard ML under the assumption of normally distributed
disturbances performs. Even if the true disturbances follow a t -distribution one sees that all
estimated parameters are within two standard deviations of their true values. This is even the
case when the disturbances follow transformed χ2-distributions which are non-symmetric.
In this setup it is not straightforward to test for normality using the LR-statistic as we have
normalized the intercepts to 0 when we estimated the model semi-nonparametrically. Be-
cause the true intercepts are not 0 we expect some α’s to differ from 0 in order to allow
for a nonzero mean of the distribution of (ε1, ε2). It is our impression that the generalized
snp-density has some advantages over the univariate snp-density in this case. First, we en-
countered hardly any convergence problems using the generalized snp-density, while we did
have convergence problems in the case of the univariate snp-density. Second, it seems that
the generalized snp-density estimates the covariance between ε1 and ε2 better. However, in
the case of χ2-distributed disturbances one sees that the generalized snp-density with two
terms performs badly: the covariance between ε1 and ε2 is vastly overestimated. In general,
it is our impression that the price to be paid for a more flexible approximation to the un-
known density (i.e., a higher K ) is lack of precision of the estimates. Moreover, computer
time required for optimization of the loglikelihoodfunction increases quickly with K .

5To be precise, ε2 ∼ 1
2 (v2

1 + v2
2) − 1 and ε1 = ε2t + (v2

3 + v2
4 + v2

5)/
√

2 − 3/
√

2 with v2
1 to v2

5 independent
χ2(1) random variates. Hence, Eε1 = Eε2 = 0 and var ε1 = 4 and var ε2 = cov (ε1, ε2) = 1.
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4 Semi-nonparametric Estimation of a Housing Demand
Model

We applied the snp-technique to a model of housing demand under Rent Assistance, see
Koning and Ridder (1993) and Koning (1995). A comprehensive discussion of the theoret-
ical model underlying the reduced form we estimate here can be found in these references,
as well a detailed discussion of the data used. Our purpose here is to examine the sensitivity
of the estimation results reported in these references to the assumption of normality.

4.1 A Reduced Form Model of Rental Housing Demand

In Koning and Ridder (1993) a structural model for rental housing demand in The Nether-
lands is developed and it is estimated in two steps. The structural model allows explicitly for
a nonconvexity in the budget set faced by the households introduced by a Rent Assistance
Program. The model is estimated in two steps. First, they derive a reduced form model and
this model is estimated assuming normality of the stochastic terms in the model. In a sec-
ond step they impose the restrictions implied by the structural model on the reduced form
parameters and the structural parameters are estimated using minimum distance estimation.
Here, we focus on the reduced form model only and on the sensitivity of these reduced form
estimates to the normality assumption in particular. The reduced form model is:

I ∗
t = γ0 + γYv

Yvt + γY Yt + ηt (19)

It =
{

0 I ∗
t ≤ 0

1 I ∗
t > 0

Rt =
{

β0 + βY Yt + ε1t It = 0
β1 + βYv

Yvt + ε2t > Rnt It = 1 (20)

where Rt denotes housing demand that can occur in one of two regimes (labelled by It = 0
and It = 1). Households in the second regime receive Rent Assistance. In this regime, the
appropriate income measure is virtual income Yvt instead of income Yt . Moreover, housing
demand in the second regime is restricted: it must exceed a minimum rent Rnt . This mini-
mum rent depends both on the household composition as well on pre-tax family income. The
choice between both regimes is governed by the choice equation (19). The demand system
is a switching regime truncated regression model with endogenous regimes. The parameters
to be estimated are γ0, γYv

, γY , β0, β1, βY and βYv
, as well as the parameters of the distri-

bution of ( ε1 ε2 η )′. We will assume in the sequel that all observations are mutually
independent.

4.2 Estimation Results

In this section we present the estimation results of model (19)–(20) as given in Koning and
Ridder (1993) and we compare these results with the ones obtained by snp-estimation.

