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Abstract

This study reflects on the inconsistency of the fixed-design residual bootstrap procedure for

GARCH models under dependent innovations. We introduce a novel recursive-design residual

block bootstrap procedure to accurately quantify the uncertainty around parameter estimates and

volatility forecasts. A simulation study provides evidence for the validity of the recursive-design

residual block bootstrap in the presence of dependent innovations. The resulting bootstrap

confidence intervals are not only valid but also potentially narrower than the ones obtained from

the inconsistent fixed design bootstrap, depending on the underlying data-generating process and

the sample size. In an application to financial time series, we illustrate the empirical relevance of

our proposed methods, showing evidence for the residual dependence and demonstrating notable

differences between the confidence intervals obtained by the fixed- and the recursive-design

bootstrap procedure.
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1 Introduction

Generalized autoregressive conditional heteroskedasticity (GARCH) models, first proposed by Engle

(1982) and Bollerslev (1986), have attracted substantial attention in both practical applications and

academic literature. For example, these models find utility in weather modelling, derivatives pricing

and Value-at-Risk (VaR) estimation (Campbell and Diebold, 2005; Duan, 1995; Francq and Zakoïan,

2015; Hoga and Demetrescu, 2022; Li et al., 2023). The estimation of the model parameters is

commonly conducted through maximum likelihood estimation (MLE), under the assumption that the

innovations are independent and identically distributed (iid) random variables. The true distribution

of innovations is, however, typically unknown. In such cases and under relatively mild assumptions,

quasi-maximum likelihood estimation (QMLE) can be performed, where “quasi” indicates that the

log-likelihood function is maximized “as if” the innovations are normally distributed. Although

QMLE is not efficient when the innovations deviate from normality, the estimator remains consistent.

Since the introduction of GARCH models, a number of articles have addressed different aspects

of their statistical properties. Weiss (1986) presents asymptotic theory for ARCH models, whereas

Lumsdaine (1996) and Berkes et al. (2003) establish results for the local GARCH(1, 1) and global

GARCH(p, q) models, respectively. The term “local” indicates that the maximization of the log-

likelihood function occurs within the proximity of the true parameter θ0. Subsequently, Francq

and Zakoïan (2004) establish the consistency and asymptotic normality (CAN) for GARCH models

under even milder conditions. Hall and Yao (2003) provide results on ARCH and GARCH models

in the heavy-tailed setting. See also Robinson and Zaffaroni (2006) for pseudo-maximum likelihood

estimation. However, the aforementioned results all share the characteristic that they work under

the assumption of iid innovations.

While the assumption of iid innovations is convenient and substantially eases asymptotic analysis,

it is not fulfilled in all applications. Empirical evidence strongly suggests the presence of time-varying

conditional higher moments within the innovations in several observed time series. Harvey and

Siddique (1999) and Brooks et al. (2005), for example, find evidence of autoregressive conditional

skewness, and autoregressive conditional kurtosis in financial time series, respectively. Jondeau and

Rockinger (2003), León et al. (2005) and Dark (2010) allow for both autoregressive conditional

skewness and kurtosis, and White Jr et al. (2008) propose a multi-quantile conditionally autore-

gressive Value-at-Risk (CAViaR) model to capture autoregressive conditional skewness and kurtosis.
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D’Innocenzo et al. (2023) propose a score-driven model allowing for time-varying conditional mean,

variance and kurtosis.

In the presence of dependence within the innovations, it becomes necessary to loosen the iid

assumption. Lee and Hansen (1994) study the CAN of the local QMLE in GARCH(1, 1) models

under the assumption of martingale difference innovations. More than a decade later, Escanciano

(2009) proves CAN for the global QMLE of the semi-strong GARCH(p, q) model where the errors are

assumed to be a conditionally homoscedastic martingale difference sequence. Francq and Zakoïan

(2016) show similar results for equation-by-equation estimators for multivariate volatility models.

We refer to Linton et al. (2010) for least absolute deviation estimation (LADE) for a nonstationary

semi-strong GARCH(1, 1) model. Meitz and Saikkonen (2011) establish outcomes concerning the

consistency and asymptotic normality of QMLE in nonlinear AR(p) models with GARCH(1, 1) errors,

where the innovations are a strictly stationary and ergodic martingale difference sequence. Kouassi

et al. (2017a) and Kouassi et al. (2017b) present results on pseudo-maximum likelihood estimation

under dependent innovations for the univariate GARCH(1, 1) and GARCH(2, 2) model, respectively.

See Lee and Kim (2022) for asympotics for the semi-strong augmented GARCH(1, 1) model and

Francq and Zakoïan (2023) for quasi-likelihood estimation for weak location-scale dynamic models.

The aforementioned studies, while contributing valuable theoretical insights, predominantly

focus on the estimation of a range of GARCH models within the context of dependent innovations.

However, to the best of our knowledge, a gap remains in the literature regarding bootstrap procedures

to enhance the accuracy of approximating the finite sample distribution of parameter estimates

and volatility forecasts in such non-iid settings. This paper aims to partially fill this gap. We

present a novel solution: a recursive-design residual block bootstrap technique tailored for GARCH

processes under dependent innovations. Our findings provide evidence that the characteristics of a

GARCH process under dependent innovations can be effectively maintained through a bootstrap

approach, particularly when the bootstrap GARCH processes follow a recursive-design scheme and

the bootstrap residuals are generated by sampling random blocks of the model residuals. In our

simulation study, innovation trajectories are generated from processes characterized by unchanging

conditional mean and variance, yet displaying time-varying conditional higher moments. In doing so,

we gain insights into how time-varying conditional higher moments affect the variance of parameter

estimates and, consequently, volatility forecasts.

Numerous studies have explored bootstrapping techniques for GARCH processes. Among the
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widely used methods is the residual bootstrap, with two notable variations: recursive-design (Hidalgo

and Zaffaroni, 2007; Jeong, 2017; Pascual et al., 2006) and fixed-design (Beutner et al., 2024;

Cavaliere et al., 2018; Shimizu, 2010). Pascual et al. (2006) propose a recursive-design residual

bootstrap for GARCH processes with iid innovations and therefore ignore potential dependence in

the higher moments. Cavaliere et al. (2018) present a fixed volatility bootstrap for a class of ARCH(q)

models. We will argue that within the context of dependent innovations, the fixed-design bootstrap

method falls short in accurately quantifying the distribution of parameter estimates and volatility

forecasts, even when a block or stationary bootstrap procedure is performed instead of sampling

individual draws from the residuals’ distribution. Corradi and Iglesias (2008) reconsider a block

bootstrap procedure for GARCH processes with iid innovations (as proposed by Gonçalves and White

(2004)), in which one resamples blocks from the likelihood function instead of the observables. The

methods introduced above are suitable for GARCH models featuring iid innovations, yet they prove

inadequate when the assumed iid nature of the innovations becomes overly restrictive. Gonçalves

and Kilian (2004), for example, show that basic residual-based bootstrap procedures are invalid for

autoregressions with conditional heteroskedasticity.

We demonstrate the practical significance of our approach by applying it to financial time series.

To showcase the effectiveness of our proposed method, we compare it with the inconsistent fixed-

design procedure. In this application, we calculate the next period’s volatility and bootstrap the

confidence intervals using log-returns data from the EU Emission Trading System and USD/EUR

exchange rate. The findings reveal residual dependence, leading to noticeable distinctions between

the confidence intervals generated by our recursive-design procedure and those produced by the

fixed-design bootstrap.

In the subsequent section, we discuss the estimation of the parameters and the volatility forecasts.

Moving forward, Section 3 addresses the inadequacy of a fixed-design block bootstrap approach,

followed by a demonstration of how the recursive-design block bootstrap procedure effectively quan-

tifies uncertainty surrounding parameter estimates. Section 4 presents a comprehensive simulation

study to numerically validate our assertions. Our empirical analysis is conducted in Section 5, and

ultimately, Section 6 concludes.

4



2 Estimation

Throughout this paper, we assume the following updating equation:

ϵt = σtηt, (1)

where t ∈ Z and {ϵt} represents a sequence of observables, e.g. log-returns, {σt} denotes the volatility

process, and {ηt} is a conditionally homoscedastic martingale difference sequence of innovations,

with cumulative distribution function (cdf) F , satisfying E [ηt|Ft−1] = 0 and E
[
η2

t |Ft−1
]

= 1. Here,

Fu is the sigma-algebra generated by {ϵt, t ≤ u}. The volatility process is a measurable function of

the observables, i.e.,

σt(θ0) = σ(ϵt−1, ϵt−2, ..., ϵ1, ϵ0, ϵ−1, ...; θ0). (2)

We have σ : R∞ × Θ → (0, ∞), and θ0 represents the true parameter vector, where θ ∈ Θ ⊂ Rr with

r ∈ N. We estimate the true parameter θ0 by using QMLE. This method is particularly relevant for

GARCH models because it provides, under mild regularity conditions, consistent and asymptotically

normal estimators for strictly stationary GARCH processes. In doing so, we assume the normality

of the innovations {ηt}, while the actual distribution of the innovations may be non-Gaussian. In

that case we have that ϵt/σt(θ) = ηt(θ) ∼ N(0, 1) if θ = θ0, where

σt(θ) = σ(ϵt−1, ϵt−2, ..., ϵ1, ϵ0, ϵ−1, ...; θ). (3)

Since we generally do not have observations (ϵ0, ϵ−1, ..., ϵ−t, ...), we replace these observations by

arbitrary values ϵ̃t for t ≤ 0, such that we obtain:

σ̃t(θ) = σ(ϵt−1, ..., ϵ1, ϵ̃0, ϵ̃−1, ...; θ), (4)

which we can use to approximate the process shown in (3). The quasi-maximum likelihood estimator

θ̂n of θ0 is defined by

θ̂n = arg max
θ∈Θ

L̃n(θ) (5)

where n is the sample size and L̃n denotes the criterion function shown below:

L̃n(θ) = 1
n

n∑
t=1

ℓ̃t(θ), where ℓ̃t(θ) = −1
2

(
ϵt

σ̃t(θ)

)2
− log σ̃t(θ).

This paper builds on the assumptions of Francq and Zakoïan (2016), hereafter FZ16 for convenience,

which can be found in Appendix A. Theorem 1 recalls the consistency and asymptotic normality of
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the QMLE for univariate GARCH-type volatility models under dependent innovations, as proved

by FZ16 (Theorem 1 with k = 1). An analogous result was proved by Escanciano (2009), but

merely for semi-strong GARCH(p, q) models, while the results of FZ16 hold for a broader range of

GARCH-type volatility models. In the remainder of this paper, we use x′ to denote the transpose of

a column vector x.

Theorem 1 (Consistency and Asymptotic Normality (FZ16)). Under Assumptions 1, 2, 3, 4(i) and

5(i) the estimator in Equation (5) is strongly consistent, i.e. θ̂n
a.s.→ θ0. If, in addition, Assumptions

4(ii), 5(ii), 6, 7 and 8 hold, we have
√

n(θ̂n − θ0) d→ N(0, Σ), (6)

where Σ = J−1IJ−1 and

J = E
[
DtD

′
t

]
, I = E

[
(κt − 1)DtD

′
t

]
,

with Dt(θ) = 1
σ2

t (θ)
∂σ2

t (θ)
∂θ and κt := E

[
η4

t |Ft−1
]
.

In the following, we set Dt(θ0) = Dt to lighten notation. If the innovations are iid, the asymptotic

variance in (6) reduces to Σiid = (κ − 1)J−1 with κ = E
[
η4

t

]
. However, if the innovations are not

iid, then the asymptotic covariance matrix will typically be different from Σiid and takes a so-called

sandwich-form. Σ is commonly estimated by

Σ̂n = Ĵ−1
n ÎnĴ−1

n , where Ĵn = 1
n

n∑
t=1

D̂tD̂
′
t and În = 1

n

n∑
t=1

(
η̂4

t − 1
)

D̂tD̂
′
t. (7)

For convenience, we use D̂t = D̃t(θ̂n) with D̃t(θ) = 1
σ̃2

t (θ)
∂σ̃2

t (θ)
∂θ , and η̂t = ϵt/

√
σ̃2

t (θ̂n) denotes

the model residual with empirical distribution function (edf) F̂n(x) = 1
n

∑n
t=1 1{η̂t≤x}. Combining

Theorem 1 and the multivariate delta method, a (1 − γ)% conditional confidence interval can be

constructed for the next period’s volatility:

CIσ2
n+1

(γ) = σ2
n+1(θ̂n) ± Φ−1(1 − γ/2)√

n

√
∂σ2

n+1(θ̂n)
∂θ′ Σ

∂σ2
n+1(θ̂n)
∂θ

. (8)

The conditional confidence interval exhibited in Equation (8) can be estimated by

CIσ̃2
n+1

(γ) = σ̃2
n+1(θ̂n) ± Φ−1(1 − γ/2)√

n

√
∂σ̃2

n+1(θ̂n)
∂θ′ Σ̂n

∂σ̃2
n+1(θ̂n)
∂θ

. (9)

It is worth highlighting that in a GARCH context the next period’s volatility σ̃2
n+1(θ̂n) and its

derivatives are known conditionally on Fn, as they are functions of estimated parameters, the lagged

return, and the (latent) lagged volatility. For a theoretical justification of conditional confidence

intervals in time series models see Beutner et al. (2021).
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3 Bootstrapping GARCH processes under dependent innovations

In this section, we discuss the inconsistency of the fixed-design bootstrap approach in the setting of

dependent innovations. Next, we present the recursive-design block bootstrap method customized

for GARCH processes under dependent innovations. Before we proceed with a more in-depth

examination of the two bootstrap designs, let us first provide a brief introduction of the bootstrap

methodology within the context of GARCH modelling. When QMLE is performed, one works

under the assumption that the maximizer of the log-likelihood function can be found by setting the

derivative of the log-likelihood function (inflated by
√

n) equal to zero. Then, a Taylor expansion

yields

0 =
√

n
∂L̃n(θ̂n)

∂θ
= 1√

n

n∑
t=1

∂ℓ̃n

∂θ
(θ0) +

(
1
n

n∑
t=1

∂2

∂θ∂θ′ ℓ̃t(
⌣
θn)
)

√
n
(
θ̂n − θ0

)
,

where
⌣
θn is between θ̂n and θ0. We can rewrite this, under the assumption that the Hessian of the

log-likelihood function is invertible, to

√
n
(
θ̂n − θ0

)
=
(

1
n

n∑
t=1

∂2

∂θ∂θ′ ℓ̃t(
⌣
θn)
)−1( 1√

n

n∑
t=1

∂ℓ̃n

∂θ
(θ0)

)
.

FZ16 prove that the first part of the right-hand side converges to J−1 (see steps 3 and 4 of the proof

of Theorem 3.1 in FZ16 for the asymptotic normality). Let us now have a closer look at the second

part of the right-hand side:

1√
n

n∑
t=1

∂

∂θ
ℓ̃n(θ0) = 1√

n

n∑
t=1

D̃t

(
ϵ2
t

σ̃2
t (θ0)

− 1
)

.

FZ16 also show that, with I = E [(κt − 1)DtD
′
t] and D̃t = D̃t(θ0),

1√
n

n∑
t=1

D̃t

(
ϵ2
t

σ̃2
t (θ0)

− 1
)

L→ N(0, I). (10)

For a bootstrap procedure to ensure consistency, it is necessary that the conditional covariance matrix

of the bootstrapped parameter estimates converges in probability to the asymptotic covariance

matrix of the original parameter estimates. Specifically, in the context at hand, the conditional

covariance matrix of the bootstrapped parameter estimates should converge to the asymptotic

covariance matrix presented in Theorem 1. Therefore, we require that the bootstrap estimator θ̂⋆
n

fulfills the following:

√
n(θ̂⋆

n − θ̂n) d⋆

→ N(0, Σ),
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in probability. Here ⋆ indicates that we work in the bootstrap world (by a slight abuse of notation

we follow here the convention to denote a generic bootstrap procedure by a ⋆, while in Section 3.2 ⋆

stands for the recursive design bootstrap). For this to be true, we need that the bootstrap analogue

of (10) also holds in the bootstrap world (note that ϵ2
t /σ̃2

t (θ0) ≈ η2
t ):

1√
n

n∑
t=1

D̂⋆
t

(
η⋆2

t − 1
) L→ N(0, I), (11)

where D̂⋆
t = D̃⋆

t (θ̂n) and D̃⋆
t (θ) = 1

σ̃⋆2
t (θ)

∂σ̃⋆2
t (θ)
∂θ with σ̃⋆

t (θ) and ϵ⋆
t denoting the bootstrap volatility

process and the bootstrap observation at time t, respectively. In the remainder of this paper, we use
× to indicate that we work in the inconsistent fixed-design bootstrap world, whereas ⋆ denotes that

we are considering the recursive-design bootstrap procedure.

