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Abstract

This paper proposes a score-driven model for filtering time-varying causal param-
eters through the use of instrumental variables. In the presence of suitable instru-
ments, we show that we can uncover dynamic causal relations between variables, even
in the presence of regressor endogeneity which may arise as a result of simultaneity,
omitted variables, or measurement errors. Due to the observation-driven nature of
score models, the filtering method is simple and practical to implement. We estab-
lish the asymptotic properties of the maximum likelihood estimator and show that
the instrumental-variable score-driven filter converges to the unique unknown causal
path of the true parameter. We further analyze the finite sample properties of the
filtered causal parameter in a comprehensive Monte Carlo exercise. Finally, we reveal
the empirical relevance of this method in an application to aggregate consumption in
macroeconomic data.
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1 Introduction

Establishing causal relationships between relevant variables is fundamental in economics
and other fields of science. For example, causal inference is key for understanding of the
effects of Fiscal and Monetary policy in macroeconomics. It is however well known that
standard predictive methods used in the econometric, statistical and machine learning lit-
erature will typically fail to uncover causal relationships when dealing with observational
data, due to regressor endogeneity. As a result, considerable effort has been made to
develop new and effective causal inference techniques. This effort, carried over the last
few decades, as been recently recognized by the 2021 Nobel Memorial Prize in Economic
Sciences awarded to Joshua Angrist and Guido Imbens. In particular, a range of solutions
have been proposed in the literature for causal inference of observational data that typi-
cally suffers from endogeneity issues. Important examples include the use of instrumental
variables (IV) (Angrist, Imbens, & Rubin, 1996), difference in differences (Ashenfelter
& Card, 1985; Bertrand, Duflo, & Mullainathan, 2004) and regression discontinuity de-
sign (Thistlethwaite & Campbell, 1960) among others (e.g. synthetic control (Abadie &
Gardeazabal, 2003), propensity score matching (Rosenbaum & Rubin, 1983)).

When dealing with time-series or panel data, it is important to note however that
these causal inference methods generally attempt to uncover causal relationships that are
assumed to be time-invariant. They are not designed to keep track of time-varying causal
relationships, and do not focus on modeling that time-variation or producing dynamic
forecasts of future cause and effect interactions. This can be, of course, a shortcoming
in a number of applications. Much like in other scientific domains, in economics causal
relationships can change over time both qualitatively and quantitatively. For example, the
effectiveness of different fiscal and monetary policies may change substantially over time
as they depend on the historical political, social, economic, technological and institutional
context. In many practical applications, parameters can thus be time-varying and the
need may arise to filter such parameters in order to track the evolution of the true causal
effect and potentially forecast it.

The literature on regression models featuring time-varying parameters is a rich one, and
so is the closely related literature on filtering techniques. Both are however fundamentally
focused on predictive models, designed to improve predictive and/or forecast accuracy.
An interesting exception includes the identification of the time-varying effects of monetary
policy on macroeconomic variables by Kang, Ratti, and Yoon (2015); Pereira and Lopes
(2014), which is motivated by the findings of several studies that the effect of monetary
policy actions changed over the years (Boivin, Kiley, & Mishkin, 2010).

In this paper we propose a novel score-driven filtering method (Creal, Koopman, &
Lucas, 2013; Harvey, 2013) featuring instrumental variables to estimate the time-varying
parameter in a regression model in which regressors are endogenous. We model the en-
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dogeneity with a control function approach (e.g. Heckman and Robb (1985); Wooldridge
(2015)) if suitable instruments are available. We show consistency of the two-step Max-
imum Likelihood Estimator (MLE) and show that the filter with estimated parameters
converges to the unique path of the true unknown causal parameter when endogeneity is
present. In a Monte Carlo simulation study we analyse the finite sample properties for
various types and levels of endogeneity. The procedure is straightforward to implement,
and works considerably well when valid instruments are available. In simulations we ob-
serve that the filter manages to uncover the true path even in non-stationary settings like
a structural break at an unknown point in time.

Similar to IV methods in general, our proposed method can potentially handle en-
dogeneity originating from multiple causes. Important ones include: (i) simultaneity,
which emerges when two variables are contemporaneously causally linked to each other
(Haavelmo, 1943; Kennan, 1989); (ii) omitted variables, which occurs when regressors
are correlated with other relevant regressors that are omitted from the regression model
(Wooldridge, 2009); and (iii) measurement errors in relevant regressors (Bound, Brown,
& Mathiowetz, 2001). Each of these conditions, and several others, result in endogeneity
which renders predictive models unsuitable as tools for distilling causal effects (Haavelmo,
1943; Wooldridge, 2002).

Alternative regression models with time-varying parameters and endogenous regressors
have been proposed in the literature. C.-J. Kim (2006) and Y. Kim and Kim (2011)
propose joint and two-step estimation procedures of the Kalman Filter with a similar
control function approach to handle endogeneity. Another approach that has recently been
proposed by Giraitis, Kapetanios, and Marcellino (2021) uses a kernel based technique to
estimate a time-varying IV estimator. Inoue, Rossi, and Wang (2022) propose a time-
varying IV framework for Local Projections, based on the work of Müller and Petalas
(2010), who show that for nonlinear non-Gaussian parameter-driven models with moderate
time-variation, the sample information can be approximated by a linear Gaussian model
that contains the scores of the likelihood as observations. This fact further motivates
our use of score functions in the filter that estimates the time-varying parameter. The
difference in performance between the score-driven filters and the method proposed by
Müller and Petalas (2010) has been analysed in Calvori, Creal, Koopman, and Lucas
(2017) in the context of a time-varying parameter test.

Our score-driven filter stands out in its simplicity of implementation and ability to
produce robust and reliable path estimates in nonlinear non-Gaussian settings. Compared
to the parameter-driven models, such as the Kalman filter, observation-driven models
like score-driven models are easier to implement and computationally less intensive, espe-
cially in nonlinear non-Gaussian parameter settings (Koopman, Lucas, & Scharth, 2016).
Compared to non-parametric kernel methods, our parametric score-driven approach will
naturally stand out in small-sample problems and forecasting exercises. Naturally, non-
parametric methods can have advantages in terms of flexibility, but they will also they
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require a choice of hyperparameters such as kernel related bandwidths.

Our filter fits more generally in the class of (quasi) score driven filters, as introduced by
Creal et al. (2013), Harvey (2013) and Blasques, Francq, and Laurent (2023). The score
driven method has been shown to have optimality properties over other methods such as
the Kalman Filter. In particular, the updating scheme for a time-varying parameter is
optimal in information theoretic sense if and only if it contains the score of the likelihood
(Blasques, Koopman, & Lucas, 2015, 2018; Blasques, Lucas, & van Vlodrop, 2021; Beut-
ner, Lin, & Lucas, 2023). A similar optimality result holds for an analogous time-varying
parameter approach in the context of the general method of moments (GMM) frame-
work (Creal, Koopman, Lucas, & Zamojski, 2018). Although the score-driven approach
is a very general structure and encompasses many different models with time-varying pa-
rameters, not much attention has yet been paid to adopt this procedure to time-varying
regression models, with the exception of Blasques, Koopman, and Lucas (2020), Gorgi,
Koopman, and Schaumburg (2017), in which autoregressive frameworks are considered.
The time-varying parameter regression model with a score driven update has however been
investigated by Thiele and Harvey (2013), from an angle of time-varying correlation and in
a finance setting by Blasques, Francq, and Laurent (2022), who introduce a time-varying
beta model with GARCH dynamics. Nevertheless, thus far no score-driven filter has been
developed that can be used in the case of regressor endogeneity.

