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Abstract

Anaternativeto estimation of microeconometric model s under the assumption of normality
of the distribution of the disturbances is semi-nonparametric maximum likelihood estima
tion. In a particular class of thiskind of model s, the density function of the disturbancesis
approximated by aHermite series. In this paper we will discuss thisapproach in the context
of apopular microeconometric model (the sample sel ection model) and we apply the model
to atruncated switching regression model with endogenous regimes. A new choice of base
functionsof the Hermite seriesis presented and the semi-nonparametric approach isused to
examine sensitivity to the assumption of normality of estimation results of amodel for rent
assistance and housing demand in Koning (1995).



1 Introduction

Maximum likelihoodisthemost popul ar estimation method in mi croeconometrics. Themethod
yields consistent (in fact, asymptoticaly efficient) estimatorsif the model is specified cor-
rectly. However, correct specification may not be known beforehand. Two major sources
of misspecification are incorrect specification of the functional form of the relationship un-
der study (for example, omitting exogenous variables or misspecification of the functional
form) and misspecification of the stochastic structure of the model (for example, neglect-
ing heteroscedasticity or misspecification of the distribution of the random variables). The
maximum likelihood estimator is generally inconsistent in both cases. In this paper we fo-
cus on one particular form of misspecification: misspecification of the distribution of the
disturbances. We retain the assumption of correct specification of thefunctional form of the
relationship.

Starting with Manski (1975), semi-parametric methods have been proposed for specific
microeconometric models. These models do not require compl ete distributional assump-
tions or less restrictive distributional assumptions than the assumption of normality (for
example, the conditional mean of the distribution of the disturbances is 0). These meth-
ods yield consistent estimates of the parameters of interest without a complete specifica-
tion of the distribution of the stochastic variablesin themodel. A recent survey of methods
availableis Powell (1994). Recently, Gallant and Nychka (1987) have introduced a semi-
nonparametric estimation method that estimates the density function of the disturbances
along with the other parameters of the model. An advantage of this method is that it is of
genera applicability, it is not specific to one particular model. The basic ideaisto approx-
imate the unknown density function by a Hermite series. A requirement for consistency of
the method is that the number of terms in the series increases with the sample size, and
hence, the approximation becomes better as the sample size increases. To our knowledge,
thismethod has been applied only afew times so experience with the method islimited. The
aim of this paper isto document some simulation experience with the method. The method
isalso applied to a specific application. In Koning and Ridder (1993) amodel for rent assis-
tance and housing demand is estimated under the assumption of normality of the stochastic
variablesin the modd. In this paper we will examine the sensitivity of these resultsto the
normality assumption

The setup of this paper isas follows. In section 2 we give an introduction to the semi-
nonparametric maximum likelihood estimation method of Gallant and Nychka (1987). The
Hermiteform density iscompared to the (multivariate) normal density function. In section 3
we deal withthe sample selection model and some simulation resultsare presented there. In
section 4 we estimate the housing demand model of Koning and Ridder (1993) and Koning
(1995) semi-nonparametrically. Thismodel is atruncated switching regression model with
endogenous regimes and the method has not been applied to such a model before. We end
with some concluding remarks concerning our experience withthe Gallant-Nychkamethod.
Technical matters and derivations are rel egated to Appendices.

2 Semi-nonparametric Maximum Likelihood Estimation

In this section we discuss the semi-nonparametric maximum likelihood method introduced
by Gallant and Nychka (1987). The estimation method is based on the approximation of
the (unknown) density function by a Hermite series. In the first part of this section we re-
capitul ate the estimation approach of Gallant and Nychka (1987) and in the second part we
compare Hermite series with bivariate normal distributions.

Elaborating on a paper by Phillips (1983), Gallant and Nychka proposed approximat-
ing the unknown density in a model by a Hermite series. Phillips (1983) showed that an



extended rational approximant (ERA) of theform
P%(e)
Q2(e)
can approximate any density function arbitrarily well. In equation (1), P(¢) and Q(e) are
polynomialsand ¢ (¢ | 7, ¥) is the multivariate normal density function with mean ¢ and
covariance matrix X. Of course, equation (1) isnot a proper density functionif the polyno-

mials P and Q are not restricted such that h integratesto 1. Gallant and Nychka restrict the
density h(e) to asubclass H k which consists of densities of the Hermite form

h(e) = PE(e — T)¢(e | T, A) @)

with A adiagonal matrix. Pk (-) isapolynomial of degree K. Gallant and Nychkashow that,
by increasing the number of terms K of the polynomial, alarge class# of density functions
can be approximated arbitrarily well. The true density function is assumed to be a member
of the class . Conditionsdefining # precisaly are given in Gallant and Nychka. For our
purposes it suffices to note that the fattest tailsalowed are t-liketailsand the thinnest tails
allowed are thinner than normal-liketails. Any sort of skewness and kurtosis (especially in
that part of the distribution where most probability massis observed) is alowed, only very
violently oscillatory densities are excluded from . Of course, it isalso possibleto assume
that the true density is a member of #x and hence, to interpret H as aflexible class of
density functions. The latter interpretation is especially appealing if one wants to examine
the sensitivity of estimation results obtai ned by assuming normality to thisdistributional as-
sumption because it allows one to use the standard framework of inference. In equation (2),
the normal density is used as the base class for H but thisis not necessary: any density
with a moment generating function could be used.
Gallant and Nychka parameterize h(e) as

h(e) = e |7, %) D

.....