3.1 Inconsistency of the fixed-design bootstrap

The fixed-design residual process for volatility models of the ARCH type, as proposed by Cavaliere

et al. (2018), generates bootstrap samples that all have the same conditional volatility process as

the estimated model. Accordingly, for every bootstrap replication, the volatility process at time t is

known conditionally on Fn and thus a constant. This property significantly simplifies the asymptotic

analysis. Furthermore, the fixed-design bootstrap method is asymptotically valid under less stringent

conditions when compared to the recursive-design bootstrap methodology. For a broader range

of GARCH-type volatility models and conditional Value-at-Risk estimation within the context of

fixed-design bootstrap procedures, reference can be made to Beutner et al. (2024).

Clearly, one cannot expect that the fixed-design bootstrap combined with iid draws from the

residuals is consistent if the true innovations are actually dependent. Intuitively, replacing the iid

draws from the residuals, for instance, by a block bootstrap method or the stationary bootstrap,

could provide a way out. However, while such a procedure may preserve the underlying dependency

structure in the innovations, we will see below that it seems that the fixed-design bootstrap is,

in general, unable to capture the dependency between the innovations and the volatility process

induced by dependent innovations.

We will now elaborate on the inconsistency of some fixed-design bootstrap schemes. Note that,

since the fixed design bootstrap keeps the volatility process fixed across all bootstrap replications,
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D̃×
t (θ̂n) reduces to D̃t(θ̂n) = D̂t. We set

n∑
t=1

Z×
n,t = 1√

n

n∑
t=1

D̂t

(
η×2

t − 1
)

,

and assume for the rest of this subsection that, given the data, the η×2
t ’s are scaled such that their

second moments equal 1. Given that we are working in the bootstrap world, we need to calculate the

variance conditional on the data, i.e. Fn. In order for (11) to hold we need this variance to converge

in probability to the matrix on the right-hand side of (11). For any fixed-design stationary bootstrap

scheme, i.e. given the data η×
1 , . . . , η×

t are stationary, we have the following result. Hereafter, we use

E× and Var× to denote the expectation and variance conditional on Fn.

Lemma 1. The bootstrap variance of
∑n

t=1 Z×
n,t denoted by Var×

[∑n
t=1 Z×

n,t

]
is given by:

1
n

n∑
t=1

n∑
u=1

D̂tD̂
′
u E×

[
(η×2

t − 1)(η×2
u − 1)

]
=E×

[
(η×2

1 − 1)2
] 1

n

n∑
t=1

D̂tD̂
′
t

+ 1
n

n∑
t=1

n∑
u=1,u̸=t

D̂tD̂
′
uγ(|t − u|),

where γ(s) = E×
[
(η×2

1 − 1)(η×2
s+1 − 1)

]
, s = 1, . . . , n − 1. Moreover, if the bootstrap mimics the

conditional second moment of the observations, i.e., if E×
[
(η×2

t − 1)|F×
t−1

]
= 0, where F×

t−1 denotes

the sigma-algebra generated by {η×
1 , . . . , η×

t−1}, then we have

1
n

n∑
t=1

n∑
u=1

D̂tD̂
′
u E×

[
(η×2

t − 1)(η×2
u − 1)

]
= E×

[
(η×2

1 − 1)2
] 1

n

n∑
t=1

D̂tD̂
′
t.

The proof of this lemma is given in Appendix B. Note that the convergence of 1/n
∑n

t=1 D̂tD̂
′
t → J

almost surely follows under Assumptions 4 and 7 (ii); see, for instance, Beutner et al. (2023)[Lemma

2]. It can be directly seen from the second displayed equation in Lemma 1 that any bootstrap

procedure for which E×
[
(η×2

1 − 1)2
]

converges in probability to the respective moment of η1 will

fail because the asymptotic covariance matrix will be

(κ − 1)J−1 (12)

instead of the required Σ = J−1IJ−1. Clearly, this claim remains true if the bootstrap procedure

is such that it mimics the conditional second moment of ηt only asymptotically in the sense that

uniformly in s we have γ(s) ≤ CoP(1) for some constant C independent of s. More generally, the

fact that by construction the fixed-design bootstrap always allows to pull out the derivative of the

volatility process from the bootstrap expectation of Z×
n,t makes it very plausible that it must fail in
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general. As mentioned above, in Section 4 we combine the fixed-design bootstrap with the moving

block bootstrap; see Appendix C Algorithm 3 for the fixed-design moving block bootstrap. The

simulation results confirm this claim.

3.2 The recursive-design residual block bootstrap

We shall now advance to the recursive-design residual block bootstrap for GARCH processes under

dependent innovations. Pascual et al. (2006) discuss the recursive-design residual bootstrap for

GARCH(1, 1) processes and assess its finite sample properties employing a simulation study. We

refer to Hidalgo and Zaffaroni (2007) and Jeong (2017) for theoretical results on the recursive-design

residual bootstrap under iid innovations for ARCH(∞) and GARCH(p, q) processes, respectively. In

contrast to the fixed-design procedure, the bootstrap volatility processes (and their derivatives) are

now generated recursively. Consequently, conditionally on Fn, the bootstrap volatility processes are

random and, under dependent errors, not independent of the bootstrap innovations. The procedural

steps outlined in Algorithm 1 show how this feature of the recursive-design procedure ensures that

the dependence between the innovations and the volatility processes (and their derivatives) is not

ignored. However, this feature also introduces a substantial level of complexity to the asymptotic

analysis.

Algorithm 1. (Recursive-design residual block bootstrap)

First, construct n − l blocks bi of length l ∀i ∈ {1, ..., n − l} such that bi = {η̂i, η̂i+1, ..., η̂i+k, ..., η̂i+l}.

1. Draw ⌈n/l⌉ numbers U1, ..., U⌈n/l⌉ ∼ Uniform(1, n − l) (with replacement) and create the

bootstrap innovations {η⋆
1, ..., η⋆

⌈n/l⌉×l} = {bU1 , bU2 , ..., bU⌈n/l⌉}. In the case that ⌈n/l⌉ × l ̸= n,

truncate the series such that it has length n. Generate bootstrap observations ϵ⋆
t = σ̃⋆

t η⋆
t

recursively, with σ̃⋆
t = σ̃⋆

t (θ̂n) and σ̃⋆
t (θ) = σt(ϵ⋆

t−1, ϵ⋆
t−2, ..., ϵ⋆

1, ϵ̃0, ϵ̃−1, ϵ̃−2, ...; θ).

2. Calculate the bootstrap estimator for the volatility process by QMLE

θ̂⋆
n = arg max

θ∈Θ
L⋆

n(θ) (13)

with

L⋆
n(θ) = 1

n

n∑
t=1

ℓ⋆
t (θ) and ℓ⋆

t (θ) = −1
2

(
ϵ⋆
t

σ̃⋆
t (θ)

)2
− log σ̃⋆

t (θ). (14)
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3. Compute the next period’s volatility using the original returns series and the bootstrap estimator

θ̂⋆
n

σ̂⋆
n+1 = σ̃n+1(θ̂⋆

n), (15)

where σ̃n+1(θ̂⋆
n) = σn+1(ϵn, ϵn−1, ..., ϵ1, ϵ̃0, ϵ̃−1, ...; θ̂⋆

n).

The difference between Algorithms 3 and 1 is that in the latter case, the bootstrap volatility processes

are generated iteratively using the estimated volatility dynamics and the bootstrap observations.

Therefore, the dependence between η⋆4
t and D̂⋆

t D̂⋆′
t is not ignored. In Section 4 we substantiate this

claim by combining the recursive-design bootstrap procedure with the moving block bootstrap.

3.3 Bootstrapping confidence intervals

Algorithm 2 presents how to compute the confidence intervals surrounding the parameter estimates.

The intervals can be interpreted as follows: given the past up to and including time n there is a

100 × (1 − γ)% probability that the 100 × (1 − γ)% confidence interval contains the true parameter

θ0 (or σ2
n+1).

Algorithm 2. (Bootstrap confidence intervals for parameter estimates and the next period’s volatility)

1. Generate B bootstrap replicates for θ̂⋆
i,n with i ∈ {1, ..., r} and σ̂⋆2

n+1 for b = 1, ..., B by repeating

Algorithms 1 (recursive-design) or 3 (fixed-design).

2. Calculate the reversed tails interval for the parameter estimates:[
θ̂⋆

i,n + 1√
n

Ĝ⋆−1
n,B,θi

(γ/2), θ̂⋆
i,n + 1√

n
Ĝ⋆−1

n,B,θi
(1 − γ/2)

]
,

where Ĝ⋆−1
n,B,θi

(·) denotes the quantile function, or the generalized inverse, of Ĝ⋆
n,B,θi

(x) =
1
B

∑B
b=1 1{

√
n

(
θ̂

⋆(b)
i,n −θ̂i,n

)
≤x}

.

3. Calculate the reversed tails intervals for the next period’s volatility:[
σ̂⋆2

n+1 + 1√
n

Ĝ⋆−1
n,B,σ2

n+1
(γ/2), σ̂⋆2

n+1 + 1√
n

Ĝ⋆−1
n,B,σ2

n+1
(1 − γ/2)

]
,

where Ĝ⋆−1
n,B,σ2

n+1
(·) denotes the quantile function, or the generalized inverse, of Ĝ⋆

n,B,σ2
n+1

(x) =
1
B

∑B
b=1 1{

√
n

(
σ̂

⋆2(b)
n+1 −σ̂2

n+1

)
≤x}

.
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The reversed-tails bootstrap confidence interval is essentially the bootstrap analogue of the

(uncentered) statistic σ̂2
n+1 and is often reported in reduced form, in which it ‘reduces’ to the γ/2

and 1 − γ/2 quantiles of 1
B

∑B
b=1 1{σ̂

⋆2(b)
n+1 ≤x}. It is worth noting that we intentionally focus on the

reversed-tails bootstrap confidence interval in this paper. In our simulation study, we included the

equal-tailed percentile (EP) and the symmetric (SY) interval, but the reversed-tailed confidence

intervals outperformed the EP and SY in all settings in terms of coverage and confidence interval

length, which is in line with the results of Beutner et al. (2024). For a theoretical motivation, we

refer to Falk and Kaufmann (1991).

4 Simulation study

In this section, we examine the finite sample performance of our proposed bootstrap method compared

to the fixed-design procedure. We will conduct this analysis in scenarios featuring dependence within

the innovations. In doing so, we make use of the following specifications for the volatility process σt:

GARCH(1,1) : σ2
t = β0 + β1ϵ2

t−1 + β2σ2
t−1

TGARCH(1,1,1) : σt = β0 + β+
1 ϵ+

t−1 + β−
1 ϵ−

t−1 + β2σt−1,

with ϵ−
t = max(0, −ϵt) and ϵ+

t = max(0, ϵt). For the innovations process, we adopt the GARCHSK

model proposed by León et al. (2005) and subsequently refined by León and Ñíguez (2021), and

the Autoregressive Conditional Kurtosis (ARCK) model with a conditional student-t distribution

as proposed by Brooks et al. (2005). The first model enables the incorporation of time-varying

conditional skewness and kurtosis through the utilization of a time-varying Transformed Gram-

Charlier (tv-TGC) distribution. For a comprehensive analysis of the tv-TGC distribution, we direct

readers to Appendix D. León and Ñíguez (2021) assume that the observables and the distributional

parameters evolve according to the following dynamics:

ϵt = µt + σtηt,

ηt|Ft−1 ∼ TGC(0, 1, kt), (16)

kt = δ0 + δ1η4
t−1 + δ2kt−1.

For the sake of simplicity and convenience, we will disregard the time-varying mean component

(i.e. µt = 0 ∀t ∈ {1, ..., n}). The DGP of the volatility process is modelled using a GARCH(1, 1)
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(TGARCH(1, 1, 1)) structure with high persistence, characterized by a true parameter vector denoted

as (β0, β1, β2) = (0.1, 0.15, 0.8) ((β0, β+
1 , β−

1 , β2) = (0.1, 0.05, 0.1, 0.8)). The conditional mean,

variance, and skewness parameters of the tv-TGC distribution are held constant at 0, 1, and 0,

respectively. In this context, the term kt indirectly drives the conditional kurtosis of the tv-TGC

distribution. The true parameters for the updating equation of kt are set to (δ0, δ1, δ2) = (2, 0.15, 0.4).

The ARCK framework is formulated as follows:

ϵt = µ0 +
√

(νt − 2)
νt

σtηt, with

ηt|Ft−1 ∼ t(0, 1, νt),

kt = δ0 + δ1η4
t−1 + δ2kt−1,

νt = 2 (2kt − 3)
kt − 3 .

Once more, we omit the mean component, that is, µ0 = 0, and proceed to model the volatility

process using a GARCH(1, 1) (TGARCH(1, 1, 1)) structure with specific parameter values, namely

(β0, β1, β2) = (0.1, 0.4, 0.55) ((β0, β+
1 , β−

1 , β2) = (0.1, 0.1, 0.3, 0.5)). This choice is made in order to

assess the performance of the model under conditions of low persistence. In this context, kt serves

as the driver for the degrees-of-freedom parameter νt, which in turn is employed to accommodate

heavier tails in the distribution of the innovations. Specifically, as νt > 4 decreases, the distribution

exhibits heavier tails. Conversely, higher values of νt lead to lighter tails, ultimately converging

to a normal distribution as νt tends towards infinity. The true parameter values for the updating

equation of kt in the ARCK setting are set to (δ0, δ1, δ2) = (1.5, 0.4, 0.5).

The outcomes are generated through S = 2,000 Monte Carlo iterations and B = 2,000 bootstrap

replications, and an initial burn-in phase of 500. If a (bootstrap) parameter estimate falls outside

of the stationary region, both the process and the corresponding estimations are disregarded and

replaced with a new realization. The length of the simulated time series, denoted as n, spans from 500

to 10,000. Correspondingly, the block length, denoted as l, is allowed to vary within the range of 1 to

30 for n = 500, 1 to 50 for n ∈ {1,000; 2,000}, 1 to 70 for n = 5,000, and 1 to 100 for n = 10,000. In

the forthcoming tables, the abbreviation “ASY” denotes the asymptotic variance based on Theorem

1 within the recursive-design procedure. On the other hand, “ASY” denotes the value obtained

through (12) within the framework of the fixed-design methodology. The bootstrapped residuals are

subject to resampling using the moving block bootstrap procedure, as outlined in Algorithms 1 and

3 for the recursive- and fixed-design bootstrap, respectively. The various block lengths are illustrated
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along the horizontal axis for reference. We refer to Appendix E for a smaller-scale simulation study

in which the fixed- and recursive-design bootstrap procedures are combined with the stationary

bootstrap of Politis and Romano (1994). Here blocks of random length are generated using the

geometric distribution with parameter p = 1/l. The simulation outcomes closely align with the results

obtained by the moving block bootstrap.

Tables 1 and 2 (3 and 4) present the simulation results for parameter estimates of the GARCH(1,1)

process with tv-TGC and ARCK errors, respectively, with nominal coverage of 0.9 for γ =

0.1 (0.95 for γ = 0.05). We will commence with the tv-TGC scenario, i.e. Tables 1 and 3. For both

nominal coverage levels 1 − γ and across all sample sizes, it can be seen that the empirical coverage

for both the recursive-design and fixed-design procedures exhibits similarity when l = 1. More

interestingly, it becomes clear that when the block size is increased, the length of the confidence

intervals (indicated in parentheses) reduces under the recursive-design bootstrap procedure. Corre-

spondingly, the empirical coverage rates approach their nominal value. The results indicate that,

although having block lengths of reasonable size is essential, the specific block length itself does not

significantly impact the outcome. This observation highlights the robustness of our methodology.

