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Abstract

We consider the repeated prisoner’s dilemma with implementation

errors, and look at the resulting population dynamics, both analyti-

cally and with simulations. We show that with implementation errors,

pure equilibrium strategies represented by finite state automata ex-

hibit a structure that we call self-mirroring. Because selection easily

spreads thinly on subgames that are reached after (multiple) errors,

we find that in the simulations, strategies are often not best respond-

ing in all subgames. We also explore how forgiveness and cooperation

respond to changes in the error rate and the continuation probability.

Close to an error rate of 0, both show a hump-shaped pattern. We

also explore how forgiveness and cooperation change with the error

rate in models with a limited strategy set, and we have results for

forgiveness at high error rates and/or low continuation probabilities.

∗Department of Economics, Universiteit van Amsterdam, Roetersstraat 11, 1018 WB
Amsterdam, and Tinbergen Institute.
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1 Introduction

In the repeated prisoner’s dilemma, mutual cooperation between players can

be stabilised, if players condition their behaviour on the past actions of their

interaction partner. However, if players’ actions are subject to implementa-

tion errors, and players that intend to play cooperate play defect with some

positive probability, players cannot distinguish between intended and unin-

tended defections of their opponent. Therefore, if strategies punish defections

too harshly, and do not allow for a route back to mutual cooperation after an

unintended defection, they will fail to sustain long-term cooperation. This

creates a tension between deterring others from defecting intentionally, and

forgiving unintentional defections.

This tension has long been recognised. Wu and Axelrod (1995) found

that in a setting with implementation errors, Generous Tit-for-Tat and Con-

trite Tit-for-Tat would outperform other strategies, if added to the original

set of strategies from Axelrod’s tournaments (Axelrod and Hamilton, 1981).

The latter strategy was first proposed by Sugden (1986) and shown to be

evolutionarily stable by Boyd (1989). In a simulation that starts with the

strategies from Axelrod’s original tournament, plus four strategies including

Generous Tit-for-Tat and Contrite Tit-for-Tat, Wu and Axelrod (1995) find

that Contrite Tit-for-Tat ends up dominating the population.

In a setting that does not restrict the set of strategies to any specific

subset, Fudenberg and Maskin (1990) and Dal Bó and Pujals (2020) derive

results that suggest that if the error rate is low and the continuation proba-

bility is high, selection favours strategies that are highly cooperative as well

as forgiving.1 It is however not obvious whether or how these results, that

1Fudenberg and Maskin (1990) consider infinitely repeated games without discounting,
and use a lexicographic evaluation of payoffs, where payoff differences in the presence of m
mistakes only matter if the payoffs in the presence of i mistakes are equal for i = 0, ...,m−
1. Dal Bó and Pujals (2020) derive results in which the error rate goes to 0, and the
continuation probability goes to 1. In the introduction we do not go into (further) detail,
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separate equilibria that do from equilibria that do not satisfy certain static

stability properties, translate to properties of population dynamics. Because

the value of static stability results lies in the degree to which they are in-

formative about evolutionary dynamics, in this paper we explicitly consider

dynamics too. In order to be able to compare the relative stability of different

equilibria, we chose a model with stochastic selection dynamics, that allows

for transitions between equilibria. The average amount of time that a popu-

lation spends in an equilibrium will then reflect a combination of how easily

it invades other equilibria, and how stable it is itself, once established. There

are quite a few ingredients that can make a difference for what happens in

the dynamics; the stage game, the error rate, the continuation probability,

the population size, and the mutation kernel. By exploring different values

for these parameters, and by combining the simulations with theoretical re-

sults, new and existing, we will try to establish to what extent what we see

in the simulations generalises.

Our first result is that, in the presence of errors, for a strategy that can be

represented by a finite state automaton, in order to be a Nash equilibrium, it

must exhibit a structure that we label self-mirroring. Contrite Tit-for-Tat is

an example of a strategy that is self-mirroring, and so are Grim Trigger and

All D. Tit-for-Tat, on the other hand, and Win-stay-lose-shift (a.k.a. Pavlov)

are not. We do however also note that selection inevitably has to be spread

thin on subgames that are only reached after errors – in a way that we will

make precise in Section 4. It is therefore not to be expected that we will only

see Nash equilibria (where Nash equilibria with errors, roughly speaking, are

subgame perfect equilibria without errors). The simulations confirm that;

almost all of the time the population consists of a strategy that, although it

is close to playing a best response against itself, is not a Nash equilibrium.

but both of these suggest that full efficiency and forgiveness have a selective advantage for
specific combinations of small error rates and large continuation probabilities.
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For combinations of error rates and continuation probabilities that make

it hard to sustain cooperation at all (that is, for high error rates and/or

low continuation probabilities), we find that different sets of strategies come

with different, partially opposite implications for how forgiving they should

be in order to be an equilibrium. Our Theorem 2 implies that for symmetric

strategies, there is a subset of the parameter space where those that punish

more harshly remain equilibria for higher error rates and lower continuation

probabilities compared to strategies that are more forgiving (while there is

also a subset of the parameter space where a symmetric strategy that cannot

unambiguously qualified as forgiving or unforgiving remains an equilibrium).

Asymmetric strategies like Contrite Tit-for-Tat, on the other hand, are for-

giving, and their forgiveness is needed for them to remain equilibria at high

error rates and low continuation probabilities.

A third result, relevant for small error rates, establishes continuity in a

large class of dynamics. Applied to a setting with errors, it implies that for

continuation probabilities under 1, the invariant distribution changes con-

tinuously with the error rate. Properties of those dynamics in the limit of

the error rate going to 0 therefore cannot be different from what they are

in the absence of errors. Without errors, we know that there is a large set

of equilibria, with different levels of cooperation, and, for those that are at

least cooperative to some degree, with different levels of forgiveness. There

is also a large subset of equilibria, with levels of cooperation varying from

fully cooperative to fully defecting, that are neutrally stable (they are NSSs,

Bendor and Swistak, 1995). No equilibrium, however, is robust against in-

direct invasions (RAII, van Veelen, 2012; Garćıa and van Veelen, 2016). All

NSSs therefore they are all similarly (in)stable (see Garćıa and van Veelen,

2016 and van Veelen et al., 2012). This is true for all continuation prob-

abilities. The continuity result, together with the observation that in the

absence of errors, cooperative equilibria are not more stable than defecting
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ones, implies that for continuation probabilities under 1, the average amount

of cooperation for error rates close to 0 will be close to the average amount

of cooperation in the absence of errors. This does however leave the door

open for a discontinuity at a combination of an error rate of 0 and a con-

tinuation probability of 1, and it does allow for what one might take results

from Fudenberg and Maskin (1990) and Dal Bó and Pujals (2020) to suggest,

which is that there may be a sequence in which the error rate goes to 0, the

continuation probability goes to 1, and the population size goes to infinity, in

which cooperation rates in the dynamics approach 1. While we show within

an example with a reduced strategy set that this is possible, the simulations

with a larger, more general strategy set show that even for reasonably large

continuation probabilities and population sizes, adding errors only creates a

modest hump in cooperation; as the error rate increases from 0, the average

level of cooperation first increases a bit, and rather quickly starts decreasing

again. The same is true for forgiveness.

One model with a restricted strategy set allows us to calculate invariant

distributions, and illustrates that the average amount of forgiveness is the

result of a shifting balance between selection pressure against wasting too

much on punishing errors harshly when playing with copies of oneself, and

pressure against being too vulnerable to invasions by other, less cooperative

strategies. This can create a hump in forgiveness, starting at an error rate

of 0. Another model, also with a restricted strategy set, shows how errors

can initially increase the amount of cooperation, by making paths out of

defection easier relative to paths out of cooperation. These paths would be

indirect invasions in the absence of errors, and these changes can create a

hump in cooperation.
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2 Preliminaries

2.1 Strategies and payoffs

We start with a few formal definitions. Consider a set of players I = {1, 2},
an action space A = {C,D}, equal for both players, and a payoff function π :

A×A → R. Using a discount factor δ ∈ (0, 1), interpreted as a continuation

probability, and an error rate ϵ ∈
(
0, 1

2

)
, this one-shot game is turned into a

repeated one.

A history at time t is a list of actions played up to and including time

t− 1, where an empty pair of brackets is used to denote the history ‘no his-

tory’. If at,i is the action played by player i at time t, then these histories are:

h1 = ()

ht = ((a1,1, a1,2) , ..., (at−1,1, at−1,2)) , t = 2, 3, ...

Sometimes we will also write (ht, (at,1, at,2)) for a history ht+1. We will also

write h←t for history ht, as seen from the perspective of player 2.

The set of possible histories at time t is:

H1 = {h1}
Ht =

∏t−1
i=1 (A× A) t = 2, 3, ...

and the set of all possible histories is:

H =
∞⋃
t=1

Ht.

A pure strategy is a function S : H → A that maps histories to the action

space. We assume that this strategy is executed with errors. If S(h) = C,

then action C is played with probability 1 − ϵ, and ¬S(ht) = D is played
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with probability ϵ, with the straightforward mirror image if S(h) = D.

For a combination of strategies S and T , one can determine how many

errors have occurred in history ht. Let ECS,T (ht) count the number of actions

in the history that differ from what the strategies would have prescribed. If

hi, i = 1, ..., t are the truncated histories of length 0 ≤ i ≤ t, that agree with

ht in all the periods that they share, then player 1 made an error in period i

if ai,1 ̸= S (hi), and player 2 made an error in period i if ai,2 ̸= T (h←i ). The

function ECS,T (ht) adds the number of errors for every individual period over

all periods i = 1, ..., t. Between strategies S and T , history ht then occurs

with probability

pS,T (ht) = (1− ϵ)2(t−1)−ECS,T (ht) ϵECS,T (ht)

For 0 ≤ δ < 1 and 0 ≤ ϵ < 1
2
the discounted, normalised payoffs to (a player

that uses) strategy S against strategy T is given by:

Π (S, T ) = (1− δ)
∞∑
t=1

δt−1
∑
ht∈Ht

pS,T (ht)


(1− ϵ)2π (S(ht), T (h

←
t ))

+ (1− ϵ)ϵπ (¬S(ht), T (h
←
t ))

+ (1− ϵ)ϵπ (S(ht),¬T (h←t ))

+ ϵ2π (¬S(ht),¬T (h←t ))


For δ = 1 we consider the limit-of-means for the infinitely repeated game:

Π (S, T ) = lim
τ→∞

1

τ

τ∑
t=1

∑
ht∈Ht

pS,T (ht)


(1− ϵ)2π (S(ht), T (h

←
t ))

+ (1− ϵ)ϵπ (¬S(ht), T (h
←
t ))

+ (1− ϵ)ϵπ (S(ht),¬T (h←t ))

+ ϵ2π (¬S(ht),¬T (h←t ))
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With strategies that can be represented by finite state automata, the limit-

of-means always exists.

2.2 The stage game

We will consider prisoner’s dilemmas with “equal gains from switching”. This

implies that the payoffs can be defined with only two parameters.
C D

C b 0

D b+ c c


The b can be interpreted as the benefits conferred on the other player by

cooperating (the left column equals the right column plus b), while c is the

cost of cooperating (the top row equals the bottom row minus c)

When describing a prisoner’s dilemma with equal gains from switching,

the following matrix is also regularly used:
C D

C b− c −c

D b 0


The equilibrium analysis remains the same if a constant is subtracted from all

entries, and therefore these two matrices are equivalent. In the simulations,

probabilities are computed, which requires payoffs to be non-negative. In the

simulations, we therefore use the first payoff matrix, and for consistency, we

also use the first payoff matrix in the analysis. The key results that follow can

also be formulated and proven for prisoner’s dilemmas with unequal gains

from switching, but since adding this further complexity would not lead too

any deeper, or qualitatively different insights, we focus on the two parameter

version of the game.
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2.3 Finite state automata

For the simulations, and for a large part of the theory, we will restrict atten-

tion to strategies that can be represented by finite state automata (FSAs).

With errors, a finite state automaton requires conditioning, not just on the

action of the partner, but also on its own action. In this setting, an FSA,

or a Moore machine M , is a tuple {{1, ..., nM} , λM , µM}, where nM is the

number of states, λM : {1, ..., nM} → {C,D} gives the (intended) output in

every state, and µM : {1, ..., nM} × {C,D}2 → {1, ..., nM} gives the transi-

tions as a function of the state, its own action, and the action of the other.

Sometimes the formal definition of a machine also specifies in which state

the machine starts, but because the states can always be renumbered so that

the starting state is the first, we assume, without loss of generality, that the

machine starts in state 1. Sometimes we will also order the remaining states,

so that, if it plays against a copy of itself, then, in the absence of errors, it

will transition from state i to state i+ 1, until for the first time it goes back

to a state it has already been in, or remains in the state it is currently in.

Not all strategies can be represented by FSAs. Different FSAs, on the

other hand, can represent one and the same strategy. A straightforward

example is the strategy All D which simply defects after all possible histories;

any FSA for which the output in all states is D results in the strategy All D

(see Figure 1). Sometimes it will be useful to consider a minimal FSA, that

is, an FSA for which one cannot find another FSA with fewer states, that

represents the same strategy. For a given strategy S that can be represented

by an FSA, the minimal FSA is unique, up to the renumbering of states

(Hopcroft, 1971). Garćıa and van Veelen (2016) moreover define a natural

distance between strategies, with which one can show that the set of FSAs

is dense in the set of all strategies.2 This implies that restricting attention

2The set of FSAs in Garćıa and van Veelen (2016) is different from the set of FSAs here,
in that there the transitions are only conditioning on the other player’s action. This is all
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Figure 1: Two Finite State Automata that both result in All D. An
asterisk indicates either C or D, so ∗, ∗ indicates all possible action profiles.
Red means that the output in that state is D, blue means it is C. Where
necessary, the initial state is indicated with a 1. The automaton on the left
is the minimal FSA that represents All D. Both of them are self-mirroring
(see Section 3).

to strategies that can be represented by an FSA still leaves us with a large

and representative set of strategies. Repeated games with the strategy space

that is needed to define a strategy in the absence of errors. With errors, FSAs also need
to condition transitions on their own realised action. On page 178, Garćıa and van Veelen
(2016) state that it is easy to see that the set of FSAs is dense in the set of all strategies,
and they repeat that claim on page 128 of van Veelen and Garćıa (2019). For the set of
FSAs that we use here, that is indeed true, but for the set of FSAs used in Garćıa and
van Veelen (2016) and van Veelen and Garćıa (2019), in a setting without errors, it is not
easy to see, because it is not true. For FSAs that only condition their transitions on the
action of the other player, one can construct a strategy that responds differently to two
histories, where in one of them, all actions of the player itself are consistent with what the
FSA prescribes, and in the other, not all of them are. Strategies that respond differently
to those histories cannot be approximated arbitrarily closely by FSAs that only condition
on the actions of the other player. Because the difference without errors is created by
strategies that respond differently to histories that cannot occur in the absence of errors,
this is inconsequential, but the claim there is nonetheless incorrect.
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restricted to FSAs are sometimes also called machine games.

2.4 Stability concepts

Without errors, there are many Nash equilibria, and many NSSs (Bendor

and Swistak, 1995). Using more restrictive stability concepts does not select

between these many equilibria; there are no ESSs (Selten and Hammerstein,

1984), and no strategies that are RAII (Garćıa and van Veelen, 2016). With-

out errors, there is moreover no selection for subgame perfection; the set of

NSSs contains both equilibrium strategies that are subgame perfect, such as

Grim Trigger, and equilibrium strategies that are not, such as Tit-for-Tat.

Simulations in Garćıa and van Veelen (2016) and van Veelen et al. (2012)

confirm that reasonable dynamics will visit a range of NSSs, and that these

are similarly (in)stable, regardless of their equilibrium level of cooperation,

and regardless of whether they are subgame perfect or not.

With errors, the relation between the sets of strategies that satisfy the

different equilibrium concepts changes. What is and what is not a Nash equi-

librium of course depends on the discount rate δ and the error rate ϵ, but since

with errors, all subgames are reached with positive probabilities, any Nash

equilibrium is going to have to best respond in every subgame. If without

errors, a strategy is a Nash equilibrium, but not subgame perfect, then there

is a subgame in which it is not best responding against itself. Generically,

if a strategy is a Nash equilibrium without errors, there is an open interval

(0, ϵ̄) such that this strategy makes the right choices on the error-free path

for error rates within this interval. Unless there is a subgame that is reached

on the error-free path at which the player is indifferent between C and D

at error rate 0, the fact that stage game payoffs and continuation payoffs

are continuous in ϵ implies that there is an open interval within which in all

subgames that are reached on the error-free path, what is optimal at ϵ = 0 is
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still optimal within the open interval. (Here we use the fact that an FSA is

finite, and there is only a finite number of states that can be reached when

playing against a copy of itself). With positive error rates, all subgames are

reached with positive probability, and playing the subgame-perfect action in

the subgames that are reached only under positive ϵ yields strictly higher

payoff than this strategy earns against itself.

While there are going to be fewer Nash equilibria for low error rates than

there are in the absence of errors, the pure Nash equilibria that remain are

typically going to be strict – besides knife edge cases that exist if one chooses

error rates that make players indifferent between cooperating and defecting in

certain subgames. That means that subgame perfect Nash equilibria without

errors – which are not ESS, and not RAII – are typically going to be ESSs,

and therefore also RAII, for small enough, but non-zero error rates. In this

paper, in the presence of errors, we will therefore typically not differentiate

between these stability concepts, and by default, we will consider strict Nash

equilibria – where it is implied that these are also ESS.

2.5 Computing and simulating population dynamics

In order to get computational efficiency under the constraints that the ques-

tion at hand imposes, there are different choices one can make for the sim-

ulations. Garćıa and van Veelen (2016, 2018) and van Veelen et al. (2012)

want to allow for the possibility that the population visits mixed equilibria.