The loglikelihoodfunction of the complete model in equations (19) and (20) is

`(θ) =
∑
It=0

ln f (Rt , It) +
∑
It =1

ln f (Rt |Ii, Rt ≥ Rnt) f (It )

=
∑
It =0

ln
∫ − Īt

−∞
fε1η(Rt − β0 − βY Yt , η)dη +

∑
It =1

ln

∫ ∞
− Īt

fε2η(Rt − β1 − βYv
Yvt , η)dη

Pr(β1 + βYv
Yvt + ε2t > Rnt , I ∗

t > 0)

∫ ∞

− Īt

fη(η)dη (21)

where fε1η denotes the bivariate density of (ε1, η), fε2η is the joint density of (ε2, η), fη is
the marginal density of η, and Īt = γ0 + γYv

Yvt + γY Y .

12



β0 2.26 γ0 1.12 σε1η 0.15
(0.27) (0.13) (0.14)

βY 0.089 γYv
0.75 σε2η 0.37

(0.0088) (0.054) (0.25)

β1 4.11 γY −0.71 σε1 1.37
(0.26) (0.047) (0.030)

βYv
0.058 σε2 1.28

(0.011) (0.051)

` −3973.52

Table 1: Estimation results, normal distribution (standard errors in parenthesis)

First, we assume that the disturbances are normally distributed:(
ε1

ε2

η

)
∼ N

0,

σ 2
ε1

σε1ε2 σε1η

σ 2
ε2

σε2η

1


The loglikelikelihood (21) is maximized over the parameters of interest and the parameters
of the density function of the disturbances. Note that the parameter σε1ε2 is not identified
because housing demand is observed in one regime only (ie, It is either equal to 0 or 1).
According to the theoretical model, βY and βYv

should be equal, β0 must be smaller than
β1, and γYv

and γY should have opposite sign and with the γY being slightly smaller than
γYv

in absolute value. The estimation results are given in table 1.
The signs of the income variables in the demand equations are as expected and it turns

out that the restrictions imposed by the theoretical model are not rejected (see Koning and
Ridder (1993) and Koning (1995)). Here, however, we are less interested in the parameters
estimates per se and more in the sensitivity if the estimation results in table 1 to the distri-
butional assumption made.

To the knowledge of the authors, no simple tests for multivariate normality are avail-
able for limited dependent variable models consisting of more than one equation. Tests for
distributional assumptions are available for single equation models like the probit and tobit
model, see Bera, Jarque, and Lee (1984). A disadvantage of their testing procedure is that
it is not clear what to do if the normality assumption is rejected. Using the snp-estimation
method discussed in the previous sections, we can examine the sensitivity to the normality
assumption. A direct test for normality as is feasible in snp-models with only one random
variable is not possible because a trivariate normal distribution with no restrictions on the
covariance structure is not a special member of the class of density functions we will use.
Using the notation of the previous sections, we assume the following density for the distur-
bances

h(ε)∗ =
K∑

i, j,k,l,m ,n=0

αi jkαlmnε
i+l
1 ε

j+m
2 εk+n

3 exp
(− [

ε2
1/δ

2
1 + ε2

2/δ
2
2 + ε2

3/δ
2
3

])
h(ε) = h∗(ε)/S (22)

where S is a constant (depending on the parameters) that ensures integration to 1. Using
equation (21), we obtain the following formula for the loglikelihood function6:

`(θ) =
∑
It=0

{
ln

(∫ −γ0−γYv Yvt −γY Yt

−∞

∫ ∞

−∞
h∗ (Rt − β0 − βY Yt , ε2, η)dε2dη

)}
+

∑
It =1

{
ln

(∫ ∞

−γ0−γYv Yvt −γY Yt

∫ ∞

−∞
h∗ (

ε1, Rt − β1 − βYv
Yvt , η

)
dε1dη

)
6Details of this loglikelihoodfunctionand the derivatives with respect to the parameters are available on request

from the authors.