As anticipated, this trend is not observed in the case of the fixed-design bootstrap methodology.

In this approach, employing resampled blocks rather than individual draws from the empirical

distribution of residuals does not yield narrower (or wider) confidence intervals. Furthermore, it

is worth noting that the accuracy of both bootstrap procedures improves with larger sample sizes.

While the empirical coverage occasionally falls slightly below its nominal value for smaller sample

sizes, this discrepancy diminishes for larger sample sizes. The results also demonstrate that for

sample sizes n ∈ {5,000; 10,000}, both bootstrap designs appear to closely align with their asymptotic

counterparts.

Tables 2 and 4 present the simulation results for the model with ARCK innovations. When

considering innovations generated by an ARCK model, the results show similarities with the tv-TGC

case, albeit with minor discrepancies. In the tv-TGC scenario, we noted that the fixed-design

procedure tends to overestimate the uncertainty around parameter estimates, especially for β1 and

β2. Conversely, within the current context, and for both nominal coverage levels 1 − γ, the outcomes

suggest that the fixed-design procedure either underestimates (for β1) or overestimates (for β0) the

uncertainty. Once again, the results of the recursive-design framework show that for an increase in

block length l, the empirical coverage rates tend to approach their nominal value, and confidence
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intervals widen for β1 (shrink for β0). Note that in comparison to the results for the tv-TGC process,

the bootstrap procedure (along with its asymptotic counterparts) demands larger sample sizes to

attain empirical coverage rates that closely converge with their nominal values. This phenomenon

can be attributed to our utilization of a student-t distribution with a time-varying degrees-of-freedom

parameter νt > 4, which may tend to approach 4, thereby inducing heavy tails.

Concerning the TGARCH(1,1,1) with tv-TGC and ARCK innovations presented in Tables 5 and

6, respectively, the overall outcomes align with the GARCH(1,1) configuration. This implies that the

recursive-design bootstrap effectively approximates the nominal coverage for larger sample sizes and

block lengths, whereas the fixed-design bootstrap procedure once again fails. A closer examination

reveals that in the tv-TGC setting the under-coverage (over-coverage) for the asymptotic confidence

intervals is more pronounced for β0 and β2 (β+
1 and β−

1 ) in comparison to the GARCH(1,1) scenario.

Also, over-coverage is evident in smaller sample sizes for all parameters in both bootstrap procedures,

a trend that diminishes with an increase in sample size. In the ARCK context, there is under-coverage

observed for the asymptotic confidence bounds in small sample sizes, which diminishes as the sample

size n increases. As for the empirical coverage rates determined by the bootstrap procedures, it

is noticeable that for n = 500, there is over-coverage. Specifically, this over-coverage is observed

for β0 and β2 in the recursive-design bootstrap procedure and for β+
1 in the fixed-design bootstrap

procedure.
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Recursive-design Fixed-design

n/l β ASY 1 5 10 15 20 30 50 70 100 ASY 1 5 10 15 20 30 50 70 100

500

β0 0.886 0.894 0.880 0.875 0.868 0.864 0.855 - - - 0.906 0.906 0.909 0.907 0.905 0.911 0.913 - - -

(0.235) (0.312) (0.318) (0.326) (0.324) (0.322) (0.319) - - - (0.240) (0.261) (0.261) (0.262) (0.263) (0.264) (0.264) - - -

β1 0.871 0.943 0.918 0.914 0.904 0.898 0.890 - - - 0.918 0.940 0.940 0.943 0.941 0.943 0.942 - - -

(0.171) (0.174) (0.164) (0.163) (0.161) (0.160) (0.158) - - - (0.158) (0.174) (0.174) (0.175) (0.175) (0.175) (0.177) - - -

β2 0.864 0.918 0.901 0.896 0.885 0.875 0.864 - - - 0.903 0.905 0.909 0.910 0.908 0.909 0.908 - - -

(0.245) (0.306) (0.305) (0.310) (0.307) (0.304) (0.300) - - - (0.233) (0.273) (0.274) (0.275) (0.275) (0.276) (0.278) - - -

1,000

β0 0.893 0.906 0.899 0.895 0.896 0.895 0.889 0.872 - - 0.912 0.912 0.912 0.911 0.909 0.909 0.910 0.910 - -

(0.137) (0.161) (0.162) (0.167) (0.168) (0.168) (0.167) (0.166) - - (0.135) (0.145) (0.145) (0.145) (0.146) (0.146) (0.146) (0.147) - -

β1 0.876 0.932 0.913 0.907 0.903 0.897 0.892 0.879 - - 0.919 0.935 0.935 0.940 0.935 0.938 0.938 0.941 - -

(0.117) (0.118) (0.111) (0.109) (0.109) (0.108) (0.107) (0.105) - - (0.106) (0.119) (0.119) (0.119) (0.119) (0.119) (0.120) (0.120) - -

β2 0.880 0.923 0.914 0.913 0.910 0.900 0.897 0.873 - - 0.917 0.918 0.918 0.921 0.916 0.920 0.920 0.919 - -

(0.150) (0.169) (0.165) (0.168) (0.168) (0.168) (0.167) (0.165) - - (0.139) (0.160) (0.160) (0.160) (0.161) (0.161) (0.162) (0.163) - -

2,000

β0 0.896 0.901 0.891 0.884 0.883 0.882 0.877 0.874 0.870 - 0.911 0.911 0.908 0.908 0.910 0.911 0.908 0.914 0.910 -

(0.090) (0.097) (0.096) (0.096) (0.096) (0.096) (0.095) (0.095) (0.094) - (0.088) (0.092) (0.092) (0.092) (0.092) (0.092) (0.092) (0.093) (0.093) -

β1 0.894 0.931 0.915 0.905 0.905 0.901 0.899 0.893 0.881 - 0.930 0.936 0.936 0.940 0.938 0.935 0.941 0.938 0.940 -

(0.082) (0.082) (0.077) (0.075) (0.075) (0.074) (0.074) (0.073) (0.073) - (0.074) (0.083) (0.083) (0.083) (0.083) (0.083) (0.083) (0.084) (0.084) -

β2 0.894 0.926 0.916 0.910 0.906 0.902 0.899 0.893 0.882 - 0.928 0.922 0.921 0.923 0.923 0.922 0.921 0.924 0.925 -

(0.102) (0.107) (0.102) (0.101) (0.101) (0.100) (0.100) (0.099) (0.098) - (0.094) (0.104) (0.105) (0.105) (0.105) (0.105) (0.105) (0.105) (0.106) -

5,000

β0 0.903 0.906 0.901 0.898 0.893 0.891 0.889 0.887 0.891 - 0.906 0.902 0.903 0.905 0.905 0.904 0.901 0.907 0.904 -

(0.054) (0.056) (0.055) (0.055) (0.055) (0.055) (0.055) (0.055) (0.054) - (0.053) (0.054) (0.055) (0.055) (0.055) (0.055) (0.055) (0.055) (0.055) -

β1 0.900 0.938 0.917 0.911 0.906 0.907 0.907 0.902 0.898 - 0.940 0.937 0.936 0.940 0.941 0.938 0.940 0.939 0.940 -

(0.052) (0.051) (0.048) (0.047) (0.047) (0.046) (0.046) (0.046) (0.046) - (0.046) (0.052) (0.052) (0.052) (0.052) (0.052) (0.052) (0.052) (0.052) -

β2 0.906 0.925 0.913 0.904 0.900 0.898 0.899 0.895 0.896 - 0.926 0.925 0.925 0.924 0.925 0.924 0.926 0.925 0.930 -

(0.062) (0.063) (0.061) (0.060) (0.060) (0.059) (0.059) (0.059) (0.058) - (0.058) (0.063) (0.063) (0.063) (0.063) (0.063) (0.063) (0.063) (0.063) -

10,000

β0 0.903 0.910 0.899 0.896 0.894 0.894 0.892 0.894 0.897 0.893 0.912 0.909 0.910 0.907 0.908 0.906 0.908 0.910 0.907 0.910

(0.038) (0.038) (0.038) (0.038) (0.038) (0.038) (0.038) (0.038) (0.038) (0.037) (0.037 (0.038) (0.038) (0.038) (0.038) (0.038) (0.038) (0.038) (0.038) (0.038)

β1 0.895 0.929 0.910 0.906 0.901 0.898 0.895 0.894 0.896 0.896 0.938 0.933 0.934 0.938 0.934 0.935 0.933 0.932 0.934 0.934

(0.036) (0.036) (0.034) (0.033) (0.033) (0.033) (0.033) (0.032) (0.032) (0.032) (0.032 (0.036) (0.037) (0.037) (0.037) (0.036) (0.037) (0.037) (0.037) (0.037)

β2 0.893 0.917 0.901 0.892 0.890 0.889 0.894 0.889 0.891 0.892 0.921 0.917 0.919 0.919 0.918 0.919 0.917 0.920 0.919 0.921

(0.044) (0.044) (0.042) (0.041) (0.041) (0.041) (0.041) (0.041) (0.041) (0.041) (0.040 (0.044) (0.044) (0.044) (0.044) (0.044) (0.044) (0.044) (0.044) (0.044)

Table 1: Presents the empirical coverage for the parameter estimates of the volatility process. The DGP is a GARCH(1, 1) with

tv-TGC innovations. The bootstrapped residuals are subject to resampling using the moving block bootstrap procedure. The nominal

coverage is 90%. S = 2,000 Monte Carlo iterations and B = 2,000 bootstrap replications are performed. The volatility and kurtosis

parameters are (β0, β1, β2) = (0.1, 0.15, 0.8) and (δ0, δ1, δ2) = (2, 0.15, 0.4), respectively.
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Recursive-design Fixed-design

n/l β ASY 1 5 10 15 20 30 50 70 100 ASY 1 5 10 15 20 30 50 70 100

500

β0 0.884 0.899 0.899 0.897 0.892 0.887 0.877 - - - 0.924 0.909 0.904 0.908 0.905 0.904 0.908 - - -

(0.129) (0.138) (0.138) (0.138) (0.137) (0.137) (0.135) - - - (0.125) (0.130) (0.128) (0.128) (0.128) (0.128) (0.128) - - -

β1 0.840 0.851 0.836 0.830 0.829 0.827 0.823 - - - 0.850 0.864 0.861 0.863 0.864 0.863 0.866 - - -

(0.284) (0.261) (0.271) (0.270) (0.269) (0.267) (0.265) - - - (0.309) (0.257) (0.256) (0.256) (0.256) (0.257) (0.258) - - -

β2 0.860 0.916 0.914 0.906 0.905 0.899 0.896 - - - 0.883 0.908 0.902 0.907 0.907 0.907 0.909 - - -

(0.277) (0.297) (0.302) (0.303) (0.301) (0.299) (0.295) - - - (0.277) (0.285) (0.283) (0.283) (0.284) (0.284) (0.285) - - -

1,000

β0 0.892 0.890 0.880 0.876 0.879 0.881 0.878 0.867 - - 0.924 0.905 0.902 0.902 0.901 0.900 0.901 0.903 - -

(0.088) (0.088) (0.088) (0.088) (0.088) (0.088) (0.088) (0.087) - - (0.084) (0.086) (0.086) (0.085) (0.085) (0.085) (0.085) (0.086) - -

β1 0.860 0.864 0.859 0.861 0.855 0.855 0.854 0.847 - - 0.862 0.871 0.868 0.869 0.873 0.871 0.868 0.875 - -

(0.210) (0.193) (0.204) (0.204) (0.204) (0.204) (0.203) (0.200) - - (0.231) (0.192) (0.191) (0.191) (0.191) (0.191) (0.192) (0.192) - -

β2 0.870 0.899 0.892 0.887 0.881 0.883 0.883 0.874 - - 0.890 0.891 0.893 0.893 0.889 0.891 0.892 0.895 - -

(0.191) (0.194) (0.197) (0.199) (0.199) (0.199) (0.198) (0.195) - - (0.192) (0.191) (0.190) (0.190) (0.190) (0.190) (0.191) (0.192) - -

2,000

β0 0.884 0.900 0.882 0.873 0.874 0.875 0.877 0.875 0.869 - 0.921 0.913 0.908 0.907 0.905 0.905 0.906 0.908 0.906 -

(0.061) (0.059) (0.058) (0.058) (0.058) (0.058) (0.058) (0.058) (0.057) - (0.057) (0.060) (0.059) (0.059) (0.059) (0.059) (0.059) (0.059) (0.059) -

β1 0.870 0.856 0.862 0.863 0.866 0.868 0.868 0.863 0.861 - 0.855 0.865 0.862 0.862 0.861 0.863 0.863 0.862 0.862 -

(0.152) (0.141) (0.151) (0.152) (0.152) (0.152) (0.152) (0.151) (0.151) - (0.169) (0.142) (0.141) (0.141) (0.141) (0.141) (0.141) (0.141) (0.142) -

β2 0.869 0.873 0.874 0.873 0.878 0.888 0.887 0.888 0.885 - 0.874 0.877 0.874 0.870 0.875 0.872 0.872 0.872 0.876 -

(0.134) (0.132) (0.134) (0.135) (0.135) (0.135) (0.135) (0.134) (0.133) - (0.134) (0.133) (0.132) (0.132) (0.132) (0.132) (0.132) (0.132) (0.133) -

5,000

β0 0.893 0.906 0.886 0.871 0.873 0.877 0.878 0.886 0.887 - 0.926 0.916 0.912 0.914 0.915 0.917 0.913 0.916 0.915 -

(0.039) (0.037) (0.036) (0.036) (0.036) (0.036) (0.036) (0.036) (0.036) - (0.036) (0.038) (0.038) (0.038) (0.038) (0.038) (0.038) (0.038) (0.038) -

β1 0.884 0.850 0.874 0.882 0.885 0.884 0.888 0.888 0.884 - 0.851 0.852 0.856 0.853 0.852 0.852 0.852 0.853 0.856 -

(0.099) (0.094) (0.103) (0.104) (0.105) (0.105) (0.105) (0.105) (0.105) - (0.113) (0.095) (0.095) (0.095) (0.095) (0.095) (0.095) (0.095) (0.095) -

β2 0.884 0.877 0.875 0.872 0.875 0.878 0.880 0.888 0.883 - 0.887 0.880 0.880 0.879 0.881 0.880 0.882 0.881 0.881 -

(0.085) (0.083) (0.085) (0.085) (0.085) (0.085) (0.085) (0.085) (0.085) - (0.086) (0.084) (0.084) (0.084) (0.084) (0.084) (0.084) (0.084) (0.084) -

10,000

β0 0.906 0.918 0.890 0.876 0.878 0.882 0.889 0.888 0.892 0.891 0.928 0.924 0.925 0.924 0.923 0.927 0.924 0.924 0.924 0.926

(0.027) (0.026) (0.025) (0.025) (0.025) (0.025) (0.025) (0.025) (0.025) (0.025) (0.025) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027)

β1 0.890 0.842 0.875 0.885 0.883 0.889 0.889 0.890 0.891 0.890 0.848 0.845 0.845 0.849 0.843 0.846 0.849 0.848 0.847 0.849

(0.071) (0.069) (0.076) (0.077) (0.078) (0.078) (0.078) (0.078) (0.078) (0.078) (0.081) (0.070) (0.069) (0.069) (0.069) (0.069) (0.069) (0.069) (0.069) (0.070)

β2 0.904 0.890 0.879 0.877 0.886 0.890 0.900 0.902 0.901 0.900 0.898 0.898 0.895 0.897 0.896 0.896 0.895 0.899 0.899 0.896

(0.060) (0.059) (0.060) (0.061) (0.061) (0.061) (0.061) (0.061) (0.061) (0.061) (0.062) (0.060) (0.060) (0.060) (0.060) (0.060) (0.060) (0.060) (0.060) (0.060)

Table 2: Presents the empirical coverage for the parameter estimates of the volatility process. The DGP is a GARCH(1, 1) with

ARCK innovations. The bootstrapped residuals are subject to resampling using the moving block bootstrap procedure. The nominal

coverage is 90%. S = 2,000 Monte Carlo iterations and B = 2,000 bootstrap replications are performed. The volatility and kurtosis

parameters are (β0, β1, β2) = (0.1, 0.4, 0.55) and (δ0, δ1, δ2) = (1.5, 0.4, 0.5), respectively.
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Recursive-design Fixed-design

n/l β ASY 1 5 10 15 20 30 50 70 ASY 1 5 10 15 20 30 50 70

500

β0 0.936 0.951 0.947 0.944 0.941 0.940 0.935 - - 0.952 0.960 0.962 0.962 0.961 0.963 0.964 - -