In that setting, agent based simulations that follow a Wright-Fisher process

are a reasonably efficient choice. One can however also assume that the

population spends most of its time in pure equilibria, and that mutations

happen so infrequently that the likelihood that a second mutant emerges

before a first mutant has either gone to fixation or gone extinct is negligi-

bly low. Although agent based simulations with the Moran process are less
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Figure 2: Contrite Tit-for-tat. This is a natural choice for an FSA that
would represent the most basic version of Contrite Tit-for-Tat in a setting
with errors (Sugden, 1986). Figure 3 gives a variation. This strategy is self-
mirroring; when two players both play this strategy against each other, they
are either both in the initial state, or one is in the left state, and its partner
in the right one, or vice versa. In these figures, we will draw self-mirroring
FSAs such that the strategy starts in the middle state at the top. To make
sure that it is clear that this is the initial state, it is marked with a 1. This
strategy can be an equilibrium for the right combination of sufficiently high
δ and a sufficiently low ϵ (see Figure 7).

efficient than with the Wright-Fisher process, calculating fixation probabili-

ties for the Moran process – under the assumption that we can use expected

payoffs in the payoff matrix between all possible residents and mutants – is

relatively easy. Rather than simulating every selection step explicitly, we can

then numerically calculate the fixation probability for every new mutant and

then determine its fate – fixation or extinction – by drawing a single random

number. That is what is done in van Veelen and Garćıa (2019) in a setting

with complexity costs, and that is also what we do here.

The assumption that we can use expected payoffs basically assumes that

the population size is not too small. In the Moran process, for any given

realisation of the payoffs, there is a (conditional) transition probability for

that realisation. The (unconditional) transition probability from one state
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to another then is the expected value of those transition probabilities, where

the expectation is taken with respect to the probabilities with which these

payoffs occur. These probabilities reflect uncertainty with respect to the

matching within the population, the duration of the game, and whether and

when errors are made. For the calculation of the transition probabilities that

we use here (which is more or less standard in the literature; see Nowak

2006), we instead first take the expectation of the realised payoffs, and then

calculate just the one (unconditional) transition probability, as if there is no

uncertainty about the realised payoffs, and the realised payoffs are equal to

the expected payoffs. For small population sizes, there can be a difference

between the two ways to compute the transition probabilities (for instance

if the matching makes a difference for the total amount of payoffs), but for

larger population sizes, these differences will vanish. We have also verified

numerically that this approach matches agent based simulations, in which

every selection step is explicitly simulated.

While the default simulations in this paper allow for mutants to explore

all possible FSAs, we also have two models in which we consider restricted

strategy sets. These strategy sets are small enough to allow us to explicitly

calculate stationary distributions of the dynamics for a given mutation kernel.

Those are used then to illustrate points and mechanisms relevant to the

dynamics in the simulations that do allow for all FSAs.

3 Equilibrium strategies with errors

In this section we consider strategies that can be represented by FSAs, and

we describe properties of equilibria. For constructing a best response, it will

be useful to have a value function for the states of an FSA M , representing

a strategy S, from the point of view of its opponent. Given a continuation

probability, or discount factor δ ∈ [0, 1), and an error rate ϵ ∈
[
0, 1

2

)
, the
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Figure 3: A variant of Contrite Tit-for-tat. This is a version of Contrite
Tit-for-Tat that, when playing against itself, goes to a mutually defecting
state if both make an error when in the initial state (at the center on top).
Also the score keeping is different from the simpler version of Contrite Tit-
for-tat, depicted in Figure 2, in that this one has a second level of contrition.
The value to the opponent of this strategy being in different states goes from
the lowest all the way to the left to the highest all the way to the right.
This strategy is also self-mirroring, and it is an equilibrium for the right
combination of a sufficiently high δ and a sufficiently low ϵ.

value to the opponent of a player using M of M being in state i is denoted

by V ∗M (i) , i = 1, ..., nM , and it is the solution to the following system of

equations.

VM (i) = max
a∈{C,D}



(1− ϵ)2 (π (a, λM (i)) + δVM (µM (i, λM (i) , a)))

+ ϵ (1− ϵ) (π (¬a, λM (i)) + δVM (µM (i, λM (i) ,¬a)))

+ ϵ (1− ϵ) (π (a,¬λM (i)) + δVM (µM (i,¬λM (i) , a)))

+ ϵ2 (π (¬a,¬λM (i)) + δVM (µM (i,¬λM (i) ,¬a)))


i = 1, ..., nM

The maximum error rate we consider is 1
2
. At this error rate, any choice

leads to a random coin flip in every subgame. Because every state is reached
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with positive probability, best responding against a player using M means

playing an action that maximises the term between curly brackets, when M

finds itself in state i. Creating a best response against the strategy S that

M implies therefore can be done by making a finite state automaton M ′ that

has the following properties.

1. M ′ has the same number of states as M does, that is, nM = nM ′ ;

2. M ′ has a transition function that satisfies µM ′(i, b, a) = µM(i, a, b).

This implies that those states are numbered in such a way that if M is

in state i, then M ′ is also in its state i;

3. What M ′ plays when it is in state i (and M therefore is in its state

i too) maximises the term between curly brackets in the definition of

VM (i) above.

ForM to represent a strategy that is a Nash equilibrium, its best response

M ′ has to represent the same strategy that M represents. For M to represent

a strategy that is a strict Nash equilibrium, the best response facing M has

to be unique for every state of M .

Restricting attention to FSAs implies that we both reduce the set of

possible equilibria, and the set of possible mutants, or alternative responses,

we consider. Here, it may be good to recognise that FSAs that are equilibria

within the set of FSAs, remain equilibria in the set of all strategies; if M ′ is

the best response among all FSA, then it is also the best response among all

strategies.

We will see below that a necessary condition for a minimal FSA M to be

a Nash equilibrium is that it should be self-mirroring; it should be possible

to make an equivalent FSA M ′ by renumbering the states in M , so that

µM ′(i, b, a) = µM(i, a, b). The other condition is that what M ′ plays when in

state i (and M therefore is in its state i too) maximises the term between
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∗, 𝑐	
	

Figure 4: (Normal) Tit-for-Tat. This strategy is not self-mirroring. Start-
ing in state 1 for both, if player 1 makes an error, but player 2 does not, then
player 2 moves to the second state, and player 1 does not.

curly brackets in the definition of VM (i) above. Before we prove this, it may

be useful to illustrate this central property of equilibria.

The FSAs in Figures 1, 2, and 3 are all self-mirroring. All D (Figure 1)

is an equilibrium for all δ ∈ [0, 1] and ϵ ∈
[
0, 1

2

)
. The different versions of

Contrite Tit-for-Tat (Figs. 2 and 3) are equilibria for sufficiently high δ and

sufficiently low ϵ. Tit-fot-Tat (Figure 4) is not self-mirroring, not subgame

perfect without errors, and not a Nash equilibrium with errors. The FSA in

Figure 5 is not self-mirroring, but it can be reduced to the FSA for Contrite

Tit-for-Tat in Figure 2, which is self-mirroring.

The result below states that if a strategy is a strict Nash equilibrium, it

can be represented by a minimal self-mirroring FSA. This is a very useful and
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Figure 5: An FSA that can be reduced to Contrite Tit-for-tat. This
FSA is not self-mirroring, but it can be reduced to the automaton that repre-
sents the strategy Contrite Tit-for-Tat from Figure 2, which is self-mirroring.

informative result, as it reduces the set of possible equilibria considerably.

Theorem 1. If a finite state automaton M is minimal, and the strategy S

it represents is a strict Nash equilibrium, then M is self-mirroring.

Proof. For every state i = 1, ..., nM , define the set of states s (i) as follows.

If two players meet, both use M , and one player is in state i, then s (i) is the

set of states that the other player can be in. Perhaps overly formally, s (i)

is the set of states j for which there is a history ht that puts M in state i,

while h←t puts M in state j. Now suppose that there is a state i for which

s (i) is not a singleton. That means that there are states j and k, j ̸= k,

with j ∈ s (i) and k ∈ s (i). Now starting in state j, a continuation history
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gt – which is a sequence of t − 1 action profiles, like normal histories, as

defined in Section 2 are – would put M in state j′, and, starting in state k,

the same continuation history gt would put M in state k′. If the output in

those states j′ and k′ is the same for every continuation history gt – that is, if

λM (j′) = λM (k′) for all gt and some combination of j, k ∈ s (i) – then M was

not minimal, as the same strategy could be represented by an FSA M ′ that

would not have state j, and redirect all arrows that point to state j in M so

that they point to state k in M ′. If on the other hand there is a continuation

history gt for which the output in states j′ and k′ differs, then M is not a

strict equilibrium. To see that, let i′ be the state that M transitions to if

it starts at state i and observes the continuation history g←t . Since M is a

Nash equilibrium, the outputs in both j′ or in k′ need to maximise the term

in brackets in the definition of VM , applied to i′, but as these outputs are not

identical, there are multiple best responses against M in state i′, and M does

not represent a strict Nash equilibrium. Finally, since s (i) is a singleton for

all i, we can now renumber the states, and relabel state s (i) as state i. This

gives an M ′ for which µM ′(i, b, a) = µM(i, a, b).

4 Small imperfections

Before discussing how often we see equilibria in simulations, in which strate-

gies are represented by FSAs, it is worth reflecting on selection off the error-

free path in general. In the infinitely repeated prisoner’s dilemma, there

are infinitely many subgames. Therefore, if we were to represent a strategy

as a (countably infinitely long) list with binary items that specify for every

history whether it plays C or D, then it is clear that selection will have to

be spread thin somewhere. Somewhat more precisely, in every population,

there are subgames that are reached arbitrarily infrequently, making selec-

tion there also arbitrarily weak. In such a setting, with selection acting on
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choices for every history separately, the less often a history occurs (or the

less often a subgame is reached), the less we expect to find the choice there

to be optimal.

In the simulations, and in most of the theory in this paper, we represent

strategies by FSAs. That means that by definition, for any FSA there are

states that it arrives at through multiple histories, and there are even states

that it arrives at through infinitely many histories. By changing the output

in a state, a mutant can therefore change the strategy for a whole set of

histories in one go. Similarly, other mutations (deleting or adding a state,

or redirecting a transition) can also change the strategy it represents for

whole sets of histories. By bundling histories together, a mutant could undo

a number of suboptimalities, which implies that it it also aggregates the

differences in expected payoffs. That can make selection against not best

responding more effective. There can however still be states that are reached

very infrequently, and therefore it is possible that a strategy is very close to

being a best response against itself, while not being an equilibrium. This is

the case if a strategy only chooses a suboptimal action for a set of histories

that is very unlikely to occur.

Figure 6 illustrates how this shows up in the simulations. We take the dif-

ference between the expected payoff of playing a best response to a strategy,

and the expected payoff that this strategy earns against itself, to quantify

how far away from being a Nash equilibrium a strategy is (Figure 6a). There

is one strategy that deserves special attention, and that is All D. This strat-

egy is subgame perfect without errors, and it is a Nash equilibrium with

errors for all ϵ > 0 and δ < 1. The time that the population spends in All

D varies as a function of the error rate (Figure 6c), and because this is by

far the most frequent strategy in the simulations, we consider the changes in

the share of All D separately. In Figure 6b we then consider the remaining

strategies, that cooperate in at least one state, together. This set of strate-
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(a) Distribution at ϵ = 0.02

(b) Proximity to best response

(c) Time with All D resident

Figure 6: Selection for subgame perfection. In order to measure how
far a strategy is from what would be subgame perfection without errors, and
what being a Nash equilibrium is with errors, we compare, for every strategy
that we observe in the simulation, what payoff best responding against it
would result in, and what payoff it gets against itself. In panel (a) we see the
density of combinations of those from a simulation run with b

c
= 2, δ = 0.9,

ϵ = 0.02, and 5·106 mutant arrivals. On the black diagonal line, the expected
payoff that a strategy earns against itself is the same as the expected payoff
that a best-responding strategy would earn. Strategies on this line, therefore,
are Nash equilibria. In order to also make combinations with a low frequency
visible, we first log10-transformed the relative frequencies before applying the
colour scheme. The bottom left pixel of this distribution corresponds to the
strategy All D, which has by far the highest frequency. For panel (b), we
aggregate these differences, weighted by the frequencies, and repeat that for
a variety of ϵ’s. Here, we do however exclude All D. Panel (c) plots the
proportion of time spent with All D as a resident as a function of the error
rate. All D is a Nash equilibrium with errors, for all error rates, and it is
subgame perfect without errors.
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gies contains strategies for which all cooperative states can only be reached

after errors, and therefore it remains possible that the expected payoffs are

close to the payoff of mutual defection.

If we fix a strategy that is not best responding in a state that is only

reached after an error, then the difference between the payoff that a player

would get by best responding and the payoff that this strategy gets against

itself increases with ϵ. This, in turn, increases the selection pressure against

such a strategy. The first effect increases the gap for an individual strategy,

selection decreases the gap in the average distribution of strategies. In the

simulations, the average gap decreases as the error rate increases, which

suggests that the effect of selection is bigger (see Figure 6). The average

number of states that automata have does not vary much with the error rate

(not shown).

5 Forgiveness at high error rates or low con-

tinuation probabilities

At ϵ = 1
2
, all choices are inconsequential, and every strategy is as good as

any other. All strategies therefore are Nash equilibria, none of them are

strict, and no strategy has a selective advantage over any other strategy.

In simulations in general, we expect that the mutation probabilities always

matter, but if the mutation kernel is not biased in favour of cooperation or

defection, then at ϵ = 1
2
we should observe equal amounts of both C and

D as intended actions (of course the actual actions at an error rate of 1
2
are

always balanced, no matter what strategies the population is composed of).

Unbiased mutations would entail that mutating the output in a state from

D to C is equally likely as mutating from C to D; that a newly added state

is equally likely to have C or D as output; that mutations on the transitions
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make them point to all other states equally likely; and that the likelihood

of a state being deleted is also independent of its output. The choice of a

mutation kernel matters at all mutation rates, and certainly also at ϵ = 1
2
,

where all strategies behave the same and earn the same expected payoffs, but

there is a large set of unbiased mutation kernels, that all lead to the same

balanced average intended actions at ϵ = 1
2
.

Generally, high error rates make it hard to stabilise cooperation. This

is because cooperative strategies must, if their partner defects, also respond

with some defection in future rounds so as to deter intentional defections.

At higher error rates, such responses are triggered ever more often by unin-

tentional defections when cooperative strategies play against copies of them-

selves. As the likelihood of remaining in a cooperative state, even if both

players intend to cooperate, decreases, it becomes ever less attractive to play

cooperate.

As a consequence, many cooperative strategies stop being Nash equilibria

as the error rate increases. Our Theorem 2 below provides a simple condition

for when symmetric strategies stop being equilibria. Symmetry is defined in

Dal Bó and Pujals (2020) as follows: a strategy s is symmetric if s (ht) =

s (h←t ) for any history ht. For strategies represented by FSAs, this means that

its minimal representation must have the property that, when the strategy

plays against a copy of itself, both players always find themselves in the same

state. Grim Trigger and All D, for instance, are symmetric, but Tit-for-Tat

and Contrite Tit-for-Tat are not.

For this theorem, we, moreover need to introduce a strategy which we call

Minimal Grim Trigger. This strategy, like Grim Trigger, has two states – one

where it cooperates and one where it defects in all future rounds. However,

unlike Grim Trigger, Minimal Grim Trigger only reaches its defection state

if both players defect in the first state. After unilateral defections, Minimal

Grim Trigger remains in its cooperate state.
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Theorem 2. A necessary and sufficient condition for Grim Trigger to be a

Nash equilibrium is:
b

c
≥ 1− δ(1− ϵ)ϵ

δ(1− ϵ)(1− 2ϵ)

A necessary and sufficient condition for Minimal Grim Trigger to be a Nash

equilibrium is:
b

c
≥ 1− δ(1− ϵ+ ϵ2)

δϵ(1− 2ϵ)

If neither Grim Trigger nor Minimal Grim Trigger are Nash equilibria for

a given combination of c, b, δ and ϵ, then there exists no other symmetric

strategy that is a Nash equilibrium for this parameter combination.

Proof. See Appendix A.

Theorem 2, and the reasoning in the proof of Theorem 2, suggest that

within the set of symmetric strategies, the strategies that constitute Nash

equilibria at high error rates, are those that once they reach their punish-

ment state, have no route back to cooperation. The threat of long periods

of mutual defection most effectively disincentivises unilateral defections in

cooperative states, and Grim Trigger constitutes the extreme of indefinite

defection after observing a defection in a cooperative state. Similarly, at

higher error rates, where unilateral defections by one’s interaction partner

become very likely, Minimal Grim Trigger punishes mutual defection in the

strongest possible way. However, the opposite pattern emerges when we look

at asymmetric strategies. For instance Contrite Tit-for-Tat (Figure 2), which

has a very quick route back to cooperation after a defection occurred, is a

Nash equilibrium even under error rates that are too high for any symmetric

strategy to be a Nash equilibria (see Figure 7). Intuitively, with Contrite

Tit-for-Tat, the incentive to cooperate in state 1 is especially strong, because

additionally to being punished for defecting, players are compensated in sub-

sequent rounds if in the current round they end up cooperating while their
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Figure 7: Parameter ranges for which Minimal Grim Trigger, Grim
Trigger and Contrite Tit-for-Tat are Nash equilibria. As b

c
increases,

all three strategies become stable on ever larger regions in the ϵ-δ square. The
dashed line represents the boundary above which the incentive constraint for
cooperation is satisfied by a larger margin for Minimal Grim Trigger than it
is for Grim Trigger.

opponent defects. Therefore, even with a short punishment phase, Contrite

Tit-for-Tat can stabilise cooperation in state 1. Moreover, there is a limit

to how much these asymmetric punishment sequences, where the punishing

player defects and the player that is being punished cooperates, can be ex-

ploited to stabilise cooperation: the player that is being punished only has an

incentive to cooperate and thereby to comply with the punishment scheme,

if compliance leads to a sufficiently quick return to the a state in which both

players cooperate. Hence, it is precisely those asymmetric strategies which

have short asymmetric punishment phases that remain equilibria at high

error rates.