_ P i1+] int]
= E Qjyin gy (61— )" .o (en — )" In
i1,~~~,in’j1,~~~, jn=0

x exp (—[(e1 — 1)?/82 + - -+ (en — T)?/82)) 3)

Because of the squaring in equation (3), no additional restrictionson the parameters are nec-
essary to ensure that h*(e) isnonnegative. Additional restrictions on the parameters of the
density are required for identification of other parameters in amodel but these restrictions
depend on the type of mode at hand. The parameters cannot be chosen freely, somerestric-
tionswill be needed to ensureintegrationto 1. Theserestrictionscan taketheform of explicit
restrictions on the parameters of the density. However, for computational convenience we
follow Gabler, Laisney, and Lechner (1993) by scaling the density. Define S by

K
S= f . Z iy @y (81 — T) I (g — )t
I

i1,..050n, jl,m’ jn =0

x exp (= [(e1 — t)?/8F + - - + (en — T)?/8%]) de1 - - - deq (4)
Now the following scaled density integratesto 1 by the definition of S:
h(e) = h*(¢e)/S. ©)

We will refer to densities of thetype (5) as snp-densities. It is clear that « in equation (5) is
identified up to ascale only, so anormalizationisnecessary. In particul ar applications, addi-
tional restrictionswill be needed to achieve identification, see below. For most applications
it will be convenient to set = to 0 which wewill do from now on (unless stated otherwise).



Because the normal density serves as a benchmark in most microeconometric applica
tions, we will compare the Hermite form equation (5) with the normal density. First, we
consider the univariate case (n = 1). We normalize the vector with «-coefficients by set-
tingao = (27)~Y4itisclear that theh(e) reducestothenormal density functionif the other
a’'sare 0. If we want to cal culate the moments of the Hermite form density it is convenient
to introduce some additional notation. Let the (K 4 1) x (K + 1) matrix Q" be defined by
itstypical element®:

Qi(}) Zf gitit-2 exp(—gz/éz)dg

In this notation, the scalar Sin equation (4) isequal to S = o’Q@«. The elements of QV
can be determined explicitly using the recursion formulae in Appendix A. In this notation,
characteristics of the Hermite form density are:

e =a'QWa/S (6)
£e2=a'QPa/S (7)
£ =a'Q®a/S (8)
et =a'QWa/S (9)

The main diagonal of QU consists of zeros if | is odd and hence it is possible to impose
restrictions on the density such that the mean is equal to O, etc. Using the recursion for-
mulagiven in Appendix A it is easy to derive explicit expressions for the moments of the
snp-density. Even though they are not particularly insightful, one sees that if K > 2 the co-
efficients of skewness and kurtosis® are no longer restricted to 0 and 3 as is the case of the
norma distribution. Infigure 1 and figure 2 we plot the snp-density with K = 2and K = 3.
apissetto (27) M4 and oy isset to —ap/3 (K = 2) and —Hgretfens (K — 3) so that the
mean of ¢ isOin al cases.

The snp-density is difficult to characterize for the bivariate (n = 2) case. From equa-
tion (4) it is clear that the snp-density reduces to a bivariate norma density with mean O
262 0
0 253
the density surface and some contour lines for the case K = 1 for some different values
of a9, oz, and o112 in figures 3 to 5. From these graphsiit is clear that a wide variety of
densities can be generated by varying the «-parameterseven if K isaslow as 1. Ininterest-
ing question is whether a bivariate normal density with unrestricted covariance is a special
case of a bivariate snp-density with K = 1. It turns out that given the covariance matrix of
anormal density oneis able to choose the «-parameters such that the bivariate snp-density
has identical first and second moments. However, the form of the marginal distributionsof
thissnp-density differs markedly from the marginal normal distribution®. Hence, the bivari-
ate snp-density (5) is not particularly suitable for testing the normality assumption: either
the covariance or the marginal distributionsare misspecified if the true density is bivariate
norma and K = 1.

and covariance matrix if agop = 1and al other «-parameters are 0. We graph

1A similar matrix isdefined in Gabler, Laisney, and Lechner (1993), p. 64, but their definition containsan error.
The exponent of ¢ in their paper readsi + j instead of i + j — 2.
2
2Let i bethei-th central moment. Then these coefficients are defined as (%) and Z—;‘ respectively.

3Because the scale of the o’s is not determined, we set agp = 1.
4We had to rely on numerical comparisons as analytical solutions to the equations equating the moments of
both distributions were impossibleto find.
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Figure 1: Univariate snp-density, K = 2
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Figure 2: Univariate snp-density, K = 3
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Figure 3: Bivariate snp-density, eo1 = 0.1, @30 = —0.1 and @31 = —0.2
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Figure 4: Bivariate snp-density, ao; = 0.1, @0 = 0.1 and a3 = 0
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Figure 5: Bivariate snp-density, «o1 = 0.1, 30 = —0.1and 11 = 0.2



3 Semi-nonparametric Estimation of the Sample Selection
Model

In this section we consider snp-estimation of the sample selection model, introduced by
Heckman (1979). It is dso referred to as a Type |l Tobit model (Amemiya (1985)). The
sample selection model is atwo equations model. The first equation is a regression equa-
tion

Vi = BrXa + €1t (10)

However, we observe this equation only for a selected sample. The selection ruleis given
by

* /
I = BoXot + &2t

*
|t={é ::28 (11)
The observations in equation (10) are observed for those with I; = 1 only. If the condi-
tional expectation of ¢1 given | = 1isnot equal to 0, OL S-estimation of equation (10) will
not yield unbiased estimates for 8;. For each observation in the sample we observe the ex-
ogenous variables x; = (X}, X5)’, ad I¢. The outcome of the regression equation (10) is
observed only if I = 1.

If oneiswillingto assume that ey = (g1, £2)’ followsa bivariate normal distribution,
one can estimate the parameters of the sampl e sel ection model either using Heckman’stwo-
stage procedure (Heckman (1979)) or by full information maximum likelihood. However,
according to Greene (1993) these estimates are rather sensitiveto the distributional assump-
tion so one would either like to test this distributiona assumption or compare the results
obtai ned under the assumption of normality with other, semi-nonparametric results.