(0.282) (0.405) (0.413) (0.419) (0.415) (0.411) (0.405) - - (0.281) (0.329) (0.329) (0.330) (0.331) (0.332) (0.333) - -

β1 0.926 0.979 0.964 0.957 0.952 0.948 0.941 - - 0.950 0.979 0.981 0.979 0.979 0.980 0.980 - -

(0.202) (0.208) (0.196) (0.194) (0.192) (0.190) (0.187) - - (0.184) (0.209) (0.209) (0.210) (0.210) (0.211) (0.213) - -

β2 0.926 0.967 0.961 0.957 0.954 0.950 0.939 - - 0.950 0.963 0.964 0.967 0.961 0.965 0.962 - -

(0.293) (0.394) (0.392) (0.396) (0.391) (0.387) (0.380) - - (0.273) (0.341) (0.341) (0.342) (0.343) (0.345) (0.347) - -

1,000

β0 0.944 0.961 0.958 0.953 0.951 0.948 0.944 0.935 - 0.954 0.962 0.965 0.964 0.966 0.965 0.968 0.965 -

(0.163) (0.200) (0.202) (0.209) (0.211) (0.212) (0.212) (0.211) - (0.162) (0.178) (0.178) (0.178) (0.178) (0.178) (0.179) (0.180) -

β1 0.940 0.974 0.964 0.957 0.957 0.958 0.954 0.952 - 0.962 0.976 0.975 0.975 0.976 0.977 0.976 0.975 -

(0.140) (0.142) (0.133) (0.131) (0.130) (0.130) (0.128) (0.126) - (0.126) (0.143) (0.143) (0.143) (0.143) (0.143) (0.144) (0.145) -

β2 0.946 0.974 0.967 0.964 0.961 0.957 0.953 0.943 - 0.962 0.969 0.968 0.967 0.966 0.968 0.970 0.972 -

(0.180) (0.210) (0.205) (0.210) (0.211) (0.211) (0.210) (0.207) - (0.168) (0.196) (0.196) (0.196) (0.196) (0.197) (0.198) (0.199) -

2,000

β0 0.946 0.952 0.945 0.944 0.943 0.947 0.941 0.938 0.931 0.956 0.954 0.953 0.953 0.956 0.954 0.953 0.957 0.959

(0.107) (0.117) (0.117) (0.118) (0.117) (0.117) (0.117) (0.116) (0.116) (0.106) (0.111) (0.111) (0.111) (0.111) (0.111) (0.111) (0.112) (0.112)

β1 0.942 0.968 0.959 0.954 0.953 0.950 0.948 0.942 0.938 0.965 0.970 0.971 0.974 0.971 0.973 0.972 0.972 0.975

(0.098) (0.098) (0.092) (0.090) (0.090) (0.089) (0.088) (0.087) (0.087) (0.088) (0.099) (0.099) (0.100) (0.100) (0.100) (0.100) (0.100) (0.101)

β2 0.941 0.964 0.955 0.949 0.945 0.947 0.945 0.938 0.934 0.964 0.963 0.962 0.964 0.963 0.961 0.965 0.963 0.964

(0.121) (0.129) (0.124) (0.123) (0.123) (0.123) (0.122) (0.121) (0.120) (0.112) (0.125) (0.125) (0.125) (0.125) (0.126) (0.126) (0.126) (0.127)

5,000

β0 0.944 0.946 0.944 0.944 0.937 0.935 0.937 0.937 0.928 0.946 0.943 0.942 0.939 0.943 0.943 0.941 0.946 0.944

(0.065) (0.067) (0.066) (0.066) (0.066) (0.066) (0.066) (0.066) (0.066) (0.064) (0.066) (0.066) (0.066) (0.066) (0.066) (0.066) (0.066) (0.066)

β1 0.944 0.968 0.954 0.952 0.947 0.950 0.948 0.946 0.945 0.966 0.972 0.969 0.971 0.970 0.966 0.972 0.967 0.971

(0.062) (0.061) (0.057) (0.056) (0.056) (0.055) (0.055) (0.055) (0.055) (0.055) (0.062) (0.062) (0.062) (0.062) (0.062) (0.062) (0.062) (0.062)

β2 0.943 0.962 0.950 0.951 0.945 0.944 0.941 0.942 0.940 0.964 0.963 0.960 0.960 0.960 0.960 0.961 0.961 0.961

(0.074) (0.076) (0.073) (0.072) (0.071) (0.071) (0.071) (0.071) (0.070) (0.069) (0.075) (0.075) (0.075) (0.075) (0.075) (0.075) (0.076) (0.076)

Table 3: Presents the empirical coverage for the parameter estimates of the volatility process. The DGP is a GARCH(1, 1) with

tv-TGC innovations. The bootstrapped residuals are subject to resampling using the moving block bootstrap procedure. The nominal

coverage is 95%. S = 2,000 Monte Carlo iterations and B = 2,000 bootstrap replications are performed. The volatility and kurtosis

parameters are (β0, β1, β2) = (0.1, 0.15, 0.8) and (δ0, δ1, δ2) = (2, 0.15, 0.4), respectively.
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Recursive-design Fixed-design

n/l β ASY 1 5 10 15 20 30 50 70 ASY 1 5 10 15 20 30 50 70

500

β0 0.925 0.938 0.933 0.938 0.938 0.934 0.927 - - 0.952 0.945 0.939 0.942 0.939 0.942 0.943 - -

(0.142) (0.170) (0.169) (0.170) (0.170) (0.170) (0.168) - - (0.154) (0.158) (0.156) (0.155) (0.155) (0.155) (0.156) - -

β1 0.870 0.894 0.877 0.871 0.869 0.867 0.867 - - 0.889 0.910 0.909 0.909 0.908 0.910 0.912 - -

(0.353) (0.312) (0.323) (0.323) (0.321) (0.319) (0.316) - - (0.340) (0.308) (0.305) (0.305) (0.306) (0.306) (0.308) - -

β2 0.894 0.950 0.956 0.952 0.954 0.952 0.938 - - 0.916 0.941 0.940 0.938 0.936 0.940 0.941 - -

(0.315) (0.362) (0.368) (0.370) (0.369) (0.366) (0.361) - - (0.329) (0.344) (0.341) (0.341) (0.341) (0.342) (0.344) - -

1,000

β0 0.934 0.931 0.929 0.924 0.930 0.929 0.923 0.921 - 0.959 0.944 0.942 0.941 0.942 0.939 0.942 0.942 -

(0.104) (0.106) (0.104) (0.105) (0.105) (0.105) (0.105) (0.104) - (0.098) (0.103) (0.102) (0.101) (0.101) (0.101) (0.102) (0.102) -

β1 0.905 0.910 0.899 0.898 0.897 0.898 0.892 0.887 - 0.906 0.917 0.918 0.916 0.916 0.916 0.918 0.918 -

(0.249) (0.229) (0.240) (0.241) (0.241) (0.241) (0.240) (0.238) - (0.272) (0.228) (0.227) (0.226) (0.226) (0.227) (0.227) (0.228) -

β2 0.910 0.932 0.934 0.929 0.932 0.927 0.928 0.920 - 0.926 0.931 0.928 0.928 0.928 0.930 0.929 0.932 -

(0.226) (0.232) (0.236) (0.237) (0.238) (0.237) (0.236) (0.234) - (0.224) (0.229) (0.227) (0.227) (0.227) (0.227) (0.228) (0.229) -

2,000

β0 0.952 0.958 0.945 0.939 0.938 0.941 0.943 0.939 0.930 0.966 0.962 0.960 0.957 0.958 0.960 0.957 0.958 0.958

(0.068) (0.071) (0.070) (0.070) (0.070) (0.070) (0.070) (0.069) (0.069) (0.073) (0.072) (0.071) (0.071) (0.071) (0.071) (0.071) (0.071) (0.071)

β1 0.926 0.917 0.925 0.923 0.924 0.922 0.922 0.919 0.915 0.916 0.922 0.923 0.925 0.923 0.924 0.922 0.923 0.925

(0.205) (0.170) (0.182) (0.183) (0.184) (0.183) (0.183) (0.183) (0.182) (0.184) (0.170) (0.169) (0.168) (0.169) (0.169) (0.169) (0.169) (0.169)

β2 0.936 0.941 0.935 0.934 0.933 0.934 0.939 0.940 0.938 0.943 0.939 0.939 0.936 0.938 0.940 0.938 0.940 0.940

(0.160) (0.159) (0.162) (0.163) (0.163) (0.163) (0.163) (0.162) (0.161) (0.160) (0.159) (0.158) (0.158) (0.158) (0.158) (0.158) (0.159) (0.159)

5,000

β0 0.947 0.961 0.944 0.936 0.934 0.939 0.942 0.947 0.946 0.968 0.964 0.965 0.963 0.963 0.961 0.961 0.964 0.965

(0.046) (0.044) (0.043) (0.043) (0.043) (0.043) (0.043) (0.043) (0.042) (0.043) (0.045) (0.045) (0.045) (0.045) (0.045) (0.045) (0.045) (0.045)

β1 0.934 0.910 0.927 0.935 0.935 0.937 0.938 0.934 0.932 0.916 0.913 0.917 0.918 0.915 0.916 0.916 0.913 0.919

(0.119) (0.112) (0.123) (0.124) (0.124) (0.124) (0.124) (0.124) (0.124) (0.135) (0.114) (0.113) (0.113) (0.113) (0.113) (0.113) (0.113) (0.113)

β2 0.943 0.941 0.933 0.926 0.929 0.933 0.940 0.942 0.943 0.944 0.945 0.947 0.943 0.944 0.945 0.946 0.944 0.947

(0.101) (0.099) (0.101) (0.102) (0.102) (0.102) (0.102) (0.102) (0.101) (0.103) (0.100) (0.100) (0.100) (0.100) (0.100) (0.100) (0.100) (0.100)

Table 4: Presents the empirical coverage for the parameter estimates of the volatility process. The DGP is a GARCH(1, 1) with

ARCK innovations. The bootstrapped residuals are subject to resampling using the moving block bootstrap procedure. The nominal

coverage is 95%. S = 2,000 Monte Carlo iterations and B = 2,000 bootstrap replications are performed. The volatility and kurtosis

parameters are (β0, β1, β2) = (0.1, 0.4, 0.44) and (δ0, δ1, δ2) = (1.5, 0.4, 0.5), respectively.
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Recursive-design Fixed-design

n/l β ASY 1 5 10 15 20 30 50 70 ASY 1 5 10 15 20 30 50 70

500

β0 0.823 0.940 0.925 0.921 0.914 0.915 0.893 - - 0.870 0.919 0.917 0.917 0.919 0.915 0.918 - -

(0.520) (0.495) (0.481) (0.466) (0.459) (0.453) (0.444) - - (0.389) (0.356) (0.357) (0.357) (0.357) (0.359) (0.359) - -

β+
1 0.952 0.970 0.951 0.936 0.929 0.931 0.921 - - 0.961 0.935 0.934 0.936 0.939 0.940 0.938 - -

(0.208) (0.172) (0.164) (0.164) (0.164) (0.164) (0.163) - - (0.188) (0.171) (0.171) (0.171) (0.171) (0.171) (0.173) - -

β−
1 0.920 0.963 0.937 0.930 0.929 0.919 0.917 - - 0.938 0.936 0.937 0.937 0.936 0.935 0.938 - -

(0.234) (0.213) (0.203) (0.201) (0.200) (0.199) (0.196) - - (0.208) (0.206) (0.206) (0.206) (0.207) (0.207) (0.209) - -

β2 0.816 0.924 0.904 0.904 0.899 0.894 0.874 - - 0.869 0.875 0.876 0.875 0.880 0.877 0.879 - -

(0.817) (0.790) (0.763) (0.739) (0.727) (0.716) (0.701) - - (0.618) (0.582) (0.583) (0.584) (0.585) (0.588) (0.589) - -

1,000

β0 0.809 0.918 0.919 0.918 0.919 0.913 0.913 0.902 - 0.846 0.913 0.909 0.913 0.909 0.912 0.914 0.911 -

(0.441) (0.368) (0.380) (0.380) (0.378) (0.376) (0.371) (0.368) - (0.283) (0.279) (0.279) (0.280) (0.280) (0.280) (0.281) (0.282) -

β+
1 0.930 0.965 0.941 0.937 0.934 0.928 0.923 0.921 - 0.943 0.957 0.955 0.957 0.957 0.954 0.953 0.955 -

(0.132) (0.120) (0.118) (0.119) (0.119) (0.119) (0.119) (0.119) - (0.127) (0.118) (0.118) (0.118) (0.118) (0.118) (0.119) (0.119) -

β−
1 0.895 0.945 0.923 0.918 0.916 0.913 0.916 0.907 - 0.923 0.913 0.915 0.915 0.914 0.918 0.918 0.919 -

(0.154) (0.147) (0.141) (0.141) (0.140) (0.140) (0.139) (0.137) - (0.143) (0.145) (0.145) (0.145) (0.145) (0.145) (0.145) (0.146) -

β2 0.800 0.913 0.912 0.910 0.912 0.899 0.898 0.888 - 0.857 0.905 0.905 0.910 0.900 0.905 0.903 0.906 -

(0.690) (0.586) (0.604) (0.603) (0.598) (0.596) (0.587) (0.582) - (0.453) (0.454) (0.455) (0.455) (0.456) (0.456) (0.457) (0.460) -

2,000

β0 0.847 0.912 0.925 0.914 0.914 0.917 0.909 0.902 0.894 0.863 0.912 0.912 0.907 0.908 0.912 0.911 0.909 0.908

(0.193) (0.209) (0.226) (0.239) (0.243) (0.246) (0.247) (0.247) (0.247) (0.174) (0.191) (0.191) (0.191) (0.191) (0.190) (0.191) (0.192) (0.192)

β+
1 0.907 0.936 0.925 0.923 0.927 0.927 0.929 0.925 0.923 0.922 0.942 0.947 0.945 0.948 0.947 0.944 0.950 0.948

(0.082) (0.083) (0.081) (0.082) (0.082) (0.083) (0.083) (0.083) (0.083) (0.085) (0.082) (0.082) (0.082) (0.082) (0.082) (0.083) (0.083) (0.083)

β−
1 0.920 0.939 0.923 0.921 0.922 0.923 0.924 0.931 0.924 0.932 0.934 0.940 0.938 0.937 0.934 0.936 0.937 0.939

(0.097) (0.101) (0.097) (0.097) (0.097) (0.098) (0.098) (0.097) (0.097) (0.101) (0.102) (0.102) (0.102) (0.102) (0.102) (0.102) (0.102) (0.103)

β2 0.851 0.917 0.915 0.912 0.916 0.920 0.915 0.909 0.898 0.871 0.909 0.910 0.908 0.904 0.908 0.909 0.908 0.911

(0.312) (0.340) (0.364) (0.383) (0.389) (0.392) (0.394) (0.394) (0.395) (0.286) (0.312) (0.312) (0.313) (0.313) (0.312) (0.313) (0.314) (0.315)

5,000

β0 0.890 0.890 0.889 0.892 0.893 0.895 0.903 0.893 0.895 0.895 0.898 0.899 0.904 0.896 0.895 0.898 0.900 0.902

(0.105) (0.104) (0.108) (0.113) (0.116) (0.117) (0.118) (0.120) (0.120) (0.100) (0.105) (0.106) (0.106) (0.106) (0.106) (0.106) (0.106) (0.106)

β+
1 0.898 0.916 0.899 0.894 0.895 0.902 0.901 0.894 0.890 0.917 0.918 0.914 0.917 0.917 0.914 0.919 0.916 0.917

(0.049) (0.052) (0.050) (0.049) (0.049) (0.049) (0.049) (0.049) (0.050) (0.052) (0.053) (0.053) (0.053) (0.053) (0.053) (0.053) (0.053) (0.053)