Summarizing, for parameter combinations for which sustaining coopera-
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tion is relatively hard, there is a difference between symmetric and asymmet-

ric strategies. Symmetric strategies that do not punish harshly enough are

not equilibria, and symmetric strategies that are equilibria therefore are not

very forgiving. Asymmetric, but still self-mirroring strategies, like Contrite

Tit-for-Tat, on the other hand, can be equilibria past the point where no

symmetric equilibria exist. These strategies cannot punish too harshly in

order to incentivise the individual that makes an error to repent by cooper-

ating while the other one defects. Symmetric and asymmetric equilibria are

very different, in that asymmetric strategies require some sort of penitence

to go (back) to mutual cooperation, while symmetric strategies do not.

6 Cooperation and forgiveness at error rates

close to 0

At ϵ = 0, there is no selection for or against subgame perfection, nor is

there selection for or against forgiveness, unless it affects what is optimal

in the absence of errors. Strategies that would (sometimes) cooperate when

they are matched with a copy of themselves, but that are so forgiving that it

would be optimal to play defect against them, are not Nash equilibria. Those

are obviously selected against, and show up only very shortly in simulations,

typically as neutral mutants that are part of an indirect invasion. Between

equilibrium strategies that all clear the bar of punishing sufficiently hard to

incentivise cooperation, but that are not equally forgiving, the dynamics do

not really differentiate in the absence of errors.3 The only levels of forgiveness

3As we will see, there are dynamics for combinations of strategy sets and population
sizes for which direct invasions between cooperative and uncooperative equilibria play a
role (whereas for large strategy sets and large population sizes, all traffic between equilibria
happens by indirect invasions). In such cases, as we will see, the punishment length may
still make a difference in the absence of errors, although the difference for instance in the
model of Section 8 is minimal (see Figure 22).
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with a clear selective disadvantage at ϵ = 0, therefore, are levels that are so

forgiving that they do not incentivise cooperation.

As mentioned in the introduction, there are papers that describe proper-

ties of equilibria at vanishingly small error rates. Dal Bó and Pujals (2020)

do that by comparing the sizes of the basins of attraction of equilibria with

different levels of cooperation, on the error-free path, and with different levels

of forgiveness when errors do occur. By considering a lexicographic evalua-

tion of payoffs, Fudenberg and Maskin (1990) effectively use a lexicographic

stability concept, where payoffs resulting from actions in histories with m

errors only matter if the payoffs for histories with i errors, i = 0,m− 1, are

all equal. Both of these papers suggest that ever smaller error rates, and

ever higher discount rates, could allow dynamics to get arbitrarily close to

full efficiency, and that forgiveness will be selected for.

Before discussing the interesting relation between their results and our

dynamics, we will first focus on something more straightforward in the dy-

namics. If we take a fixed continuation probability δ < 1, we can explore

what the effect of adding errors is. As we will see in Figure 8, increasing the

error rate from 0 comes with a little hump in cooperation and forgiveness.

The simulations do however give no reason to believe that there is a discon-

tinuity at ϵ = 0; it seems that in the limit of the error rate going to 0, the

average amount of cooperation and forgiveness converges to what they are

at ϵ = 0.

The observation that changes in the properties of the process when going

from no errors to small error rates are continuous, is not an artifact of our

setup, mutation procedure, or parameter choices. Rather, for any reasonable

stochastic selection process with errors, we should expect the dynamics in

the limit of small error rates to coincide with the dynamics in the absence

of errors. This is formalised by the following theorem. For interpreting this

result, it is helpful to realise that the dynamics are a Markov chain with a
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very large state space. This Markov chain may or may not have an invariant

distribution, depending on the mutation kernel. If the mutation kernel is

too likely to add states relative to how likely it is to delete states, then

the average size may tend to keep growing, and no invariant distribution

exists. If the mutation probabilities imply that adding a state is not too

likely an event compared to deleting a state, then an invariant distribution

does exist. What we do in the simulations is to estimate properties of these

invariant distributions, such as the share of certain (types of) strategies,

and the average amount of cooperation, forgiveness, and subgame perfection

(or, more precisely, the average distance between the payoffs of the best

response against a strategy and the payoffs a strategy gets against itself).

The following theorem establishes conditions under which these invariant

distributions change continuously as a function of the error rate. Because this

result carries over to changes in Markov chains as a result of any parameter

in general, including, within our setup, the continuation probability, or, in

other settings, for instance complexity costs, the ϵ in the result will represent

any parameter that has an effect on transition probabilities.

Theorem 3. In a discrete time Markov process with countable state space, let

the transition probabilities Pϵ(i, j) between any states i and j be continuous,

differentiable functions of some parameter ϵ. If for every ϵ this process has

a unique stationary distribution, and if there exist an m > 0 and an M such

that

1. ∀i : (∀ϵ′ : Pϵ(i, i) = Pϵ′(i, i)) ∨ (Pϵ(i, i) ≤ 1−m)

2. ∀i, j : |dP (i,j)
dϵ

| ≤ M

then this stationary distribution is continuous and differentiable in ϵ, and

the derivative of the weight σ(i) of each state i in the stationary distribution

is bounded by:

|dσ(i)
dϵ

| ≤ M

2m
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Proof. The proof is in Appendix B.4

The first condition in Theorem 3 is typically satisfied for a Moran process,

a Wright-Fisher process, or any other reasonable stochastic finite population

process. If the ϵ represents the error rate, with the continuation probabil-

ity fixed, or if it represents the continuation probability, with the error rate

fixed, then for all absorbed (monomorphic) states, it is automatically true

that for all ϵ, the probability Pϵ(i, i) of staying in the same state is equal;

all transitions to other states are due to mutations, and the probabilities

relating to those are independent of the error rate or the continuation proba-

bility. For states that are not absorbed, there is always the possibility that a

replacement event changes the population state, and the probability of that

happening is easily bounded away from zero across all mixed states. On top

of that, for all states, absorbed or not, the presence of a positive mutation

rate is going to put an upper bound on the probability of staying in the same

state. Also, if we were to think of the ϵ in the theorem as a two-dimensional

variable, representing both the error rate and the continuation probability,

the first condition would still hold for all combinations of those in any reason-

able stochastic finite population process, including the Moran Process with

a positive mutation rate.

The second condition in Theorem 3 is also satisfied in the Moran process

if the ϵ represents the error rate, but only for δ < 1. The probability of

going from state i to state j in the Moran process is the expected value of

transition probabilities conditional on a realisation of the payoffs – where the

expectation is taken over the probabilities with which these payoffs occur.

The transition probabilities, conditional on a realisation of the payoffs, are

independent of the error rate. The probability of each realisation depends

4Of course, when applying this theorem to argue that the stationary distribution does
not change discontinuously at ϵ = 0, we take d

dϵ to mean the right-sided derivative at zero.
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continuously on the error rate, and therefore the second condition is satisfied.5

For details see Appendix F.

For infinitely repeated prisoner’s dilemmas (δ = 1), and with ϵ still rep-

resenting the error rate, the second condition will however easily be violated.

The payoffs of a strategy such as for instance Grim Trigger is discontinuous

at ϵ = 0; against itself earns a per period average of b at ϵ = 0, and a per

period average of (1− ϵ) c+ ϵb at all ϵ > 0. That means that in the limit of

vanishing error rates, the payoff of Grim Trigger against itself is c ̸= b. In

the next section, we will encounter a strategy called Jumpstarter, and this

strategy goes the other way; against itself it earns a per period average of c

at ϵ = 0, but for all ϵ > 0 it earns a period average of 1
2
(b+ c). This means

that Condition 2 is not satisfied. In Section 7 we will moreover see that in a

strategy set containing All C, All D, Grim, and Jumpstarter, we do indeed

see a discontinuity at an error rate of 0 for a continuation probability of 1.

This is visible both in panel (a) and in panel (b) of Figure 16.

Going back to discount rates below 1, and applying the result to error

rates close to 0, we can then combine it with what we know to be true for

repeated games in the absence of errors. From Bendor and Swistak (1995)

we know that for every δ < 1, in the absence of errors, there are NSSs

varying from fully cooperative to fully uncooperative. From Garćıa and van

Veelen (2016) we know that none of them are RAII. All NSSs therefore are

similarly (un)stable. From van Veelen et al. (2012), we moreover know that

for normal, unbiased mutation kernels, the average amount of cooperation for

normal b/c−ratios remains well below 1 for all δ < 1 (for b/c = 2, for instance,

the average amount of cooperation stays well below 0.5). The theorem then

implies that we should also not expect spectacular cooperation rates if we

5In the simulations we do here, we assume that we are in the low mutation limit. This
allows us to use a computationally much more efficient approach, in which we determine
the fate of mutants arriving by just calculating the fixation probability numerically, and
drawing from the resulting straightforward coin flip.
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add small amounts of errors.

The second condition in Theorem 3 is also satisfied for the Moran process

if the parameter in the theorem represents the continuation probability, and

the error rate is fixed, as long as the continuation probability is not 1. To

see why Condition 2 is not satisfied at a continuation probability of 1, with

or without errors, we can consider strategies that one could call “All C with

a handshake”. We denote these with dTC; when playing against copies of

themselves, they first go through T defecting states before they end up in

a cooperative state, which is never left. The left derivative at δ = 1 keeps

increasing with T , and is not bounded. The derivative of the transition

probabilities at δ = 1 in a population state that contains some individuals

that play dTC and some that play another strategy then is not bounded.

That does not mean that it is easy to construct a combination of a strategy

set and a mutation kernel for which the the dynamics are in fact discontinuous

at δ = 1, but it does show that Theorem 3 cannot be used to show continuity

for a model with a strategy set that contains all FSAs.

The following section does however contain an example that shows that

it is not true that changes in the invariant distribution are continuous in

changes in the parameter space, if we take the latter to be [0, 1] ×
[
0, 1

2

]
for (δ, ϵ). In this case, there may be sequences converging to (δ, ϵ) = (1, 0)

that get arbitrarily close to full cooperation (or more precisely, there may

be sequences that, besides ϵ going to 0 and δ going to 1 also include the

population size going to infinity) while the average amount of cooperation

at an error rate of 0 and without discounting is not 100%. This implies that

there is space for dynamic implications of results in Fudenberg and Maskin

(1990) and Dal Bó and Pujals (2020). Both suggest that there are equilibria

that become fully efficient in the limit of ϵ going to 0 and δ going to 1, that

also become more stable than other equilibria in a sequence along which ϵ

goes to 0, and δ goes to 1. In Section 9.1 we will return to the relation
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(a) Cooperation as a function of ϵ (b) Cooperation as a function of δ

Figure 8: Cooperation in the simulations allowing for all FSAs. Panel
(a) shows the average cooperation rates as a function of the error rate for
in simulation runs with δ = 0.8, N = 200, b

c
= 3, and 2 · 108 mutant

arrivals. Panel (b) shows the average cooperation rates as a function of the
continuation probability in simulation runs with ϵ = 0.1, N = 200, b

c
= 3, and

107 mutant arrivals. In the interval between δ = 0.95 and δ = 1 simulations
become prohibitively expensive as games last very long in expectation, and
payoff sums take longer to converge. At δ = 1, payoffs can be computed in
a different, not too expensive way. We therefore do not know how the curve
plotted in panel (b) behaves between the points connected by the dashed
line.

between the results in Dal Bó and Pujals (2020) and what happens in the

dynamics.

Theorem 3 also applies to other ways in which the dynamics can be per-

turbed. Instead of execution error, one could for instance introduce percep-

tion error. The perturbation moreover also does not have to be an error;

another possibility is that one can for instance introduce complexity costs to

a varying degree (van Veelen and Garćıa, 2019). With complexity costs, one

can then also study what happens when these becomes vanishingly small,

and this setup then also satisfies the conditions of Theorem 3. This theorem

then implies that the invariant distribution of the finite population dynam-

ics for vanishingly small complexity costs will also be the same as it is in
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the absence of complexity costs. The simulation results in van Veelen and

Garćıa (2019) confirm that. In the same way that results concerning static

equilibrium concepts in Fudenberg and Maskin (1990) and Dal Bó and Pujals

(2020) suggest that there are fully cooperative equilibria that are more stable

than not fully cooperative ones in the limit of vanishingly small error rates,

and continuation probabilities close to 1, results in Binmore and Samuelson

(1992) suggest that the same might be true for vanishingly small complexity

costs and continuation probabilities close to 1. This turns out not to be a

property that is reflected in the dynamics (see also Cooper, 1996 and Volij,

2002).

What is different between adding complexity costs and adding errors, is

that with complexity costs, the level of cooperation in the invariant distribu-

tion with complexity cost approaches the level of cooperation in the absence

of complexity costs from below, when complexity costs vanish. That implies

that adding complexity costs not only does not get the dynamics arbitrarily

close to full cooperation, it is actually bad for cooperation to add complexity

costs. Why complexity costs hinder rather than help the evolution of coop-

eration in this setting, is discussed in detail in van Veelen and Garćıa (2019).

With execution errors, on the other hand, this is not the case. As we have

seen, in the simulations, the average amount of cooperation initially increases

as the error rate increases. That suggests that adding errors, in very modest

quantities, has a positive effect on the average amount of cooperation that

evolves. The following section investigates why that is, and in this section

we also see that the fact that errors can have a positive effect on the level of

cooperation also opens the door for the possibility that there is a sequence

of Moran processes, with error rates going to 0, continuation probabilities

going to 1, and population sizes to infinity, for which the cooperation rate

goes to 1.
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7 Ways out of All D

The purpose of this section is threefold. We first of all consider how errors

affect what without errors would be an indirect invasion into All D. We focus

on the first step, and see that it is possible that errors increase the fixation

probability of a mutant that would be neutral in the absence of errors. The

second objective is to recreate the hump in cooperation that we see in the

simulations in a simple model. The third objective is to show that it is

possible to have a sequence of choices for the parameters so that the average

amount of cooperation in the dynamics converges to 1.

7.1 Jumpstarters

In the absence of errors, we know that the dynamics are dominated by indi-

rect invasions (see Garćıa and van Veelen, 2016 and van Veelen et al., 2012).

Stepping stone paths out of All D consist of neutral mutants that would re-

ciprocate cooperation, but that do not initiate it; and then a second mutant

that initiates cooperation. The second mutant has a selective advantage if

the share of the first is sufficiently large. Our Theorem 3 therefore implies

that in the limit of error rates going to 0, the dynamics will be similar, and

the same sequences of mutants that drive the dynamics without errors will

drive the dynamics with infrequent errors. As error rates increase, start-

ing from 0, it is interesting to see how the probabilities of these transitions

change, since average cooperation levels in the simulations initially increase

when the error rate goes up (see Figure 8a).

With positive error rates, some strategies that are neutral mutants with-

out errors do not need a second invader to start cooperating amongst them-

selves. Instead, they will automatically latch on to an error to initiate mutual

cooperation. In this section, we therefore look at a class of strategies that we

call jumpstarters. These jumpstarters defect after any history that consists
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Figure 9: The standard Jumpstarter. This strategy goes to state 2 after
every action profile that is not d, d. Other jumpstarters, that for instance go
to state 2 only after mutual cooperation are also possible. Jumpstarters can
also be constructed for residents other than All D, if they leave enough room
for increased mutual cooperation. The standard jumpstarter depicted here
is self-mirroring and symmetric.

of mutual defections only, and therefore they are neutral mutants of All D at

ϵ = 0. They do however use instances of unintended cooperation to switch

to their cooperative state, and therefore, at positive error rates, they jump-

start cooperation among themselves. Figure 9 depicts an example of such a

strategy. This one switches to the cooperative state after any deviation from

mutual defection, and switches back after any deviation from mutual coop-

eration. In order to establish how the process of these strategies invading All

D, and then being invaded themselves, changes as the error rate increases,

we will have to carefully contrast static stability concepts and deterministic
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infinite population dynamics on the one hand – which one might be tempted

to think suggests that these jumpstarters cannot invade All D at positive

error rates.

For the dynamics, there are three variables that matter: the error rate

ϵ, the discount rate δ, and the population size N . The first relevant obser-

vation is that for populations that consist of a resident All D and a mutant

jumpstarter, the latter has a selective disadvantage at low frequencies. Their

attempts to jumpstart cooperation after an error are not reciprocated by

players that play All D, and therefore, if they only meet players that play

All D, that implies a loss in payoffs that is not compensated for by anything.

As a result of this, there is always going to be an interval of frequencies for

which their payoff is below the payoff of All D – even though for low error

rates, this difference is going to be rather small. The traditional criterion for

whether or not mutants can invade that is for instance used in the definition

of an ESS, would therefore discard this mutant, because at invasion, it has

a payoff that is lower than All D.

If jumpstarters do meet other jumpstarters, however, errors help them to

establish mutual cooperation. For a fixed error rate in combination with a

sufficiently high discount rate, therefore, there will be a frequency of jump-

starters at which they start outperforming All D. The game between the two

then becomes a coordination game. Increasing the δ for a fixed ϵ increases

the probability that an error happens before the game ends, and therefore

that mutual cooperation ensues between two jumpstarters. This leads to

an increase of the mutual payoff between jumpstarters, and that moves the

point that separates their basins of attraction to the left (see Figure 10b and

10c).

For low error rates, the gap between the payoff of All D and the payoff

of jumpstarters at low frequencies of jumpstarters is small (see Figure 10a

and 10b). A low ϵ in combination with a sufficiently high δ can therefore
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(a) δ = 0.8, ϵ = 0.01 (b) δ = 0.8, ϵ = 0.002 (c) δ = 0.9, ϵ = 0.002

Figure 10: Payoffs of Jumpstarter and All D. Lowering the error rate
reduces the difference in payoffs for low frequencies of jumpstarters, as can
be seen going from panel (a) to panel (b). Increasing the continuation prob-
ability exaggerates the difference in favour of the jumpstarters at higher
frequencies, as can be seen going from panel (b) to (c). The jumpstarter
used here is the standard one from Figure 9. The b/c-ratio is 3.

raise the fixation probabilities of jumpstarters above the fixation probability

of a neutral mutant (see Figures 10 and 11). The fixation probability of a

neutral mutant is 1
N
, which serves as a benchmark; mutants with a fixation

probability higher than this are said to have a selective advantage (Nowak,

2006).