13



β0 2.26 γY −0.90 α010 −0.023
(0.087) (0.18)

βY 0.096 δ1 1.46 α011 0.48
(0.0022) (0.038) (0.17)

β1 4.11 δ2 1.51 α100 −0.20
(0.078) (0.16)

βYv
0.055 δ3 1.41 α101 0.62

(0.0069) (0.14)

γ0 1.12 α000 1 α110 −0.48
(0.13)

γYv
0.96 α001 0.24 α111 −0.13

(0.10) (0.19) (0.18)

` −3931.17

Table 2: Estimation results, snp-distribution K = 1 (standard errors in parenthesis)

− ln
(∫ ∞

−γ0−γYv Yvt −γY Yt

∫ ∞

Rnt−β1−βYv Yvt

∫ ∞

−∞
h∗ (ε1, ε2, η)dε1dε2dη

)
+ ln

(∫ ∞

−γ0−γYv Yvt −γY Yt

∫ ∞

−∞

∫ ∞

−∞
h∗ (ε1, ε2, η) dε1dε2dη

)}
−N ln

(∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
h∗ (ε1, ε2, η)dε1dε2dη

)
(23)

Before we estimate the model using this loglikelihoodfunction, we must ensure identifica-
tion of the parameters first. The identifying restrictions are completely analogous to those
made in the sample selection model previously. First, we normalize the scale of the selec-
tion equation (19) by setting δ3 = √

2. Second, we must normalize the α’s, we do this by
setting α000 = 1. Third, we do not impose any parametric restrictions so that ( ε1 ε2 η )′

has mean 0. Instead, we fix the intercepts β0, β1 and γ0 to their estimated values in table 1.
The only problem left is the choice of K , the number of terms in the density (22). We

follow here the suggestions of Gabler, Laisney, and Lechner: the model with K terms is
nested in the model with K + 1 terms. One can use the likelihoodratio test to test whether
the nulhypothesis that the additional terms are 0 is rejected7. This approach assumes that
the true density is of the type (22) with K + 1 terms. Considering the flexibility of the snp-
density, even for small K , we do not think that this is a strong assumption. Moreover, in the
application discussed here, we are primarily interested in examining the sensitivity of the
estimation results in table 1 to the assumption of normality.

The estimation results of the snp-model are given in tables 2 and 3. The point estimates
for the income coefficients of both demand equations in the snp-model with K = 1 do not
differ much from those in table 1, considering the standard errors in the latter table. The
estimates for the intercepts are equal because of the normalization chosen. The estimates
for the income coefficients in the choice equation are higher, but the variance η in the snp-
model is higher than 1 as well. If one divides γ̂Yv

and γ̂Y in table 2 by the estimated standard
deviation of η, one obtains 0.74 and −0.69 which numbers compare favourably with their
counterparts in table 1.

We compare the first two moments of the snp-density with those of the normal distribu-
tion in the second and third column of table 4. The estimated mean of ε1 is slightly negative
and the estimated mean of ε2 is slightly positive. However, both means are less than a half
standard deviation of the estimated intercepts in the normal model. The fact that the mean
of η is greater than 0 is in accordance with the estimated standard deviation of η being larger
than 1. The variances of ε1 and ε2 do not differ by much between the normal model and the

7If this procedure is followed for more than one step, the significance level of the likelihoodratio test is no
longer known because consecutive tests are not independent.
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β0 2.26 α010 0.071 α120 −0.18
(0.96) (0.50)

βY 0.10 α011 0.12 α121 −0.41
(0.0035) (0.69) (0.32)

β1 4.11 α012 0.021 α122 0.30
(0.45) (0.36)

βYv
0.040 α020 −0.64 α200 −0.54

(0.0097) (0.52) (0.32)

γ0 1.12 α021 0.40 α201 −0.43
(0.40) (0.46)

γYv
0.95 α022 0.24 α202 −0.025

(0.25) (0.17)

γY −0.91 α100 0.77 α210 0.081
(0.076) (1.05) (0.25)

δ1 1.34 α101 0.81 α211 0.10
(0.044) (0.92) (0.28)

δ2 1.35 α102 −0.15 α212 −0.026
(0.080) (0.49) (0.16)

δ3 1.41 α110 −1.09 α220 0.16
(0.66) (0.22)