β−
1 0.889 0.926 0.896 0.896 0.892 0.892 0.897 0.892 0.897 0.920 0.926 0.927 0.925 0.924 0.926 0.922 0.927 0.925

(0.059) (0.063) (0.060) (0.059) (0.059) (0.059) (0.059) (0.059) (0.059) (0.063) (0.063) (0.063) (0.063) (0.063) (0.063) (0.063) (0.064) (0.064)

β2 0.888 0.900 0.891 0.884 0.890 0.888 0.896 0.890 0.885 0.898 0.904 0.904 0.905 0.899 0.902 0.903 0.906 0.905

(0.172) (0.173) (0.177) (0.185) (0.188) (0.190) (0.192) (0.194) (0.194) (0.166) (0.175) (0.175) (0.175) (0.175) (0.175) (0.175) (0.175) (0.176)

Table 5: Presents the empirical coverage for the parameter estimates of the volatility process. The bootstrapped residuals are subject

to resampling using the moving block bootstrap procedure. The DGP is a TGARCH(1, 1, 1) with tv-TGC innovations. The nominal

coverage is 90%. S = 2,000 Monte Carlo iterations and B = 2,000 bootstrap replications are performed. The volatility and kurtosis

parameters are (β0, β+
1 , β−

1 , β2) = (0.1, 0.05, 0.1, 0.8) and (δ0, δ1, δ2) = (2, 0.15, 0.4), respectively.
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Recursive-design Fixed-design

n/l β ASY 1 5 10 15 20 30 50 70 ASY 1 5 10 15 20 30 50 70

500

β0 0.802 0.915 0.923 0.928 0.923 0.915 0.909 - - 0.829 0.907 0.905 0.900 0.905 0.896 0.910 - -

(0.142) (0.133) (0.134) (0.135) (0.134) (0.133) (0.131) - - (0.132) (0.122) (0.121) (0.121) (0.122) (0.122) (0.122) - -

β+
1 0.890 0.888 0.897 0.893 0.882 0.872 0.874 - - 0.883 0.936 0.934 0.935 0.937 0.935 0.939 - -

(0.240) (0.186) (0.191) (0.193) (0.193) (0.193) (0.191) - - (0.220) (0.186) (0.185) (0.185) (0.185) (0.186) (0.187) - -

β−
1 0.846 0.834 0.848 0.849 0.843 0.846 0.829 - - 0.827 0.848 0.847 0.846 0.847 0.846 0.844 - -

(0.291) (0.261) (0.267) (0.267) (0.265) (0.264) (0.261) - - (0.272) (0.259) (0.258) (0.258) (0.258) (0.259) (0.260) - -

β2 0.780 0.905 0.919 0.926 0.914 0.909 0.895 - - 0.812 0.899 0.896 0.890 0.885 0.890 0.899 - -

(0.565) (0.533) (0.542) (0.543) (0.537) (0.534) (0.526) - - (0.522) (0.489) (0.488) (0.488) (0.489) (0.490) (0.491) - -

1,000

β0 0.823 0.875 0.875 0.881 0.883 0.886 0.878 0.869 - 0.847 0.873 0.874 0.873 0.877 0.873 0.872 0.873 -

(0.105) (0.098) (0.100) (0.101) (0.101) (0.101) (0.101) (0.100) - (0.098) (0.096) (0.095) (0.095) (0.096) (0.096) (0.096) (0.096)

β+
1 0.859 0.832 0.853 0.861 0.862 0.859 0.856 0.854 - 0.828 0.845 0.849 0.850 0.846 0.849 0.852 0.853 -

(0.169) (0.142) (0.148) (0.151) (0.151) (0.151) (0.151) (0.149) - (0.157) (0.141) (0.141) (0.141) (0.141) (0.141) (0.142) (0.142)

β−
1 0.844 0.835 0.848 0.851 0.856 0.854 0.850 0.844 - 0.835 0.844 0.838 0.840 0.835 0.840 0.843 0.839 -

(0.216) (0.195) (0.203) (0.204) (0.205) (0.204) (0.203) (0.201) - (0.201) (0.194) (0.194) (0.194) (0.194) (0.194) (0.195) (0.195)

β2 0.818 0.863 0.873 0.874 0.875 0.876 0.879 0.859 - 0.825 0.857 0.859 0.861 0.865 0.862 0.867 0.866 -

(0.419) (0.391) (0.400) (0.407) (0.407) (0.406) (0.405) (0.400) - (0.389) (0.381) (0.379) (0.379) (0.381) (0.381) (0.381) (0.383)

2,000

β0 0.861 0.870 0.872 0.872 0.874 0.876 0.881 0.878 0.863 0.861 0.874 0.869 0.872 0.876 0.869 0.871 0.875 0.869

(0.071) (0.068) (0.070) (0.072) (0.072) (0.072) (0.073) (0.072) (0.072) (0.069) (0.068) (0.068) (0.068) (0.068) (0.068) (0.068) (0.068) (0.068)

β+
1 0.872 0.834 0.852 0.857 0.857 0.862 0.853 0.848 0.855 0.845 0.848 0.846 0.848 0.846 0.843 0.844 0.844 0.848

(0.120) (0.107) (0.114) (0.115) (0.116) (0.116) (0.116) (0.116) (0.115) (0.113) (0.107) (0.107) (0.107) (0.107) (0.107) (0.107) (0.107) (0.107)

β−
1 0.870 0.834 0.854 0.861 0.866 0.866 0.865 0.860 0.858 0.836 0.833 0.834 0.833 0.833 0.836 0.832 0.837 0.836

(0.160) (0.142) (0.152) (0.153) (0.153) (0.153) (0.153) (0.152) (0.152) (0.145) (0.142) (0.142) (0.142) (0.142) (0.142) (0.142) (0.142) (0.142)

β2 0.851 0.863 0.859 0.864 0.873 0.879 0.878 0.879 0.864 0.851 0.859 0.864 0.860 0.863 0.865 0.871 0.870 0.863

(0.289) (0.274) (0.283) (0.289) (0.292) (0.293) (0.294) (0.293) (0.291) (0.274) (0.272) (0.272) (0.272) (0.272) (0.272) (0.272) (0.273) (0.273)

5,000

β0 0.886 0.873 0.870 0.885 0.890 0.890 0.889 0.884 0.887 0.875 0.875 0.871 0.875 0.876 0.874 0.872 0.871 0.878

(0.044) (0.042) (0.043) (0.044) (0.044) (0.044) (0.044) (0.044) (0.044) (0.043) (0.043) (0.043) (0.043) (0.042) (0.042) (0.042) (0.043) (0.043)

β+
1 0.876 0.840 0.874 0.876 0.877 0.880 0.877 0.878 0.875 0.851 0.852 0.846 0.849 0.849 0.845 0.848 0.845 0.845

(0.078) (0.070) (0.076) (0.076) (0.077) (0.077) (0.077) (0.077) (0.077) (0.071) (0.070) (0.070) (0.070) (0.070) (0.070) (0.070) (0.070) (0.070)

β−
1 0.893 0.850 0.878 0.887 0.884 0.886 0.888 0.884 0.884 0.851 0.849 0.853 0.849 0.850 0.848 0.847 0.850 0.843

(0.103) (0.092) (0.099) (0.100) (0.101) (0.101) (0.101) (0.101) (0.101) (0.093) (0.092) (0.092) (0.092) (0.092) (0.092) (0.092) (0.092) (0.092)

β2 0.883 0.869 0.869 0.886 0.895 0.896 0.896 0.891 0.888 0.871 0.873 0.864 0.867 0.865 0.868 0.869 0.867 0.868

(0.182) (0.171) (0.176) (0.180) (0.181) (0.182) (0.182) (0.182) (0.182) (0.171) (0.171) (0.171) (0.171) (0.170) (0.171) (0.171) (0.171) (0.171)

Table 6: Presents the empirical coverage for the parameter estimates of the volatility process. The DGP is a TGARCH(1, 1, 1) with

ARCK innovations. The bootstrapped residuals are subject to resampling using the moving block bootstrap procedure. The nominal

coverage is 90%. S = 2,000 Monte Carlo iterations and B = 2,000 bootstrap replications are performed. The volatility and kurtosis

parameters are (β0, β+
1 , β−

1 , β2) = (0.1, 0.1, 0.3, 0.5) and (δ0, δ1, δ2) = (1.5, 0.4, 0.5), respectively.
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Tables 7 and 8 (9 and 10) present the findings from the Monte Carlo simulation study for the next

period’s volatility in the context of the GARCH(1,1) process with tv-TGC and ARCK innovations,

respectively, with nominal coverage γ = 0.1 (γ = 0.05). For the tv-TGC setting, increasing the block

length leads to a contraction of confidence intervals within the recursive-design block bootstrap

approach, whereas the fixed-design counterpart displays no adaptability. Conversely, in the case of

ARCK innovations, using larger block lengths leads to larger confidence intervals, exclusively for the

recursive-design procedure. When employing the recursive-design procedure in the tv-TGC setting,

the selection of large block lengths l results in overly narrow confidence intervals. As a consequence,

the empirical coverage falls short of its nominal value. When dealing with samples of modest size

(n = 500), the empirical coverage achieved by the recursive-design bootstrap markedly falls short

in both settings, but when the sample size is enlarged, the empirical coverage rates approach their

nominal value. Once more, in the context at hand, the coverage rates for the tv-TGC process are

closer to their nominal values in smaller sample sizes compared to those obtained in the ARCK

setting, which can be attributed to the pronounced heavy-tailed distribution inherent to the latter

setting.

Concerning the TGARCH(1,1,1) illustrated in Tables 11 and 12 for the tv-TGC and ARCK

configurations, respectively, the findings closely parallel those of the GARCH(1,1) framework.

Specifically, in the context of tv-TGC (ARCK), the confidence intervals decrease (increase) with the

block length exclusively within the recursive-design framework, while the fixed-design procedure

once again falls short in capturing the interdependence between innovations and volatility processes.
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n/l ASY 1 5 10 15 20 30 50 70 100

Recursive-

design

500 0.869 0.876 0.869 0.865 0.854 0.854 0.844 - - -

(0.965) (0.978) (0.956) (0.954) (0.952) (0.950) (0.948) - - -

1,000 0.893 0.900 0.891 0.888 0.886 0.881 0.876 0.861 - -

(0.692) (0.719) (0.701) (0.699) (0.698) (0.697) (0.695) (0.690) - -

2,000 0.875 0.899 0.890 0.890 0.889 0.885 0.886 0.883 0.880 -

(0.456) (0.474) (0.463) (0.461) (0.460) (0.459) (0.460) (0.459) (0.457) -

5,000 0.896 0.911 0.902 0.903 0.899 0.898 0.896 0.895 0.895 -

(0.324) (0.338) (0.328) (0.327) (0.326) (0.326) (0.325) (0.324) (0.323) -

10,000 0.901 0.906 0.905 0.903 0.899 0.898 0.898 0.898 0.895 0.895

(0.207) (0.214) (0.209) (0.208) (0.208) (0.207) (0.207) (0.206) (0.205) (0.205)

Fixed-

design

500 0.890 0.891 0.892 0.886 0.889 0.887 0.887 - - -

(1.003) (0.918) (0.918) (0.921) (0.920) (0.921) (0.921) - - -

1,000 0.904 0.908 0.906 0.908 0.907 0.906 0.902 0.904 - -

(0.726) (0.695) (0.696) (0.696) (0.696) (0.698) (0.698) (0.698) - -

2,000 0.892 0.895 0.897 0.896 0.897 0.899 0.900 0.897 0.899 -

(0.474) (0.471) (0.471) (0.471) (0.472) (0.470) (0.471) (0.471) (0.470) -

5,000 0.908 0.908 0.906 0.902 0.904 0.905 0.904 0.907 0.905 -

(0.339) (0.339) (0.339) (0.339) (0.339) (0.339) (0.339) (0.338) (0.338) -

10,000 0.909 0.906 0.906 0.908 0.907 0.908 0.904 0.906 0.907 0.906

(0.215) (0.215) (0.215) (0.215) (0.215) (0.215) (0.215) (0.215) (0.215) (0.215)

Table 7: Presents the empirical coverage rates for the next period’s volatility σ2
t+1 with tv-

TGC innovations. The bootstrapped residuals are subject to resampling using the moving

block bootstrap procedure. The nominal coverage is (1 − γ) × 100 = 90%. For each bootstrap

procedure, sample size n and block length l, S = 2,000 Monte Carlo iterations and B = 2,000

bootstrap replications are performed. The DGP is a GARCH(1, 1) with parameters (β0, β1, β2) =

(0.1, 0.15, 0.8) for the volatility process, and (δ0, δ1, δ2) = (2, 0.15, 0.4).
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n/l ASY 1 5 10 15 20 30 50 70 100

Recursive-

design

500 0.861 0.847 0.834 0.829 0.823 0.820 0.815 - - -

(0.596) (0.513) (0.519) (0.521) (0.522) (0.524) (0.521) - - -

1,000 0.889 0.882 0.871 0.865 0.865 0.864 0.858 0.853 - -

(0.498) (0.425) (0.440) (0.442) (0.444) (0.445) (0.448) (0.445) - -

2,000 0.888 0.887 0.883 0.873 0.869 0.867 0.870 0.859 0.855 -

(0.542) (0.450) (0.465) (0.485) (0.500) (0.507) (0.517) (0.516) (0.503) -

5,000 0.898 0.899 0.899 0.894 0.893 0.893 0.893 0.895 0.893 -

(0.354) (0.297) (0.306) (0.310) (0.313) (0.311) (0.312) (0.312) (0.308) -

10,000 0.893 0.890 0.892 0.889 0.893 0.892 0.894 0.897 0.890 0.889

(0.337) (0.272) (0.300) (0.304) (0.309) (0.310) (0.314) (0.315) (0.316) (0.318)

Fixed-

design

500 0.878 0.863 0.850 0.848 0.846 0.844 0.839 - - -

(0.582) (0.497) (0.491) (0.490) (0.489) (0.488) (0.487) - - -

1,000 0.907 0.889 0.890 0.884 0.885 0.883 0.884 0.879 - -

(0.487) (0.421) (0.417) (0.415) (0.415) (0.415) (0.415) (0.414) - -

2,000 0.896 0.893 0.891 0.885 0.884 0.884 0.881 0.882 0.878 -

(0.497) (0.447) (0.448) (0.446) (0.444) (0.448) (0.448) (0.446) (0.442) -

5,000 0.898 0.904 0.899 0.901 0.898 0.899 0.896 0.896 0.898 -

(0.325) (0.305) (0.301) (0.303) (0.301) (0.298) (0.300) (0.301) (0.300) -

10,000 0.894 0.892 0.889 0.893 0.888 0.891 0.894 0.892 0.888 0.888

(0.290) (0.278) (0.280) (0.283) (0.277) (0.276) (0.277) (0.277) (0.277) (0.278)

Table 8: Presents the empirical coverage rates for the next period’s volatility σ2
t+1 with ARCK

innovations. The bootstrapped residuals are subject to resampling using the moving block

bootstrap procedure. The nominal coverage is (1 − γ) × 100 = 90%. For each bootstrap

procedure, sample size n and block length l, S = 2,000 Monte Carlo iterations and B = 2,000

bootstrap replications are performed. The DGP is a GARCH(1, 1) with parameters (β0, β1, β2) =

(0.1, 0.4, 0.55) for the volatility process, and (δ0, δ1, δ2) = (1.5, 0.4, 0.5).
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n/l ASY 1 5 10 15 20 30 50 70

Recursive-

design

500 0.919 0.927 0.921 0.912 0.911 0.910 0.900 - -

(1.164) (1.201) (1.186) (1.191) (1.190) (1.186) (1.179) - -

1,000 0.934 0.946 0.940 0.936 0.941 0.938 0.934 0.922 -

(0.828) (0.870) (0.851) (0.853) (0.853) (0.851) (0.849) (0.841) -

2,000 0.931 0.950 0.943 0.942 0.938 0.935 0.930 0.922 0.923

(0.632) (0.662) (0.644) (0.641) (0.639) (0.638) (0.638) (0.636) (0.631)

5,000 0.944 0.950 0.943 0.940 0.943 0.939 0.938 0.940 0.939

(0.362) (0.377) (0.367) (0.366) (0.365) (0.366) (0.366) (0.365) (0.364)