For a fixed discount rate δ, initially, an increase in the error rate only

mildly contributes to the disadvantage of the jumpstarter at low frequencies,

while it increases the advantage at higher frequencies much more. At higher

error rates, further increases in the error rate do not contribute as much to

bringing about mutual cooperation between jumpstarters, or to bringing it

about earlier, while the increase in error rate does still contribute more or

less equally to the disadvantage at low frequencies of jumpstarters. This

combines to the hump-shaped probability of fixation we see in Figure 11.

Of course, as the population size grows large, stochastic selection dynam-

ics resemble deterministic ones ever more closely. For a fixed error rate ϵ

and a fixed discount factor δ, the probability that randomness gets the pop-
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(a) Fixation Probability (b) Below or over 1
N

Figure 11: Jumpstarters invading All D. Panel (a) shows that the payoff
disadvantage that jumpstarters have at low frequencies does not rule out
fixation probabilities that are larger than 1

N
, as long as the error rate is

small enough. Panel (b) divides the parameter space up in a region where
the fixation probability is above and one where it is below 1

N
. The parameters

are: b
c
= 3, N = 100, and, in panel (a), δ = 0.8. The jumpstarter here is still

the one from Figure 9.

ulation out of the basin of attraction of All D (relative to the probability

of neutral drift traveling the same distance) decreases with population size,

and this decrease cannot be compensated for by higher certainty that, once

in the basin of attraction of the jumpstarter, this jumpstarter goes to fixa-

tion. This implies that, for a fixed combination of ϵ and δ, we can alwasy find

a large enough population size, so that the jumpstarter in Figure 9 would

have a fixation probability below 1
N
. This is illustrated in Figure 12. What

is also illustrated by this figure, however, is that for some combinations of

a b/c-ratio and a continuation probability δ, however large one chooses the

population size N , there is always an error rate ϵ for which the fixation prob-

ability of this jumpstarter is larger than 1
N
. This observation is made precise

with Theorem 4.
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Figure 12: Fixation probability of Jumpstarter, multiplied by pop-
ulation size N for different values of N . Values above 1 indicate higher
than neutral invasion likelihood. For a fixed error rate, there is always a pop-
ulation size, such that the fixation rate drops below 1

N
. For every population

size N , on the other hand, there is an error rate ϵ such that the fixation
probability is above 1

N
. The parameters are b

c
= 3 and δ = 0.8.

Theorem 4. For any combination of population size N and any b
c
> 1, if δ

satisfies

δ >
3b+ (3N − 1) c

(N + 1) b+ (2N − 1) c

then there exists an ϵ̄ > 0 so that for error rates in the open interval ϵ ∈
(0, ϵ̄) the jumpstarter depicted in Figure 9 has a probability greater than 1

N

of fixating in a population of All D.

Proof. See Appendix C

This theorem implies that taking the limit of the population size going to

infinity does not render this jumpstarter irrelevant for the dynamics for error

rates that are not bounded away from 0. Roughly speaking, for δ > 3c
2c+b

,
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Figure 13: Jumpstarter with a lower jumpstarting rate. This strategy
regulates the jumpstarting rate by only allowing for errors to make it go to
the cooperative state once every M rounds.

every population size N comes with an error rate ϵ that is low enough to make

the jumsptarter from Figure 9 have a higher than neutral fixation probability.

In Theorem 4 we fix the pair of strategies, and let the error rate ϵ shrink

as the population size N increases. However, we can also keep the error

rate fixed, and change which strategy we consider the fixation probability of.

Rather than being tied to a jumpstarter that gets triggered into transitioning

to a cooperative state by every error, and then relying on a decrease of

the error rate for lowering the incidence of such transitions, one can also

have jumpstarters that endogenously reduce the incidence, by ignoring some

errors, and only transitioning after others. This way, one can show that also

for error rates that are not low, there are jumstarters that have a fixation

probability larger than 1
N
.
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Theorem 5. For N → ∞, if δ satisfies

δ >
3c

(1− ϵ)(1− 2ϵ)b+ (1− ϵ)(2− ϵ)c

there exists a jumpstarter that has a probability greater than 1
N

of fixating in

a population of All D.

Proof. Here we only give an outline; the complete proof is in Appendix D.

We construct a jumpstarter that, in the absence of errors, cycles through

M + 1 states and defects in each of these states. In the first M states this

jumpstarter moves from state i to state i + 1 independently of the actions

that are played. In state M + 1 this new jumpstarter behaves akin to the

jumpstarter considered in Theorem 3: if no error occurs, it returns to state

1, and if an error occurs, it moves to a cooperative state, and stays there

until a further error occurs, which brings her back to state 1 (see Figure 13).

This construction has the advantage that the jumpstarting rate can be made

arbitrarily small, by choosing a sufficiently high number M . We can there-

fore use arguments similar to those in the proof of Theorem 4, where the

jumpstarting rate was set by (arbitrarily small) ϵ.

We can illustrate this result by drawing the boundaries of the region

within which jumpstarters exist that have fixation probabilities above 1
N
.

These boundaries depend on the b/c-ratio, and are shown in Figure 14.

It is worth noting that these jumpstarters themselves are not necessarily

equilibria. For low error rates, on average it takes long for an error to happen.

A mutant that does not leave it up to chance, and just starts cooperating

right away, might therefore have a selective advantage if the jumpstarter has

gone to fixation. Such a sequence of mutants (first a jumpstarter, and then

a strategy that initiates cooperation without waiting for errors to happen)

then exactly matches what an indirect invasion would be without errors. We
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Figure 14: Thresholds Theorem 5. The curves correspond to the thresh-
olds indicated in Theorem 5. To the top left of each curve, there exists a
jumpstarter with sufficiently low jumpstarting rate (as sketched in Figure
13) which has a greater than neutral fixation probability in large popula-
tions (N → ∞).

know from Garćıa and van Veelen (2016) and van Veelen (2012) that these

indirect invasions drive the dynamics at an error rate of 0, and Theorem 3

tells us that the changes in the likelihoods of these transitions therefore must

be relevant as we increase the error rate from 0.

Another element to consider is that here, we take the error rate to be

exogenous. Alternatively, we could allow the error rate to be an individual

characteristic, or we could allow FSAs to randomise in order to determine the

output in a state. In either case, the fidelity itself (of the strategy as a whole,

or of the output in any given state) would then be subject to evolution. In

such an alternative setup, sometimes higher error rates could be selected for,

and sometimes lower error rates – just like sometimes cooperation is selected

for, and sometimes defection. In a population of All D, for instance, lower

error rates would be selected for. A population that consists of error-free

All D might however be vulnerable to invasion by a jumpstarter. This would

then require a sequence of mutations, in which they first acquire the capacity
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to be triggered into cooperation, and then the capacity to trigger others to

cooperate, for instance by mutating into a strategy with a positive error rate.

7.2 A model with 4 strategies

If we consider a reduced strategy space that includes All C, All D, Grim Trig-

ger, and the jumpstarter from Figure 9, then this contains a fully cooperative

equilibrium (Grim Trigger) and a fully defecting one (All D). At error rate

0, Grim Trigger and All C are neutral mutants of each other. All C then is

vulnerable to invasion by All D, so a sequence of first All C, and then either

All D or the jumpstarter constitutes an indirect invasion into Grim. Also All

D and the jumpstarter are neutral mutations of each other at error rate 0.

The jumpstarter is vulnerable to invasion by All C or Grim, so these paths

would constitute indirect invasions into All D.

For this model, we see a clear hump in the average amount of cooperation,

as it changes with error rate ϵ (see Figure 15a). This hump moves to the left,

and the size of the peak increases, as the continuation probability approaches

1. For a fixed population size, the amount of cooperation at the peak does

however not approach 1. There maybe no reason to expect that it would,

given that this model is restricted to only four strategies, but with results

from Fudenberg and Maskin (1990) and Dal Bó and Pujals (2020) in mind,

one might hope to see the peak approach 1. Making that happen might

however also require the population size to be taken into account, and below

we will see that this does not even require making sure we pick the right

sequence of δ’s.

For every ϵ > 0, we also see a hump if we track the average amount of

cooperation as a function of the continuation probability δ (see Figure 15b).

There is a subtle detail, which is that for some error rates, as the continuation

probability approaches 1, the cooperation rates first dips below what they
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(a)

(b)

Figure 15: Average amounts of cooperation in the four-strategy
model. In this model, there are four strategies: All C, All D, Grim Trigger
and the Jumpstarter from Figure 9. We numerically compute the stationary
distribution and resulting cooperation rates, assuming equal mutation rates
between all four strategies. The parameters are: N = 200 and b/c = 3.

are at δ = 1, and then approach the cooperation rates at δ = 1 from below.

Figures 15a and 15b moreover both show the discontinuity at ϵ = 0 for the

continuation probability fixed at δ = 1. As noted in Section 6, this is caused

by the discontinuity in payoffs of Grim Trigger and Jumpstarter at ϵ = 0

for the continuation probability fixed at δ = 1. The four-strategy model we

consider here does not require the continuation probability to approach 1 for

this to happen.

In this model, we can take a fixed δ, and if this continuation probability is
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(a)

Figure 16: Approaching full cooperation by increasing the popula-
tion size. In the same four-strategy model, for a combination of ϵ = 0.01
δ = 0.9, we find that increasing the population size gets the average amounts
of cooperation ever closer to 1.

sufficiently high, there will be a sequence of ϵ’s and population sizes, where

the error rate goes to 0 and the population size to infinity, such that the

cooperation rate approaches 1 (see Figure 16a). That is in a sense even more

spectacular than what one would imagine results in Fudenberg and Maskin

(1990) and Dal Bó and Pujals (2020) might imply for dynamics with strategy

sets that are not similarly restricted. The results in those papers might be

taken to suggest that there can be a sequence of combinations of ϵ, δ, and

N , such that ϵ → 0, δ → 1 and N → ∞, for which the cooperation rate in

the associated dynamics approaches 1.
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8 Forgiveness and punishment in a simple model

with a restricted strategy set

In this section we consider a restricted set of strategies in order to explore

selective pressures for or against strategies that differ in how long they pun-

ish. There are of course dimensions other than the punishment length along

which punishment can differ. Contrite Tit-for-Tat, for instance, requires its

partner to first “make things right” by cooperating, while Contrite still de-

fects. Thereby it makes forgiveness contingent on what its partner does.

As we have seen in Section 5, at high error rates, there are differences be-

tween on the one hand asymmetric strategies like Contrite Tit-for-tat, that

is an equilibrium at high error rates, thanks to its forgiveness, and symmet-

ric strategies, like Grim Trigger, that need to be rather unforgiving in order

to be be equilibrium. In the set we consider here, however, strategies are

symmetric, and forgiveness is not conditional. Within this set, at relatively

modest error rates, there is an intermediate level of punishment that is the

most frequent in the invariant distribution.

The set of strategies that we consider here consists of strategies Sn for n =

0, ..., 20, and is completed by All D. A strategy Sn cooperates as long as both

players cooperate (see Figure 17). If any deviation from mutual cooperation

is observed, while in the cooperative state, it subsequently defects for n

rounds, and then resumes cooperation. Strategies with higher n, thus, punish

defections more harshly. The strategy S0 is also included, and this is of course

the same strategy as All C.

For this set of strategies, Figure 20 reflects the sizes of the basins of

attraction between any pair of strategies in this set. Besides the details of the

geometric pattern, which we will get to below, there are two main ingredients

that are visible in this figure. The first is that in pairs that consist of All D

and Sn for some n, the higher n, the smaller the basin of attraction of All
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Figure 17: A strategy with a fixed punishment duration: S2. When
this strategy finds itself in state 1, then after any deviation from mutual
cooperation, it will (try to) play defect for two periods, and then return to
the first state, regardless. The strategies Sn are self-mirroring, and therefore
they can be Nash equilibria, depending on the b/c ratio, the δ and the ϵ.

D (see Figure 18). This is because for higher n, Sn punishes more harshly,

and therefore spend less time cooperating against All D, which, obviously,

never intentionally reciprocates. This is consistent with what we see at the

top row and at the right column of Figure 20.

Between strategies Sn1 and Sn2 , on the other hand, the basin of attraction

of strategies with the shorter punishment phase is larger than the basin of

attraction of the strategy with the longer punishment phase (see Figures 19

and 20). When playing against a copy of oneself, being able to quickly resume

mutual cooperation after an error, is good for payoffs. The difference in the
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(a) S1 vs. All D
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(c) S20 vs. All D

Figure 18: Payoff of S1, S3, and S20 vs All D with infrequent errors..
The plots show average payoffs per stage game for b

c
= 3, δ = 0.9, and

ϵ = 0.01. As residents, all three strategies have a payoff advantage. The
point at which the payoffs intersect separates their basis of attraction. The
size of basin of attraction of Sn increases with the punishment length.

payoffs that are attained against copies of themselves dominates the fact that

in mixed matches, the strategy with the shorter punishment phase cooperates

a bit more in expectation. The strategy with the shorter punishment length

therefore has the larger basin of attraction.

The non-monotonicities in Figure 20 that create the geometric structure

are caused by the fact that for some combinations of strategies Sn1 and Sn2 ,

the respective punishment lengths n1 and n2 satisfy k1 · (n1 + 1) + n1 =

k2 · (n2 + 1) + n2 for relatively small integers k1 and k2. If relatively small

k1 and k2 can be found for which this is satisfied, then after a defection,

the strategies Sn1 and Sn2 return to cooperation relevantly soon. If, on the

other hand, the equality is only satisfied for larger k1 and k2, then it is much

more likely that a match between Sn1 and Sn2 ends before cooperation is

resumed at all. All of this implies that for combinations of strategies that

return to cooperation sooner, their mutual payoffs are higher compared to

combinations of strategies that take (much) longer. The high mutual payoffs

exaggerate the effect of the difference between how the two strategies do

against copies of themselves (see Figure 19). Therefore, in the left upper

half, the small basins of attraction of the residents become even smaller if
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(a) S4 vs. S13 (b) S4 vs. S14 (c) S4 vs. S15

Figure 19: Payoff of S4 vs. S13, S14, and S15. In the absence of errors,
the strategies S4 and S13 return to cooperation after 69 = 13 · (4 + 1) + 4 =
4 · (13+ 1)+ 13 periods. S4 and S14 return to cooperation after 29 = 5 · (4+
1) + 4 = 1 · (14 + 1) + 14 periods. S4 and S15 return to cooperation after
79 = 15·(4+1)+4 = 4·(15+1)+15 periods. While the intersection generally
moves leftwards, as can be seen by comparing panel (a) and (c), a reduced
punishment length in mixed pairs leads to higher payoffs within such pairs,
exaggerating the deviations from 0.5. The parameters are: δ = 0.9, b

c
= 3

and ϵ = 0.01

low numbers k1 and k2 exist, and in the right lower half, the large basins of

attraction of the residents become even larger.

If we then assume a mutation process in which mutations from any strat-

egy to any other strategy happen with the same probability, then the two

main effects combined imply that within the set of strategies Sn, the ten-

dency is for punishment lengths to get ever shorter. This also holds for pairs

of strategies in which the shorter punishment length is too short to make

Sn an equilibrium strategy. Obviously, All D can easily invade Sn if Sn is

not an equilibrium (and therefore its basin of attraction has size 0), but also

in general, the shorter the punishment length gets, the smaller its basin of

attraction, and the more likely All D is to invade. All D itself, in turn, is left

with a bias towards strategies with longer punishment phases, because, as we

have seen, its invasion barrier against Sn decreases as n grows larger. These

ingredients together results in invariant distributions in which strategies with

very short or very long punishment phases have relatively low weights, while
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Figure 20: Basins of Attraction. Colors indicate the largest mutant-
frequency at which the resident has a payoff advantage over the mutant, i.e.
the boundary of the basin of attraction of the resident against the mutant.
Parameter values: b

c
= 3, δ = 0.9 and ϵ = 0.01.

strategies with intermediate punishment lengths have higher weights (Figure

21).

For higher b
c
ratios the peak of the invariant distribution shifts towards

strategies that punish for fewer periods. In the limit of errors going to 0,

all strategies Sn get identical payoffs against each other (or, in other words,

they are all neutral mutants of each other) and the only difference between

them is the basin of attraction when they are partnered with All D. Given

that this is the only one ingredient that remains, and all strategies Sn are

neutral against each other, the weights of Sn in the invariant distribution are

increasing in n (see Figure 22).
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Figure 21: The stationary distribution for different b/c−ratios. Mu-
tations happen u.a.r. between all 22 strategies. Parameters are: N = 100,
δ = 0.9, and ϵ = 0.01. Because of the geometrical pattern in Figure 20, the
stationary distribution looks a bit rugged. S0 is All C, which is never an
equilibrium, and for this ϵ and δ, S1 is not an equilibrium for a b/c-ratio of
2, but it is for b/c = 3 and b/c = 5. All other strategies are equilibria for all
b/c-ratios, but the basins of attraction of All D against strategies with high
punishment length are small.

The shifting balance between the negative effect on the payoff when play-

ing against a copy of oneself of punishment being long and harsh, and the

negative effect on the payoff when playing against All D of punishment be-

ing (too) short and forgiving can lead to different patterns. For a b/c−ratio

of 3, there is just a valley in the punishment length (or a hump in forgive-

ness); and for a b/c−ratio of 2, this valley is preceded by a little hump.

For a b/c−ratio of 2, there is also a little hump in cooperativeness, which

indicates that this does not need the presence of jumpstarters (see Figure 23).
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Figure 22: The stationary distribution for different error rates. Mu-
tations happen u.a.r. between all 22 strategies. Parameters are: N = 100,
δ = 0.9, and b

c
= 3. Because of the geometrical pattern in Figure 20, the

stationary distribution looks a bit rugged. S0 is All C, which is never an
equilibrium. All other strategies are equilibria for all error rates, but the
basins of attraction of All D against strategies with high punishment length
are small.

9 Forgiveness and punishment as a function

of the error rate in the simulations

If we want to explore how the amount of forgiveness in the simulations

changes as the error rate increases, we need a way to measure forgiveness.