Theloglikelihoodfunction for the sample selection model is

€©) =Y _In (f f (e — Bixar, 52)d€2)

l=1 —ByXat

—ﬂéXa [e¢]
+Y In ( f f f (g1, gz)dgldgz) (12)
;=0 - -

where f isthe bivariate density of (g1, £2)’. An dternativeto estimation under the assump-
tion of normality is, of course, snp-estimation as discussed in the previous section. A clear
advantage of this approach is that it estimates the density of the disturbances consistently
if the number of terms K in the approximation increases with the number of observations.
One choice for the snp-density ish(e) = h*(¢) /Swith

K .
W)= > aijauei™ el exp(—[e3/6% + £3/63)) (13)
i,j.kl=0

and Sis aconstant ensuring integration to 1. Substituting this density function in the log-
likelihoodfunction, one obtains

K
o) = ZIn( Y aijon (v — B TR exp(—(v — Bxa)®/8))

=1 \i,j.kI=0

f )™ exp(—¢2 /5§)d52)
—BoXa

K 0o
+ Z In ( Z ojjay f €|l+k exp(—af/Sf)dal
;=0 o0

i,j k=0



hxa j+H 2 /42
f g5  exp(—e5/85)des

[ee]

[e¢]

K
—TIn ( Z ojjay f Eil+k eXp(—Ei/(Sf)dEl
i,j,kl=0 -

[ee]

f el exp(—e§/6§>dez) (14)

We have to impose restrictions on the parameters to achive identification. First, we set §; =
/2 toensureidentification of the scal e of equation (11). Second, we set agp = 1 tonormalize
thea's. For K = 0, h(e) now reduces to a bivariate normal density with zero correlation
between ¢; and ¢,. Finally, we could impose restrictionsto ensure that the means of ¢; and
g are 0. For K = 1, one obtainsthe restrictionsag; = 0 and a0 = 0. For K > 2 the
restrictions needed to ensure zero means become very cumbersome. Hence, as suggested
by Mdenberg and Van Soest (1993) we do not impose restrictions on the parameters to the
density function of ¢ to impose a zero mean, but we restrict the intercepts of equation (10)
and equation (11) instead.

It isnot possible to test for normality using this particular class of snp-densities. Only
the bivariate normal distribution with no correlation between £; and ¢, is a specid case.
However, by choosing another base class of density functionsin the ERA approximation
in equation (1) we can test for normality, even if the error terms are correlated. Because
any density function with a finite moment generating function can be used as the basisin
approximation (1), we can consider the following family of functions:

K
Fe) = Y aijouer™es™ exp(—e's ) (15)
i,j,kI=0

and define a generalized snp-density by h(s) = h*(¢)/S (again, Sis the constant that en-
suresintegrationto 1). A disadvantage of thisgeneralized snp-density isthat it does not have
the same computationally attractive properties. A clear advantageisthat bivariate normality
(with unrestricted correlation) is a specid case of thisfamily («;j = Oforali + j > 1).
Evaluation of integralswill involve eval uation of bivariate normal probabilities, in general.
These problems disappear however in the sample selection model where all relevant inte-
gralsare of theform

f h*(e)de; and
a

b 00
f f ﬁ*(é‘)dé‘ldé‘z

Substituting for h we obtain integrals of the type
f 5i1£%¢(€1, g2)de
a

b oo .
f f eieéd)(el, eo)derdes

where ¢ (¢1, &2) isthe bivariate normal density function. Because

@ (e1, £2) = P(e2le1)P (e1)

we can rewrite these integrals as

gy (e1) f ) (eale1)der

b o b )
f b (e2) f 6l (e1]e2)derdes = f £b¢ (e2)€ (6} e)de2. (16)

[ee] —00
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Thelast integral can be solved easily because
E(eyles) = ao+ ayea + -+ Agh.

The coefficients a depened on the other parameters of the density function only and they
are independent of ¢,. Note that both integralsin equation (16) can be calculated using the
recursion formulasin appendix A.

Even though the use of this generalized snp-density is not necessary to obtain consis-
tent estimates of the parameters of the model (the parameters are estimated consistently if
themodel isidentified and if the number of terms K increases with the number of observa-
tions), it is possible to test for normality in this model. Because of the specia structure of
the sample selection model, we are able to avoid evaluations of bivariate normal integrals,
so the computational cost of this generalization islimited.

We conducted a limited simulation exercise to examine whether this extension has any
promise. We consider the following simulation experiment:

Yt = Bro + BuXe + Brawr + ext (17)
I = B2o + B21Zt + Poowr + e (18)

with trueparameters f10 = 1, 11 = 0.5, B1o = —0.5, B0 = 1, o1 = —1and B» = 1. The
exogenous variables x; and z; are independetly A (0, 3) distributed and wy is distributed
uniformly on [—3, 3]. We perform four experiments, where we vary the distribution of ¢
and the number of observations. Within each experiment, we draw 100 samples. We draw
¢ from either a bivariate normal distribution with mean 0 and variance matrix ‘11 i) a
bivariatet-distributionwithvar e; = 4, vare, = 1 and cov (¢4, €2) = 1, or ¢ isdrawn from
acentered y 2-distribution®. All simulationswere performed on Pentium workstationsusing
the MAXLIK-library of GAUSS.

For each sample, we estimated the model based on a normal density, an snp-density of
the form (13) with 1, 2 and 3 terms and an snp-density of theform (15) with 1 and 2 terms.
The results are presented in detail in Appendix B. The case of normal disturbancesis pre-
sented in tables 5 and 6, the case of t-disturbancesin tables 7 and 8, and the case of the
x2-disturbances is presented in tables 9 and 10.

It is remarkable how well standard ML under the assumption of normally distributed
disturbances performs. Even if the true disturbances follow at-distribution one sees that all
estimated parameters are withintwo standard deviations of their true values. Thisiseventhe
case when the disturbances follow transformed x ?-distributionswhich are non-symmetric.
Inthissetup it is not straightforward to test for normality using the L R-statistic as we have
normalized the intercepts to O when we estimated the model semi-nonparametrically. Be-
cause the true intercepts are not 0 we expect some «’'s to differ from O in order to allow
for anonzero mean of the distribution of (e1, &2). It is our impression that the generalized
snp-density has some advantages over the univariate snp-density in this case. First, we en-
countered hardly any convergence problemsusing the generalized snp-density, whilewe did
have convergence problemsin the case of the univariate snp-density. Second, it seems that
the generalized snp-density estimates the covariance between ¢, and ¢, better. However, in
the case of x2-distributed disturbances one sees that the generalized snp-density with two
terms performs badly: the covariance between ¢; and ¢, isvastly overestimated. In general,
it is our impression that the price to be paid for a more flexible approximation to the un-
known density (i.e., ahigher K) islack of precision of the estimates. Moreover, computer
time required for optimization of the loglikelihoodfunctionincreases quickly with K.