α000 1 α111 0.078 α221 −0.0067
(0.77) (0.13)

α001 0.64 α112 0.45 α222 0.025
(1.04) (0.47) (0.11)

α002 0.0050
(0.43)

` −3908.85

Table 3: Estimation results, snp-distribution K = 2 (standard errors in parenthesis)
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normal snp (K = 1) snp (K = 2)
Eε1 0 −0.11 −0.33
Eε2 0 0.12 0.030
Eη 0 0.17 0.48
var ε1 1.88 1.83 1.85
var ε2 1.64 1.74 2.56
var η 1 1.70 2.21
cov (ε1, η) 0.16 0.34 0.14
cov (ε2, η) 0.37 0.18 0.57

Table 4: Estimated means and (co)variances

snp-model. The covariances between ε1 and η on the one hand and ε2 and η on the other
appear to have been changed by a lot, but one should realize that both values are within two
times the standard deviation of the estimates of the normal model.

In a second step, we estimated the demand model with K = 2. The number of param-
eters is enormous: 7 parameters to model the means of the observed variables and 26 pa-
rameters to characterize the distribution of ε. The estimation results are given in table 3.
Even though we reject the nulhypothesis that all extra α-terms are jointly zero (the likeli-
hoodratio test statistic is 44.64 which must be compared with χ2

0.95(19) = 30.14), we do
not think that this specification is an improvement over the one reported in table 2 because
the loglikelihoodfunctionwas rather ill-determined near the optimum (analysis of the eigen-
vectors and eigenvalues of the Hessian showed that especially the estimates for the α’s were
ill-determined) and we were unable to verify whether optimum found was a local or a global
optimum. For comparison with the other two specifications, we give the first two moments
of the estimated distribution for ε in the fourth column of table 4. The variances of both ε2

and η have increased and the expectation of ε1 has decreased markedly. However, for the
reasons given above we do not attach too much value to these results.

Summarizing, we have found that the estimation results for the truncated switching re-
gression model of Koning and Ridder (1993) are not very sensitive to the assumed normality
of the disturbances. The first two moments of the snp-density with K = 1 compared very
well to those obtained by assuming normality. The snp-density with K = 2 contained too
many parameters for reliable estimation.

5 Conclusions

In this paper we have used the semi-nonparametric maximum likelihood method developed
by Gallant and Nychka (1987) to estimate to microeconometric models. First, we examined
some properties of this method in the context of the sample selection model. An simple gen-
eralization of the base class of density functions has been used to test for normality in this
sample selection model, for which no simple test of normality of the disturbances is avail-
able. Even though the number of simulations has been limited, we think that our generaliza-
tion holds some promise. Computationally the generalization is not much more demanding
than the snp-method itself due to the special structure of the sample selection model.

In the second part of the paper we used the snp-approach to examine whether the es-
timation results for a reduced form model of rental housing demand in The Netherlands as
presented in Koning and Ridder (1993) and Koning (1995) are very sensitive to the assumed
normality of the disturbances. We implemented the snp-method in this rather complex trun-
cated switching regression model with endogenous regimes and the results indicated that
the estimation results in the papers cited are not very sensitive to the assumed normality,
even though we were not able to carry out a formal test of normality in this context.
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A Recursion Formulae of the Hermite Form Density

I (k) is defined as the univariate integral

I (k) =
∫ ∞

−∞
uk exp(−u2/δ2)du

Using partial integration one obtains the recursion formulae

I (k) =
 δ

√
π k = 0

0 k = 1, 3, 5, . . .
1
2(k − 1)δ2 I (k − 2) k = 2, 4, 6, . . .