The rest of the paper is structured as follows. In Section 2 we describe the model and
introduce the Instrumental Variables Score filter (IV-score). In Section 3 we analyse the
stochastic properties of the filter. In Section 4 we derive the asymptotic properties of the
maximum likelihood estimator. Section 5 we devote to an extensive simulation study to
show filter behaviour. In Section 6 we demonstrate the emperical relvance by appling the
filter to estimate the excess sensitivity of consumption to income.

2 Causal score-driven filtering model

Let {yt}t∈Z be a time series generated according to

yt = βtxt + εt, (1)

where {xt}t∈Z is a stochastic regressor, {βt}t∈Z is a time-varying parameter, and {εt}t∈Z is
a mean-zero identically distributed error term with density pε, indexed by static parameter
vector λ. We assume the regressors are endogenous, hence the usual exogeneity condition
fails E(εt|xt) 6= 0. The specific cause of endogeneity can be left unspecified, but it could
emerge from the usual culprits, ranging from simultaneity between yt and xt, omitted
variables ht which are correlated with the regressor xt, a measurement error in the regressor
xt, functional form misspecification, etc.
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In the quasi score-driven approach, the filter for the time-varying parameter βt is given
by

βt+1 = ω + αst + γβt, (2)

for fixed unknown parameters ω, α, γ, and where st is the scaled score,

st = St · ∇t ∇t =
∂ ln py(yt|xt, βt;λ)

∂βt
, (3)

with St being a scaling matrix and py(yt|βt, xt;λ) = pε(ε̃t;λ), where ε̃t = yt − βtxt is
the prediction error. For example, for normally distributed homoskedastic disturbances
pε(εt;λ) = N(0, σ2

ε), we get ∇t = xt(yt − βtxt)σ−2
ε , giving rise to the filter

βt+1 = ω + ασ−2
ε xt(yt − βtxt) + γβt. (4)

Intuitively, this specification of the score ensures that the parameter will be updated to
reduce the latest prediction error. In this way the parameter stays up-to-date and provides
the closest model fit based on the most recent observations. Clearly other distributions
for the error term can be chosen and the parameter update will naturally be adjusted.

When regressors are exogenous, the static parameters of the filtering equation in (2),
collected in the vector θ = (ω, α, γ, σ2

ε)
′, can be consistently estimated by maximum

likelihood, and ultimately, a causal time-varying βt can be adequately filtered (see e.g.
Blasques, Gorgi, Koopman, and Wintenberger (2018)). This means essentially that the
filtered parameter β̂t(θ̂T ) initialized at some value β̂1 in a correctly specified model, will
converge to its true unobserved value βt as both t and T diverge to infinity,

|β̂t(θ̂T , β̂1)− βt|
p→ 0 as (t, T )→∞. (5)

Taking t to infinity is required so that the effect of the (almost surely) incorrect initializa-
tion of the filter at β̂1 vanishes. This is ensured by establishing the so-called invertibility
of the filter, which requires the filter to have fading memory. Taking the sample size T to
infinity ensures that the MLE of the static parameters θ̂T converges to θ0.

Unfortunately, this same score filtering technique will fail to uncover the causal βt
when the regressor xt is endogenous. Indeed, when the exogeneity condition E[εt|xt] 6= 0
fails due to simultaneity, omitted variables, or other factors, the filter convergence in (5)
will no longer hold. In order to handle the problem of regressor endogeneity, we take
a two step instrumental variable approach. This method requires the existence of valid
instruments {zt}, that are used to estimate the first stage regression

xt = πzt + ut ut
i.i.d∼ N(0, σ2

u), (6)

where E[ut|zt] = 0 and the true parameter π0 6= 0. In a second step, we take a control
function (CF) approach to correct for endogeneity. Like in a static model (see Wooldridge
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(2015)), correlation between the regressor and error term in (1) can be modelled as εt =
τut+ηt, where we let ηt is an identically and independently distributed (i.i.d.) innovation
regardless of the type of endogeneity. As such, the relation between yt and xt is given by
yt = βtxt + τut + ηt. Analogous to the static control function approach, we add the first
stage fitted residuals to the structural equation to replace the unknown first stage errors.
As a result, after obtaining the residuals ût = xt − π̂T zt from the first-stage regression,
where π̂T denotes the estimate of π, the second stage regression model is given by

yt = βtxt + τ ût + η̃t (7)

where η̃t denotes the residual counterpart of the error term ηt. Further, the Gaussian

causal IV-score filtering equation that assumes ηt
i.i.d∼ N(0, σ2), takes the form

βt+1 = ω + ασ−2xt(yt − βtxt − τ(xt − π̂T zt)) + γβt (8)

where π̂T has been estimated ex ante through equation (6), and we collect the static
parameters in θ = (ω, α, γ, τ, σ2)′.

This control function approach bears similarity to Terza, Basu, and Rathouz (2008),
who highlight the importance of using a CF in nonlinear linear-index models to avoid
inconsistent estimation. Note that simply replacing the regressors with the fitted values
of the first stage in the filter in (4), a more common 2SLS approach, will not work. In
time-invariant models, the knowledge that the prediction error is zero on average and
that the loss function should be minimised is enough. But in this setting, next to its
direct role in loss function minimisation, the prediction error also drives the filter, hence
a good estimate for it is crucial. It is necessary therefore to control for the movements
in the regressors as much as possible, by adding the first stage residuals to the structural
equation. Not doing that, will result in a prediction error and hence a filtered path being
governed by unobserved movements in xt. In the case of a highly relevant but omitted
variable for example, the prediction error and filter will mimic the omitted variable rather
than distill the causal effect.

We note that all of the subsequent results extend easily to the case in which models
defined in (1), (6) and (7) have an intercept a ∈ R so that yt = a+βtxt+ηt. For simplicity,
we let a = 0 and assume that the data is demeaned. We note that the current model can
also be easily extended to allow for a time-varying parameter πt, by constructing a multi-
variate filter similar to Blasques, Francq, and Laurent (2022). We leave this extension for
future research. For theoretical simplicity we focus on the causal time-varying parameter
of interest βt and continue using a static π.
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3 Stochastic Properties of the Filter

We collect all data at time t in the vector Yt := (yt, xt, zt)
′. We denote the sample history

of this vector by Y 1:t := {Y1, . . . , Yt−1, Yt}, and entire history of this vector stretching to
the infinite past by Y t := {. . . , Yt−1, Yt}. We start from the general filter definition (2) to
allow for a more flexible framework that includes more general models with different error
distributions, model specifications, among others. We denote the filtered sequence, that
depends on the sample data, by {β̂t(Y 1:t−1,θ, π, β̂1)}t∈N, with short hand β̂t(θ, π, β̂1) also
sometimes denoted by β̂t. The filtered sequence initialized in the infinite past is denoted
by {β̃t(Y t−1,θ, π)}t∈Z or simply β̃t := β̃t(θ, π). If the model is correctly specified and
both θ0 and π0 are the true parameters, then βot := β̃t(θ0, π0) is the true stochastic time-
varying parameter. Finally, we let λ contain all model and density specific parameters (in
equation (8) λ = (τ, σ2)′) and let θ = (ω, α, γ,λ) and k = dim(θ). For a random variable

x(θ) possibly depending on θ ∈ Θ, we further let ‖x(·)‖Θn := (E supθ∈Θ |x(θ)|n)1/n and
define the stochastic function

Λ∗t (θ,θ
∗, π) := sup

β∗∈Fθ∗
|γ + α∂s(β, Yt, π;θ)/∂β|β=β∗ | (9)

for some π ∈ R. Then Λt(θ, π) := Λ∗t (θ,θ, π) is the special case where θ∗ = θ.