5To be precise, &2 ~ 3 (v2 +v2) — land ey = ex + (v3 + v2 +v3)/v/2 — 3/+/2 with v? to vZ independent
%2(1) random variates. Hence, £¢1 = £s, = 0and vare; = 4 and varex = cov (g1, £2) = 1.
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4 Semi-nonparametric Estimation of a Housing Demand
Model

We applied the snp-technique to a model of housing demand under Rent Assistance, see
Koning and Ridder (1993) and Koning (1995). A comprehensive discussion of the theoret-
ical model underlying the reduced form we estimate here can be found in these references,
aswell adetailed discussion of the data used. Our purpose hereisto examine the sensitivity
of the estimation results reported in these references to the assumption of normality.

4.1 A Reduced Form Model of Rental Housing Demand

In Koning and Ridder (1993) a structural moddl for rental housing demand in The Nether-
landsisdeveloped and it isestimated intwo steps. The structural model alowsexplicitly for
anonconvexity in the budget set faced by the householdsintroduced by a Rent Assistance
Program. The model is estimated in two steps. First, they derive a reduced form model and
this moddl is estimated assuming normality of the stochastic termsin the model. In a sec-
ond step they impose the restrictionsimplied by the structural model on the reduced form
parameters and the structural parameters are estimated using minimum distance estimation.
Here, we focus on the reduced form model only and on the sensitivity of these reduced form
estimates to the normality assumption in particular. The reduced form model is:

I¥ = yo+ w, Yot + Y +me (29)
L _[o =0
=11 1r>0
Bo+ By Yt + et lt=0
- 20
R {,31+,3YUth+€2t>Rnt =1 (20)

where R; denotes housing demand that can occur in one of two regimes (labelled by Iy = 0
and I; = 1). Householdsin the second regime receive Rent Assistance. In thisregime, the
appropriate income measure isvirtual income'Y,; instead of incomeY;. Moreover, housing
demand in the second regime s restricted: it must exceed a minimum rent Ry¢. This mini-
mum rent depends both on the household composition aswell on pre-tax family income. The
choi ce between both regimesis governed by the choice equation (19). The demand system
isaswitching regime truncated regression model with endogenousregimes. The parameters
to be estimated are yy, yv,, v, Bo, f1, By and By,, as well as the parameters of the distri-
butionof (¢1 &2 n)’. Wewill assume in the sequel that all observations are mutualy
independent.

4.2 Esimation Results

In this section we present the estimation results of mode (19)—(20) as given in Koning and
Ridder (1993) and we compare these results with the ones obtained by snp-estimation.
The loglikelihoodfunction of the complete model in equations (19) and (20) is

0) =Y INfRL 1)+ Y INF R R = R F(1)

1t=0 ly=1

_|1
_ Inf foun (R — o — By Ye, mdn +
0

= -0

Z n ff% fsgn(Rt - ,Bl - ,BYUtha ﬂ)d'? o0
= Pr(Br+ By Yo+ ez > R, I > 0) Jj;

fy(mdn (21)

where f,,,, denotesthe bivariat_e density of (e1, 1), fe,, isthejoint density of (e2, 1), f, is
themargina density of n, and Iy = yo0 + wv, Yot + pv Y.

12



Bo 2.26 Y0 1.12 Oeyn 0.15

0.27) (0.13) (0.14)
By 0089 , 075 Oy 0.37
(0.0088) (0.054) (0.25)
b1 411 w  —0.71 o, 137
(0.26) (0.047) (0.030)
B, 0.058 o, 128
(0.011) (0.051)
¢ —397352

Table 1: Estimation results, normal distribution (standard errorsin parenthesis)

First, we assume that the disturbances are normally distributed:

€1 ‘7521 Os1eo Oerp
52 ~ N O, 0822 05277
n 1

Theloglikelikelihood (21) is maximized over the parameters of interest and the parameters
of the density function of the disturbances. Note that the parameter o, ., is not identified
because housing demand is observed in one regime only (ie, |; is either equal to O or 1).
According to the theoretical model, By and By, should be equal, Bp must be smaller than
B1, and yy, and yy should have opposite sign and with the y being dightly smaler than
vy, in absolute value. The estimation results are givenin table 1.

The signs of the income variables in the demand equations are as expected and it turns
out that the restrictions imposed by the theoretical model are not rejected (see Koning and
Ridder (1993) and Koning (1995)). Here, however, we are less interested in the parameters
estimates per se and more in the sensitivity if the estimation resultsin table 1 to the distri-
butional assumption made.

To the knowledge of the authors, no simple tests for multivariate normality are avail-
ablefor limited dependent variable model s consisting of more than one equation. Tests for
distributional assumptions are available for single equation models like the probit and tobit
model, see Bera, Jarque, and Lee (1984). A disadvantage of their testing procedure is that
itis not clear what to do if the normality assumption is rejected. Using the snp-estimation
method discussed in the previous sections, we can examine the sensitivity to the normality
assumption. A direct test for normality asisfeasible in snp-models with only one random
variableis not possible because atrivariate normal distribution with no restrictions on the
covariance structure is not a special member of the class of density functions we will use.
Using the notation of the previous sections, we assume the foll owing density for the distur-
bances

K

he) = > oijkaamney &) e " exp (— [e2/82 + £3/85 + £3/63))
i,j,kl,mn=0
h(e) = h*(e)/S (22)

where Sis a constant (depending on the parameters) that ensures integration to 1. Using
equation (21), we obtain the following formulafor the loglikelihood function®:

—vo—¥v, Y=Yt oo
0@ =Z{In([ | R o= piiea n)dezdn)}

1t=0 00 00
+Z{|n<f f h* (81, R _ﬁl_ﬂYqutan) d€1d77>
li=1 —v0—1v, Yot =y Yt J —o0

6Details of thisloglikelihoodfunctionand the derivativeswith respect to the parametersare available on request
from the authors.