(24)

B Simulation Results
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normal snp-density generalized snp
T = 500 K = 1 K = 2 K = 3 K = 1 K = 2
β10 1.02 0 0 0 0 0

(0.076)

β11 0.51 0.50 0.51 0.51 0.51 0.51
(0.069) (0.075) (0.070) (0.069) (0.069) (0.068)

β12 −0.52 −0.58 −0.58 −0.53 −0.52 −0.51
(0.067) (0.069) (0.070) (0.073) (0.063) (0.072)

β20 1.03 0 0 0 0 0
(0.080)

β21 −1.01 −0.95 −0.97 −1.06 −1.01 −1.04
(0.062) (0.056) (0.067) (0.15) (0.061) (0.076)

β22 1.01 0.95 0.97 1.07 1.01 1.05
(0.067) (0.055) (0.064) (0.15) (0.064) (0.079)

σ1 1.97 1.97 1.74
(0.071) (0.068) (0.14)

σ12 0.96 0.95 0.87
(0.066) (0.064) (0.088)

δ1 2.95 2.60 2.51
(0.096) (0.15) (0.28)

α00 1 1 1 1 1
α01 0.55 1.37 0.60 0.56 0.62

(0.056) (0.12) (0.25) (0.071) (0.14)

α02 0.33 0.035 0.18
(0.12) (0.12) (0.078)

α03 −0.014
(0.061)

α10 0.11 −0.54 −0.015 0.011 −0.018
(0.023) (0.15) (0.18) (0.032) (0.093)

α11 0.17 0.44 0.15 0.047 −0.094
(0.030) (0.086) (0.23) (0.029) (0.082)

α12 0.30 0.089 0.016
(0.064) (0.069) (0.053)

α13 0.0086
(0.036)

α20 −0.12 −0.019 0.036
(0.040) (0.043) (0.046)

α21 0.011 −0.021 0.011
(0.029) (0.044) (0.034)

α22 0.046 0.024 0.0069
(0.018) (0.017) (0.010)

α23 0.011
(0.0088)

α30 −0.0011
(0.015)

α31 −0.0025
(0.018)

α32 0.0031
(0.0066)

α33 0.0017
(0.0029)

Eε1 0 1.19 1.67 1.15 1.03 1.03
Eε2 0 0.92 1.02 1.32 1.03 1.10
var ε1 3.89 3.97 5.29 3.97 3.89 3.93
var ε2 1 0.85 1.52 0.85 0.78 0.96
cov (ε1, ε2) 0.96 0.34 0.22 1.00 0.85 0.94
` −730.49 −733.79 −732.85 −726.32 −730.17 −728.52
success 100 100 100 100 100 100

Table 5: Estimation results of the experiment with bivariate normal distributeddisturbances,
100 replications, T = 500.
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normal snp-density generalized snp
T = 500 K = 1 K = 2 K = 3 K = 1 K = 2
β10 0.99 0 0 0 0 0

(0.037)

β11 0.50 0.50 0.50 0.50 0.50 0.50
(0.048) (0.046) (0.047) (0.045) (0.045) (0.046)

β12 −0.50 −0.56 −0.51 −0.50 −0.50 −0.49
(0.048) (0.052) (0.059) (0.055) (0.046) (0.055)

β20 1.00 0 0 0 0 0
(0.044)

β21 −1.00 −0.89 −1.09 −1.09 −0.88 −0.99
(0.044) (0.042) (0.087) (0.12) (0.040) (0.056)

β22 1.00 0.89 1.09 1.09 0.88 0.98
(0.041) (0.039) (0.080) (0.12) (0.033) (0.050)

σ1 1.99 1.99 1.91
(0.050) (0.043) (0.076)

σ12 1.00 0.97 0.86
(0.021) (0.019) (0.043)

δ1 2.96 2.67 2.58
(0.063) (0.11) (0.22)

α00 1 1 1 1 1
α01 0.55 0.64 0.56 0.53 0.53

(0.049) (0.10) (0.15) (0.043) (0.073)

α02 0.047 0.022 0.079
(0.087) (0.072) (0.047)

α03 −0.011
(0.035)

α10 0.10 −0.14 −0.030 0.013 −0.017
(0.017) (0.10) (0.090) (0.017) (0.055)

α11 0.16 0.27 0.16 0.040 0.031
(0.024) (0.064) (0.12) (0.019) (0.049)

α12 0.12 0.093 0.024
(0.044) (0.051) (0.028)

α13 0.0070
(0.022)