One of the ways to do that would be to follow the definition in Dal Bó and

Pujals (2020) that separates strategies into two categories; strategies that
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(a) Cooperation at b
c = 2 (b) Cooperation at b

c = 3

(c) Punishment at b
c = 2 (d) Punishment at b

c = 3

Figure 23: Cooperation and punishment in the reduced model as a
function of the error rate. The level of cooperation in panels (a) and (b)
is calculated as the weighted sum of the proportions at which the individual
strategies, S0 to S20 and All D, as residents play cooperate at a given ϵ.
The weights reflect the proportion of time the population spends with a
the respective strategy as a resident, and are calculated like in Figure 21
as the strategies’ weights in the stationary distribution of a Moran process,
where mutations happen with uniform probability between all strategies in
the reduced strategy set, and where the mutation rate is infinitesimally small.
Analogously, the punishment length in panels (c) and (d) is calculated as a
weighted sum of expected (discounted) punishment lengths of the individual
strategies. For strategy Sn the expected punishment length is computed as
1−δn
1−δ . As in Figure 24, All D is not considered in this weighted sum, and
the weights of all remaining strategies are normalised to add up to one. The
continuation probability is δ = 0.9.
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are forgiving and strategies that are unforgiving. A strategy s then is called

unforgiving if there exists a history ht such that s (hthτ ) = D for any history

hthτ – where the latter is a notation that subdivides a history that starts

with ht into that initial sequence and the remainder. For FSAs, that means

that a strategy is unforgiving, if it has a defecting state from which there is

no sequence of transitions that brings it to a cooperative state. All strate-

gies Sn discussed in the previous section are forgiving; they always return

to the initial state from any other state, and they even do so regardless of

what is being played. Contrite Tit-for-Tat, both the standard one depicted

in Figure 2, and the version in Figure 3 also has a clear path back to the

initial, cooperative state. On the error-free path, jumpstarter stays in the

first, defecting state, but there are paths to the second, cooperative state. If

a defection happens while in that state, then it returns to the first state, for

which there is a path (back) to the cooperative state. This strategy therefore

is also classified as forgiving. Tit-for-Tat is also forgiving, but Grim Trigger

is not.

According to this definition, All D is also an unforgiving strategy. In their

paper, that is conceptually and practically useful, as it is the inefficiency of

continuation payoffs that is central to their argument, and this does not

discern between the whole repeated game and a subgame that is reached

after one or more errors. One could however also argue that, when All D

plays against All D, it has nothing to be forgiven for. We could therefore also

choose to measure forgiveness only within in the set of strategies excluding

All D. Whether we include All D or not, what we find is that almost all of the

strategies that are present in the population, for a variety of combinations

of error rates and continuation probabilities, are either All D, or they are a

strategy that is forgiving according to the definition from Dal Bó and Pujals

(2020). This however is not the result of selection acting for or against

strategies that are unforgiving; it is just a consequence of the fact that in our
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setting with errors, every state in an FSA has four outgoing arrows, which

makes it really unlikely that, if an FSA has a cooperative state, there is a

defecting state from which this cooperative state could never be reached –

even if the sequence of errors and non-errors that this would require is very

unlikely.

Another possibility for a definition of forgiveness is to consider what hap-

pens when an FSA plays against a copy of itself. For every cooperative state

on the error-free path, we can then check if it has the property that if the

opponent (and only the opponent) erroneously defects, while both are in that

state, the automaton will eventually return to a cooperative state in the ab-

sence of further errors. If that is the case for all cooperative states on the

error-free path, then we call this strategy self-forgiving. The strategies Sn

all qualify as self-forgiving, and so does Contrite Tit-for-Tat. Grim Trigger

is not self-forgiving, and neither is jumpstarter. Figure 24a shows that if we

do use this binary measure of forgiveness, and we vary the error rate, there

is a little hump in the amount of time the system spends in states with a

self-forgiving resident.

This definition can however be a bit permissive, because strategies Sn, as

discussed in Section 8, all qualify as self-forgiving, even if n is very large. For

a non-binary measure for forgiveness that would reflect the difference between

S2 and S20, we can also go over all cooperative states on the error-free path.

For all of those, we can calculate the expected number of stage games that

it takes after a unilateral defection, while in that state, until the automaton

returns to a cooperate state, assuming no further error occurs. We can then

take a weighted average of these times to return to a cooperative state over

all the cooperate states on the error-free path, with weights proportional to

the expected time spent in each of these cooperate states assuming that no

error occurs. These per-automaton averages are then obviously themselves

in turn weighted by the time spent with them as residents, where we exclude
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(a) Self-forgiving residents (b) Punishment length

Figure 24: Forgiveness as a function of the error rate. The parameters
are: b

c
= 2, N = 200 and δ = 0.9. In panel (a), the red line indicates the

proportion of time that the population spends with a resident that plays
All D on the error-free path. For the blue lines in panel (a) and (b), only
residents who do not play All D on the error-free path are considered. Both
lines are constructed by looking at how the resident automata respond to
single error-caused unilateral defections in those cooperate states which are
reached on the error-free path when playing against copies of themselves.
The blue line in panel (a) indicates the time that is spent with a resident
that is self-forgiving (see the text for the definition) as a proportion of the
time spent with all residents that do not play All D on the error-free path.
The blue line in panel (b) indicates the average of the expected number of
stage games that it takes until the automaton returns to a cooperate state
after a unilateral defection (again, see the text for a more precise definition).

strategies that play All D on the error-free path. In Figure 24b, we see that

for this measure, there is a little dip in the error-free punishment length,

where a decrease in punishment length is of course seen as an increase in

forgiveness.

As with cooperation, we therefore find that with either definition, for-

giveness peaks at moderate, but non-zero error rates. In light of the results

presented so far, this is no surprise. For one, selection on states that when

meeting copies of oneself are only reached after an error is weak if errors are

very infrequent. Similarly, as in section 7, mutants that jumpstart coopera-

56



tion in a subgame in which the resident is unforgiving are more successful at

moderate, but non-zero error rates.

Both of these arguments suggest that, how strongly the dynamics favour

strategies which strike a good balance between forgiveness and punishment,

varies with the error rate. However, what constitutes a good balance between

forgiveness and punishment, is also a function of the error rate.

9.1 Relation to results in Dal Bó and Pujals (2020)

The results in Dal Bó and Pujals (2020) center around comparing the sizes

of invasion barriers of different equilibria. In their paper, Lemma 1 states

that All D does not have a uniformly large basin of attraction; Theorem 1

states that unforgiving strategies also do not have a uniformly large basin of

attraction; and Theorem 2 states that if a strategy s has a uniformly large

basin of attraction and is symmetric, then it is asymptotically efficient. A

natural setting in which the size of the basin of attraction is the only ingre-

dient one should focus on for understanding finite population dynamics, is,

first of all, one in which there is a set of ESSs, or, in other words, in which

there is a set of equilibria that all have positive invasion barriers against

all mutants. Equilibria, moreover, would be left very rarely, and these rare

transition would be caused by sets of agents making the same error simulta-

neously, thereby jumping from one equilibrium into the basin of attraction of

the other. Once in the basin of attraction of the other equilibrium, selection

then deterministically takes the population to this new equilibrium. These

are the dynamics considered in Young (1993) and Kandori et al. (1993), and

these dynamics justify the static stability concept of a stochastically stable

strategy in Young (1993), or a long-run equilibrium in Kandori et al. (1993).

In such a dynamics, obviously, the relative sizes of the basins of attraction

are all that matters, as those determine how likely simultaneous errors move

57



a population outside the basin of attraction of an equilibrium.

In the finite population dynamics that we consider, the size of the basin

of attraction is not the only determinant of how easy or hard it is to leave an

equilibrium. The Moran process is a stochastic, finite population version of

the replicator dynamics. In this dynamic, there is noise, and getting out of a

basin of attraction of one equilibrium is not happening as a result of a set of

individuals that simultaneously make the same mistake, or that mutate into

the same alternative strategy at the same time. Instead, one mutant with a

payoff disadvantage may arise, and randomness in reproduction may result

in the share of this mutant growing anyway. This would then have to happen

over subsequent generations. The probability of making it out of the basin of

attraction of the resident then not only depends on how far away the invasion

barrier is, but also how shallow or deep the basin of attraction is (or, in other

words, how strongly selection pushes back towards the equilibrium within the

basin of attraction). The probability of making it out of a large, but shallow

basin of attraction may be larger than the probability of making it out of

a smaller, but deeper basin of attraction. Especially when we consider low

error rates, for which payoff differences between strategies that share the

same error-free path are very small, this makes a big difference.

The closer the continuation probability is to 1, however, the more the

effect of adding a tiny bit of errors on payoff differences can be amplified.

For a fixed δ, the differences between the payoffs of, for instance, 1) Grim

Trigger against itself; 2) Grim Trigger against All C; 3) All C against Grim

Trigger; and 4) All C against All C vanish in the limit of ϵ going to 0. For a

fixed ϵ, on the other hand, these payoffs converge to ϵb+(1−ϵ)c, (1−ϵ)(b+c),

ϵ(b+ c), and (1− ϵ)b+ ϵc, respectively, and those are as different as can be.

For a fixed δ, this implies that it becomes relevant what happens with-

out errors. From Garćıa and van Veelen (2016) and van Veelen et al. (2012)

we know that the dynamics without errors are characterised by indirect in-
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vasions. In those dynamics, all equilibria, in time, are undermined by a

sequence of mutants, where first we get one or more neutral mutants that do

not change the behaviour within the population. At some point a neutral mu-

tant arises that would not punish deviations, or not sufficiently harshly, and

then a mutant that takes advantage of the absence of threat of (sufficiently

harsh) punishment invades, and changes what is being played in the popu-

lation. A relevant observation here is that in the limit of error rates going

to 0, the set of strategies that behave the same on the error-free path be-

comes the set of neutral mutants. Within this set, differences in how harshly

they punish may give different strategies within this set different invasion

barriers. How large these invasion barriers are all depends on relative payoff

differences. In the limit of the error rate going to 0, all payoff differences

within this set however vanish, and the fixation probability between any pair

of neutral mutants becomes 1
N
, regardless of how their basins of attraction

relate in the limit. This implies that differences in invasion barriers may be

quite large in the limit of the error rate going to 0, while for the dynamics

we consider, these mutants become indistinguishable.

Even though the size of the basin of attraction may not be the sole de-

termining factor of stability in the dynamics, the discontinuity in payoffs at

(δ, ϵ) = (1, 0) allows for the possibility that there is a sequence of δ’s and

ϵ’s, where δ goes to 1 and ϵ to 0, for which the difference with the invariant

distribution at (δ, ϵ) = (1, 0) becomes sizable. This would be consistent with

Dal Bó and Pujals (2020), although it might take the population size going

to infinity to really have the cooperation rate approach 1. This is however

still speculative, as it is a computational challenge to let the population size

become large.
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10 Discussion

In this paper, we investigated what kind of strategies evolve in repeated pris-

oner’s dilemmas with execution errors. We have combined theoretical results

with simulations in order to make sure that our theoretical results are in-

formative about population dynamics. The dynamics we use is the Moran

process, which is a finite population, stochastic dynamics, that allows for

transitions between equilibria. The relative stability of the different equi-

libria, combined with how easily they invade others, is then reflected in the

amount of time the population spends in them. We are interested in what

happens in the dynamics if the continuation probability is close to 1 and the

error rate is close to 0 – which is a classical choice of a part of the parameter

space to be interested in – but we are also interested in what happens when

it is just the error rate that is close to 0, when it is just the continuation

probability that is close to 1, or when neither of the two is close to 0 and 1,

respectively. The reason to also be interested in other parts of the parameter

space is that there are many ways in which results concerning specific ways to

approach (δ, ϵ) = (1, 0) may not be informative about realistic combinations

of those that we might also be interested in.

10.1 How much subgame perfection?

Since the presence of execution errors implies that all subgames can be

reached, one question is whether this leads to selection of equilibria that,

in the absence of errors, would qualify as subgame perfect. A strategy that

would not be subgame perfect without errors is not a Nash equilibrium with

errors. Our first main result is that, in order to be a Nash equilibrium with

errors, a finite state automaton (FSA) has to be self-mirroring. We also note

that selection will have to be spread thinly on some subgames, or on some

states that the FSAs can be in. For high error rates or low continuation
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probabilities, there are no cooperative equilibria, and since All D is subgame

perfect, we find almost only subgame perfection there. For lower error rates

and higher continuation probabilities, there are cooperative equilibria (al-

though All D remains an equilibrium too), but the lower the error rate gets,

the lower the probability that states off the error-free path are reached. This

explains why in the simulations we find that most strategies (other than All

D) are close to being a Nash equilibrium, but, when playing against a copy

of themselves, they do respond suboptimally in some states, and therefore in

some sets of subgames.

10.2 How much forgiveness?

In the simulations, which allow for all FSAs, we find that forgiveness and

cooperation follow a hump-shaped pattern as a function of the error rate.

Our Theorem 3 implies that the invariant distributions of the Markov chains

defined by the Moran process vary continuously as a function of the error

rate. Combined with the fact that at error rate 0, there is no reason to

expect across the board selection for or against forgiveness, and that in these

simulations, we find intermediate amounts of forgiveness at an error rate of

0, the continuity result implies that also for small error rates, we will find

intermediate amounts of forgiveness. Increasing the error rate from 0 initially

increase the amount of forgiveness, but not to spectacular degrees.

Within a restricted set of strategies, we find that there are two effects,

the balance between which can shift as the error rate changes. With errors,

strategies that punish more harshly get lower payoffs against themselves,

which works against harsh punishment. Strategies that are (very) forgiving,

on the other hand, are more vulnerable to invasion by defecting strategies.

The shifting balance between these effects can create a hump in forgiveness

(or the valley in punishment length), which replicates the hump in forgiveness
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in the simulations with unrestricted strategy set.

In the parameter region where equilibria get ever sparser, close to the

boundary across which there are none (that is, with high error rates, or low

continuation probabilities, or some mix of those) we do have theoretical re-

sults with respect to forgiveness, and they are mixed. Asymmetric strategies

that are still equilibria in this parameter region (such as Contrite Tit-for-

Tat) are very forgiving, and they have to be, in order to incentivise those

that make mistakes to repent. This set of strategies is very different from

the set of symmetric strategies, which do not require anything from the in-

dividual that made the error in order to go (back) to a cooperative state.

For these symmetric strategies, the last strategies standing, as the error rate

increases, or the discount rate decreases, are Grim Trigger and Minimal Grim

Trigger (where the latter only goes to the punishment state after a mutual

defection). One of our results implies that if neither of these is an equilib-

rium, then no other symmetric strategy is, and even though it takes more

to trigger punishment in Minimal Grim Trigger, strategies that punish less

severely if they do, compared to Grim Trigger and Minimal Grim Trigger,

stop being equilibria before these harsh punishers do .

10.3 How much cooperation?

The average amount of cooperation for any given strategy depends on what it

does on the error-free path, and on how harshly it punishes defections. For a

fixed distribution of strategies, increasing the error rate increases the amount

of punishment that is triggered, so without changes in the composition of the

invariant distribution, and within the subset of equilibrium strategies that

cooperate, the amount of cooperation would only go down. In the simula-

tions, however, we find a hump as the error rate increases from 0. This means

that the composition of the invariant distribution must be changing. Regard-
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ing the punishment of defections, we have just recapitulated that there is an

initial shift towards shorter punishment lengths, or towards more forgive-

ness, which reduces the effect of the increased rate at which punishment is

triggered. There must however also be a change in the average amount of

cooperation on the error-free path. With a 4-strategy model, we have seen

that there is scope for what would be indirect invasions out of defection in

the absence of errors becoming more likely relative to what would be indirect

invasions out of defection in the absence of errors. The errors therefore can

shift the balance of indirect invasions out of defection and out of cooperation.

The increase in cooperation that this brings does not reflect the ingredients

that make full efficiency stable in Fudenberg and Maskin (1990) and Dal Bó

and Pujals (2020).

What we do not investigate in this paper, is the possibility that mutants

always being present can make the indirect invasion out of cooperative equi-

libria harder (Boyd and Lorberbaum, 1987). The idea there is that if there

is for instance always a certain minimum fraction of All D around, then in a

population that is otherwise composed of Grim Trigger, All C has a (slight)

disadvantage compared to Grim Trigger, and stops being a neutral mutant.

Because our model assumes the low mutation limit, this element is absent

in our simulations. Errors do however play a somewhat similar role, as they

also stop All C from being a neutral mutant of for instance Grim Trigger.
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A Proof Theorem 2

Proof. We start by reasoning through what a symmetric automaton that

maximises incentives to cooperate for any given set of parameters, and that

therefore is stable on a maximally large parameter region, looks like. This

reasoning will lead us to strategies that in their cooperative state, behave

identically either to Grim Trigger or to Minimal Grim Trigger. Finally, we

derive the condition for these strategies to be Nash equilibria.

By definition, a cooperative FSA contains at least one state with the

output cooperate. We consider an arbitrary cooperative state and label it

state 1. If all states with the output cooperate in a cooperative FSA had

the property that the transition associated with observing the action pair

(C,D) in that state leads to a state with the output cooperate, then the

FSA would not be a Nash equilibrium – just as All C is not an equilibrium.

Hence, having a state with the output cooperate that transitions to a state

with the output defect when observing a defection is a necessary condition

for a cooperative strategy to be a Nash equilibrium, but it is clearly also a

sufficient condition for the automaton to be cooperative. So, we can without

loss of generality assume that after being defected on in state 1, the FSA

immediately moves to a state with the output defect, which we label state 2.

The error-free path through the FSA after observing joint cooperation

while being in state 1 has to include at least one state with the output coop-

erate – otherwise it would be optimal to already defect in state 1. Moreover,

if a sequence of states on the error-free path after joint cooperation in state

1 starts with a state with the output defect, then we can increase the value

of cooperating rather than defecting in state 1 by skipping this state and

moving to the next state on the error-free path. Hence, we can assume for

our purposes that after observing joint cooperation in state 1 the FSA moves

to another state with the output cooperate. As this argument can be applied
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recursively to any cooperate state on the error-free path starting at state 1,

it follows that all states on this path have the output cooperate. This makes

the problem stationary. Hence, to analyze whether cooperation in an arbi-

trarily chosen cooperative state 1 is incentive-compatible as a function of the

value of being in its punishment state 2, we can simply restrict attention to

FSAs that remain in this state 1 after observing joint cooperation in state

1, and that consequently always move to the same punishment state 2 after

observing a unilateral defection.