Fixed-

design

500 0.931 0.939 0.939 0.936 0.935 0.934 0.938 - -

(1.210) (1.119) (1.118) (1.117) (1.120) (1.120) (1.119) - -

1,000 0.945 0.951 0.952 0.949 0.947 0.951 0.947 0.948 -

(0.874) (0.839) (0.839) (0.838) (0.839) (0.839) (0.840) (0.839) -

2,000 0.944 0.949 0.948 0.947 0.947 0.947 0.947 0.946 0.946

(0.663) (0.656) (0.656) (0.656) (0.655) (0.655) (0.656) (0.654) (0.653)

5,000 0.952 0.953 0.950 0.949 0.950 0.953 0.951 0.948 0.948

(0.378) (0.378) (0.378) (0.379) (0.378) (0.378) (0.378) (0.378) (0.378)

Table 9: Presents the empirical coverage rates for the next period’s volatility σ2
t+1 with tv-

TGC innovations. The bootstrapped residuals are subject to resampling using the moving

block bootstrap procedure. The nominal coverage is (1 − γ) × 100 = 95%. For each bootstrap

procedure, sample size n and block length l, S = 2,000 Monte Carlo iterations and B = 2,000

bootstrap replications are performed. The DGP is a GARCH(1, 1) with parameters (β0, β1, β2) =

(0.1, 0.15, 0.8) for the volatility process, and (δ0, δ1, δ2) = (2, 0.15, 0.4).
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n/l ASY 1 5 10 15 20 30 50 70

Recursive-

design

500 0.926 0.921 0.913 0.908 0.907 0.901 0.892 - -

(1.095) (1.024) (1.028) (1.031) (1.027) (1.025) (1.017) - -

1,000 0.933 0.929 0.922 0.920 0.918 0.915 0.910 0.906 -

(1.073) (0.850) (0.876) (0.915) (0.941) (0.950) (0.998) (0.995) -

2,000 0.938 0.931 0.928 0.926 0.923 0.926 0.925 0.926 0.922

(0.662) (0.597) (0.615) (0.618) (0.621) (0.619) (0.620) (0.623) (0.620)

5,000 0.951 0.947 0.950 0.950 0.948 0.949 0.950 0.948 0.948

(0.331) (0.289) (0.301) (0.303) (0.305) (0.305) (0.306) (0.305) (0.305)

Fixed-

design

500 0.933 0.942 0.936 0.933 0.932 0.933 0.930 - -

(1.078) (0.975) (0.960) (0.956) (0.957) (0.957) (0.957) - -

1,000 0.944 0.936 0.932 0.932 0.927 0.932 0.928 0.930 -

(1.016) (0.834) (0.815) (0.810) (0.819) (0.821) (0.823) (0.824) -

2,000 0.936 0.939 0.936 0.933 0.932 0.932 0.930 0.930 0.930

(0.634) (0.606) (0.603) (0.599) (0.599) (0.596) (0.596) (0.595) (0.592)

5,000 0.951 0.951 0.951 0.952 0.950 0.951 0.951 0.950 0.951

(0.311) (0.293) (0.291) (0.291) (0.290) (0.290) (0.290) (0.291) (0.290)

Table 10: Presents the empirical coverage rates for the next period’s volatility σ2
t+1 with ARCK

innovations. The bootstrapped residuals are subject to resampling using the moving block

bootstrap procedure. The nominal coverage is (1 − γ) × 100 = 95%. For each bootstrap

procedure, sample size n and block length l, S = 2,000 Monte Carlo iterations and B = 2,000

bootstrap replications are performed. The DGP is a GARCH(1, 1) with parameters (β0, β1, β2) =

(0.1, 0.4, 0.55) for the volatility process, and (δ0, δ1, δ2) = (1.5, 0.4, 0.5).
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n/l ASY 1 5 10 15 20 30 50 70

Recursive-

design

500 0.875 0.912 0.908 0.902 0.896 0.890 0.878 - -

(0.246) (0.248) (0.246) (0.246) (0.246) (0.245) (0.243) - -

1,000 0.879 0.910 0.891 0.890 0.892 0.893 0.885 0.875 -

(0.175) (0.179) (0.177) (0.178) (0.179) (0.179) (0.177) (0.175) -

2,000 0.880 0.913 0.904 0.912 0.918 0.914 0.914 0.912 0.909

(0.125) (0.133) (0.133) (0.134) (0.135) (0.135) (0.135) (0.135) (0.134)

5,000 0.910 0.908 0.905 0.902 0.902 0.912 0.906 0.904 0.896

(0.081) (0.083) (0.082) (0.082) (0.082) (0.083) (0.083) (0.083) (0.082)

Fixed-

design

500 0.896 0.921 0.918 0.920 0.914 0.921 0.915 - -

(0.259) (0.244) (0.244) (0.244) (0.244) (0.243) (0.243) - -

1,000 0.894 0.912 0.920 0.914 0.917 0.913 0.909 0.911 -

(0.182) (0.178) (0.177) (0.178) (0.177) (0.177) (0.177) (0.177) -

2,000 0.890 0.911 0.913 0.910 0.914 0.913 0.917 0.914 0.910

(0.130) (0.135) (0.135) (0.135) (0.135) (0.135) (0.135) (0.135) (0.135)

5,000 0.923 0.910 0.913 0.905 0.911 0.913 0.909 0.913 0.906

(0.084) (0.085) (0.085) (0.085) (0.085) (0.085) (0.085) (0.085) (0.085)

Table 11: Presents the empirical coverage rates for the next period’s volatility σ2
t+1 with tv-TGC

innovations. The bootstrapped residuals are subject to resampling using the moving block

bootstrap procedure. The nominal coverage is (1−γ)×100 = 90%. For each bootstrap procedure,

sample size n and block length l, S = 2,000 Monte Carlo iterations and B = 2,000 bootstrap

replications are performed. The DGP is a TGARCH(1, 1, 1) with parameters (β0, β+
1 , β−

1 β2) =

(0.1, 0.05, 0.1, 0.8) for the volatility process, and (δ0, δ1, δ2) = (2, 0.15, 0.4).
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n/l ASY 1 5 10 15 20 30 50 70

Recursive-

design

500 0.859 0.879 0.876 0.873 0.866 0.860 0.855 - -

(0.045) (0.041) (0.041) (0.041) (0.041) (0.041) (0.040) - -

1,000 0.867 0.866 0.876 0.880 0.878 0.881 0.880 0.857 -

(0.036) (0.031) (0.032) (0.032) (0.032) (0.032) (0.032) (0.032) -

2,000 0.880 0.873 0.878 0.880 0.877 0.875 0.879 0.875 0.869

(0.026) (0.022) (0.023) (0.024) (0.024) (0.024) (0.024) (0.023) (0.023)

5,000 0.886 0.871 0.886 0.891 0.889 0.886 0.883 0.881 0.879

(0.016) (0.015) (0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.016)

Fixed-

design

500 0.868 0.887 0.889 0.887 0.881 0.888 0.875 - -

(0.045) (0.041) (0.040) (0.040) (0.040) (0.040) (0.040) - -

1,000 0.872 0.881 0.877 0.872 0.875 0.881 0.873 0.876 -

(0.035) (0.032) (0.032) (0.031) (0.032) (0.031) (0.031) (0.031) -

2,000 0.873 0.879 0.881 0.880 0.879 0.880 0.879 0.879 0.879

(0.025) (0.023) (0.023) (0.022) (0.022) (0.022) (0.022) (0.022) (0.022)

5,000 0.880 0.876 0.876 0.879 0.877 0.878 0.873 0.875 0.876

(0.015) (0.015) (0.015) (0.015) (0.015) (0.015) (0.015) (0.015) (0.015)

Table 12: Presents the empirical coverage rates for the next period’s volatility σ2
t+1 with ARCK

innovations. The bootstrapped residuals are subject to resampling using the moving block

bootstrap procedure. The nominal coverage is (1−γ)×100 = 90%. For each bootstrap procedure,

sample size n and block length l, S = 2,000 Monte Carlo iterations and B = 2,000 bootstrap

replications are performed. The DGP is a TGARCH(1, 1, 1) with parameters (β0, β+
1 , β−

1 β2) =

(0.1, 0.1, 0.3, 0.5) for the volatility process, and (δ0, δ1, δ2) = (1.5, 0.4, 0.5).
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5 Empirical application

Based on the simulation study outlined in Section 4, it is evident that when there exists dependence

in the higher moments of the distribution of the innovations, the confidence intervals for the next

period’s volatility generated by the fixed-design bootstrap procedure can either surpass or fall short

of the intervals derived from the recursive-design bootstrap procedure proposed in this paper. This

discrepancy hinges on the specific DGP. This section aims to demonstrate the practical implications of

our findings regarding differences in the confidence bounds of parameter estimates and, consequently,

the next period’s volatility. To achieve this, we analyze data extracted from the International

Carbon Action Partnership, in particular, the price of CO2 in the EU Emission Trading System

(ETS), spanning from 18 January 2018 to 18 January 2023. Also, we use daily closing prices of

the USD/EUR exchange rate from 22 October 2018 until 19 October 2023. The log-returns are

computed using the formula ϵt = 100 × log(pt/pt−1), where pt represents the price at time t. The

resulting data is graphically presented in Figure 1. We implement the model specification test for

GARCH(1, 1) processes by Leucht et al. (2015) to test whether a GARCH(1,1) specification fits

the data well. The test statistic computed by performing 2,000 bootstrap replications is equal to

-0.160 (-0.675) for the ETS (USD/EUR) data, with a corresponding p-value of 0.7625 (0.967), which

implies that we cannot reject the GARCH(1,1) model specification in both settings. To calculate

the next period’s volatility, we apply a GARCH(1, 1) model to the preceding 933 (1,000) log-returns.

We calculate the parameter estimates by QMLE, and the uncertainty surrounding these parameter

estimates is quantified through the utilization of Algorithms 1 and 3.

In empirical settings, it is unknown whether dependence within the innovations is present. In the

iid setting, the fixed-design bootstrap procedure may be computationally more appealing, but it is

inconsistent in dependent settings. Therefore, we performed the testing procedure proposed by Huo

and Cho (2021) to test for the sandwich-form of the covariance matrix. The p-values of the test are

0.016 and 0.009 for the ETS and USD/EUR, respectively, and are calculated using 2,000 bootstrap

replications. Therefore, for both time series, the null hypotheses of the equality of the covariance

matrices under dependent and independent innovations are rejected at the 5% level. Hence, based

on the test, the sandwich-form covariance matrix appears to be a more suitable option.

Parameter estimates and corresponding confidence interval lengths of the bootstrap procedures are

provided in Table 13. The confidence intervals obtained by the recursive-design bootstrap procedure
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(a) Log-returns ETS (b) Residuals ETS

(c) Log-returns USD/EUR (d) Residuals USD/EUR

Figure 1: Plots of the log-returns and residuals for the ETS (a&b) and USD/EUR (c&d) in the

periods from 28 January 2018 until 28 February 2023 (ETS) and 22 October 2018 until 19 October

2023 (USD/EUR). The residuals in plots (b) and (d) are obtained after fitting a GARCH(1,1) model

on the corresponding log-returns.
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and the estimated sandwich-form asymptotic covariance matrix are notably larger (smaller) for

β1 and β2 (β0) compared to the intervals derived from the fixed-design bootstrap procedure and

the estimated asymptotic covariance matrix assuming iid innovations in the ETS setting. When

examining the USD/EUR data, the disparities in confidence interval lengths are narrower, but

the confidence intervals for the recursive-design procedure are still larger when compared to the

fixed-design procedure. These findings align with the results obtained from our simulation study,

especially within the ARCK context.

ETS USD/EUR

β0 β1 β2 β0 β1 β2

point estimates 0.840 0.124 0.785 0.002 0.053 0.936

recursive-design 1.048 0.127 0.188 0.006 0.051 0.062

fixed-design 1.056 0.112 0.180 0.005 0.048 0.060

sandwich-form 0.851 0.144 0.180 0.005 0.067 0.078

iid 0.946 0.105 0.168 0.004 0.047 0.056

Table 13: Presents the GARCH(1, 1) parameter estimates β̂ and 90% confidence interval lengths

calculated by Algorithm 2 with B = 2,000. RD and FD denote the recursive- and fixed-design proce-

dures, respectively. Sandwich-form represents the sandwich-form estimated asymptotic covariance

matrix and iid refers to the estimated asymptotic covariance matrix assuming iid innovations.

The visual representations in Figure 2 are based on a rolling window analysis applied to the

preceding 933 and 1,000 log-returns for the ETS and USD/EUR data, respectively. This analysis

is utilized to compute the next period’s volatility using a GARCH(1,1) model. The next period’s

volatility is depicted by the orange line, while the blue and green dotted lines portray the 90% confi-

dence intervals for the fixed-design and recursive-design block bootstrap methodologies, respectively.

Note that a block length of l = 15 is employed for both bootstrap procedures and both time series.

While the choice of block length does not significantly impact our findings, it is worth highlighting

that this selection can be justified by the results of our simulation study. Specifically, for a sample

size of n = 1,000, the empirical coverage rates demonstrate an increase up to l = 15 followed by a

decrease (see Tables 7 and 8). Therefore, it appears that l = 15 is well-suited for our sample size.

Over the full sample, the confidence intervals show a notable degree of similarity. However, when

considering scenarios involving substantial squared returns, it becomes clear that the fixed-design
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bootstrap procedure tends to underestimate the level of uncertainty surrounding the next period’s

volatility. In contrast, the recursive-design moving block bootstrap method yields larger confidence

intervals following substantial squared returns. This pattern corresponds with the outcomes from

our simulation study with ARCK errors detailed in Section 4. This phenomenon can be linked to

the narrower confidence bounds around the parameter estimates within the fixed-design bootstrap

approach, which subsequently leads to smaller confidence intervals for the next period’s volatility.

This effect is particularly prominent for β1, a factor that is multiplied by the previous return in

the GARCH updating equation. Consequently, the fixed-design bootstrap procedure results in,

presumably, too small confidence intervals, a pattern verified both by our simulation study and by

the observations presented in Figure 2.

(a) ETS (b) USD/EUR

Figure 2: Plots of the log-returns for the ETS (a) and USD/EUR (b) in the periods from 28 January

2018 until 28 February 2023 (ETS) and 22 October 2018 until 19 October 2023 (USD/EUR) with

the next period’s volatility (in orange) based on a rolling window analysis using 1,500 preceding

observations. The 90% confidence intervals are computed according to Algorithm 2 with B = 2,000.
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6 Concluding remarks

This paper introduces a recursive-design residual block bootstrap method designed for GARCH

processes under dependent innovations. The procedure involves sampling random blocks from

the empirical distribution of residuals to recursively generate new log-return paths. With each

replication in the bootstrap, parameter estimates are computed using QMLE. These parameter

estimates are then employed to calculate the volatility for the subsequent period. Our findings

highlight a significant limitation in the fixed-design bootstrap procedure, as it fails to capture the

relationship between the time-varying conditional fourth moment, the volatility process, and its

derivatives. In contrast, through a simulation study, we demonstrate that the recursive-design

residual block bootstrap procedure successfully captures this dependency. Consequently, it provides

a more accurate quantification of the uncertainty surrounding parameter estimates and the next

period’s volatility.

Interestingly, our simulation study reveals that when there is dependence within the higher

moments of the innovations, the length of the confidence intervals derived under the assumption of

iid innovations may either surpass or fall short of the confidence intervals obtained by our bootstrap

procedure. This implies that our approach provides a more finely-tuned way of estimating the

uncertainty associated with parameter estimates and the next period’s volatility.

The consistency between our empirical findings and the outcomes of the simulation study is

noteworthy. For both financial time series, the empirical investigation demonstrates that, in most

instances, the confidence intervals derived from both fixed- and recursive-design moving block

bootstrap procedures exhibit a reasonable degree of similarity. However, an interesting disparity

emerges in the case of large lagged squared returns. In such scenarios, the fixed-design procedure

appears to underestimate the uncertainty, leading to narrower confidence intervals.