α20 −0.048 −0.020 −0.0038
(0.022) (0.025) (0.018)

α21 0.015 −0.026 0.00034
(0.014) (0.033) (0.015)

α22 0.023 0.022 0.0017
(0.0097) (0.012) (0.0043)

α23 0.010
(0.0064)

α30 −0.00030
(0.0068)

α31 −0.0055
(0.0094)

α32 0.0015
(0.0033)

α33 0.0016
(0.0018)

Eε1 0 1.16 1.32 1.05 1.00 0.99
Eε2 0 0.84 1.18 1.15 0.88 1.01
var ε1 3.95 4.03 5.05 3.94 3.89 3.89
var ε2 1 0.85 1.11 0.85 0.79 0.93
cov (ε1, ε2) 1.00 0.34 0.99 1.05 0.85 0.98
` −1597.38 −1603.79 −1597.64 −1593.36 −1597.24 −1595.49
success 99 100 100 100 100 100

Table 6: Estimation results of the experiment with bivariate normal distributeddisturbances,
100 replications, T = 1000.
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normal snp-density generalized snp
T = 500 K = 1 K = 2 K = 3 K = 1 K = 2
β10 1.04 0 0 0 0 0

(0.10)

β11 0.49 0.47 0.49 0.48 0.49 0.49
(0.069) (0.068) (0.064) (0.058) (0.061) (0.061)

β12 −0.52 −0.59 −0.52 −0.55 −0.53 −0.53
(0.074) (0.076) (0.071) (0.062) (0.070) (0.068)

β20 1.15 0 0 0 0 0
(0.17)

β21 −1.14 −1.05 −1.22 −1.26 −1.13 −1.48
(0.15) (0.089) (0.16) (0.21) (0.099) (0.19)

β22 1.14 1.03 1.22 1.26 1.12 1.48
(0.15) (0.086) (0.16) (0.21) (0.094) (0.18)

σ1 1.94 1.83 2.19
(0.23) (0.12) (0.20)

σ12 0.84 0.86 1.08
(0.19) (0.17) (0.33)

δ1 2.71 2.88 3.00
(0.16) (0.33) (0.37)

α00 1 1 1 1 1
α01 0.71 0.84 1.46 0.81 1.73

(0.095) (0.30) (0.75) (0.15) (1.08)

α02 0.034 0.092 0.50
(0.017) (0.26) (0.44)

α03 −0.13
(0.076)

α10 0.16 0.085 0.20 0.054 0.14
(0.041) (0.094) (0.26) (0.072) (0.27)

α11 0.24 0.17 0.28 0.023 0.10
(0.048) (0.063) (0.19) (0.055) (0.30)

α12 0.083 0.10 −0.019
(0.052) (0.14) (0.18)

α13 0.0073
(0.047)

α20 −0.070 −0.057 −0.063
(0.026) (0.030) (0.044)

α21 −0.015 −0.080 −0.062
(0.017) (0.055) (0.053)

α22 0.024 0.012 −0.018
(0.016) (0.017) (0.041)

α23 0.015
(0.011)

α30 −0.0096
(0.012)

α31 −0.016
(0.016)

α32 −0.0011
(0.0058)

α33 0.0016
(0.0026)

Eε1 0 1.35 1.07 1.34 1.10 1.19
Eε2 0 0.98 1.44 1.31 1.12 1.78
var ε1 3.75 3.12 3.02 3.12 3.17 2.81
var ε2 1 0.91 0.86 0.91 0.83 0.62
cov (ε1, ε2) 0.84 0.18 0.44 0.32 0.70 0.45
` −709.70 −693.19 −685.58 −672.11 −693.97 −679.73
success 100 74 82 86 100 100

Table 7: Estimation results of the experiment with bivariate t distributed disturbances, 100
replications, T = 500.
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normal snp-density generalized snp
T = 500 K = 1 K = 2 K = 3 K = 1 K = 2
β10 0.99 0 0 0 0 0

(0.068)

β11 0.50 0.50 0.51 0.50 0.50 0.50
(0.045) (0.044) (0.037) (0.033) (0.039) (0.034)