If we index the state that both players move to in case they both defect

in state 1 by “3”, and denote the value of being in the states 1, 2 and 3 by

V1, V2 and V3, then we can write the condition for cooperation in state 1 to

be the payoff maximizing choice as follows:

(1− ϵ)(b− c) + δ((1− ϵ)2V1 + 2(1− ϵ)ϵV2 + ϵ2V3)

≥ (1− ϵ)b− ϵc+ δ((1− ϵ)ϵV1 + ((1− ϵ)2 + ϵ2)V2 + ϵ(1− ϵ)V3)

This we can simplify a bit.

δ ((1− ϵ)(1− 2ϵ)V1 − (1− 4(1− ϵ)ϵ)V2 − ϵ(1− 2ϵ)V3) ≥ (1− 2ϵ) c

δ
(
(1− ϵ)(1− 2ϵ)V1 − (1− 2ϵ)2V2 − ϵ(1− 2ϵ)V3

)
≥ (1− 2ϵ) c

δ ((1− ϵ)V1 − (1− 2ϵ)V2 − ϵV3) ≥ c

(1− ϵ)V1 − (1− 2ϵ)V2 − ϵV3 ≥
c

δ

Under the assumption that this is an equilibrium, we can express V1 in

terms of V1, V2 and V3:

V1 = (1− ϵ)(b− c) + δ ·
(
(1− ϵ)2V1 + 2ϵ(1− ϵ)V2 + ϵ2V3

)
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Solving for V1 yields:

V1 =
(1− ϵ)(b− c) + δ · (2ϵ(1− ϵ)V2 + ϵ2V3)

1− δ(1− ϵ)2

We plug that back into the inequality above.

(1− ϵ)

(
(1− ϵ)(b− c) + δ · (2ϵ(1− ϵ)V2 + ϵ2V3)

1− δ(1− ϵ)2

)
− (1− 2ϵ)V2 − ϵV3 ≥

c

δ

Then we separate the factors involving V2 and V3.

(1− ϵ)

(
(1− ϵ)(b− c)

1− δ(1− ϵ)2

)
+ (1− ϵ)

(
(δ · (2ϵ(1− ϵ))

1− δ(1− ϵ)2
V2

)
+ (1− ϵ)

(
δ · ϵ2

1− δ(1− ϵ)2

)
V3

− (1− 2ϵ)V2 − ϵV3 ≥
c

δ

We multiply both sides with 1−δ(1−ϵ)2, and then we expand and simplify

the factors that multiply V2 and V3. This takes a few steps.

(1− ϵ)(1− ϵ)(b− c)

+
(
((1− ϵ) · δ · (2ϵ(1− ϵ))− (1− 2ϵ) · (1− δ(1− ϵ)2)

)
V2

+
(
(1− ϵ) · δ · ϵ2 − (1− δ(1− ϵ)2)ϵ

)
V3

≥ c

δ
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(1− ϵ)(1− ϵ)(b− c)

+
(
((δ − δϵ) ·

(
2ϵ− 2ϵ2)

)
− (1− δ(1− ϵ)2) + 2ϵ(1− δ(1− ϵ)2)

)
V2

+
(
δϵ2 − δϵ3 − ϵ+ ϵδ(1− 2ϵ+ ϵ2)

)
V3

≥ c

δ

(1− ϵ)(1− ϵ)(b− c)

+

(
2δϵ− 4δϵ2 + 2δϵ3

− (1− δ(1− 2ϵ+ ϵ2)) + 2ϵ(1− δ(1− 2ϵ+ ϵ2))

)
V2

+
(
δϵ2 − δϵ3 − ϵ+ ϵδ − 2δϵ2 + δϵ3)

)
V3

≥ c

δ

(1− ϵ)(1− ϵ)(b− c)

+

(
2δϵ− 4δϵ2 + 2δϵ3

− 1 + δ − 2δϵ+ δϵ2 + 2ϵ− 2ϵ(δ − 2δϵ+ δϵ2))

)
V2

+
(
−ϵ+ ϵδ − δϵ2)

)
V3

≥ c

δ
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(1− ϵ)(1− ϵ)(b− c)

+

(
2δϵ− 4δϵ2 + 2δϵ3

− 1 + δ − 2δϵ+ δϵ2 + 2ϵ− 2ϵδ + 4δϵ2 − 2δϵ3))

)
V2

−
(
1− ϵδ + δϵ2)

)
V3

≥ c

δ

(1− ϵ)(1− ϵ)(b− c)

+

(
− 1 + δ − 2δϵ+ δϵ2 + 2ϵ)

)
V2

−
(
1− ϵδ + δϵ2)

)
V3

≥ c

δ

(1− ϵ)(1− ϵ)(b− c)

+

(
− 1 + δ(1− ϵ)2 + 2ϵ)

)
V2

−
(
1− ϵδ + δϵ2)

)
V3

≥ c

δ

71



(1− ϵ)(1− ϵ)(b− c)

−
(
1− δ(1− ϵ)2 − 2ϵ)

)
V2

−
(
1− ϵδ + δϵ2)

)
V3

≥ c

δ

The term − (1− ϵδ + δϵ2)) is always negative on (δ, ϵ) ∈ (0, 1) × (0, 1
2
).

Our inequality is therefore most broadly satisfied if state 3 has the smallest

possible value that can be stabilised in equilibrium – the output in this state

has to be defect, and there can be no return to a cooperative state.

The term − (1− δ(1− ϵ)2 − 2ϵ)) is negative if δ < 1−2ϵ
(1−ϵ)2 . This expression

corresponds to the dashed line in Figure 7. Depending on the sign of this

term, the inequality above is therefore most broadly satisfied, for δ below

this threshold, by the smallest possible value in state 2, or for δ above this

threshold by the largest possible value in state 2.

Note that in the former case (δ below the threshold), we have therefore

arrived at Grim Trigger. Regarding the latter case, the largest possible payoff

is attained if V2 corresponds to indefinite cooperation. However, for cooper-

ate states to be incentive compatible they must punish some deviations from

cooperation. State 2 therefore needs to satisfy the same incentive constraint

as state 1, so that the behaviour that makes these states most broadly incen-

tive compatible is identical, meaning that V2 = V1. Note that for this case,

we have arrived at Minimal Grim Trigger.

We start by deriving the condition for Grim Trigger to be an equilibrium,

and then derive the condition for Minimal Grim Trigger to be an equilibrium.

For Grim Trigger, we, thus, have V2 = V3 =
ϵ(b−c)
1−δ . We, first rearrange using

that the values in state 2 and 3 are equal. Recall our expression looked as

follows.
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(
2δϵ(1− ϵ)2(1− 2ϵ)− 4δϵ(1− ϵ)(1− ϵ)2 + δ(1− ϵ)2 + 4(1− ϵ)ϵ− 1

)
V2

ϵ(1− 2ϵ)
(
δ · ϵ(1− ϵ)−

(
1− δ(1− ϵ)2

))
V3

≥ 1− 2ϵ

δ
c
(
1− δ(1− ϵ)2

)
− (1− ϵ)2(1− 2ϵ)(b− c)

Substituting in V2 = V3 = V allows us to simplify as follows.

(1− ϵ)

(
(1− ϵ)(b− c) + δ · (2ϵ(1− ϵ)V + ϵ2V )

1− δ(1− ϵ)2

)
− (1− ϵ)V ≥ c

δ

(1− ϵ)

(
(1− ϵ)(b− c) + δ · (1− (1− ϵ)2)V )

1− δ(1− ϵ)2

)
− (1− ϵ)V ≥ c

δ(
(1− ϵ)(b− c) + δ · (1− (1− ϵ)2)V )

1− δ(1− ϵ)2

)
− V ≥ c

δ(1− ϵ)

Now we plug in V = ϵ(b−c)
1−δ and rearrange until we arrive at the inequality

in the theorem.

(
(1− ϵ)(b− c) + δ · (1− (1− ϵ)2)V )

1− δ(1− ϵ)2

)
− V ≥ c

δ(1− ϵ)(
(δ · (1− (1− ϵ)2))− (1− δ(1− ϵ)2))

1− δ(1− ϵ)2

)
V ≥ c

δ(1− ϵ)
− (1− ϵ)(b− c)

1− δ(1− ϵ)2(
(δ · (1− (1− ϵ)2))− (1− δ(1− ϵ)2)) ϵ(b− c)

1− δ

)
≥ c(1− δ(1− ϵ)2)

δ(1− ϵ)
− (1− ϵ)(b− c)

73



(
(δ − 1) ϵ(b− c)

1− δ

)
≥ c(1− δ(1− ϵ)2)

δ(1− ϵ)
− (1− ϵ)(b− c)

−ϵ(b− c) ≥ c(1− δ(1− ϵ)2)

δ(1− ϵ)
− (1− ϵ)(b− c)

(1− ϵ− ϵ)(b− c) ≥ c(1− δ(1− ϵ)2)

δ(1− ϵ)

(1− 2ϵ)(b− c) ≥ c(1− δ(1− ϵ)2)

δ(1− ϵ)

(b− c) ≥ c(1− δ(1− ϵ)2)

δ(1− ϵ)(1− 2ϵ)

b− c

(
1 +

(1− δ(1− ϵ)2)

δ(1− ϵ)(1− 2ϵ)

)
≥ 0

b

c
≥ 1 +

(1− δ(1− ϵ)2)

δ(1− ϵ)(1− 2ϵ)

b

c
≥ δ(1− ϵ)(1− 2ϵ) + (1− δ(1− ϵ)2)

δ(1− ϵ)(1− 2ϵ)

b

c
≥ 1− δ(1− ϵ)ϵ

δ(1− ϵ)(1− 2ϵ)

We now move on to derive the condition for Minimal Grim Trigger to be

a Nash equilibrium. As before, we solve for V1, now using that V1 = V2.

V1 = (1− ϵ)(b− c) + δ ·
(
(1− ϵ2)V1 + ϵ2

ϵ(b− c)

1− δ

)
V1

(
1− δ(1− ϵ2)

)
= (1− ϵ)(b− c) + δ ·

(
ϵ2
ϵ(b− c)

1− δ

)

V1 =
(1− ϵ)(b− c) +

(
δϵ3(b−c)

1−δ

)
1− δ(1− ϵ2)

Defecting rather than cooperating in state 1 yields the following payoff.
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V ′1 = (1− ϵ)b− ϵ · c+ δ ·
(
(1− ϵ · (1− ϵ))V ′1 + (1− ϵ) · ϵϵ(b− c)

1− δ

)
V ′1 (1− δ(1− (1− ϵ)ϵ)) = (1− ϵ)b− ϵ · c+ δ ·

(
(1− ϵ) · ϵϵ(b− c)

1− δ

)

V ′1 =
(1− ϵ)b− ϵ · c+ δ ·

(
(1− ϵ) · ϵ ϵ(b−c)

1−δ

)
1− δ(1− (1− ϵ)ϵ)

Now we compute the difference between these values V1 − V ′1 . Minimal

Grim Trigger constitutes an equilibrium if this difference is positive.

V1 − V ′1 =
(1− ϵ)(b− c) +

(
δϵ3(b−c)

1−δ

)
1− δ(1− ϵ2)

−
(1− ϵ)b− ϵ · c+ δ ·

(
(1− ϵ) · ϵ ϵ(b−c)

1−δ

)
(1− δ)(1− δ(1− (1− ϵ)ϵ))

=
(1− ϵ)(b− c)(1− δ) + δϵ3(b− c)

(1− δ)(1− δ(1− ϵ2))

− (1− δ)(1− ϵ)b− (1− δ)ϵ · c+ δ(1− ϵ) · ϵ2(b− c)

1− δ(1− (1− ϵ)ϵ)

=
(b− c)(1− δ − ϵ+ δϵ+ δϵ3)

(1− δ)(1− δ(1− ϵ2))

− b(1− δ − ϵ+ δϵ+ δϵ2 − δϵ3)

(1− δ)(1− δ(1− (1− ϵ)ϵ))

+
(ϵ− δϵ+ δϵ2 − δϵ3)c

(1− δ)(1− δ(1− (1− ϵ)ϵ))
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=
(1− δ(1− (1− ϵ)ϵ))(b− c)(1− δ − ϵ+ δϵ+ δϵ3)

(1− δ)(1− δ(1− ϵ2))(1− δ(1− (1− ϵ)ϵ))

− (1− δ(1− ϵ2))b(1− δ − ϵ+ δϵ+ δϵ2 − δϵ3)

(1− δ)(1− δ(1− (1− ϵ)ϵ))(1− δ(1− ϵ2))

+
(1− δ(1− ϵ2))(ϵ− δϵ+ δϵ2 − δϵ3)c

(1− δ)(1− δ(1− (1− ϵ)ϵ))(1− δ(1− ϵ2))

The denominator is positive, so it will not affect the sign of the difference.

We therefore drop it from the further calculations.

(1− δ(1− (1− ϵ)ϵ))(b− c)(1− δ − ϵ+ δϵ+ δϵ3)

− (1− δ(1− ϵ2))b(1− δ − ϵ+ δϵ+ δϵ2 − δϵ3)

+ (1− δ(1− ϵ2))(ϵ− δϵ+ δϵ2 − δϵ3)c

=(1− δ + δϵ− δϵ2)(b− c)(1− δ − ϵ+ δϵ+ δϵ3)

− (1− δ + δϵ2)b(1− δ − ϵ+ δϵ+ δϵ2 − δϵ3)

+ (1− δ + δϵ2)(ϵ− δϵ+ δϵ2 − δϵ3)c

=b ·
(
(1− δ + δϵ− δϵ2) · (1− δ − ϵ+ δϵ+ δϵ3)− (1− δ + δϵ2)(1− δ − ϵ+ δϵ+ δϵ2 − δϵ3)

)
−c((1− δ + δϵ− δϵ2)(1− δ − ϵ+ δϵ+ δϵ3)− (1− δ + δϵ2)(ϵ− δϵ+ δϵ2 − δϵ3))
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=b ·
(
1− 2δ + δ2 − ϵ+ 3δϵ− 2δ2ϵ− 2δϵ2 + 2δ2ϵ2 + 2δϵ3 − 2δ2ϵ3 + δ2ϵ4 − δ2ϵ5

− (1− 2δ + δ2 − ϵ+ 2δϵ− δ2ϵ+ 2δϵ2 − 2δ2ϵ2 − 2δϵ3 + 2δ2ϵ3 + δ2ϵ4 − δ2ϵ5)

)
− c

(
1− 2δ + δ2 − ϵ+ 3δϵ− 2δ2ϵ− 2δϵ2 + 2δ2ϵ2 + 2δϵ3 − 2δ2ϵ3 + δ2ϵ4 − δ2ϵ5

− (ϵ− 2δϵ+ δ2ϵ+ δϵ2 − δ2ϵ2 + δ2ϵ4 − δ2ϵ5)

)

=b(δϵ− δ2ϵ− 4δϵ2 + 4δ2ϵ2 + 4δϵ3− 4δ2ϵ3)

− c(1− 2δ + δ2 − 2ϵ+ 5ϵδ − 3δ2ϵ− 3δϵ2 + 3δ2ϵ2 + 2δϵ3 − 2δ2ϵ3)

=b(1− δ)δϵ(1− 2ϵ)2

− c((1− δ)(1− 2ϵ)(1− δ + δϵ− δϵ2))

Both b and c are multiplied by factors that are positive in the considered

parameter regions. The whole expression is therefore positive if the following

holds.

b

c
≥ (1− δ)(1− 2ϵ)(1− δ + δϵ− δϵ2)

(1− δ)δϵ(1− 2ϵ)2

b

c
≥ (1− δ + δϵ− δϵ2)

δϵ(1− 2ϵ)

b

c
≥ 1− δ(1− ϵ+ ϵ2)

δϵ(1− 2ϵ)
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B Proof Theorem 3

Proof. Without loss of generality, we are considering differentiability with

respect to ϵ at ϵ = 0, which is indicated by the subscript 0.

If a stationary distribution σ exists, then all σ(i) must satisfy σ(i) =
pj,i

pj,i+P (i,i)
, where generally, P (i, j) is the per-iteration probability of moving

from state i to state j, so that P (i, i) is the per-iteration probability of

remaining in state i, and pj,i is the aggregate per-iteration influx into state

i, pj,i =
∑

k ̸=i σ(k)P (k, i). (That follows from the fact that for a two-state

process we have

σ(i) = σ(i)P (i, i) + σ(j)P (j, i)

= σ(i)(1− P (i, j)) + (1− σ(i))P (j, i)

=⇒ σ(i) =
P (j, i)

P (i, j) + P (j, i)

and here we simply aggregate all states ̸= i into one state ”j”.)

Now, we proceed to show that the absolute value of the total differential

dσ0(i)

dϵ
=

dσ0(i)

dP (i, j)

dP (i, j)

dϵ
+

dσ0(i)

dpj,i

dpj,i
dϵ

is bounded (maxi |dσ0(i)
dϵ

| < ∞). This will imply that for any δ, we can find

an ϵ such that maxi |σ0(i)− sϵ| < δ.

First, note that the absolute value of the first factors, dσ0(i)
dP (i,j)

and dσ0(i)
dpj,i

,

is bounded by 1
4m

. For any given P (i, j), the absolute value of the partial
dσ0(i)
dP (i,j)

is maximised by choosing pj,i = P (i, j).
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| dσ(i)

dP (i, j)
| = pj,i

(P (i, j) + pj,i)2

| d

dpj,i

dσ(i)

dP (i, j)
| = | P (i, j)− pj,i

(P (i, j) + pj,i)3
|

The resulting term | dσ(i)
dP (i,j)

| = P (i,j)
(2P (i,j))2

is maximal on P (i, j) ∈ [m, 1] at

P (i, j) = m. Hence | ds(i)
dP (i,j)

| ≤ m
(2m)2

= 1
4m

. (The reasoning for |ds(i)
dpj,i

| is
analogous.)