Invertibility

Lemma 1 gives general conditions for invertibility and bounded moments of the filter.
Invertibility ensures that the effect of the initialisation of the filter vanishes in the limit,
meaning that the filtered sequence converges to its unique limit for any given initialisation
β̂1. Lemma 1 further establishes stationarity and ergodicity (SE) of the limiting sequence,
which will be used when deriving the asymptotic properties of the maximum likelihood
estimator. Note that this result holds irrespective of whether the model is correctly spec-
ified. If these conditions are satisfied, the resulting filter will converge to the same limit
sequence, regardless of its initial value, uniformly on Θ.

Lemma 1 (Invertibility). Let Θ ⊂ Rk be compact, and let the elements in {Yt}t∈Z be SE
sequences. Let π̂T ∈ R and assume there exists some β̂1 ∈ F such that

(i) E log+ supθ∈Θ |s(β̂1, Yt, π̂T ;θ)| <∞

(ii) E log supθ∈Θ Λt(θ, π̂T ) < 0

Then the sequence {β̂t}t∈N converges e.a.s. to a unique limit SE sequence {β̃t}t∈Z uni-
formly on Θ , i.e. ‖β̂t(θ, π∗, β̂1)− β̃t(θ, π̂T )‖Θ

e.a.s.→ 0 as t→∞.
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In Corollary 1 we formulate the invertibility conditions for the specific case of the
Gaussian IV-score filter in equation (8) (the conditions for the score filter with exogenous
regressors in equation (4) follow with τ = 0 ). The invertibility conditions (i) and (ii) are
trivially satisfied

Corollary 1 (Invertibility for Gaussian IV-score). Let {yt}t∈Z, {xt}t∈Z, {zt}t∈Z be SE
sequences and let π̂T be the first stage estimate. Let θ = (ω, α, γ, τ, σ2)′ ∈ Θ where
Θ ⊂ R5 is compact and assume there exists some β̂1 ∈ F such that

(i) E log+ supθ∈Θ |σ−2xt(yt − β̂1xt − τ(xt − π̂T zt))| <∞

(ii) E log supθ∈Θ |γ − ασ−2x2
t | < 0

Then the sequence {β̂t}t∈N produced by the filtering equation (8) converges e.a.s. to a
unique limit SE sequence {β̃t}t∈Z uniformly on Θ , i.e. ‖β̂t(θ, π̂T , β̂1)− β̃t(θ, π̂T )‖Θ

e.a.s.→ 0
as t→∞.

Bounded moments

As we shall see in Section 4, beyond filter invertibility, the MLE consistency proof that
we establish will also require that the limit filter has bounded moments when evaluated
at the true parameter (π0,θ0) ∈ R×Θ. According to Lemma 1, the limit filter evaluated
at (π0,θ0), satisfying the recurrence βt+1 = ω0 +α0σ

−2
0 xt(yt−βtxt− τ0(xt−π0zt)) + γ0βt

converges to the same unique solution as

βt+1 = ω0 + α0σ
−2
0 xtηt + γ0βt. (10)

This is a stochastic recurrence equation of the type βt+1 = φ0(xt, ηt, βt) with derivative
given by ∂φ0(xt, ηt, βt)/∂β = γ0 where φ0 is a function defined by the parameter vector
(π0,θ0). Lemma 2 and Corollary 2 establish bounded moments for this limit process.

Lemma 2 (Limit filter moments). Let {yt}t∈Z, {xt}t∈Z, {zt}t∈Z be SE sequences. Suppose
∃nβ > 0 such that ‖φ0(xt, ηt, βt)‖nβ < ∞, and sup(β∗,Y )∈F×Y |∂φ0(xt, ηt, βt)/∂β| < 1.

Then ‖β̃t(θ0, π0)‖nβ <∞.

Corollary 2 (Limit filter moments for Gaussian IV-score). Let {yt}t∈Z, {xt}t∈Z, {zt}t∈Z
be SE sequences. Suppose ∃nβ > 0 such that (E|xtηt|nβ )1/nβ <∞ and |γ0| < 1. Then the
limit sequence ‖β̃t(θ0, π0)‖nβ <∞.
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4 Asymptotic Properties of the Maximum Likelihood Esti-
mator

An advantage of the score-driven time-varying parameter models is that the static param-
eter θ can be estimated by a straight forward maximum likelihood (ML) procedure. We
define the ML estimator as

θ̂T (π) ∈ arg max
θ∈Θ

`T (θ, π, β̂1) (11)

where

`T (θ, π, β̂1) =
1

T

T∑
t=1

`t(θ, π, β̂t(θ, π, β̂1)) (12)

and `t(θ, π, β̂t(θ, π, β̂1) := log py(yt|β̂t(θ, π, β̂1), xt, zt,θ, π). Define `0(θ, π0) := `t(θ, π0, β̃t(θ, π0))
and `∞(θ, π0) = E[`0(θ, π0)]. To establish consistency in similar spirit to Blasques, Gorgi,
et al. (2018), assume that the following conditions hold:

(C1) The DGP which satisfies equations (6) to (8) with θ = θ0 ∈ Θ admits a stationary
solution and {xt}t∈Z, {zt}t∈Z are SE sequences.

(C2) E|`0(θ0, π0)| <∞

(C3) For any θ ∈ Θ, `0(θ0, π0) = `0(θ, π0) if and only if θ = θ0

(C4) The invertibility conditions (i) and (ii) of Lemma 1 are satisfied for the compact set
Θ ⊂ Rk

(C5) E‖`0(θ, π0) ∨ c‖Θ <∞ for some c ∈ R such that c < `∞(θ0, π0)

(C6) π̂T
a.s.−−→ π0 as T →∞

As noted in Blasques, Gorgi, et al. (2018), we obtain strong consistency following Wald
(1949). Theorem 1 states that the maximum likelihood estimator evaluated at some
initialisation β̂1 and at the first stage estimate π̂T is consistent for the true unknown
parameter. Corollary 3 provides the same consistency result but applied to the special
case of our Gaussian IV-score model.

Theorem 1 (Consistency). Let the conditions (C1) − (C6) hold. Then the maximum
likelihood estimator is strongly consistent

θ̂T (π̂T , β̂1)
a.s.−−→ θ0, T →∞ (13)

for any initialisation β̂1 ∈ F .
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Corollary 3 (Consistency MLE of Gaussian IV-Score). Let the process {yt}t∈Z be gener-
ated by the model in equations equations (6) to (8) with θ = θ0 ∈ Θ such that |γ0| < 1 and
σ2

0 > 0 and let the sequences {xt}t∈Z, {zt}t∈Z be SE. Furthermore let Θ be compact such
that E log|γ − ασ−2x2

t | < 0 and σ > 0 ∀θ ∈ Θ. Then the maximum likelihood estimator
θ̂T (π̂T , β̂1) with any initialisation β̂1 ∈ F is strongly consistent.

Building on the consistency of the MLE, we can also provide a convergence result of the
causal time-varying parameter of interest. Proposition 1 assures that the filter converges
to the true time-varying parameter almost surely, and is a direct result of the previously
established invertibility of the filter and consistency of the MLE.