β12 −0.49 −0.58 −0.51 −0.54 −0.52 −0.50
(0.049) (0.049) (0.049) (0.044) (0.047) (0.043)

β20 1.09 0 0 0 0 0
(0.068)

β21 −1.09 −0.99 −1.12 −1.07 −1.00 −1.16
(0.078) (0.054) (0.11) (0.17) (0.061) (0.098)

β22 1.11 1.00 1.13 1.08 1.01 1.17
(0.071) (0.055) (0.11) (0.16) (0.059) (0.093)

σ1 1.94 1.85 2.14
(0.22) (0.086) (0.15)

σ12 0.83 0.82 0.96
(0.13) (0.12) (0.19)

δ1 2.67 2.83 2.98
(0.11) (0.21) (0.24)

α00 1 1 1 1 1
α01 0.66 0.68 1.04 0.73 0.84

(0.036) (0.11) (0.26) (0.098) (0.17)

α02 0.017 0.019 0.086
(0.13) (0.14) (0.12)

α03 −0.095
(0.057)

α10 0.15 0.065 0.11 0.090 −0.035
(0.027) (0.065) (0.10) (0.054) (0.074)

α11 0.26 0.17 0.27 0.0015 0.11
(0.039) (0.052) (0.18) (0.037) (0.11)

α12 0.077 0.11 0.12
(0.042) (0.080) (0.042)

α13 −0.0011
(0.049)

α20 −0.062 −0.043 −0.073
(0.019) (0.019) (0.023)

α21 −0.014 −0.051 −0.070
(0.012) (0.034) (0.018)

α22 0.020 0.0042 −0.0010
(0.014) (0.012) (0.0072)

α23 0.0084
(0.0087)

α30 −0.0055
(0.0061)

α31 −0.011
(0.011)

α32 −0.0024
(0.0035)

α33 0.00088
(0.0029)

Eε1 0 1.31 1.01 1.13 1.10 1.05
Eε2 0 0.91 1.15 1.12 0.97 1.22
var ε1 3.75 3.14 2.84 3.14 3.22 3.32
var ε2 1 0.94 0.84 0.94 0.84 0.97
cov (ε1, ε2) 0.83 0.26 0.46 0.32 0.64 0.90
` −1559.85 −1516.91 −1501.60 −1477.31 −1526.57 −1487.14
success 99 67 71 78 77 100

Table 8: Estimation results of the experiment with bivariate t distributed disturbances, 100
replications, T = 1000.
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normal snp-density generalized snp
T = 500 K = 1 K = 2 K = 3 K = 1 K = 2
β10 0.92 0 0 0 0 0

(0.10)

β11 0.50 0.50 0.50 0.50 0.50 0.50
(0.062) (0.064) (0.052) (0.054) (0.065) (0.051)

β12 −0.48 −0.63 −0.49 −0.52 −0.52 −0.44
(0.081) (0.085) (0.071) (0.073) (0.082) (0.071)

β20 1.17 0 0 0 0 0
(0.10)

β21 −1.15 −1.10 −1.02 −1.14 −1.09 −0.90
(0.11) (0.091) (0.11) (0.13) (0.081) (0.11)

β22 1.14 1.09 1.01 1.13 1.08 0.91
(0.12) (0.10) (0.12) (0.14) (0.090) (0.11)

σ1 2.06 2.12 1.91
(0.12) (0.11) (0.16)

σ12 1.28 1.18 1.56
(0.15) (0.15) (0.18)

δ1 3.07 2.98 2.82
(0.16) (0.19) (0.25)

α00 1 1 1 1 1
α01 0.64 0.50 0.83 0.65 1.56

(0.047) (0.077) (0.11) (0.057) (0.38)

α02 −0.062 −0.065 0.42
(0.039) (0.055) (0.19)

α03 −0.085
(0.022)

α10 0.15 −0.046 0.030 −0.014 −0.74
(0.016) (0.034) (0.058) (0.039) (0.26)