Furthermore, we have |dP (i,j)
dϵ

| ≤ M , so it follows that | dσ0(i)
dP (i,j)

dP (i,j)
dϵ

| ≤ M
4m

.

Lastly, for
dpj,i
dϵ

, we can use that pj,i can be approximated arbitrarily well

by considering only finitely long sequences of states that the process could

visit between leaving state i and returning to state i. Specifically, let Prϵ(q)

be the probability that the process, when leaving state i traverses a given

sequence q of states ̸= i before returning to i. Then it holds that

pj,i =
∑

q∈Sequences

Prϵ(q)
1

length(q)

Now if we choose some maximum considered sequence length L, we get

an approximation p̃j,i =
∑

length(q)≤L Prϵ(q)
1

length(q)
. For this approximation

it holds that

pj,i − p̃j,i ≤
1

L+ 1

Let’s choose L to be a function of ϵ, such as L(ϵ) = ⌈ 1
ϵ2
⌉. Then,

dpj,i
dϵ

= lim
ϵ↘0

1

ϵ

 1

L(ϵ) + 1
+

∑
length(q)≤L(ϵ)

(Prϵ(q)− Pr0(q))
1

length(q)


where Prϵ and Pr0 are the likelihoods of traversing q at 0 and at ϵ.

Now,
∑

length(q)≤L(ϵ)(Prϵ(q) − Pr0(q))
1

length(q)
is maximal if all changes
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in probability act on sequences of length one. This is because Pr(q) =

P (i, q1) ·P (q1, q2) · · ·P (qL, i), and the change in Pr(q) is maximal if all P (·, ·)
increase(decrease). Now the change in P (·, ·) is bounded by ϵM .

Further, pL − (p − ϵ · M)L is maximised by p = 1 on p ∈ [0, 1]. Lastly,

limϵ→0
(1−(1−ϵ)L)

L
is decreasing in L. In words, (A) the probability-change that

a sequence of length L can undergo, if each individual transition rate can

change only by ϵ · M , is maximal if the initial probability was 1, and (B)

given that (Pr(q) = 1), the probability change is maximised by choosing

small L. Therefore, we are only considering sequences of one state, and the

probability of such a sequence Pr(q) can change by at most ϵM .

Hence, we arrive at the following approximation for | dσ0(i)
dP (j,i)

||dP (j,i)
dϵ

|

| dσ0(i)

dP (j, i)
||dP (j, i)

dϵ
| ≤ P (i, j)

(P (i, j) + P (j, i))2
lim
ϵ→0

1

ϵ

(
1

L(ϵ) + 1
+ ϵM

)
≤ 1

4m
M

and overall, we arrive at

dσ(i)

dϵ
≤ M

2m

C Proof Theorem 4

Proof. Nowak et al. (2004) show that in the limit of weak selection, a single

mutant (in our case J for jumpstarter) has probability greater than 1
N

of

invading a population (where we now give the resident the subscript D for All

D), if (2N–1)πJ,D+(N–2)πJ,J > (2N–4)πD,D+(N +1)πD,J . We can use this

limit result, because at an error rate of zero, jumpstarters are neutral mutants
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of All D, and because we are considering infinitesimally small ϵ. Since payoffs

are differentiable functions of ϵ, this implies that payoff differences are also

infinitesimally small.

We proceed by showing that the derivatives of the respective payoffs π

w.r.t. ϵ at ϵ = 0 behave in a way that ensures that the above inequality is

satisfied in a neighbourhood of ϵ = 0, which proves the claim.

Let’s denote expected stage-game payoffs as functions of intended (error-

free) actions by vdd, vcd, vdc, and vcc, and let’s use the two-parameter payoff-

matrix with non-negative payoffs introduced in section 2.2. Explicitly, the

expected stage-game payoffs look as follows.

vdd = c · (1− ϵ)2 + (1− ϵ) · ϵ · (b+ c) + ϵ2 · b

vcc = b · (1− ϵ)2 + (1− ϵ) · ϵ · (b+ c) + ϵ2 · c

vcd = (1− ϵ) · ϵ · (b+ c) + ϵ2 · (b+ c)

vdc = (b+ c) · (1− ϵ)2 + (1− ϵ) · ϵ · (b+ c)

Moving on to payoffs, All D, when playing against copies of itself always

earns

πD,D =
vdd
1− δ

.

Jumpstarters’ payoffs against copies of themselves follow the following

recursion

VJ,J(1) = vdd + δ ·
(
(1− ϵ)2 · VJ,J(1) + (1− (1− ϵ)2) · VJ,J(2))

)
VJ,J(2) = vcc + δ ·

(
(1− ϵ)2 · VJ,J(2) + (1− (1− ϵ)2) · VJ,J(1)

)
where VJ,J(1) and VJ,J(2) denote the values of J , playing against J being
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in state 1 and 2 respectively, and πJ,J = VJ,J(1). Solving this for VJ,J(1) and

plugging in yields the following expression for πJ,J .

πJ,J =
−2δϵvcc + δϵ2vcc − vdd + δvdd − 2δϵvdd + δϵ2vdd

(1− δ)(−1 + δ − 4δϵ+ 2δϵ2)

Similarly, we can describe jumpstarters’ payoffs against all D by this

infinite recursion,

VJ,D(1) = vdd + δ ·
(
(1− ϵ)2 · VJ,D(1) + (1− (1− ϵ)2) · VJ(2)

)
VJ,D(2) = vcd + δ · ((1− ϵ)ϵ · VJ,D(2) + (1− (1− ϵ)ϵ) · VJ,D(1))

which yields the following expression for πJ,D = VJ,D(1)

πJ,D =
2δϵvcd − δϵ2vcd + vdd − δϵvdd + δϵ2vdd

(1− δ)(1 + δϵ)

and, by symmetry, this expression for All D’s payoffs.

πD,J =
2δϵvdc − δϵ2vdc + vdd − δϵvdd + δϵ2vdd

(1− δ)(1 + δϵ)

As we are looking at the limit of ϵ → 0 we can ignore terms higher than

first order in ϵ. Moreover, we leave out the common factor of 1
1−δ to simplify

payoff terms.

πD,D = vdd

πJ,J =
−2δϵvcc − vdd + δvdd − 2δϵvdd

(−1 + δ − 4δϵ)

πJ,D =
2δϵvcd + vdd − δϵvdd

(1 + δϵ)
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πD,J =
2δϵvdc + vdd − δϵvdd

(1 + δϵ)

Now we plug in the expressions for vdd, vcc, vcd, and vdc into the expres-

sions for πD,D, πJ,J , πJ,D, and πD,J .

πD,D =c(1− ϵ)2 + (b+ c)(1− ϵ)ϵ

πJ,J =
1

−1 + δ − 4δϵ
·
(
− (c(1− ϵ)2)− (b+ c)(1− ϵ)ϵ− 2δϵ(b(1− ϵ)2

+ (b+ c)(1− ϵ)ϵ) + δ(c(1− ϵ)2 + (b+ c)(1− ϵ)ϵ)

− 2δϵ(c(1− ϵ)2 + (b+ c)(1− ϵ)ϵ)
)

πJ,D =
1

1 + δϵ
·
(
c(1− ϵ)2 + (b+ c)(1− ϵ)ϵ+ 2(b+ c)δ(1− ϵ)ϵ2

− δϵ(c(1− ϵ)2 + (b+ c)(1− ϵ)ϵ)
)

πD,J =
1

1 + δϵ
·
(
c(1− ϵ)2 + (b+ c)(1− ϵ)ϵ− δϵ(c(1− ϵ)2 + (b+ c)(1− ϵ)ϵ)

+ 2δϵ((b+ c)(1− ϵ)2 + (b+ c)(1− ϵ)ϵ)
)

Taking the derivative of each expression with respect to ϵ, we get the

following expressions.

dπD,D

dϵ
= −c− b(−1 + ϵ)− bϵ

dπJ,J

dϵ
= −(−1 + ϵ)(2bδϵ+ cδ(2 + 4ϵ) + b(1 + δ + 2δϵ))

1 + δ(−1 + 4ϵ)

+
4δ(−1 + ϵ)(c+ bϵ(1 + δ + 2δϵ) + cδ(−1 + 2ϵ+ 2ϵ2))

(1 + δ(−1 + 4ϵ))2

− c+ bϵ(1 + δ + 2δϵ) + cδ(−1 + 2ϵ+ 2ϵ2)

1 + δ(−1 + 4ϵ)
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dπJ,D

dϵ
= −(−1 + ϵ)(bδϵ+ 2cδϵ+ cδ(−1 + 2ϵ) + b(1 + δϵ))

1 + δϵ

+
δ(−1 + ϵ)(c+ cδϵ(−1 + 2ϵ) + bϵ(1 + δϵ))

(1 + δϵ)2

− c+ cδϵ(−1 + 2ϵ) + bϵ(1 + δϵ)

1 + δϵ

dπD,J

dϵ
= −(−1 + ϵ)(cδ + b(1− δ(−2 + ϵ))− bδϵ)

1 + δϵ

+
δ(−1 + ϵ)(c+ cδϵ+ b(1− δ(−2 + ϵ))ϵ)

(1 + δϵ)2

− c+ cδϵ+ b(1− δ(−2 + ϵ))ϵ

1 + δϵ

We evaluate these expressions at ϵ = 0.

dπD,D

dϵ

∣∣∣∣
ϵ=0

= b− c

dπJ,J

dϵ

∣∣∣∣
ϵ=0

= −c− cδ

1− δ
− 4δ(c− cδ)

(1− δ)2
+

2cδ + b(1 + δ)

1− δ

dπJ,D

dϵ

∣∣∣∣
ϵ=0

= b− c− 2cδ

dπD,J

dϵ

∣∣∣∣
ϵ=0

= −c+ b(1 + 2δ)

At ϵ = 0 both sides of this inequality (2N–1)πJ,D+(N–2)πJ,J > (2N–4)πD,D+

(N + 1)πD,J are equal. Hence, if we substitute these derivatives into the in-

equality from above, we arrive at a condition for the inequality to be satisfied

in a neighbourhood of ϵ = 0.
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(−c− cδ

1− δ
− 4δ(c− cδ)

(1− δ)2
+

2cδ + b(1 + δ)

1− δ
)(−2 +N) + (b− c− 2cδ)(−1 + 2N)

> (−c+ b(1 + 2δ))(1 +N) + (b− c)(−4 + 2N)

Simplifying a bit – under the assumption that all variables are positive –

we get the following.

(1− δ)δ(b(−3 + δ + δN) + c(3− 3N + δ(−1 + 2N))) > 0

Finally, we use that 0 < δ < 1 and reformulate, to get the result in the

theorem.

(b(−3 + δ + δN) + c(3− 3N + δ(−1 + 2N))) > 0

−3b+ δb+ δNb+ c− 3Nc+ δ(2N − 1)c > 0

=⇒ δb+ δNb+ δ(2N − 1)c > 3b+ 3Nc− c

=⇒ δ(b+Nb+ (2N − 1)c) > 3b+ 3Nc− c

=⇒ δ >
3b+ 3Nc− c

(b+Nb+ (2N − 1)c)

D Proof Theorem 4

Here we assume that the jumpstater goes through M consecutive states as

sketched in Figure 13. Then the Mth state is like the first state of the Figure

9 jumpstarter, and the M +1th state is like the second state in the Figure 9

jumpstarter.

Intuitively, what this achieves is that the jumpstarting rate can become
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arbitrarily low, even if ϵ is at a fixed non-zero level. For various steps in this

proof we used the software Mathematica, Version 12.

Proof. As in the previous proof, we verify that the jumpstarter satisfies the

inequality (2N–1)πJ,D + (N–2)πJ,J > (2N–4)πD,D + (N + 1)πD,J . The sub-

script J now refers to the jumpstarter in Figure 13, and the subscript D still

refers to All D. The payoff equations are a bit different. To simplify notation,

let’s just keep the terms vcc etc. (everything is linear in payoffs, so it doesn’t

matter if the payoffs of unintended actions co-occur with the state-switch).

πDD =
vdd
1− δ

Let’s call the number of non-jumpstarting states M . Then, all payoffs follow

similar infinite recursions as before. Namely, to solve for πJ,J we have this

recursion.

VJ,J(1) =
vdd(1− δ(M+1))

1− δ
+δ(M+1)·

(
(1− ϵ)2 · VJ,J(1) + (1− (1− ϵ)2) · VJ,J(2)

)
VJ,J(2) = vcc + δ ·

(
(1− ϵ)2 · VJ,J(2) + (1− (1− ϵ)2) · VJ,J(1)

)
and to solve for πJ,D we have this recursion.

VJ,D(1) =
vdd(1− δM+1)

1− δ
+δ(M+1)·

(
(1− ϵ)2 · VJ,D(1) + (1− (1− ϵ)2) · VJ,D(2)

)
VJ,D(2) = vcd + δ · ((1− ϵ)ϵ · VJ,D(2) + (1− (1− ϵ)ϵ) · VJ,D(1))

We solve these recursions. For the jumpstarter-jumpstarter interaction

we get
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VJ,J(1) =−

(
−δ1+M(1− (1− ϵ)2)vcc −

(
(1− δ1+M)(1− δ(1− ϵ)2)vdd

)
−δ2+M(1− (1− ϵ)2)2 + (1− δ(1− ϵ)2) (1− δ1+M(1− ϵ)2)

)
VJ,J(2) =

1

(1− δ − δ1+M + δ2+M + 2δϵ+ 2δ1+Mϵ− 4δ2+Mϵ− δϵ2 − δ1+Mϵ2 + 2δ2+Mϵ2)

· 1

(1− δ)
·

(
vcc − δvcc − δ1+Mvcc + δ2+Mvcc + 2δ1+Mϵvcc − 2δ2+Mϵvcc

− δ1+Mϵ2vcc + δ2+Mϵ2vcc + 2δϵvdd − 2δ2+Mϵvdd − δϵ2vdd + δ2+Mϵ2vdd

)

and for the Jumpstarter versus All D interaction we get

VJ,D(1) =−

(
−δ1+M(1− (1− ϵ)2)vcd −

(
(1− δ1+M)(1− δ(1− ϵ)ϵ)vdd

)
(1− δ) (1− δ1+M − δϵ+ 2δ1+Mϵ− δ2+Mϵ+ δϵ2 − δ1+Mϵ2)

)
VJ,D(2) =

1

(−1 + δ) (−1 + δ1+M + δϵ− 2δ1+Mϵ+ δ2+Mϵ− δϵ2 + δ1+Mϵ2)

·

(
vcd − δvcd − δ1+Mvcd + δ2+Mvcd + 2δ1+Mϵvcd − 2δ2+Mϵvcd

− δ1+Mϵ2vcd + δ2+Mϵ2vcd + δvdd − δ2+Mvdd − δϵvdd + δ2+Mϵvdd

+ δϵ2vdd − δ2+Mϵ2vdd

)

Again, by expression we get the same expression for VD,J(1), with vdc

rather than vcd. Moreover, the expression for πD,D is as in the previous

proof. We now plug these expressions into our inequality.
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−1

−δ2+M(1− (1− ϵ)2)2 + (1− δ(1− ϵ)2)(1− δ1+M(1− ϵ)2)
·

(
−
(

1

1− δ

)
· (1− δ1+M) · (1− δ(1− ϵ)2)(c(1− ϵ)2 + (b+ c)(1− ϵ)ϵ+ bϵ2)

− δ1+M(1− (1− ϵ)2)(b(1− ϵ)2 + (b+ c)(1− ϵ)ϵ+ cϵ2))(−2 +N)

)
+

1

1− δ1+M − δϵ+ 2δ1+Mϵ− δ2+Mϵ+ δϵ2 − δ1+Mϵ2

·

(
− δ1+M(1− (1− ϵ)2)((b+ c)(1− ϵ)2 + (b+ c)(1− ϵ)ϵ)

−
(

1

1− δ

)
(1− δ1+M)(1− δ(1− ϵ)ϵ)(c(1− ϵ)2

+ (b+ c)(1− ϵ)ϵ+ bϵ2))(1 +N)

)

− (c(1− ϵ)2 + (b+ c)(1− ϵ)ϵ+ bϵ2)(−4 + 2N)

1− δ

− 1

1− δ1+M − δϵ+ 2δ1+Mϵ− δ2+Mϵ+ δϵ2 − δ1+Mϵ2
·

(
−
(

1

1− δ

)
· (1− δ1+M)(1− δ(1− ϵ)ϵ)(c(1− ϵ)2 + (b+ c)(1− ϵ)ϵ+ bϵ2)

− δ1+M(1− (1− ϵ)2)((b+ c)(1− ϵ)ϵ+ (b+ c)ϵ2))(−1 + 2N)

)
> 0

Of course, in the limit of M going to infinity, the all payoff differences

between J andD vanish. We are interested in the limit of weak selection, and

payoff differences are of order δM . Hence, we multiply the above inequality

with δ−M , and take M → ∞. The first step, multiplying with δ−M , and

simplifying (done in Mathematica) yields.
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1

((ϵ− 1)2δM+1 + ϵδM+2 − δ(ϵ− 1)ϵ− 1)

· 1

((2ϵ2 − 4ϵ+ 1) δM+2 − (ϵ− 1)2δM+1 − δ(ϵ− 1)2 + 1)

·

(
δϵ
(
2ϵ2 − 5ϵ+ 2

)
b
(
δM+2

(
2ϵ2(N + 1)− 3ϵ(N + 2) +N + 1

)
− 3(ϵ− 1)2δM+1 + δ

(
ϵ2(1− 2N) + 3ϵN −N − 1

)
+ 3
)

+ c
(
δM+2

(
ϵ2(4N − 2) + ϵ(6− 9N) + 2N − 1

)
− 3(ϵ− 1)2(N − 1)δM+1

− δ(ϵ− 1)(ϵN + ϵ− 2N + 1) + 3(N − 1)
))

> 0

Now, in the limit of M → ∞, all the terms of order δM drop out, and we

arrive at the following slightly shorter expression.