Proposition 1 (Path Convergence at π̂T ). If the model is correctly specified and if the
invertibility conditions (i), (ii) of Lemma 1 hold, if E[log+ ‖β̃1‖Θ] < ∞ and θ̂T

a.s.−−→ θ0

then the estimated filter converges to the true unobserved causal time-varying parameter
{βot }t∈Z, when evaluated at π̂T

|β̂t(θ̂T , π̂T , β̂1)− βot |
a.s.−−→ 0 as T ≥ t→∞ (14)

for any initialisation β̂1 ∈ F .

5 Simulation Study

In the following simulation study we investigate the performance of the new IV-score filter
compared to a regular score filter, as specified in (8) and (1) respectively, for a time-varying
parameter regression model in which the regressor is endogenous. In terms of endogeneity,
we consider the case of a stationary omitted variable that is correlated with the regressor.
The omitted variable is generated with various specifications, such as a sine function that
could be representative of an unobserved business cycle or other cyclical omitted elements
or simply by an AR(1) process or a process with a break.

We consider the following DGP in which ht is the omitted variable and the true time-
varying parameter βt as well as the instrument zt, are generated by stationary AR(1)
processes for given parameters δ, ση, ψ, π, σu, σh.

yt = βtxt + δht + σηN(0, 1)︸ ︷︷ ︸
εt

βt = 0.1 + 0.95βt−1 +
√

0.1N(0, 1)

xt = ψht + πzt + σuN(0, 1)

zt = 0.2zt−1 +
√

(1− 0.22)N(0, 1)

DGP 1 ht = 0.3ht−1 +N
(
0, (1− 0.32)σ2

h

)
DGP 2 ht =

√
2σh sin (t/25)

DGP 3 ht =

{
−1 t ≤ bT/2c
1 t > bT/2c

10



We generate the path for βt once, and subsequently draw the data M=1000 times, estimate
both filters and evaluate them by taking the mean MSE over the whole path. With the
parameters δ, ψ, π, σh we can increase and decrease the level of endogeneity, while we fix
ση = 1, σu = 0.1. The true path for βt is chosen with a high persistency parameter, which
is generally challenging to filter. The omitted variable is simulated in various ways: with
the sine function to represent an AR(1) (DGP 1), a cyclical unobserved variable (DGP 2)
and a midway break (DGP 3).

5.1 Uncovering the True Causal Parameter

In Figure 1 and Table 1 we present the results for DGP 1 for the case where ψ = 1, δ =
−4, π = 1 and σh = 5. This is a configuration of the parameters for which the bias is
substantial and the illustration is clear. The plots of the path is constructed by taking
medians at each point t from all simulations. In the plots we include the true path (blue),
the static OLS (red) and IV (green) estimators as estimated on the whole sample, and the
median IV-score and score (orange) paths over all simulations.

Figure 1: Estimated paths of the causal parameter with DGP 1 where ht follows an AR(1).

Comparing the mean-squared errors (MSEs) of the filtered paths relative to the true
causal paths (Table 1) it becomes clear that the IV-score filter outperforms the score
filter without difficulty, highlighting that taking endogeneity into account is crucial. The
endogeneity bias is visible in Figure 1 through the large gap between the static OLS and
IV estimators. The OLS estimator suggests a consistent negative relation, while much of
the causal parameter is actually positive, something that is correctly picked up on by the
IV estimator. This bias in the OLS estimator is carried over to the score-driven model
in the time-varying case. In contrast, the IV-score filter captures well the true causal
relation.

At a first glance it seems that the aforementioned static OLS-IV bias shift is the only
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ω̂ α̂ γ̂ β̂0 σ̂2
η τ̂ b0 b1 MSE

OLS 0.129 -1.635 14.477
IV -3.740 0.022 1.762 0.979
score -0.069 0.258 0.615 -3.483 20.254 13.590
IV-score 0.081 0.123 0.954 0.1618 5.664 -3.761 0.329

Table 1: DGP 1: Maximum Likelihood Estimates and MSE

difference between the score and IV-score filtered paths. But not only is it shifted, the
score filter does not follow the same dynamics as the true parameter does. This is clearly
shown in the scatter plots of the true parameter versus the filtered parameters displayed
in Figure 2. Clearly, the IV-score filter moves along with the true parameter in the right
directions (high when high).

Figure 2: Scatter plot of IV-score and score filtered values vs. true βt for DGP 1 where
ht follows a sine function.

In Figure 4 in the supplementary appendix we observe that modelling the omitted
variable differently, for example following sine dynamics (DGP 2) or with a structural
break (DGP 3), does not really affect the performance of either filter. Even in the case
of a midway break in which we have a non-stationary omitted variable, we still observe
similar behaviour.

Another crucial observation is that this DGP is parameter-driven, while our (IV)score
method is observation-driven. This shows that misspecification in this sense does not
affect the performance of our observation-driven approach. For more discussion on this
comparison, see Koopman et al. (2016).
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5.2 Robustness Check

In this section we investigate the robustness of the method. In particular, we explore
whether the method breaks down with (i) a non-stationary causal parameter (DGP 4 & 5),
(ii) when the instrument is not fully exogeneous (DGP 6), and (iii) when the observations
have higher variance (DGP 7). All resulting figures can be found in the supplementary ap-
pendix. In each of these three scenario’s we consider an omitted variable that is generated
by an AR(1). All DGP’s are based on DGP 1 with the following adaptations.

DGP 4 βt =

{
−1 t ≤ bT/2c
1 t > bT/2c

σh = 1

DGP 5 βt = 1 + βt−1 +
√

0.1N(0, 1)
DGP 6 ht = 0.3ht−1 + 3zt +N

(
0, (1− 0.32)σ2

h

)
DGP 7 σ2

η = 25

5.2.1 Non-stationary Causal Parameter

Figure 5 contains the resulting path for a midway break in βt, jumping from a negative
value to positive in the middle of the sample. Even in this non-stationary setting, the
IV-score filter manages to capture the change in the parameter quite closely, with some
variation around the true line. The score filter on the other hand does show some indication
of a break in levels, but remains negative throughout the whole sample due to the bias.
When we generate a more severe case of non-stationarity by letting βt follow a random
walk (Figure 6), we still find that the filter performs considerably well in most cases.
We do however observe an increased number of computational issues such as convergence
problems and non-invertible results, up to 10% of all simulations.

5.2.2 Contaminated Instrument

When the instrument is not exogeneous but also correlated with the omitted variable, the
IV-score filter breaks down as expected. In Figure 7 the paths are both visibly biased,
although the IV-score filter still benefits from some exogeneous movements in zt to get
closer the the true path. This figure clearly illustrates how the performance depends on
how the static IV estimator relates to the true path. The lower the bias in IV, the better
the performance of the related IV-score filter.
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5.2.3 Large Error Variance

When the variance of the error term is increased to σ2
η = 25, the result is a more flattened

filter as visible in Figure 8. This is to be expected, as the prediction error in the score
will have larger outlying values and the corresponding parameter α will adjust accordingly
making the overall filter less responsive to any changes in the score, also those caused by
the true parameter.

6 Application

We now illustrate our score driven filter for endogenous regressors by estimating time-
varying excess sensitivity of consumption to income. Originally, Hall (1978) hypothesised
that consumption (Ct) was a random walk, while later Campbell and Mankiw (1989)
proposed an extended model by assuming that a fraction of the population (λ) consumes
out of their current income (Yt). As a result, a part of the changes in income drive changes
in consumption, expressed as

∆Ct = α+ λ∆Yt + εt.