While our assertions find support in an extensive simulation study, it is essential to note that

providing formal proof for the asymptotic validity of our bootstrap procedure goes beyond the

current scope of this paper. This area of investigation is left open for further research.
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Appendices

A Assumptions

For completeness, the assumptions of FZ16 that we use are presented below. Note that they are

rewritten such that they apply to the univariate setting and that Assumption 1 is not presented as

such in FZ16 but is mentioned on p. 616-617.

Assumption 1. Θ is a compact subset of Rr.

Assumption 2. (ϵt) is a strictly stationary and ergodic process satisfying (1), with E [|ϵt|s < ∞] for

some s > 0. Moreover, E
[
log(σ2

t )
]

< ∞.

Assumption 3. We have σt(·) > ω for some ω and for any real sequence (ei)i≥1, the function

θ 7→ σ(e1, e2, ...; θ) is continuous. Also, we have σt(θ0) = σt(θ) almost surely if and only if θ0 = θ.

Assumption 4. Let C > 0 and 0 < ρ < 1 be generic constants, where C is allowed to depend on

variables anterior to t = 0.

(i) We have supθ∈Θ |σ̃t(θ) − σt(θ)| ≤ Cρt almost surely.

(ii) For any real sequence (ei)i≥1, the function θ 7→ σ(e1, e2, ...; θ) has continuous second order

derivatives satisfying

sup
θ∈V(θ0)

∥∥∥∥∂σ̃t(θ)
∂θ

− ∂σt(θ)
∂θ

∥∥∥∥ ≤ Cρt, and sup
θ∈V(θ0)

∥∥∥∥∥∂2σ̃t(θ)
∂θ∂θ′ − ∂2σt(θ)

∂θ∂θ′

∥∥∥∥∥ ≤ Cρt,

almost surely.

Assumption 5. The innovations {ηt} satisfy

(i) {ηt} is a sequence of strictly stationary and ergodic random variables satisfying E [ηt|Ft−1] = 0,

E
[
η2

t |Ft−1
]

= 1;

(ii) E
[
|ηt|4(1+δ)

]
< ∞ for some δ > 0.

Assumption 6. θ0 belongs to the interior of Θ denoted as int(Θ).
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Assumption 7. There is a neighbourhood V(θ0) of θ0 such that

(i) sup
θ∈V(θ0)

∥∥∥∥ 1
σt(θ)

∂σt(θ)
∂θ

∥∥∥∥4(1+1/δ)
, (ii) sup

θ∈V(θ0)

∥∥∥∥∥ 1
σt(θ)

∂2σt(θ)
∂θ∂θ′

∥∥∥∥∥
2(1+1/δ)

, and (iii) sup
θ∈V(θ0)

∣∣∣∣σt(θ0)
σt(θ)

∣∣∣∣4
have finite expectations.

Assumption 8. There does not exist a nonzero λ ∈ Rr such that λ′ ∂σt(θ0)
∂θ = 0 almost surely.
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B Proof

Proof of Lemma 1. We start with the first claim. Note first that by construction D̂t is constant

w.r.t. the bootstrap measure which implies together with the fact that E×
[
η×2

t

]
= 1 that

E×
[
D̂t(η×2

t − 1)
]

= D̂tE×
[
η×2

t − 1
]

= 0.

Hence we have

Var×

[
n∑

t=1
Z×

n,t

]
= 1

n

n∑
t=1

n∑
u=1

D̂tD̂
′
u E×

[
(η×2

t − 1)(η×2
u − 1)

]
, (17)

using again that D̂t and D̂u are constant w.r.t. the bootstrap measure. The first displayed formula

of Lemma 1 now follows by stationarity. Regarding the second displayed formula of this Lemma

notice that the assumption E×
[
η×2

t − 1|F×
t−1

]
= 0 implies that for (u < t)

E×
[
D̂t(η×2

t − 1)D̂u(η×2
u − 1)

]
= D̂uD̂′

t E×
[
(η×2

u − 1)E×
[
(η×2

t − 1)|F×
t−1

]]
= 0,

where we used again that D̂t and D̂u are constant w.r.t. the bootstrap measure. Therefore, (17) re-

duces to 1/n
∑n

t=1 D̂tD̂
′
t E×

[
(η×2

t − 1)2
]

which by stationarity becomes E×
[
(η×2

1 − 1)2
]

1/n
∑n

t=1 D̂tD̂
′
t.
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C Algorithm

Algorithm 3. (Fixed-design moving block bootstrap) First, construct n − l blocks bi of length l

∀i ∈ {1, ..., n − l} such that bi = {η̂i, η̂i+1, ..., η̂i+k, ..., η̂i+l}.

1. Draw ⌈n/l⌉ numbers U1, ..., U⌈n/l⌉ ∼ Uniform(1, n − l) (with replacement) and create the

bootstrap innovations {η×
1 , ..., η×

⌈n/l⌉×l} = {bU1 , bU2 , ..., bU⌈n/l⌉}. In the case that ⌈n/l⌉ × l ̸= n,

truncate the series such that it has length n. Generate bootstrap observations ϵ×
t = σ̃t(θ̂n)η×

t .

2. Calculate the bootstrap estimator for the volatility process by QMLE

θ̂×
n = arg max

θ∈Θ
L×

n (θ) (18)

with

L×
n (θ) = 1

n

n∑
t=1

ℓ×
t (θ) and ℓ×

t (θ) = −1
2

(
ϵ×
t

σ̃t(θ)

)2

− log σ̃t(θ). (19)

3. Compute the next period’s volatility using the original returns series and the bootstrap estimator

θ̂×
n

σ̂×
n+1 = σ̃n+1(θ̂×

n ), (20)

where σ̃n+1(θ̂×
n ) = σn+1(ϵn, ϵn−1, ..., ϵ1, ϵ̃0, ϵ̃−1, ...; θ̂×

n ).
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D The time-varying Transformed Gram-Charlier process

Set H3 := H3(ηt) = η3
t − 3ηt and H4 := H4(ηt) = η4

t − 6η2
t + 3. Then:

g(ηt|Ft−1) = ϕ(ηt)
[
1 + st

3!H3 + kt − 3
4! H4

]
=: ϕ(ηt)Ψ(ηt). (21)

Here ϕ(·) denotes the pdf of the standard normal distribution. As this distribution may be negative

for particular values of ηt and the integral of g(·|Ft−1) may not be equal to 1, León et al. (2005)

propose the following transformation:

f(ηt|Ft−1) = ϕ(ηt)Ψ2(ηt)
Γt

, with (22)

Γt = 1 + s2
t

3! + (kt − 3)2

4! .

In order to obtain E [ηt|Ft−1] = 0 and E
[
η2

t |Ft−1
]

= 1, the distribution is standardized as follows1:

q(ηt|Ft−1) = σt|t−1f(σt|t−1ηt + µt|t−1|Ft−1).

Here, µt|t−1 and σt|t−1 denote the conditional mean and standard deviation of the innovations,

respectively. León and Ñíguez (2021) show that the conditional mean and moment of the transformed

Gram-Charlies series expansion truncated at the fourth moment can be expressed as

E[ηt|Ft−1] = 4st(kt − 3)√
3!

√
4!Γt

:= µt|t−1 and E[η2
t |Ft−1] = 1 +

6 s2
t

3! + 8(kt−3)2

4!
Γt

.

The analytical expressions for the conditional first and second moment imply that the first moment

equals 0 if either the conditional skewness is 0, the conditional kurtosis kt is 3, or both. Furthermore,

the conditional second moment equals 1 in case both st = 0 and kt = 3.

To obtain a distribution with conditional second moment equal to 1 when st and kt deviate from

0 and 3, respectively, we use

σt|t−1 =
√
Var(ηt|Ft−1) =

√
E[η2

t |Ft−1] − µ2
t|t−1 =

√√√√1 +
6 s2

t
3! + 8(kt−3)2

4!
Γt

− µ2
t|t−1.

1For f a continuous real-valued function defined on a closed interval [a, b], take standardized random variable x−µ
σ

or x = zσ + µ. We then have P(X ≤ σz + µ) = F (σz + µ) =
∫ σz+µ

a
f(x)dx. Subsequently, by the first fundamental

theorem of calculus: F ′(σz + µ) = σf(σz + µ).
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E Tables stationary bootstrap

Recursive-design Fixed-design

n/l β ASY 1 5 10 15 20 30 50 70 ASY 1 5 10 15 20 30 50 70

500

β0 0.895 0.932 0.910 0.906 0.895 0.889 0.876 - - 0.920 0.921 0.920 0.922 0.924 0.922 0.927 - -

(0.222) (0.320) (0.336) (0.341) (0.340) (0.339) (0.331) - - (0.234) (0.260) (0.262) (0.263) (0.264) (0.266) (0.268) - -

β1 0.880 0.939 0.917 0.918 0.914 0.901 0.907 - - 0.908 0.936 0.941 0.938 0.944 0.946 0.949 - -

(0.149) (0.175) (0.166) (0.165) (0.163) (0.161) (0.157) - - (0.168) (0.171) (0.172) (0.174) (0.175) (0.175) (0.177) - -

β2 0.855 0.953 0.929 0.919 0.909 0.911 0.904 - - 0.900 0.914 0.916 0.918 0.925 0.921 0.926 - -

(0.220) (0.320) (0.327) (0.328) (0.326) (0.322) (0.312) - - (0.242) (0.271) (0.273) (0.274) (0.276) (0.278) (0.280) - -

1,000

β0 0.889 0.913 0.904 0.902 0.898 0.894 0.889 0.875 - 0.906 0.905 0.908 0.904 0.912 0.913 0.909 0.915 -

(0.130) (0.158) (0.162) (0.167) (0.167) (0.168) (0.168) (0.165) - (0.136) (0.144) (0.144) (0.145) (0.145) (0.146) (0.147) (0.148) -

β1 0.891 0.922 0.917 0.907 0.908 0.903 0.900 0.891 - 0.918 0.921 0.924 0.923 0.926 0.927 0.923 0.931 -

(0.104) (0.118) (0.111) (0.110) (0.109) (0.109) (0.108) (0.105) - (0.116) (0.118) (0.118) (0.119) (0.119) (0.119) (0.120) (0.121) -

β2 0.879 0.935 0.920 0.905 0.897 0.898 0.897 0.882 - 0.902 0.922 0.921 0.920 0.919 0.923 0.924 0.927 -

(0.137) (0.169) (0.168) (0.170) (0.170) (0.170) (0.169) (0.166) - (0.150) (0.159) (0.160) (0.161) (0.161) (0.161) (0.163) (0.164) -

2,000

β0 0.909 0.922 0.904 0.899 0.906 0.906 0.898 0.890 0.879 0.921 0.924 0.925 0.920 0.919 0.922 0.928 0.929 0.930

(0.087) (0.096) (0.096) (0.096) (0.096) (0.095) (0.095) (0.094) (0.093) (0.090) (0.092) (0.093) (0.092) (0.093) (0.093) (0.093) (0.094) (0.094)

β1 0.885 0.927 0.916 0.906 0.902 0.896 0.890 0.882 0.879 0.922 0.931 0.936 0.931 0.931 0.932 0.934 0.933 0.934

(0.073) (0.082) (0.076) (0.075) (0.074) (0.074) (0.073) (0.072) (0.071) (0.082) (0.083) (0.083) (0.083) (0.083) (0.083) (0.084) (0.084) (0.084)

β2 0.892 0.926 0.915 0.915 0.907 0.903 0.893 0.882 0.876 0.925 0.915 0.923 0.918 0.923 0.920 0.921 0.921 0.920

(0.094) (0.107) (0.103) (0.102) (0.101) (0.100) (0.100) (0.098) (0.097) (0.102) (0.104) (0.104) (0.104) (0.105) (0.105) (0.105) (0.106) (0.107)

5,000

β0 0.906 0.913 0.898 0.902 0.908 0.906 0.906 0.911 0.901 0.915 0.920 0.915 0.918 0.915 0.919 0.918 0.921 0.923

(0.053) (0.056) (0.055) (0.055) (0.055) (0.055) (0.054) (0.054) (0.054) (0.054) (0.055) (0.055) (0.055) (0.055) (0.055) (0.055) (0.055) (0.055)

β1 0.900 0.938 0.911 0.913 0.906 0.905 0.899 0.898 0.898 0.939 0.940 0.938 0.937 0.938 0.940 0.936 0.938 0.940

(0.046) (0.051) (0.048) (0.047) (0.046) (0.046) (0.046) (0.046) (0.046) (0.052) (0.052) (0.052) (0.052) (0.052) (0.052) (0.052) (0.052) (0.052)

β2 0.898 0.919 0.904 0.898 0.900 0.898 0.896 0.894 0.887 0.923 0.917 0.921 0.918 0.920 0.919 0.920 0.921 0.918

(0.057) (0.064) (0.060) (0.060) (0.059) (0.059) (0.059) (0.059) (0.058) (0.062) (0.063) (0.063) (0.063) (0.063) (0.063) (0.063) (0.063) (0.064)

Table 14: Presents the empirical coverage for the parameter estimates of the volatility process. The bootstrapped residuals are subject

to resampling using the stationary bootstrap procedure. The DGP is a GARCH(1, 1) with tv-TGC innovations. The nominal

coverage is 90%. S = 1,000 Monte Carlo iterations and B = 1,000 bootstrap replications are performed for every average block length

l = 1/p. The volatility and kurtosis parameters are (β0, β1, β2) = (0.1, 0.15, 0.8) and (δ0, δ1, δ2) = (2, 0.15, 0.4), respectively.
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Recursive-design Fixed-design

n/l β ASY 1 5 10 15 20 30 50 70 ASY 1 5 10 15 20 30 50 70

500

β0 0.889 0.935 0.932 0.938 0.934 0.926 0.915 - - 0.919 0.922 0.930 0.927 0.929 0.926 0.932 - -

(0.230) (0.330) (0.336) (0.339) (0.337) (0.337) (0.332) - - (0.244) (0.267) (0.265) (0.267) (0.268) (0.268) (0.271) - -

β1 0.815 0.852 0.863 0.868 0.858 0.854 0.849 - - 0.822 0.877 0.884 0.880 0.883 0.888 0.887 - -

(0.177) (0.166) (0.176) (0.177) (0.176) (0.175) (0.172) - - (0.166) (0.165) (0.164) (0.165) (0.166) (0.167) (0.168) - -

β2 0.850 0.945 0.942 0.936 0.922 0.919 0.909 - - 0.879 0.923 0.916 0.921 0.923 0.921 0.927 - -

(0.240) (0.318) (0.328) (0.330) (0.328) (0.327) (0.320) - - (0.247) (0.271) (0.270) (0.271) (0.272) (0.274) (0.276) - -

1,000

β0 0.889 0.931 0.924 0.916 0.915 0.905 0.895 0.888 - 0.913 0.921 0.920 0.924 0.921 0.923 0.923 0.925 -

(0.140) (0.165) (0.165) (0.166) (0.167) (0.166) (0.165) (0.162) - (0.148) (0.155) (0.154) (0.154) (0.154) (0.155) (0.155) (0.157) -

β1 0.851 0.847 0.854 0.863 0.856 0.856 0.855 0.842 - 0.837 0.872 0.872 0.876 0.870 0.872 0.878 0.873 -

(0.127) (0.115) (0.124) (0.125) (0.124) (0.124) (0.123) (0.121) - (0.118) (0.118) (0.117) (0.117) (0.117) (0.118) (0.118) (0.119) -

β2 0.871 0.921 0.911 0.902 0.895 0.899 0.888 0.879 - 0.891 0.911 0.905 0.910 0.904 0.908 0.906 0.912 -

(0.158) (0.172) (0.176) (0.178) (0.177) (0.177) (0.175) (0.171) - (0.160) (0.167) (0.167) (0.167) (0.167) (0.168) (0.168) (0.170) -

2,000

β0 0.913 0.920 0.910 0.902 0.909 0.902 0.899 0.894 0.889 0.930 0.928 0.925 0.925 0.926 0.929 0.927 0.925 0.927

(0.094) (0.102) (0.101) (0.102) (0.101) (0.101) (0.101) (0.100) (0.099) (0.100) (0.101) (0.100) (0.101) (0.100) (0.101) (0.101) (0.101) (0.102)

β1 0.859 0.826 0.844 0.846 0.851 0.851 0.854 0.846 0.839 0.830 0.847 0.849 0.844 0.841 0.848 0.844 0.847 0.851