− δϵ (2ϵ2 − 5ϵ+ 2) (b(δ(ϵ− 1)(2ϵN − ϵ−N − 1)− 3)

(δ(ϵ− 1)2 − 1) (δ(ϵ− 1)ϵ+ 1)

− c(δ(ϵ− 1)(ϵN + ϵ− 2N + 1)− 3N + 3))

(δ(ϵ− 1)2 − 1) (δ(ϵ− 1)ϵ+ 1)

> 0

Lastly, we take the limitN → ∞ since we are looking at large populations.

−δϵ (2ϵ2 − 5ϵ+ 2) (b(δ(ϵ− 1)(2ϵ− 1)) + c(δ(ϵ− 1)(ϵ− 2)− 3))

(δ(ϵ− 1)2 − 1) (δ(ϵ− 1)ϵ+ 1)
> 0

The denominator is negative, and (2ϵ2 − 5ϵ + 2) is positive on ϵ ∈ [0, 1
2
]

so everything simplifies further, and we can reformulate to arrive at the

expression in our theorem.
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=⇒ b(δ(ϵ− 1)(2ϵ− 1)) + c(δ(ϵ− 1)(ϵ− 2)− 3) > 0

=⇒ b(δ(ϵ− 1)(2ϵ− 1)) > c(3− δ(ϵ− 1)(ϵ− 2))

=⇒ b(δ(1− ϵ)(1− 2ϵ)) > c(3− δ(1− ϵ)(2− ϵ))

=⇒ δ (b(1− ϵ)(1− 2ϵ) + c(1− ϵ)(2− ϵ)) > 3c

=⇒ δ >
3c

(b(1− ϵ)(1− 2ϵ) + c(1− ϵ)(2− ϵ))

E The basin of attraction of Sn vs All D is

increasing in n

The payoff of Sn against itself follows this recursion.

VSn,Sn(1) = πcc + δ · ((1− ϵ) · VSn,Sn(1) + ϵ · VSn,Sn(2))

VSn,Sn(2) = πdd ·
(1− δn)

(1− δ)
+ δn · VSn,Sn(1)

Plugging in for VSn,Sn(1) yields this expression.

VSn,Sn(1) = πcc + δ ·
(
(1− ϵ) · VSn,Sn(1) + ϵ ·

(
πdd ·

(1− δn)

(1− δ)
+ δn · VSn,Sn(1)

))
=⇒ VSn,Sn(1)(1− δ(1− ϵ)− δn+1ϵ) = πcc + δϵπdd

(1− δn)

(1− δ)

=⇒ VSn,Sn(1) =
πcc + δϵπdd

(1−δn)
(1−δ)

(1− δ(1− ϵ)− δn+1ϵ)
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For the interaction between Sn and All D (for brevity as above, ”D”), we

have this recursion. The arguments of VSn,D() and VD,Sn() refer to the state

that Sn finds itself in – All D only has one state.

VSn,D(1) = πcd + δ · ((1− ϵ) · VSn,D(2) + ϵ · VSn,D(1))

VSn,D(2) = πdd ·
(1− δn)

(1− δ)
+ δn · VSn,D(1)

As above, we plug in for the value in the second state of Sn.

VSn,D(1) = πcd + δ · ((1− ϵ) ·
(
πdd ·

(1− δn)

(1− δ)
+ δn · V1

)
+ ϵ · VSn,D(1))

=⇒ VSn,D(1) = (1− δn+1 · (1− ϵ)− δϵ) = πcd + δ · (1− ϵ) · πdd ·
(1− δn)

(1− δ)

=⇒ VSn,D(1) =
πcd + δ · (1− ϵ) · πdd · (1−δn)

(1−δ)

(1− δn+1 · (1− ϵ)− δϵ)

Analogously, we get VD,Sn(1) =
πdc+δ·(1−ϵ)·πdd· (1−δn)

(1−δ)

(1−δn+1·(1−ϵ)−δϵ) , and All D simply

earns a payoff of πdd

1−δ when playing against copies of itself.

The boundary of the basin of attraction xSn of Sn is given by this expres-

sion,

xSnVSn,Sn(1) + (1− xSn)VSn,D(1) = xSnVD,Sn(1) + (1− xSn)VD,D(1)

which resolves to xSn =
VD,D(1)−VSn,D(1)

VD,D(1)−VSn,D(1)+VSn,Sn (1)−VD,Sn (1)
.

We first consider the numerator, we plug in the expressions for the re-

spective payoffs, and then those for πdd and πcd, and reformulate a few times

along the way.
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VD,D(1)− VSn,D(1) =

(
πdd

1− δ

)
−

(
πcd + δ · (1− ϵ) · πdd · (1−δn)

(1−δ)

(1− δn+1 · (1− ϵ)− δϵ)

)

=
πdd(1− δn+1 · (1− ϵ)− δϵ)− (1− δ)πcd − δ · (1− ϵ) · πdd · (1− δn)

(1− δ)(1− δn+1 · (1− ϵ)− δϵ)

=
πdd(1− δn+1 · (1− ϵ)− δϵ− δ · (1− ϵ) · (1− δn))− (1− δ)πcd

(1− δ)(1− δn+1 · (1− ϵ)− δϵ)

=
(1− δ)(πdd − πcd)

(1− δ)(1− δn+1 · (1− ϵ)− δϵ)

=
(−cϵ− (1− ϵ)c)

(1− δn+1 · (1− ϵ)− δϵ)

=
(c− 2cϵ)

(1− δn+1 · (1− ϵ)− δϵ)

For the denominator we proceed in the same way.
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VD,D(1)− VSn,D(1) + VSn,Sn(1)− VD,Sn(1)

=

(
πdd

1− δ

)
−

(
πcd + δ · (1− ϵ) · πdd · (1−δn)

(1−δ)

(1− δn+1 · (1− ϵ)− δϵ)

)
+

(
πcc + δϵπdd

(1−δn)
(1−δ)

(1− δ(1− ϵ)− δn+1ϵ)

)

−

(
πdc + δ · (1− ϵ) · πdd · (1−δn)

(1−δ)

(1− δn+1 · (1− ϵ)− δϵ)

)

=

(
πdd

1− δ

)
+

(
πcc + δϵπdd

(1−δn)
(1−δ)

(1− δ(1− ϵ)− δn+1ϵ)

)
−

(
πdc + πcd + 2δ · (1− ϵ) · πdd · (1−δn)

(1−δ)

(1− δn+1 · (1− ϵ)− δϵ)

)

=

(
ϵ(b− c)

1− δ

)
+

(
(1− ϵ)(b− c) + δϵ2(b− c) (1−δ

n)
(1−δ)

(1− δ(1− ϵ)− δn+1ϵ)

)
−

(
(b− c) + 2δ · (1− ϵ) · ϵ(b− c) · (1−δn)

(1−δ)

(1− δn+1 · (1− ϵ)− δϵ)

)

=(b− c)

((
ϵ

1− δ

)
+

(
(1− ϵ) + δϵ2 (1−δ

n)
(1−δ)

(1− δ(1− ϵ)− δn+1ϵ)

)
−

(
1 + 2δ · (1− ϵ) · ϵ · (1−δn)

(1−δ)

(1− δn+1 · (1− ϵ)− δϵ)

))

=
(b− c)

1− δ

((
(1− δ)ϵ

1− δ

)
+

(
(1− δ)(1− ϵ) + δϵ2(1− δn)

(1− δ(1− ϵ)− δn+1ϵ)

)
−
(
(1− δ) + 2δ · (1− ϵ) · ϵ · (1− δn)

(1− δn+1 · (1− ϵ)− δϵ)

))

Bringing the term inside the outer brackets of this last expression to a

common denominator and expanding terms, we get the following.
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(b− c)

(1− δ)
· 1

(1− δ)(1− δ(1− ϵ)− δn+1ϵ)(1− δn+1 · (1− ϵ)− δϵ)
·

[
(1− δ)·(

ϵ− δϵ− δ1+nϵ+ δ2+nϵ+ δ2ϵ2 − 2δ2+nϵ2 + δ2+2nϵ2 − δ2ϵ3 + 2δ2+nϵ3 − δ2+2nϵ3
)

+ (1− δ) ·
(
1− δ − δ1+n + δ2+n − ϵ+ δ2ϵ+ 2δ1+nϵ− 2δ2+nϵ+ 2δϵ2 − δ2ϵ2

− 2δ1+nϵ2 + δ2+2nϵ2 − δ2ϵ3 + 2δ2+nϵ3 − δ2+2nϵ3
)

− (1− δ) ·
(
1− 2δ + δ2 + 3δϵ− 3δ2ϵ− 3δ1+nϵ+ 3δ2+nϵ− 2δϵ2 + 4δ2ϵ2 + 2δ1+nϵ2

− 6δ2+nϵ2 + 2δ2+2nϵ2 − 2δ2ϵ3 + 4δ2+nϵ3 − 2δ2+2nϵ3
)]

A factor of (1 − δ) cancels, and we reduce the remaining expression in

square brackets.

(b− c)

(1− δ)
·

[
(1− δ)δ(1− δn)(1− 2ϵ)2

]
(1− δ(1− ϵ)− δn+1ϵ)(1− δn+1 · (1− ϵ)− δϵ)

Another factor of (1− δ) cancels.

(b− c)δ(1− δn)(1− 2ϵ)2

(1− δ(1− ϵ)− δn+1ϵ)(1− δn+1 · (1− ϵ)− δϵ)

With these separate expressions for numerator and denominator, we can
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summarise.

xSn =

(c−2cϵ)
(1−δn+1·(1−ϵ)−δϵ)
(b−c)δ(1−δn)(1−2ϵ)2

(1−δ(1−ϵ)−δn+1ϵ)(1−δn+1·(1−ϵ)−δϵ)

=
(c− 2cϵ)(1− δ(1− ϵ)− δn+1ϵ)

(b− c)δ(1− δn)(1− 2ϵ)2

=
c(1− δ(1− ϵ)− δn+1ϵ)

(b− c)δ(1− δn)(1− 2ϵ)

=
c(1− δ + δϵ− δn+1ϵ)

(b− c)δ(1− δn)(1− 2ϵ)

Now we can take a derivative of this expression w.r.t. n.

∂xSn

∂n
=

−cδn+1ϵ ln(δ) ((b− c)δ(1− δn)(1− 2ϵ)) + ((b− c)(1− 2ϵ)δn+1 ln(δ)c(1− δ + δϵ− δn+1ϵ))

(b− c)2δ2(1− δn)2(1− 2ϵ)2

=
−cδn+1ϵ ln(δ) (δ(1− δn)) + (δn+1 ln(δ)c(1− δ + δϵ− δn+1ϵ))

(b− c)δ2(1− δn)2(1− 2ϵ)

The numerator is positive for ϵ < 1
2
, and the term ln(δ) is negative for

δ < 1. The expression is therefore negative if the following inequality holds

cδn+1ϵ (δ(1− δn))−
(
δn+1c(1− δ + δϵ− δn+1ϵ)

)
< 0

cδn+1ϵ (δ(1− δn)) <
(
δn+1c(1− δ + δϵ− δn+1ϵ)

)
< 0

⇐⇒ ϵδ − ϵδn+1 < 1− δ + δϵ− δn+1ϵ

⇐⇒ 0 < 1− δ
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F The process in our simulations satisfies con-

dition 2 of Theorem 3 if the continuation

probability is smaller than one

We start by showing that for continuation probabilities δ < 1, the probabil-

ities of state transitions P (i, j) satisfy condition 2 of Theorem 3 if we take

the parameter ϵ in Theorem 3 to denote the error rate – as the notation in

the theorem is intended to suggest. In the end we remark that an analo-

gous reasoning works if we take the parameter in Theorem 3 to denote the

continuation probability δ.

In the Moran process, transition probabilities depend on the payoffs of

all individuals. There are two sources of randomness affecting these payoffs.

The first source is the matching. In a population of N individuals there are N
2

matched pairs. All possible matchings are equally likely, and their probability

does not vary with the error rate or with the continuation probability. The

second source of randomness, of course, is the stochasticity in what history

occurs for a given matched pair.

We denote a profile of histories in a population as v = (h1, h2, . . . , hN
2
) ∈

H
N
2 . Here, subindices denote the matched pairs, and not as in previous

sections the duration of the match. The probability of a given transition,

i.e. of a given selection event which leads to a change in composition of

the population, can be calculated as the probability of this transition given

a matching and a realised v, summed over all v that can occur for given

matchings, and summed over all matchings. In each summation step, of

course, the summands need to be weighted with the probabilities of the

respective matchings and history profiles.

Since there are finitely many possible matchings, and since the proba-

bilities of the different matchings do not vary in ϵ, it suffices to show that
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the probability of each transition conditional on a single arbitrary matching

has a bounded derivative. If all summands of a finite sum have bounded

derivatives, then the sum also has a bounded derivative.

Below, we show that
∑

v∈H
N
2
|dPr(v)

dϵ
| is finite. This means that the

marginal probability mass that is shifted when varying ϵ is bounded. More-

over, since transition probabilities lie between zero and one, shifting a prob-

ability mass of x between different history profiles can bring about at most a

shift of x in the resulting transition probability for a given matching. There-

fore, if
∑

v∈H
N
2
|dPr(v)

dϵ
| has a finite derivative, so will the transition probabil-

ity.

To show that
∑

v∈H
N
2
|dPr(v)

dϵ
| is finite, we start by showing that for every

pair of individuals, the sum
∑

h∈H |dPr(h)
dϵ

| is finite. It is convenient, here, to
think of histories not in terms of the actions that are played by each player

at each stage game, but in terms of whether those actions were or were not

brought about by an error. For each given pair of strategies this, of course,

uniquely identifies the actions that were played.

The probability that an interaction between two players results in a his-

tory h of k rounds in which n errors occur looks as follows.

Pr(h) = ϵn · (1− ϵ)2k−n · δk−1 · (1− δ)

This expression has the following derivative with respect to ϵ.

dPr(h)

dϵ
= δk−1 · (1− δ) ·

[
n · ϵn−1 · (1− ϵ)2k−n − (2k − n) · (1− ϵ)2k−n−1 · ϵn

]
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We distinguish two cases. If ϵ = 0, the derivative of all histories with

n > 1 vanishes. All probability mass is therefore shifted from histories with

n = 0 to histories with n = 1. The magnitude of this shift looks as follows.

1

2

(∑
h∈H

∣∣∣∣dPr(h)

dϵ

∣∣∣∣
) ∣∣∣∣∣

ϵ=0

=
∑
k∈N

δk−1 · (1− δ) ·
[
2k(1− ϵ)2k−1

]
= 2 · (1− δ) ·

∑
k∈N

δk−1 · k

For this expression we simply plugged in n = 0 into the derivative from

above, and used that there is only one possible history without errors for

every duration k. The factor 1
2
comes from the fact that these terms account

for half of the shift – histories with n = 1 account for the other half.

This expression converges according to d’Alembert’s criterion since the

summand ratios approach a limit smaller than one: limk→∞
δk(k+1)
δk−1k

= δ < 1.

Alternatively, if ϵ ̸= 0 we can reformulate.

∣∣∣∣dPr(h)

dϵ

∣∣∣∣ = ∣∣δk−1 · (1− δ) ·
[
n · ϵn−1 · (1− ϵ)2k−n − (2k − n) · (1− ϵ)2k−n−1 · ϵn

]∣∣
=

∣∣∣∣Pr(h)

[
n

ϵ
− (2k − n)

(1− ϵ)

]∣∣∣∣
≤ Pr(h)

1

min{ϵ, 1− ϵ}
2k

Hence, the total shift in probability mass is bounded by the expression

below, where now kh denotes the length of history h. The equality in the

expression below follows from the fact that the probabilities of all histories

of length k sum to δk−1(1− δ).
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∑
h∈H

∣∣∣∣dPr(h)

dϵ

∣∣∣∣ ≤ 1

min{ϵ, 1− ϵ}
∑
h∈H

Pr(h) · 2kh =
2 · (1− δ)

min{ϵ, 1− ϵ}
∑
k∈N

δk−1 · k

This expression converges as it is simply a scaled version of the sequence

we had at ϵ = 0.

Lastly, we show that it follows that
∑

v∈H
N
2
|dPr(v)

dϵ
| is also finite. To do

so, we simply show that the probability of the different v can be transformed

to a similar functional form as the probabilities of the histories h. Firstly,

we note that as outcomes across pairs are independent, Pr(v) is simply the

product of the likelihoods of individual histories.

Pr(v) =
∏
h∈v

Pr(h)

Pr(v) =
∏
h∈v

ϵnh · (1− ϵ)2kh−nh · δkh−1 · (1− δ)

= ϵ
∑

h∈v nh · (1− ϵ)
∑

h∈v 2kh−nh · δ
∑

h∈v(kh−1) · (1− δ)
N
2

=

(
1− δ

δ

)N
2
−1 (

ϵ
∑

h∈v nh · (1− ϵ)
∑

h∈v 2kh−nh · δ(
∑

h∈v kh)−1 · (1− δ)
)

Setting n =
∑

h∈v nh and k =
∑

h∈v kh, we arrive back at a scaled version

of our expression for the probability of a single history P (h). The factor(
1−δ
δ

)N
2
−1

simply scales the sums in the derivations above, but does not affect

their convergence. This proves the claim. Intuitively, we used here that we

can simply view a history profile as one single concatenated history, and just

need to correct for the likelihoods that the different histories end at their

respective kh.
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As long as δ < 1, we can also derive the analogue of condition 2 of

Theorem 3 for δ instead of ϵ by following the steps above. The derivative
dPr(h)

dδ
then looks as follows.

dPr(h)

dδ
=
(
ϵn · (1− ϵ)2k−n

)
·
[
(k − 1)δk−2 · (1− δ)− δk−1

]
= Pr(h)

[
(k − 1)

δ
− 1

(1− δ)

]
Phrased this in terms of history profiles, with n =

∑
h∈v nh and k =∑

h∈v kh, we then get the following.

dPr(v)

dδ
=
(
ϵn · (1− ϵ)2k−n

)
·
[
(k − 1)δk−2 · (1− δ)

N
2 − N

2
(1− δ)

N
2
−1δk−1

]
= Pr(v)

[
(k − 1)

δ
− N

2(1− δ)

]
All further arguments are identical to the arguments about changes in ϵ.
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