Due to the potential endogeneity of income, Campbell and Mankiw (1989) suggested
using lagged variables as instruments. It was only recently, that Bhatt, Kundan Kishor,
and Marfatia (2020) highlighted that although these instruments have been argued to be
exogeneous, they are in fact weak instruments. Instead, these authors proposed to use the
lagged 1-step-ahead Greenbook forecasts of changes in real disposable income, as these
are simultaneously highly correlated with the real disposable income at time t (as opposed
to the previously used instruments), and exogeneous due to the forecasting nature of the
variable. Thus eliminating any undesirable contemporaneous effects.

The parameter of interest is λ, which measures the causal impact that changes in
income have over changes in aggregate consumption. By sub-sample estimation (1978-
1999 and 2000-2010), Bhatt et al. (2020) find that λ is much smaller in the most recent
sub-sample than in the sample based on the years before 2000, which motivates their
choice for taking a time-varying approach. Similarly, we estimate time varying parameter
λt using our score-driven causal filter, while adding a lag of ∆Ct with a fixed parameter1

to capture the effect of changes in income on consumption growth. The structural model
equation we estimate is

∆Ct = α+ λt∆Yt + φ∆Ct−1 + εt, (15)

1Bhatt et al. (2020) also add ∆Ct−1 to their model, however with a time-varying parameter φt. Such
a multivariate filter is also possible in our framework, but for simplicity and brevity we take a constant
parameter as we wish to merely illustrate the use of our filter for the parameter of interest λt.
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where use the Greenbook forecasts (Y GB
t ) as instruments.

Figure 3 plots the growth rates of aggregate consumption, national income, as well as
the GreenBook forecasts. Similar to Bhatt et al. (2020), we take quarterly observations
of real consumption expenditures per capita on nondurable goods and services and real
per capita disposable income from 1978-2010 in the U.S., as well as the the one quarter
forecast of real disposable income from the Greenbook reports2.

Figure 3: Data and filtered path of excess sensitivity parameter λt

In the right panel of Figure 3 we plot the static OLS and IV estimators and the resulting
score driven filtered paths of λt, accounting for endogeneity and not (IVGAS and GAS
respectively). From these estimated paths we observe that sensitivity of consumption
to income seems to have steadily decreased during the 80s. Over the next decade the
sensitivity increased somewhat until the sudden drop in the wake of the 2001 crisis. There
seems to have been speedy recovery however, until the plunge due to the 2008 financial
crisis.

An important observation is that endogeneity does not seem to be a problem as the
static OLS and IV are not vastly different. This is indeed confirmed by a Hausman test
with a p-value of 0.55. However, it should be noted that these static estimators and the
Hausman statistic measure an average effect and that any local or temporary endogeneity
is averaged out over the entire sample. Comparing the IVGAS and GAS paths, we also find
that they overlap for a large part of the quarters in the sample, but do differ substantially
in a few instances. Most notably, during the period 2008Q4-2009Q2 right after the start
of the global financial with the bankruptcy of Lehman Brothers, the estimated effect by
IVGAS is twice as large as that by GAS. In the end, the level of endogeneity can also vary
over time. Although without error bounds or standard errors of estimated parameters
no conclusions can be made about the significance of this result, Bhatt et al. (2020) find
however that their estimated parameter belonging to the first stage residuals (our τ) is
significant, hence that in a model with time variation endogeneity in fact is a concern.

2For a detailed description of the source and type of data, see Bhatt et al. (2020).
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7 Conclusion

In this paper we have introduced a score-driven filter for time-varying regression parame-
ters that can be applied when regressors are endogenous. We have established invertibility
of the filter, consistency of the MLE and proven filter convergence to the true unobserved
path. In a simulation study we have shown that the behaviour of the regular score filter
gives undesirable results while the IV-score, in the presence of suitable instruments, un-
covers the true underlying path of the time varying parameter. We have also shown in
simulations that for non-stationary parameter processes such as structural breaks and ran-
dom walks the filter shows appropriate behaviour. Nevertheless, caution should be taken
with extrapolating this result, as non-stationary paths are not included in the theoretical
framework.

Further research will focus on establishing confidence bounds for the filtered path.
With current assumptions, the derivation of asymptotic normality of the MLE is compli-
cated by the fact that the likelihood function does not have guaranteed bounded moments.
With asymptotic normality, a test for time variation and a direct Hausman test for endo-
geneity could also be developed. The score driven IV method enriched with a confidence
bound procedure and these hypothesis tests could significantly add by presenting new
results in many fields of applied research.

Appendix: Proofs

Proof of Lemma 1
This lemma is an application of Proposition 3.2 of Blasques, van Brummelen, Koopman,
and Lucas (2022), to which we refer for a proof.

Proof of Lemma 2
This lemma is an application of Proposition 3.3 of Blasques, van Brummelen, et al. (2022),
to which we refer for a proof.

Proof of Theorem 1

Proof. For notational simplicity, write ˆ̀
T (θ, π, β̂1) := 1

T

∑T
t=1 `t(θ, π, β̂t(θ, π, β̂1)) and

˜̀
T (θ, π0) := 1

T

∑T
t=1 `t(θ, π0, β̃t(θ, π0)). We will prove this Theorem in the following parts:

(P1) The model is identifiable: `∞(θ0, π0) > `∞(θ, π0) for any θ ∈ Θ,θ 6= θ0.

(P2) The function ˆ̀
T (θ, π̂T , β̂1) with first stage estimator π̂T converges a.s. to ˜̀

T (θ, π0)
uniformly over Θ. That is,
‖ˆ̀T (θ, π̂T , β̂1)− ˜̀

T (θ, π0)‖Θ
a.s.→ 0 as T →∞.
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(P3) For any ε > 0, the following inequality holds a.s.

lim sup
n→∞

sup
θ∈Bc(θ0,ε)

ˆ̀
T (θ, π̂T , β̂1) < `∞(θ0, π0)

where Bc(θ0, ε) = Θ \B(θ0, ε) with B(θ0, ε) = {θ ∈ Θ : ‖θ0 − θ‖ < ε}

(P4) The result in (P3) implies strong consistency

(P1): Existence of `∞(θ0, π0) is guaranteed by C2 and by C5 we have that either
`∞(θ, π0) ∈ R or `∞(θ, π0) = −∞. Then

`0(θ, π0)− `0(θ0, π0) = log pη

(
yt − β̃t(θ, π0)xt − τ(xt − π0zt);λ

)
(16)

− log pη (yt − βot xt − τ0(xt − π0zt);λ0)

where β̃t(θ, π0) is the limit sequence, and βot = β̃t(θ0, π0) is the true TVP (due to correct
specification of the filter).