13



,30 2.26 )a'% —0.90 010 —0.023
(0.087) (0.18)

,BY 0.096 51 1.46 o011 0.48
(0.0022) (0.038) (0.17)

,3]_ 411 52 1.51 o100 —-0.20
(0.078) (0.16)

,BYU 0.055 53 1.41 o101 0.62
(0.0069) (0.14)

Y0 1.12 @000 1 110 —0.48
(0.13)

VY, 0.96 001 0.24 o111 —-0.13
(0.10) (0.19) (0.18)

12 —3931.17

Table 2: Estimation results, snp-distribution K = 1 (standard errorsin parenthesis)

—In (f f f h* (e1, &2, n)dsldgzdn>
—Y0— ¥y Yot =¥ Yt 4 Rnt—B1—By, Yot J —00

+n (f f f h* (e1, £2, 1) dsldezdn)}
—Y0— VY, Yot =¥y Yt J/ —00 J —00

—NIn (f f f h* (e1, £2, 1) daldezdn>

Before we estimate the model using thisloglikelihoodfunction, we must ensure identifica
tion of the parameters first. The identifying restrictions are completely anal ogous to those
made in the sample selection model previoudly. First, we normalize the scale of the selec-
tion equation (19) by setting 83 = +/2. Second, we must normalize the s, we do this by
setting agoo = 1. Third, we do not impose any parametric restrictionssothat (e1 2 1)’
has mean 0. Instead, we fix the intercepts fo, 81 and y, to their estimated valuesin table 1.

The only problem Ieft is the choice of K, the number of terms in the density (22). We
follow here the suggestions of Gabler, Laisney, and Lechner: the model with K termsis
nested in the model with K + 1 terms. One can use the likelihoodratio test to test whether
the nulhypothesis that the additional terms are O is rejected’. This approach assumes that
the true density is of thetype (22) with K + 1 terms. Considering the flexibility of the snp-
density, even for small K, wedo not think that thisis a strong assumption. Moreover, inthe
application discussed here, we are primarily interested in examining the sensitivity of the
estimation resultsin table 1 to the assumption of normality.

The estimation results of the snp-model are given in tables 2 and 3. The point estimates
for the income coefficients of both demand equations in the snp-model with K = 1 do not
differ much from those in table 1, considering the standard errors in the latter table. The
estimates for the intercepts are equal because of the normalization chosen. The estimates
for the income coefficients in the choice equation are higher, but the variance  in the snp-
model ishigher than 1 aswell. If onedividesyy, and yv intable 2 by the estimated standard
deviation of 5, one obtains 0.74 and —0.69 which numbers compare favourably with their
counterpartsintable 1.

We compare thefirst two moments of the snp-density with those of the normal distribu-
tionin the second and third column of table 4. The estimated mean of ¢, isdightly negative
and the estimated mean of ¢, is dlightly positive. However, both means are less than ahalf
standard deviation of the estimated interceptsin the normal model. The fact that the mean
of n isgreater than 0 isin accordance with the estimated standard deviation of n being larger
than 1. The variances of g1 and ¢, do not differ by much between the normal model and the

(23)

7| this procedure is followed for more than one step, the significance level of the likelihoodratio test is no
longer known because consecutivetests are not independent.
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,30 2.26 010 0.071 o120 —0.18

(0.96) (0.50)
,BY 0.10 o011 0.12 o121 -041
(0.0035) (0.69) (0.32)
,3]_ 411 o012 0.021 o122 0.30
(0.45) (0.36)
,BYU 0.040 020 —0.64 o200 —0.54
(0.0097) (0.52) (0.32)
Y0 1.12 021 0.40 o201 —0.43
(0.40) (0.46)
7Y, 0.95 022 0.24 o202 —0.025
(0.25) (0.17)
)a'% —-0.91 100 0.77 o210 0.081
(0.076) (1.05) (0.25)
51 1.34 o101 0.81 o211 0.10
(0.044) (0.92) (0.28)
52 1.35 o102 —-0.15 o212 —0.026
(0.080) (0.49) (0.16)
53 141 110 —1.09 o220 0.16
(0.66) (0.22)
@000 1 111 0.078 o221 —0.0067
(0.77) (0.13)
001 0.64 o112 0.45 o222 0.025
(1.04) (0.47) (0.11)
002 0.0050
(0.43)
12 —3908.85

Table 3: Estimation results, snp-distribution K = 2 (standard errorsin parenthesis)
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norma sp(K=1) sp(K=2)

Ser 0 —o.11 ~0.33
Ser 0 0.12 0.030
En 0 0.17 0.48
var e 1.88 1.83 1.85
var e, 1.64 1.74 2.56
vary 1 1.70 221
cov(e,n) 0.16 0.34 0.14
cov(ep, n)  0.37 0.18 0.57

Table 4: Estimated means and (co)variances

snp-mode. The covariances between ¢; and » on the one hand and ¢, and n on the other
appear to have been changed by alot, but one should realize that both values are withintwo
times the standard deviation of the estimates of the norma modd.

In asecond step, we estimated the demand model with K = 2. The number of param-
etersis enormous: 7 parameters to model the means of the observed variables and 26 pa
rameters to characterize the distribution of ¢. The estimation results are given in table 3.
Even though we regject the nulhypothesisthat al extra«-terms are jointly zero (the likeli-
hoodratio test statistic is 44.64 which must be compared with xZ,.(19) = 30.14), we do
not think that this specification is an improvement over the one reported in table 2 because
theloglikelihoodfunctionwasrather ill-determined near the optimum (anaysis of theeigen-
vectors and eigenval ues of the Hessian showed that especially the estimatesfor thea’swere
ill-determined) and we were unableto verify whether optimum found wasaloca or aglobal
optimum. For comparison with the other two specifications, we givethe first two moments
of the estimated distributionfor ¢ in the fourth column of table 4. The variances of both &5
and n have increased and the expectation of ¢; has decreased markedly. However, for the
reasons given above we do not attach too much vaue to these results.