α11 0.12 0.11 0.10 −0.00036 −0.22
(0.012) (0.015) (0.037) (0.010) (0.15)

α12 0.078 0.065 −0.0046
(0.015) (0.025) (0.042)

α13 0.0097
(0.011)

α20 −0.080 −0.090 −0.15
(0.013) (0.025) (0.038)

α21 −0.0038 −0.065 0.011
(0.0047) (0.018) (0.027)

α22 0.025 0.026 0.021
(0.0048) (0.010) (0.0072)

α23 0.014
(0.0047)

α30 −0.0075
(0.0031)

α31 −0.0082
(0.0031)

α32 0.0013
(0.0014)

α33 0.0015
(0.00082)

Eε1 0 1.37 0.95 1.11 1.00 0.72
Eε2 0 0.91 0.96 1.07 0.90 0.92
var ε1 4.24 3.91 5.31 3.91 4.17 4.29
var ε2 1 0.77 1.10 0.77 0.76 1.05
cov (ε1, ε2) 1.28 0.057 0.67 0.62 0.91 1.60
` −800.56 −803.39 −780.71 −765.70 −799.86 −764.49
success 100 99 99 97 100 100

Table 9: Estimation results of the experiment with bivariate χ2 distributeddisturbances, 100
replications, T = 500.

23



normal snp-density generalized snp
T = 1000 K = 1 K = 2 K = 3 K = 1 K = 2
β10 0.94 0 0 0 0 0

(0.087)

β11 0.50 0.50 0.50 0.50 0.50 0.50
(0.048) (0.050) (0.040) (0.039) (0.050) (0.036)

β12 −0.49 −0.63 −0.49 −0.52 −0.52 −0.45
(0.054) (0.061) (0.047) (0.046) (0.058) (0.043)

β20 1.16 0 0 0 0 0
(0.082)

β21 −1.11 −0.94 −1.04 −1.06 −0.92 −0.91
(0.089) (0.067) (0.088) (0.10) (0.059) (0.092)

β22 1.12 0.94 1.05 1.05 0.92 0.93
(0.082) (0.062) (0.083) (0.096) (0.057) (0.084)

σ1 2.05 2.10 1.94
(0.081) (0.079) (0.097)

σ12 1.26 1.19 1.55
(0.19) (0.16) (0.14)

δ1 3.06 3.00 2.84
(0.11) (0.13) (0.20)

α00 1 1 1 1 1
α01 0.65 0.50 0.84 0.64 1.32

(0.035) (0.053) (0.066) (0.048) (0.25)

α02 −0.067 −0.067 0.27
(0.027) (0.037) (0.091)

α03 −0.087
(0.014)

α10 0.15 −0.040 0.029 −0.015 −0.58
(0.012) (0.027) (0.043) (0.036) (0.16)

α11 0.12 0.11 0.10 −0.0015 −0.092
(0.0087) (0.0097) (0.025) (0.0094) (0.069)

α12 0.075 0.065 0.010
(0.011) (0.021) (0.028)

α13 0.0095
(0.0085)

α20 −0.077 −0.087 −0.15
(0.0099) (0.017) (0.022)

α21 −0.0042 −0.063 −0.00015
(0.0034) (0.014) (0.018)

α22 0.024 0.025 0.018
(0.0032) (0.0054) (0.0039)

α23 0.014
(0.0029)

α30 −0.0071
(0.0017)

α31 −0.0077
(0.0020)

α32 0.0012
(0.00079)

α33 0.0014
(0.00048)

Eε1 0 1.36 0.91 1.10 0.99 0.75
Eε2 0 0.92 0.95 1.06 0.90 0.92
var ε1 4.19 5.05 2.84 3.89 4.11 4.13
var ε2 1 0.77 1.07 0.77 0.76 1.02
cov (ε1, ε2) 1.26 0.05 0.67 0.62 0.91 1.52
` −1586.21 −1591.26 −1547.47 −1517.29 −1583.71 −1516.29
success 99 98 99 87 100 100

Table 10: Estimation results of the experiment with bivariate χ2 distributed disturbances,
100 replications, T = 1000.
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