`0(θ, π0)− `0(θ0, π0) =
log
(
pη(yt − β̃txt − τ(xt − π0zt);λ

)
pη (yt − βot xt − τ0(xt − π0zt);λ0))

(17)

≤
pη

(
yt − β̃txt − τ(xt − π0zt);λ

)
pη(yt − βot xt − τ0(xt − π0zt);λ0)

− 1

The case of an equal sign here is ruled out, since the densities are not the same for any
θ 6= θ0. And, since pη(yt−βot xt− τ0(xt−π0zt);λ0) is the true conditional density we have

E[E
[
`0(θ, π0)− `0(θ0, π0)|Y t]

]
< E

E
 pη

(
yt − β̃txt − τ(xt − π0zt);λ

)
pη(yt − βot xt − τ0(xt − π0zt);λ0)

∣∣∣∣∣∣Y t

− 1 = 0

As a result,

`∞(θ, π0)− `∞(θ0, π0) = E[E
[
`0(θ, π0)− `0(θ0, π0)|Y t]

]
< 0 ∀θ 6= θ0

(P2): In this part of the proof we allow the likelihood function and the filter both to
depend on another value of π. Then the log likelihood contributions under the assumption
of Gaussian errors is given by

`t(θ, π
∗, βt(θ, π

∗∗)) = −1

2
log(2πσ2)− 1

2

(yt − βt(θ, π∗∗)xt − τ(xt − π∗zt))2

σ2
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We have

‖ˆ̀T (θ, π̂T , β̂1)− ˜̀
T (θ, π0)‖Θ (18)

= sup
θ∈Θ

∣∣∣∣∣ 1

T

∑
t=1

`t(θ, π̂T , β̂t(θ, π̂T , β̂1))− 1

T

∑
t=1

`t(θ, π0, β̃t(θ, π0))

∣∣∣∣∣
≤ sup

θ∈Θ

1

T

∑
t=1

∣∣∣`t(θ, π̂T , β̂t(θ, π̂T , β̂1))− `t(θ, π0, β̃t(θ, π0))
∣∣∣

≤ 1

T

∑
t=1

∥∥∥`t(θ, π̂T , β̂t(θ, π̂T , β̂1))− `t(θ, π0, β̃t(θ, π0))
∥∥∥

Θ
,

We will show that each summand converges a.s. to zero, so that by the Stolz-Cesaro
theorem the sample average does too. We can write

‖`t(θ, π̂T , β̂t(θ, π̂T , β̂1))− `t(θ, π0, β̃t(θ, π0))‖Θ (19)

≤ ‖`t(θ, π̂T , β̂t(θ, π̂T , β̂1))− `t(θ, π̂T , β̃t(θ, π̂T ))‖Θ
+ ‖`t(θ, π̂T , β̃t(θ, π̂T ))− `t(θ, π̂T , β̃t(θ, π0))‖Θ
+ ‖`t(θ, π̂T , β̃t(θ, π0)− `t(θ, π0, β̃t(θ, π0))‖Θ

Applying a Mean Value Theorem (MVT) to each of these terms we get

=

∥∥∥∥∥∂`t(θ, π̂T , β∗t (θ, π̂T , β̂1))

∂f

∥∥∥∥∥
Θ

‖β̂t(θ, π̂T , β̂1)− β̃t(θ, π̂T )‖Θ

+

∥∥∥∥∥∂`t(θ, π̂T , β̃∗t (θ, π))

∂f

∥∥∥∥∥
Θ

‖β̃t(θ, π̂T )− β̃t(θ, π0)‖Θ

+

∥∥∥∥∥∂`t(θ, π̃, β̃t(θ, π0))

∂π

∥∥∥∥∥
Θ

‖π̂T − π0‖Θ

where

• β∗t (θ, π̂T , β̂1) is a point between β̂t(θ, π̂T , β̂1) and β̃t(θ, π̂T )

• β̃∗t (θ, π) is a point between β̃t(θ, π̂T ) and β̃t(θ, π0)

• π̃ is a point between π̂T and π0.
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Writing out each derivative we obtain

=

∥∥∥∥∥xt(yt − β∗t (θ, π̂T , β̂1)xt − τ(xt − π̂T zt))
σ2

∥∥∥∥∥
Θ

‖β̂t(θ, π̂T , β̂1)− β̃t(θ, π̂T )‖Θ

+

∥∥∥∥∥xt(yt − β̃∗t (θ, π)xt − τ(xt − π̂T zt))
σ2

∥∥∥∥∥
Θ

‖β̃t(θ, π̂T )− β̃t(θ, π0)‖Θ

+

∥∥∥∥∥−τzt(yt − β̃t(θ, π0)xt − τ(xt − π̃zt))
σ2

∥∥∥∥∥
Θ

‖π̂T − π0‖Θ

Adding and subtracting β̃t(θ, π̂T ) to the first term, and expanding the second term further,

≤


∥∥∥∥∥xt(yt − β̃t(θ, π̂T )xt − τ(xt − π̂T zt))

σ2

∥∥∥∥∥
Θ︸ ︷︷ ︸

SE

+
∥∥∥β̃t(θ, π̂T )− β∗t (θ, π̂T , β̂1)

∥∥∥
Θ︸ ︷︷ ︸

e.a.s.−−−→0

×
∥∥∥∥x2

t

σ2

∥∥∥∥
Θ︸ ︷︷ ︸

SE

 ‖β̂t(θ, π̂T , β̂1)− β̃t(θ, π̂T )‖Θ︸ ︷︷ ︸
e.a.s.−−−→0

+

∥∥∥∥∥xt(yt − β̃∗t (θ, π)xt − τ(xt − π̂T zt))
σ2

∥∥∥∥∥
Θ︸ ︷︷ ︸

SE

∥∥∥∥∥∂β̃t(θ, π̃)

∂π

∥∥∥∥∥
Θ︸ ︷︷ ︸

SE

|π̂T − π0|︸ ︷︷ ︸
a.s.−−→0

+

∥∥∥∥∥−τzt(yt − β̃t(θ, π0)xt − τ(xt − π̃zt))
σ2

∥∥∥∥∥
Θ︸ ︷︷ ︸

SE

|π̂T − π0|︸ ︷︷ ︸
a.s.−−→0

where π̃ is a point between π̂T and π0. The derivative process of stationary β̃t is SE as
shown in the technical appendix of Blasques, Koopman, and Lucas (2014). We now have
products of SE sequences with e.a.s. vanishing terms, which vanish e.a.s. by Lemma 2.1.
in Straumann and Mikosch (2006). Note that the analogous result ξ∗nvn

a.s.−−→ 0 as n→∞
for stationary sequence vn with a bounded log moment and ξ∗t

a.s.−−→ 0 also holds.

(P3): We will show that (P3) holds for ˜̀
T (θ, π0) since by (P2) ˆ̀

T (θ, π̂T , β̂1) is asymptot-
ically equivalent to ˜̀

T (θ, π0).

Fix a θ∗. Then for a decreasing sequence {εi}i∈N s.t. limi→∞ εi = 0, the sequence
{supθ∈B(θ∗, εi) `0(θ, π0)}i∈N is non-increasing and greater than `0(θ∗, π0) for every i. Con-
sidering this, and the fact that limi→∞ supθ∈B(θ∗, εi) `0(θ, π0) = `0(θ∗, π0) by continuity, we
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conclude that supθ∈B(θ∗, εi) `0(θ, π0) ↓ `0(θ∗, π0). This together with E supθ∈Θ `0(θ, π0) <
∞ which is implied by (C5), we can apply the Monotone Convergence Theorem to con-
clude that

lim
i→∞

E sup
θ∈B(θ∗, εi)

`0(θ, π0) = `∞(θ∗, π0)

By (P1) we have that `∞(θ0, π0) > `∞(θ∗, π0) so that for all θ∗ 6= θ0 there exists a εθ∗ > 0
such that

E sup
θ∈B(θ∗, εθ∗ )

`0(θ, π0) < `∞(θ0, π0)