Summarizing, we have found that the estimation resultsfor the truncated switching re-
gression modd of Koning and Ridder (1993) are not very sensitiveto theassumed normality
of the disturbances. The first two moments of the snp-density with K = 1 compared very
well to those obtained by assuming normality. The snp-density with K = 2 contained too
many parameters for reliable estimation.

5 Conclusions

In this paper we have used the semi-nonparametric maximum likelihood method devel oped
by Gallant and Nychka (1987) to estimate to microeconometric models. First, we examined
some propertiesof thismethod in the context of the sampl e selection model. Ansimple gen-
eralization of the base class of density functions has been used to test for normality in this
sampl e selection model, for which no simpletest of normality of the disturbancesis avail-
able. Even though the number of simulationshas been limited, we think that our generaliza-
tion holds some promise. Computationally the generalization is not much more demanding
than the snp-method itself dueto the special structure of the sample selection model.

In the second part of the paper we used the snp-approach to examine whether the es-
timation results for areduced form model of rental housing demand in The Netherlands as
presented in Koning and Ridder (1993) and Koning (1995) are very sensitiveto the assumed
normality of the disturbances. We implemented the snp-method in thisrather complex trun-
cated switching regression model with endogenous regimes and the results indicated that
the estimation results in the papers cited are not very sensitive to the assumed normality,
even though we were not ableto carry out aformal test of normality in this context.
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A Recursion Formulae of the Her mite Form Density

| (k) is defined as the univariate integral

I (k) = foo uk exp(—u?/8%)du

[ee]

Using partia integration one obtainsthe recursion formulae

ST k=0
lky=1{0 k=1235,... (24)
Ik—18%1(k—2) k=2486,...

B Simulation Results
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normal snp-density generalized snp
T = 500 K=1 K=2 K=3 K=1 K=2
B1o 1.02 0 0 0 0 0
(0.076)
Bu 0.51 0.50 0.51 0.51 0.51 0.51
(0.069) (0.075) (0.070) (0.069) (0.069) (0.068)
B12 —0.52 —0.58 —0.58 —0.53 —0.52 -0.51
(0.067) (0.069) (0.070) (0.073) (0.063) (0.072)
B2 1.03 0 0 0 0 0
(0.080)
Bxn -1.01 —0.95 -0.97 —1.06 -1.01 -1.04
(0.062) (0.056) (0.067) (0.15) (0.061) (0.076)
B 1.01 0.95 0.97 1.07 1.01 1.05
(0.067) (0.055) (0.064) (0.15) (0.064) (0.079)
o1 197 197 174
(0.071) (0.068) 0.1%)
o012 0.96 0.95 0.87
(0.066) (0.064) (0.088)
81 2.95 2.60 251
(0.096) (0.15) (0.28
[200) 1 1 1 1 1
o1 0.55 137 0.60 0.56 0.62
(0.056) 0.12 (0.25 (0.071) 0.14)
g 0.33 0.035 0.18
0.12 0.12 (0.078)
g3 —0.014
(0.061)
10 0.11 -054 —0.015 0.011 —0.018
(0.023) (0.15) (0.18) (0.032) (0.093)
an 0.17 0.44 0.15 0.047 —0.094
(0.030) (0.086) 0.23 (0.029) (0.082)
a2 0.30 0.089 0.016
(0.064) (0.069) (0.053)
13 0.0086
(0.036)
a0 -0.12 —0.019 0.036
(0.040) (0.043) (0.046)
a 0.011 —0.021 0.011
(0.029) (0.044) (0.034)
ap 0.046 0.024 0.0069
(0.018) (0.017) (0.010)
ax 0.011
(0.0088)
30 —0.0011
(0.015)
a3t —0.0025
(0.018)
azp 0.0031
(0.0066)
33 0.0017
(0.0029)
Eer 0 119 167 115 1.03 1.03
Ee 0 0.92 1.02 132 1.03 110
vareg 3.89 3.97 5.29 3.97 3.89 393
var e 1 0.85 152 0.85 0.78 0.96
cov (1, €2) 0.96 0.34 0.22 1.00 0.85 0.94
14 —730.49 —733.79 —732.85 —726.32 —730.17 —72852
success 100 100 100 100 100 100

Table5: Estimation resultsof the experiment with bivariate normal distributed disturbances,
100 replications, T = 500.
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normal snp-density generalized snp
T = 500 K=1 K=2 K=3 K=1 K=2
B1o 0.99 0 0 0 0 0
(0.037)
Bu 0.50 0.50 0.50 0.50 0.50 0.50
(0.048) (0.046) (0.047) (0.045) (0.045) (0.046)
B12 —0.50 —0.56 —0.51 —0.50 —0.50 —0.49
(0.048) (0.052) (0.059) (0.055) (0.046) (0.055)
B2 1.00 0 0 0 0 0
(0.044)
Bxn —1.00 —0.89 —1.09 —1.09 —-0.88 —0.99
(0.044) (0.042) (0.087) 0.12 (0.040) (0.056)
B 1.00 0.89 1.09 1.09 0.88 0.98
(0.041) (0.039) (0.080) 0.12 (0.033) (0.050)
o1 1.99 1.99 191
(0.050) (0.043) (0.076)
o012 1.00 0.97 0.86
(0.021) (0.019) (0.043)
81 2.96 2.67 2.58
(0.063) (0.11) 0.22
[o200) 1 1 1 1 1
o1 0.55 0.64 0.56 0.53 0.53
(0.049) (0.10 (0.15) (0.043) (0.073)
g 0.047 0.022 0.079
(0.087) (0.072) (0.047)
g3 —0.011
(0.035)
10 0.10 -0.14 —0.030 0.013 —0.017
(0.017) (0.10 (0.090) (0.017) (0.055)
an 0.16 0.27 0.16 0.040 0.031
(0.024) (0.064) 0.12 (0.019) (0.049)
a2 0.12 0.093 0.024
(0.044) (0.051) (0.028)
13 0.0070
(0.022)
a0 —0.048 —0.020 —0.0038
(0.022) (0.025) (0.018)
a 0.015 —0.026 0.00034
(0.014) (0.033) (0.015)
ap 0.023 0.022 0.0017
(0.0097) (0.012) (0.0043)
ax 0.010
(0.0064)
30 —0.00030
(0.0068)
a3t —0.0055
(0.0094)
azp 0.0015
(0.0033)
33 0.0016
(0.0018)
Eer 0 1.16 1.32 1.05 1.00 0.99
Ee 0 0.84 1.18 1.15 0.88 1.01
vareg 3.95 4.03 5.05 3.94 3.89 3.89
var e 1 0.85 111 0.85 0.79 0.93
cov (1, €2) 1.00 0.34 0.99 1.05 0.85 0.98
14 —1597.38 —1603.79 —1597.64 —1593.36 —1597.24 —1595.49
success 99 100 100 100 100 100