(0.096) (0.083) (0.091) (0.092) (0.093) (0.093) (0.092) (0.092) (0.091) (0.086) (0.085) (0.085) (0.085) (0.085) (0.086) (0.086) (0.086) (0.087)

β2 0.888 0.895 0.891 0.886 0.890 0.895 0.880 0.876 0.868 0.892 0.901 0.896 0.900 0.896 0.899 0.903 0.897 0.899

(0.111) (0.111) (0.114) (0.115) (0.115) (0.115) (0.114) (0.113) (0.112) (0.110) (0.112) (0.111) (0.111) (0.111) (0.112) (0.112) (0.112) (0.113)

5,000

β0 0.885 0.909 0.889 0.891 0.882 0.883 0.885 0.882 0.887 0.907 0.913 0.900 0.907 0.901 0.912 0.904 0.907 0.910

(0.056) (0.059) (0.059) (0.059) (0.058) (0.058) (0.058) (0.058) (0.058) (0.060) (0.060) (0.060) (0.060) (0.060) (0.060) (0.060) (0.060) (0.060)

β1 0.873 0.813 0.830 0.844 0.853 0.856 0.860 0.861 0.862 0.829 0.830 0.834 0.836 0.832 0.835 0.835 0.832 0.831

(0.062) (0.052) (0.058) (0.059) (0.059) (0.060) (0.060) (0.060) (0.059) (0.055) (0.054) (0.054) (0.054) (0.054) (0.054) (0.054) (0.054) (0.054)

β2 0.891 0.883 0.887 0.891 0.886 0.887 0.894 0.889 0.887 0.889 0.895 0.894 0.899 0.895 0.897 0.897 0.896 0.898

(0.069) (0.066) (0.069) (0.069) (0.069) (0.069) (0.069) (0.069) (0.068) (0.068) (0.068) (0.068) (0.068) (0.068) (0.068) (0.068) (0.068) (0.068)

Table 15: Presents the empirical coverage for the parameter estimates of the volatility process. The bootstrapped residuals are

subject to resampling using the stationary bootstrap procedure. The DGP is a GARCH(1, 1) with ARCK innovations. The nominal

coverage is 90%. S = 1,000 Monte Carlo iterations and B = 1,000 bootstrap replications are performed for every average block length

l = 1/p. The volatility and kurtosis parameters are (β0, β1, β2) = (0.1, 0.4, 0.55) and (δ0, δ1, δ2) = (1.5, 0.4, 0.5), respectively.
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Recursive-design Fixed-design

n/l β ASY 1 5 10 15 20 30 50 70 ASY 1 5 10 15 20 30 50 70

500

β0 0.829 0.951 0.944 0.937 0.924 0.921 0.900 - - 0.836 0.945 0.952 0.957 0.956 0.953 0.961 - -

(0.131) (0.139) (0.137) (0.135) (0.133) (0.132) (0.129) - - (0.134) (0.125) (0.126) (0.126) (0.127) (0.127) (0.127) - -

β+
1 0.881 0.969 0.930 0.918 0.905 0.904 0.892 - - 0.937 0.971 0.975 0.977 0.973 0.976 0.974 - -

(0.197) (0.201) (0.196) (0.194) (0.193) (0.191) (0.187) - - (0.220) (0.199) (0.199) (0.200) (0.201) (0.202) (0.203) - -

β−
1 0.888 0.939 0.921 0.917 0.904 0.912 0.890 - - 0.912 0.939 0.942 0.942 0.946 0.946 0.947 - -

(0.262) (0.289) (0.279) (0.274) (0.271) (0.268) (0.262) - - (0.288) (0.284) (0.285) (0.286) (0.288) (0.288) (0.289) - -

β3 0.830 0.947 0.946 0.935 0.918 0.908 0.896 - - 0.835 0.938 0.941 0.948 0.946 0.949 0.949 - -

(0.522) (0.564) (0.557) (0.546) (0.538) (0.531) (0.520) - - (0.532) (0.508) (0.511) (0.513) (0.515) (0.516) (0.517) - -

1,000

β0 0.839 0.884 0.894 0.897 0.888 0.886 0.881 0.872 - 0.844 0.882 0.878 0.887 0.881 0.883 0.888 0.887 -

(0.094) (0.099) (0.100) (0.101) (0.101) (0.101) (0.100) (0.098) - (0.094) (0.096) (0.096) (0.097) (0.097) (0.097) (0.097) (0.098) -

β+
1 0.874 0.922 0.910 0.903 0.898 0.894 0.889 0.873 - 0.911 0.943 0.942 0.941 0.944 0.944 0.946 0.948 -

(0.140) (0.151) (0.144) (0.143) (0.142) (0.141) (0.140) (0.138) - (0.156) (0.149) (0.149) (0.149) (0.150) (0.150) (0.150) (0.151) -

β−
1 0.876 0.921 0.903 0.896 0.889 0.883 0.876 0.869 - 0.910 0.918 0.920 0.919 0.924 0.917 0.918 0.916 -

(0.189) (0.208) (0.198) (0.196) (0.194) (0.194) (0.191) (0.186) - (0.206) (0.206) (0.206) (0.206) (0.207) (0.208) (0.208) (0.208) -

β2 0.839 0.883 0.893 0.890 0.885 0.888 0.871 0.872 - 0.843 0.880 0.879 0.880 0.879 0.885 0.881 0.888 -

(0.375) (0.403) (0.405) (0.407) (0.407) (0.406) (0.403) (0.396) - (0.376) (0.387) (0.388) (0.389) (0.390) (0.390) (0.392) (0.394) -

2,000

β0 0.879 0.898 0.891 0.890 0.886 0.882 0.884 0.876 0.867 0.883 0.897 0.898 0.901 0.900 0.896 0.898 0.903 0.905

(0.067) (0.068) (0.070) (0.071) (0.071) (0.071) (0.071) (0.070) (0.070) (0.066) (0.068) (0.068) (0.068) (0.069) (0.069) (0.069) (0.069) (0.069)

β+
1 0.887 0.928 0.899 0.893 0.893 0.887 0.884 0.881 0.875 0.918 0.924 0.924 0.927 0.924 0.923 0.922 0.927 0.925

(0.099) (0.111) (0.104) (0.103) (0.103) (0.103) (0.102) (0.101) (0.099) (0.111) (0.110) (0.110) (0.111) (0.111) (0.111) (0.111) (0.111) (0.111)

β−
1 0.895 0.922 0.907 0.902 0.902 0.898 0.897 0.888 0.889 0.922 0.920 0.921 0.924 0.922 0.922 0.922 0.922 0.924

(0.136) (0.148) (0.140) (0.138) (0.138) (0.137) (0.137) (0.135) (0.134) (0.147) (0.147) (0.147) (0.147) (0.147) (0.148) (0.148) (0.148) (0.148)

β2 0.868 0.892 0.898 0.899 0.897 0.890 0.883 0.877 0.877 0.875 0.889 0.891 0.892 0.898 0.886 0.891 0.896 0.898

(0.268) (0.279) (0.282) (0.286) (0.287) (0.287) (0.287) (0.285) (0.282) (0.265) (0.275) (0.276) (0.275) (0.277) (0.276) (0.277) (0.278) (0.279)

5,000

β0 0.894 0.897 0.900 0.904 0.907 0.903 0.905 0.902 0.896 0.892 0.899 0.896 0.894 0.902 0.896 0.901 0.894 0.899

(0.042) (0.042) (0.042) (0.043) (0.043) (0.043) (0.043) (0.043) (0.043) (0.041) (0.042) (0.042) (0.042) (0.042) (0.042) (0.042) (0.042) (0.042)

β+
1 0.894 0.930 0.907 0.902 0.896 0.898 0.893 0.897 0.893 0.930 0.931 0.931 0.928 0.928 0.930 0.931 0.927 0.933

(0.062) (0.070) (0.065) (0.064) (0.064) (0.063) (0.063) (0.063) (0.062) (0.070) (0.070) (0.070) (0.070) (0.070) (0.071) (0.070) (0.071) (0.071)

β−
1 0.894 0.915 0.896 0.896 0.894 0.895 0.889 0.883 0.885 0.914 0.915 0.917 0.914 0.916 0.916 0.917 0.911 0.920

(0.086) (0.094) (0.088) (0.087) (0.087) (0.087) (0.087) (0.086) (0.086) (0.093) (0.093) (0.093) (0.093) (0.093) (0.093) (0.093) (0.094) (0.094)

β2 0.886 0.896 0.896 0.897 0.899 0.894 0.892 0.891 0.885 0.888 0.891 0.893 0.892 0.891 0.892 0.895 0.896 0.895

(0.169) (0.171) (0.171) (0.173) (0.173) (0.174) (0.174) (0.174) (0.173) (0.167) (0.169) (0.169) (0.170) (0.169) (0.169) (0.170) (0.170) (0.170)

Table 16: Presents the empirical coverage for the parameter estimates of the volatility process. The bootstrapped residuals are subject

to resampling using the stationary bootstrap procedure. The DGP is a TGARCH(1, 1, 1) with tv-TGC innovations. The nominal

coverage is 90%. S = 1,000 Monte Carlo iterations and B = 1,000 bootstrap replications are performed for every average block length

l = 1/p. The volatility and kurtosis parameters are (β0, β+
1 , β−

1 , β2) = (0.1, 0.05, 0.1, 0.8) and (δ0, δ1, δ2) = (2, 0.15, 0.4), respectively.
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Recursive-design Fixed-design

n/l β ASY 1 5 10 15 20 30 50 70 ASY 1 5 10 15 20 30 50 70

500

β0 0.807 0.912 0.933 0.917 0.910 0.899 0.886 - - 0.836 0.913 0.911 0.909 0.916 0.911 0.921 - -

(0.126) (0.133) (0.135) (0.134) (0.133) (0.131) (0.129) - - (0.131) (0.121) (0.121) (0.121) (0.122) (0.122) (0.123) - -

β+
1 0.828 0.909 0.896 0.887 0.887 0.883 0.872 - - 0.853 0.943 0.939 0.938 0.944 0.940 0.945 - -

(0.206) (0.185) (0.189) (0.191) (0.190) (0.189) (0.186) - - (0.209) (0.184) (0.184) (0.185) (0.186) (0.186) (0.187) - -

β−
1 0.821 0.847 0.869 0.868 0.860 0.859 0.847 - - 0.828 0.833 0.837 0.847 0.849 0.845 0.848 - -

(0.272) (0.264) (0.271) (0.269) (0.266) (0.264) (0.260) - - (0.268) (0.260) (0.260) (0.261) (0.262) (0.262) (0.263) - -

β2 0.780 0.903 0.921 0.903 0.893 0.880 0.870 - - 0.817 0.890 0.890 0.892 0.896 0.895 0.898 - -

(0.502) (0.532) (0.542) (0.539) (0.534) (0.527) (0.519) - - (0.518) (0.486) (0.487) (0.488) (0.490) (0.491) (0.493) - -

1,000

β0 0.837 0.871 0.885 0.889 0.888 0.885 0.883 0.870 - 0.850 0.875 0.874 0.880 0.872 0.871 0.880 0.881 -

(0.093) (0.096) (0.100) (0.101) (0.101) (0.101) (0.100) (0.099) - (0.094) (0.095) (0.094) (0.094) (0.095) (0.095) (0.095) (0.095) -

β+
1 0.836 0.849 0.866 0.868 0.867 0.869 0.861 0.846 - 0.836 0.856 0.862 0.861 0.859 0.865 0.876 0.870 -

(0.156) (0.142) (0.149) (0.150) (0.151) (0.151) (0.149) (0.147) - (0.152) (0.141) (0.141) (0.141) (0.141) (0.142) (0.142) (0.142) -

β−
1 0.845 0.849 0.875 0.877 0.877 0.877 0.876 0.861 - 0.847 0.856 0.853 0.859 0.857 0.858 0.861 0.855 -

(0.207) (0.194) (0.203) (0.204) (0.204) (0.204) (0.202) (0.199) - (0.197) (0.194) (0.193) (0.194) (0.194) (0.194) (0.195) (0.195) -

β2 0.817 0.862 0.873 0.877 0.889 0.887 0.883 0.874 - 0.824 0.865 0.864 0.864 0.863 0.867 0.868 0.868 -

(0.376) (0.387) (0.401) (0.406) (0.408) (0.408) (0.405) (0.399) - (0.374) (0.377) (0.376) (0.377) (0.377) (0.378) (0.380) (0.381) -

2,000

β0 0.856 0.868 0.889 0.900 0.895 0.888 0.885 0.889 0.876 0.859 0.871 0.878 0.868 0.879 0.875 0.877 0.876 0.876

(0.067) (0.068) (0.070) (0.071) (0.072) (0.072) (0.072) (0.071) (0.070) (0.067) (0.068) (0.068) (0.068) (0.068) (0.068) (0.068) (0.068) (0.068)

β+
1 0.844 0.838 0.859 0.865 0.863 0.863 0.860 0.854 0.854 0.839 0.843 0.845 0.845 0.844 0.849 0.849 0.844 0.849

(0.117) (0.107) (0.114) (0.115) (0.115) (0.115) (0.115) (0.114) (0.113) (0.110) (0.107) (0.107) (0.107) (0.107) (0.107) (0.107) (0.108) (0.108)

β−
1 0.869 0.850 0.882 0.886 0.886 0.879 0.883 0.888 0.870 0.856 0.850 0.850 0.856 0.848 0.854 0.850 0.855 0.854

(0.154) (0.142) (0.151) (0.152) (0.152) (0.152) (0.152) (0.151) (0.149) (0.143) (0.141) (0.142) (0.142) (0.142) (0.142) (0.142) (0.142) (0.143)

β2 0.852 0.857 0.884 0.891 0.889 0.887 0.887 0.887 0.880 0.841 0.858 0.854 0.854 0.859 0.857 0.866 0.858 0.870

(0.274) (0.272) (0.284) (0.289) (0.291) (0.291) (0.291) (0.289) (0.286) (0.266) (0.270) (0.271) (0.271) (0.271) (0.271) (0.272) (0.273) (0.273)

5,000

β0 0.872 0.878 0.884 0.881 0.892 0.887 0.888 0.883 0.882 0.877 0.877 0.878 0.877 0.884 0.879 0.883 0.882 0.881

(0.044) (0.042) (0.044) (0.044) (0.045) (0.045) (0.045) (0.045) (0.044) (0.043) (0.043) (0.043) (0.043) (0.043) (0.043) (0.043) (0.043) (0.043)

β+
1 0.898 0.859 0.897 0.895 0.896 0.903 0.899 0.894 0.890 0.879 0.870 0.863 0.870 0.875 0.865 0.870 0.868 0.865

(0.078) (0.070) (0.076) (0.077) (0.077) (0.077) (0.077) (0.077) (0.077) (0.071) (0.070) (0.071) (0.071) (0.071) (0.071) (0.071) (0.071) (0.071)

β−
1 0.883 0.852 0.879 0.875 0.880 0.877 0.875 0.879 0.876 0.852 0.852 0.853 0.850 0.847 0.851 0.856 0.858 0.852

(0.102) (0.092) (0.099) (0.100) (0.100) (0.101) (0.100) (0.100) (0.100) (0.093) (0.092) (0.092) (0.092) (0.092) (0.092) (0.092) (0.092) (0.092)

β2 0.878 0.875 0.880 0.890 0.900 0.898 0.901 0.894 0.895 0.876 0.877 0.878 0.876 0.884 0.882 0.885 0.875 0.882

(0.179) (0.172) (0.179) (0.181) (0.182) (0.182) (0.183) (0.182) (0.182) (0.171) (0.172) (0.172) (0.171) (0.172) (0.172) (0.172) (0.172) (0.172)

Table 17: Presents the empirical coverage for the parameter estimates of the volatility process. The bootstrapped residuals are subject

to resampling using the stationary bootstrap procedure. The DGP is a TGARCH(1, 1, 1) with ARCK innovations. The nominal

coverage is 90%. S = 1,000 Monte Carlo iterations and B = 1,000 bootstrap replications are performed for every average block length

l = 1/p. The volatility and kurtosis parameters are (β0, β+
1 , β−

1 , β2) = (0.1, 0.1, 0.3, 0.5) and (δ0, δ1, δ2) = (1.5, 0.4, 0.5), respectively.
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