The set Bc(θ0, ε) is compact and is covered by the balls {B(θ, εθ) : θ ∈ Bc(θ0, ε)}. Let
B(θ1, ε1), . . . , B(θp, εp) be a finite subcover with supk=1,...,p εk < ε. Then, for any n ∈ N,
we have

sup
θ∈Bc(θ0,ε)

˜̀
T (θ, π0) ≤

p∨
k=1

1

T

T∑
t=1

sup
θ∈B(θk,εk)

˜̀
t(θ, π0)

Taking limits on both sides of the equation gives

lim sup
T→∞

sup
θ∈Bc(θ0,ε)

˜̀
T (θ, π0) ≤

p∨
k=1

E sup
θ∈B(θk,εk)

`0(θ, π0) < `∞(θ0, π0)

(P4): Suppose there exists an ε > 0 such that lim supT→∞ ||θ̂T (π̂, β̂1)− θ0|| ≥ ε. Then

sup
θ∈Bcεθ0

ˆ̀
T (θ, π̂T , β̂1) ≥ ˆ̀

T

(
θ̂T (π̂T , β̂1), π̂T , β̂1

)
≥ ˆ̀

T (θ0, π̂T , β̂1)

by definition of the two-step MLE, for all T ∈ N. By (P2) we have that ˆ̀
T (θ, π̂, β̂1) is

asymptotically equivalent to ˜̀
T (θ, π0), which leads to

lim
T→∞

sup
θ∈Bcεθ0

ˆ̀
T (θ, π̂T , β̂1) ≥ lim

T→∞
ˆ̀
T (θ0, π̂T , β̂1)

' lim
T→∞

˜̀
T (θ0, π0)

=`∞(θ0, π0).

However, we established in (P3) that this event has probability zero. Therefore,
lim supT→∞ ||θ̂T (π̂T , β̂1) − θ0|| < ε with probability 1 for any ε > 0. This concludes
the proof.
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Proof of Corollary 3

Proof. In order to show consistency of the MLE for the Gaussian IV-score model, we
show that the assumptions imply each of the conditions C1-C6 from Theorem 1. Let
K = 1

2 log(2Π) where Π is used here to denote the number pi (3.14..) that appears in the
Gaussian density. Then we have the following expressions for the likelihood contributions
and the IV-score filter

`t(θ, π, β̂t(θ, π, β̂1)) = −K − 1

2
log(σ)− 1

2
σ−2(yt − β̂t(θ, π, β̂1)xt − τ(xt − πzt))2 (20)

β̂t+1(θ, π, β̂1) = ω + ασ−2xt(yt − β̂t(θ, π, β̂1)xt − τ(xt − πzt)) + γβ̂t(θ, π, β̂1) (21)

where β̂1(θ, π, β̂1) = β̂1. Furthermore, we define

`0(θ, π) = −K − 1

2
log(σ)− 1

2
σ−2(yt − β̃t(θ, π)xt − τ(xt − πzt))2 (22)

where β̃t(θ, π) is the stationary limit of β̂t(θ, π, β̂1).

(C1) The DGP admits a stationary solution if βot , xt, zt, ηt are stationary sequences by
Proposition 4.3 in Krengel (1985). Therefore we need to show that β0

t = β̃t(θ0, π0) admits
a stationary solution, since the rest is assumed to be stationary. The true parameter
follows the process β0

t+1 = ω0 + α0σ
2
0xtηt + γβ0

t which is SE whenever E|γ0| < 1.

(C2) E|`0(θ0, π0)| <∞ holds for the Gaussian density.

E|`0(θ0, π0)| = E|−K − 1

2
log(σ0)− 1

2
σ−2

0 (yt − β0
t xt − τ0ut)

2| (23)

= E|−K − 1

2
log(σ0)− 1

2
σ−2

0 η2
t | <∞ (24)

(C3) We have to show that `0(θ0, π0) = `0(θ, π0) if and only if θ = θ0 and π = π0.

Denote the Gaussian density function by f(y|µ, σ) = 1
σ
√

2π
exp(−1

2(y−µσ )2). Note that

f(y|µ0, σ0) = f(y|µ, σ) for any y if and only if µ = µ0 and σ = σ0. Therefore, for our
Gaussian likelihood in equation (22) with σ = σ0, we have µ = µ0 if and only if

β̃t(θ0, π0)xt + τ0(xt − π0zt) = β̃t(θ, π0)xt + τ(xt − π0zt) (25)

using the first stage equation xt = π0zt + ut we can rearrange this to

0 = π0(β̃t(θ0, π0)− β̃t(θ, π0))zt + (β̃t(θ0, π0)− β̃t(θ, π0) + (τ0 − τ))ut

As ut ⊥ zt this can only hold for any zt, ut if the terms premultiplying zt and ut are
both zero. Solving the system of these two equations we get

π0(τ0 − τ) = 0,
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with solutions i) τ = τ0 and ii)π0 = 0 and possibly τ 6= τ0 (which means also
β̃t(θ0, π0) − β̃t(θ, π0) = τ − τ0 6= 0). It remains to verify what these solutions imply
for the rest of the elements in θ. To investigate both solutions simultaneously, define
κ := β̃t(θ0, π0) − β̃t(θ, π0), so that for solution i)κ = 0 and ii)κ = τ − τ0 6= 0 for any t.
Then the filter at time t+ 1,

κ = β̃t+1(θ0, π0)− β̃t+1(θ, π0)

κ = (ω0 + α0σ
−2
0 xtηt + γ0β̃t(θ0, π0)

−(ω + ασ−2
0 xt (yt − β̃t(θ, π0)xt − τ(xt − π0zt))︸ ︷︷ ︸

η̃t

+γβ̃t(θ, π0)

κ = (ω0 − ω) +
(α0ηt − αη̃t)

σ2
0

xt + (γ0β̃t(θ0, π0)− γβ̃t(θ, π0))

0 = (ω0 − ω) +
(α0ηt − αη̃t)

σ2
0

xt + (γ0 − γ)β̃t(θ0, π0) + (γ − 1)κ

Since the filter depends on the past, xt and β̃t(θ0, π0) are independent, meaning that
all premultiplying terms should be zero for this to hold. This gives rise to the following
set of equations:

(ω0 − ω) + (γ − 1)κ = 0

α0ηt − αη̃t = 0

γ0 − γ = 0.

The second equation gives us

0 = α0ηt − αη̃t = α0ηt − α(yt − β̃t(θ, π0)xt − τ(xt − π0zt))

= (α0 − α)ηt − α
[(
β̃t(θ0, π0)− β̃t(θ, π0) + τ0 − τ

)
xt − (τ0π0 − τπ0)zt

]
= (α0 − α)ηt − α

[(
β̃t(θ0, π0)− β̃t(θ, π0) + τ0 − τ

)
π0 − (τ0π0 − τπ0)

]
zt

− α
(
β̃t(θ0, π0)− β̃t(θ, π0) + τ0 − τ

)
ut

= (α0 − α)ηt =⇒ α0 − α = 0.
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Then we have (including the previously established values)

σ = σ0

π = π0

γ = γ0

α = α0

(ω0 − ω) + (γ0 − 1)(τ − τ0) = 0

π0(τ − τ0) = 0.

Since π0 6= 0, we finally obtain that τ = τ0, ω = ω0 meaning that θ = θ0.

(C4) This is a direct result of Corollary 1.

(C5) Implied by Guassian density and boundedness of the parameter space

`0(θ, π0) = −K − 1

2
log(σ)− 1

2
σ−2(yt − β̃t(θ, π0)xt − τ(xt − π0zt))

2

≤ −K − 1

2
log(σ) a.s.