Table 6: Estimation results of the experiment with bivariate normal distributed disturbances,

100 replications, T = 1000.
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normal snp-density generalized snp
T = 500 K=1 K=2 K=3 K=1 K=2
B1o 1.04 0 0 0 0 0
(0.10
Bu 0.49 0.47 0.49 0.48 0.49 0.49
(0.069) (0.068) (0.064) (0.058) (0.061) (0.061)
B12 —0.52 —0.59 —0.52 —0.55 —0.53 —0.53
(0.074) (0.076) (0.071) (0.062) (0.070) (0.068)
B2 115 0 0 0 0 0
0.17)
Bxn -1.14 -1.05 -1.22 -1.26 -1.13 —1.48
(0.15) (0.089) (0.16) 0.21) (0.099) 0.19
B 114 1.03 122 1.26 112 148
(0.15) (0.086) (0.16) 0.21) (0.094) (0.18)
o1 194 1.83 219
0.23 0.12 (0.20
o012 0.84 0.86 1.08
0.19 0.17) 0.33)
81 271 2.88 3.00
(0.16) (0.33) 0.37)
[200) 1 1 1 1 1
o1 0.71 0.84 1.46 0.81 173
(0.095) (0.30 (0.75) (0.15) (1.08)
g 0.034 0.092 0.50
(0.017) (0.26) 0.44)
g3 -0.13
(0.076)
10 0.16 0.085 0.20 0.054 0.14
(0.041) (0.094) (0.26) (0.072) 0.27)
an 0.24 0.17 0.28 0.023 0.10
(0.048) (0.063) 0.19 (0.055) (0.30
a2 0.083 0.10 —0.019
(0.052) 0.1%) (0.18)
13 0.0073
(0.047)
a0 —0.070 —0.057 —0.063
(0.026) (0.030) (0.044)
a —0.015 —0.080 —0.062
(0.017) (0.055) (0.053)
ap 0.024 0.012 —0.018
(0.016) (0.017) (0.041)
ax 0.015
(0.011)
30 —0.0096
(0.012)
a3t —0.016
(0.016)
azp —0.0011
(0.0058)
33 0.0016
(0.0026)
Eer 0 135 1.07 134 1.10 119
Ee 0 0.98 144 131 112 178
vareg 3.75 312 3.02 312 317 281
var e 1 091 0.86 0.91 0.83 0.62
cov (1, €2) 0.84 0.18 0.44 0.32 0.70 0.45
14 —709.70 —693.19 —685.58 —67211 —693.97 —679.73
success 100 74 82 86 100 100

Table 7: Estimation results of the experiment with bivariatet distributed disturbances, 100
replications, T = 500.
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normal snp-density generalized snp

T =500 K=1 K=2 K=3 K=1 K=2
B1o 0.99 0 0 0 0 0
(0.068)
Bu 0.50 0.50 0.51 0.50 0.50 0.50
(0.045) (0.044) (0.037) (0.033) (0.039) (0.034)
B2 ~0.49 ~0.58 —0.51 ~0.54 —052 ~0.50
(0.049) (0.049) (0.049) (0.044) (0.047) (0.043)
B0 1.09 0 0 0 0 0
(0.068)
b1 ~1.09 ~0.99 112 -1.07 ~1.00 ~1.16
(0.078) (0.054) (0.11) (0.17) (0.061) (0.098)
B2 111 1.00 1.13 1.08 1.01 1.17
(0.072) (0.055) (0.11) (0.16) (0.059) (0.093)
o1 1.94 1.85 2.14
(0.22) (0.086) (0.15)
o 0.83 0.82 0.96
(0.13) (0.12) (0.19)
81 2.67 2.83 2.98
(0.11) (0.21) (0.24)
a0 1 1 1 1 1
oo 0.66 0.68 1.04 0.73 0.84
(0.036) (0.11) (0.26) (0.098) (0.17)
oo 0.017 0.019 0.086
(0.13) (0.14) (0.12)
s ~0.095
(0.057)
a1 0.15 0.065 0.11 0.090 ~0.035
(0.027) (0.065) (0.10) (0.054) (0.074)
an 0.26 0.17 0.27 0.0015 0.11
(0.039) (0.052) (0.18) (0.037) (0.11)
a1 0.077 0.11 0.12
(0.042) (0.080) (0.042)
a3 ~0.0011
(0.049)
a0 ~0.062 ~0.043 ~0.073
(0.019) (0.019) (0.023)
an ~0.014 ~0.051 ~0.070
(0.012) (0.034) (0.018)
an 0.020 0.0042 ~0.0010
(0.014) (0.012) (0.0072)
ax 0.0084
(0.0087)
% —0.0055
(0.0061)
@ —0.011
(0.011)
am ~0.0024
(0.0035)
a5 0.00088
(0.0029)
Ee1 0 1.31 1.01 113 110 1.05
Eer 0 0.91 1.15 1.12 0.97 1.22
var ey 3.75 3.14 2.84 3.14 322 3.32
var e, 1 0.94 0.84 0.94 0.84 0.97
COV (1, £2) 0.83 0.26 0.46 0.32 0.64 0.90
¢ ~1559.85 ~1516.91 —1501.60 ~1477.31 —1526.57 ~1487.14
success 99 67 71 78 77 100