Then

sup
θ∈Θ

`0(θ, π0) ≤ −K − 1

2
sup
θ∈Θ

log σ <∞,

with probability 1 by the compactness of Θ. This also implies E‖`0(θ, π0) ∨ c‖Θ <∞.

(C6) Given the DGP with Gaussian i.i.d. errors, the first stage OLS estimator is
strongly consistent (Anderson & Taylor, 1976). Note however that strong consistency also
holds in more general cases, such as in dynamic models (Anderson & Taylor, 1979) or
model with other less restrictive distributional assumptions (Lai et al., 1979; Christopeit
& Helmes, 1980).

Proof of Proposition 1

Proof. We will provide the proof by splitting it up in two parts.

(P1) |β̂t(θ̂T , π0, β̂1)− βot |
a.s.−−→ 0 as T ≥ t→∞

We assume correct specification, which implies that βot = β̃(θ0, π0). To make dependencies
explicit, denote the whole updating equation by βt+1(θ, π) = φ(βt(θ, π), Yt, π;θ)). Let
Bε(θ) = {θ̃ ∈ Θ : ‖θ − θ̃‖ ≤ ε} be a compact neighbourhood of θ ∈ Θ with radius ε for
some ε > 0. Since θ̂T

a.s.−−→ θ0, there exists some integer N ∈ N such that θ̂T ∈ Bεθ0 :=
Bε(θ0) for any T ≥ t ≥ N .
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We define the stationary sequence ρt(π) := sup
(θ1,θ2)∈Bεθ0×Bεθ0

Λ∗t (θ1,θ2, π) for some π ∈

Π. For any non-increasing sequence of constants {εi}i∈N such that limi→∞ εi = 0, the
sequence {sup(θ1,θ2)∈Bεi(θ)×Bεi(θ)

log Λ∗1(θ1,θ2, π)} is a non-increasing sequence (as i →
∞). By condition (ii) of Lemma 1 we have that E sup(θ1,θ2)∈Θ×Θ log Λ∗1(θ1, θ2, π) ∈ R− ∪
{−∞}. We can apply the monotone convergence theorem to conclude that

E lim
i→∞

sup
(θ1,θ2)∈Bεi (θ)×Bεi (θ)

log Λ∗1(θ1, θ2, π) = E log Λ1(θ, π)

Therefore, for every θ ∈ Θ for which E log Λ1(θ) < 0, there exists an εθ such that

E sup
(θ1,θ2)∈Bεθ (θ)×Bεθ (θ)

log Λ∗1(θ1, θ2, π) < 0

meaning that E log ρ1(π) < 0. With this result we can apply Lemma 2.5.5. from
Straumann (2005) to conclude that

∏t
k=1 ρk(π)

e.a.s.−−−→ 0, a result that will be used in
the final part of the proof.

Then for t > N

|β̂t(θ̂T , π0, β̂1)− βot | = |β̂t(θ̂T , π0, β̂1)− β̃t(θ0, π0)|
≤ |β̂t(θ̂T , π0, β̂1)− β̃t(θ̂T , π0)|+ |β̃t(θ̂T , π0)− β̃t(θ0, π0)|
≤ ‖β̂t(θ, π0, β̂1)− β̃t(θ, π0)‖Θ + |β̃t(θ̂T , π0)− β̃t(θ0, π0)|

The first term converges e.a.s. to zero, by Lemma 1. The second term can be expanded
and bounded by

|β̃t(θ̂T , π0)− β̃t(θ0, π0)| = |φ(β̃t−1(θ̂T , π0), Yt, π0; θ̂T ))− φ(β̃t−1(θ0, π0), Yt, π0;θ0))|
≤ |φ(β̃t−1(θ̂T , π0), Yt, π0; θ̂T ))− φ(β̃t−1(θ̂T , π0), Yt, π0;θ0))|︸ ︷︷ ︸

vt(θ̂T )

+ |φ(β̃t−1(θ̂T , π0), Yt, π0;θ0))− φ(β̃t−1(θ0, π0), Yt, π0;θ0))|

By the Mean Value Theorem, the last term is bounded by

sup
β∗∈FBεθ0

|φ̇(β∗, Yt, π0;θ0)| |β̃t−1(θ̂T , π0)− β̃t−1(θ0, π0)|

This leads to the fact that

|β̃t(θ̂T , π0)− β̃t(θ0, π0)| ≤ ρt(π0)|β̃t−1(θ̂T , π0)− β̃t−1(θ0, π0)|+ vt(θ̂T )

≤
∑
i≤t

t∏
k=i+1

ρk(π0)vi(θ̂T )
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by iterating backwards. WithE[log+ ‖β̃1‖Θ] <∞ we can apply Lemma 2.5.2. of Straumann
(2005), and conclude that the whole term converges almost surely. Moreover, by conti-
nuity of φ, vi(θ̂T )

a.s.−−→ 0 for any i ≤ t ≤ T as t → ∞, meaning that this upper bound
converges to zero a.s., as each summand vanishes. This concludes the proof.

(P2) |β̂t(θ̂T , π̂, β̂1)− βot |
a.s.−−→ 0 as T ≥ t→∞

Again we consider N ∈ N such that θ̂T ∈ Bεθ0 := Bε(θ0) for any T ≥ t ≥ N . Then for
t > N

|β̂t(θ̂T , π̂T , β̂1)− βot | = |β̂t(θ̂T , π̂T , β̂1)− β̃t(θ0, π0)|
≤ |β̂t(θ̂T , π̂T , β̂1)− β̃t(θ̂T , π̂T )|+ |β̃t(θ̂T , π̂T )− β̃t(θ̂T , π0)|+ |β̃t(θ̂T , π0)− β̃t(θ0, π0)|
≤ ‖β̂t(θ̂T , π̂T , β̂1)− β̃t(θ̂T , π̂T )‖Θ + ‖β̃t(θ̂T , π̂T )− β̃t(θ̂T , π0)‖Θ + |β̃t(θ̂T , π0)− β̃t(θ0, π0)|

The first term vanishes e.a.s. by an application of Lemma 1. The last term is shown to
converge to zero a.s. in (P1). The remaining term can be shown to vanish a.s. by an
application of the MVT, similar to the proof of (P2) in Theorem 1.

‖β̃t(θ, π̂T )− β̃t(θ, π0)‖Θ ≤

∥∥∥∥∥∂β̃t(θ, π∗)∂π

∥∥∥∥∥
Θ︸ ︷︷ ︸

SE

|π̂T − π0|︸ ︷︷ ︸
a.s.−−→0

where π∗ is a point between π̂T and π0. Since the derivative term is SE, we can apply
our extension of Lemma 2.1 of Straumann and Mikosch (2006) to almost sure convergence
(as mentioned in the proof of (P2) in Theorem 1) to conclude this term vanishes almost
surely. This concludes the proof of the Theorem.
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Supplementary Appendix

A Score-Driven Filter for Causal Regression Models with
Time-Varying Parameters and Endogenous Regressors
Francisco Blasques and Noah Stegehuis

(a) ht following sine dynamics (DGP 2).

(b) ht with a midway break (DGP 3).

Figure 4: Estimated paths of the causal parameter for DGPs 2 and 3.
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Figure 5: βt with a midway break (DGP 4).

Figure 6: βt following a random walk (DGP5).

Figure 7: Filtering with an endogenous instrument (DGP 6).
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Figure 8: Filtering with large error variance (DGP7).
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