Table 8: Estimation results of the experiment with bivariatet distributed disturbances, 100
replications, T = 1000.
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normal snp-density generaized snp
T = 500 K=1 K=2 K=3 K=1 K=2
B1o 0.92 0 0 0 0 0
(0.10
Bu 0.50 0.50 0.50 0.50 0.50 0.50
(0.062) (0.064) (0.052) (0.054) (0.065) (0.051)
B12 —0.48 —0.63 —0.49 —0.52 —0.52 —0.44
(0.081) (0.085) (0.071) (0.073) (0.082) (0.071)
B2 117 0 0 0 0 0
(0.10
Bxn -1.15 -1.10 —1.02 -1.14 —1.09 —0.90
(0.11) (0.091) (0.11) (0.13 (0.081) (0.11)
B 114 1.09 1.01 113 1.08 091
0.12 (0.10 0.12 0.1%) (0.090) (0.11)
o1 2.06 212 191
0.12 (0.11) (0.16)
o012 1.28 1.18 1.56
(0.15) (0.15) (0.18)
81 3.07 2.98 2.82
(0.16) 0.19 0.25
[200) 1 1 1 1 1
o1 0.64 0.50 0.83 0.65 1.56
(0.047) (0.077) (0.11) (0.057) (0.38)
g —0.062 —0.065 0.42
(0.039) (0.055) 0.19
g3 —0.085
(0.022)
10 0.15 —0.046 0.030 —0.014 -0.74
(0.016) (0.034) (0.058) (0.039) (0.26)
an 0.12 0.11 0.10 —0.00036 -0.22
(0.012) (0.015) (0.037) (0.010) (0.15)
a2 0.078 0.065 —0.0046
(0.015) (0.025) (0.042)
13 0.0097
(0.011)
a0 —0.080 —0.090 -0.15
(0.013) (0.025) (0.038)
a —0.0038 —0.065 0.011
(0.0047) (0.018) (0.027)
ap 0.025 0.026 0.021
(0.0048) (0.010) (0.0072)
ax 0.014
(0.0047)
30 —0.0075
(0.0031)
a3t —0.0082
(0.0031)
azp 0.0013
(0.0014)
33 0.0015
(0.00082)
Eer 0 137 0.95 111 1.00 0.72
Ee 0 091 0.96 1.07 0.90 0.92
vareg 4.24 391 531 391 4.17 4.29
var e 1 0.77 1.10 0.77 0.76 1.05
cov (1, €2) 1.28 0.057 0.67 0.62 0.91 1.60
14 —800.56 —803.39 —780.71 —765.70 —799.86 —764.49
success 100 99 99 97 100 100

Table9: Estimation results of the experiment with bivariate x ? distributed disturbances, 100

replications, T = 500.
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normal snp-density generaized snp

T = 1000 K=1 K=2 K=3 K=1 K=2
b1 0.94 0 0 0 0 0
(0.087)
Bu 0.50 0.50 0.50 0.50 0.50 0.50
(0.048) (0.050) (0.040) (0.039) (0.050) (0.036)
B2 ~0.49 ~0.63 —0.49 ~0.52 ~052 —0.45
(0.054) (0.061) (0.047) (0.046) (0.058) (0.043)
B0 1.16 0 0 0 0 0
(0.082)
b1 -1 ~0.94 ~1.04 ~1.06 ~0.92 ~0.91
(0.089) (0.067) (0.088) (0.10) (0.059) (0.092)
B2 1.12 0.94 1.05 1.05 0.92 0.93
(0.082) (0.062) (0.083) (0.096) (0.057) (0.084)
o1 2.05 2.10 1.94
(0.081) (0.079) (0.097)
o 1.26 1.19 1.55
(0.19) (0.16) (0.14)
81 3.06 3.00 2.84
(0.11) (0.13) (0.20)
a0 1 1 1 1 1
oo 0.65 0.50 0.84 0.64 1.32
(0.035) (0.053) (0.066) (0.048) (0.25)
o ~0.067 ~0.067 0.27
(0.027) (0.037) (0.091)
s ~0.087
(0.014)
a1 0.15 ~0.040 0.029 ~0.015 ~0.58
(0.012) (0.027) (0.043) (0.036) (0.16)
an 0.12 0.11 0.10 ~0.0015 ~0.092
(0.0087) (0.0097) (0.025) (0.0094) (0.069)
a1 0.075 0.065 0.010
(0.011) (0.021) (0.028)
a3 0.0095
(0.0085)
a0 ~0.077 ~0.087 ~0.15
(0.0099) (0.017) (0.022)
an ~0.0042 ~0.063 —0.00015
(0.0034) (0.014) (0.018)
an 0.024 0.025 0.018
(0.0032) (0.0054) (0.0039)
ax 0.014
(0.0029)
% ~0.0071
(0.0017)
@ ~0.0077
(0.0020)
am 0.0012
(0.00079)
a5 0.0014
(0.00048)
Ee1 0 1.36 0.91 1.10 0.99 0.75
Eer 0 0.92 0.95 1.06 0.90 0.92
var ey 4.19 5.05 2.84 3.89 an 413
var e, 1 0.77 1.07 0.77 0.76 1.02
COV (1, £2) 1.26 0.05 0.67 0.62 0.91 1.52
¢ ~1586.21 ~1591.26 —1547.47 ~1517.29 ~1583.71 ~1516.29
success 99 98 99 87 100 100

Table 10: Estimation results of the experiment with bivariate x? distributed disturbances,
100 replications, T = 1000.
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