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A robust Beveridge-Nelson decomposition using a

score-driven approach with an application*

F. Blasquesa, J. van Brummelena, P. Gorgia, and S.J. Koopmana

aVrije Universiteit Amsterdam and Tinbergen Institute

Abstract

The equivalence of the Beveridge-Nelson decomposition and the trend-cycle decomposition

is well established. In this paper we argue that this equivalence is almost immediate when

a Gaussian score-driven location model is considered. We also provide a natural extension

towards heavy-tailed distributions for the disturbances which lead to a robust version of the

Beveridge-Nelson decomposition.

Keywords: trend and cycle, filtering, autoregressive integrated moving average model, score-driven

model, heavy-tailed distributions.

JEL codes: C22, E32.

1 Introduction

The Beveridge-Nelson (BN) decomposition, as developed by Beveridge and Nelson (1981), can

be regarded as a model-based method for decomposing time series into permanent and transitory

components. When applied to economic output time series such as Gross Domestic Product (GDP)

and Industrial Production Index (IPI), the permanent component can be interpreted as the trend

while the transitory component is often referred to as the cycle or more specifically as the business

cycle. The BN decomposition implicitly defines the trend as a conditional long-run expectation,

*This version: December 22, 2023. Corresponding author: J. van Brummelen. F. Blasques thanks the Dutch

Research Council (VI.Vidi.195.099) for support.
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when all dynamic predictability has died out and all deterministic trend effects have been accounted

for. The BN cycle of an economic output variable is a sensible estimate of the output gap, provided

that the underlying model can produce accurate predictions over short and medium term horizons.

The BN decomposition is closely related to the extraction of trend and cycle components from

an unobserved components (UC) time series model such as the ones proposed by Watson (1986),

Clark (1987) and Harvey and Jaeger (1993). In particular, Oh et al. (2008) and Morley (2011) have

investigated the econometric differences and interrelations between BN and UC decompositions.

Anderson et al. (2006) has shown the econometric equivalence of the BN decomposition and the

UC decomposition based on a single-source of error model. We build on this contribution but

propose a more simplified parametrization, without making a reference to a linear state space

representation and without making use of Kalman filtering and smoothing methods (Durbin and

Koopman, 2012). Furthermore, we propose to extend the linear formulation to a non-linear version

by considering a heavy-tailed distribution for the noise term. This extension is imminent once we

have recognized that the BN decomposition can be expressed as a dynamic score-driven location

model as introduced by Creal et al. (2013) and Harvey (2013). The foundations of the methods are

presented in Blasques et al. (2024), we will discuss the implications for BN in detail in this paper.

2 The ARIMA model and the Beveridge-Nelson decomposition

2.1 ARIMA model and BN decomposition

Let {xt} be generated by an autoregressive integrated moving average (ARIMA) process of order

(p, 1, q) with deterministic drift d. The well known BN decomposition breaks xt into trend (τ ∗t )

and cycle (ψ∗t ) components xt = τ ∗t + ψ∗t
1. The BN trend τ ∗t can be interpreted as the permanent

component of xt, as it is exactly the long-run expectation limh→∞ E[xt+h|Ft]− dh = τ ∗t (see also

Beveridge and Nelson, 1981), where {Ft} is the filtration generated by the sequence of observa-

tions {xt}. It follows immediately that ψ∗t is a transitory component that has long-run expectation

equal to zero.

1More details are available in the Online Appendix A
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2.2 A score-driven representation of BN

By making the distinction between a long-run and a short-run component explicit, the following

score-driven unit-root location model for {xt} delivers the BN decomposition:

xt = µt + εt, µt = τt + ψt, (1)

where τt is the non-stationary trend and ψt is the stationary remainder, which we can specify as in

a score-driven location model, that is

τt+1 = ω + τt + κst, ψt+1 = β1ψt + . . .+ βpψt−p+1 + α1st + . . .+ αqst−q+1, (2)

with coefficients ω, κ, α1, . . . , αq and β1, . . . , βp treated as fixed unknown parameters, and the

disturbance εt is normally, independent and identically distributed with mean zero and variance

σ2. The roots of the AR polynomial βp(L) = 1− β1L− · · · − βpLp are assumed to be outside the

unit circle. The dynamic model specification (1)-(2) belongs to the class of score-driven models

proposed by Creal et al. (2013) and Harvey (2013), so st in (2) is the scaled score of the predictive

density with respect to the location µt. It is well known that in the current setting with Gaussian

innovations, we have st ≡ εt; see Online Appendix B. It is immediately clear from (2) and the

current assumptions that {τt} is a random walk with drift and {ψt} is a stationary ARMA(p, q)

process.

It is easy to show that the model in (1)-(2) is equivalent to an ARIMA(p, 1,max(p, q) + 1)

model for τ1 = x1, see Online Appendix C. Furthermore, the long-run expectation of xt is equal to

lim
h→∞

E[xt+h|Ft]− ωh = lim
h→∞

E[τt+h + ψt+h + εt+h|Ft]− ωh = τt+1 − ω ,

as we can write τt+h = ω(h − 1) + τt+1 +
∑h−1

k=1 κεt+k, {ψt} is stationary and ergodic, and has

mean zero by construction, and the elements of {εt}t∈Z are independent over time. Due to these

equivalent representations, it follows that the component τt is equal to the long-run component of

the BN decomposition at time t − 1, corrected for the deterministic drift: τt = τ ∗t−1 + ω. Hence,

the parameter κ is the long-run coefficient in the BN decomposition,2 just as in the single-source

2see Online Appendix A for additional details.
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of error model of Anderson et al. (2006). It follows directly that xt − (τt+1 − ω) is the short-term

BN component of xt.

We can conclude that the BN decomposition can conveniently be constructed using the score-

driven two-component model in (1)-(2). As this is an observation-driven model, the values of τt

and ψt can straightforwardly be filtered for a given sample {xt}Tt=1, using the following filtering

equations:

τ̂t+1 = ω + τ̂t + κ(xt − τ̂t − ψ̂t),

ψ̂t+1 = β1ψ̂t + . . .+ βpψ̂t−p+1 + α1(xt − τ̂t − ψ̂t) + . . .+ αq(xt−q+1 − τ̂t−q+1 − ψ̂t−q+1),

where we set τ̂1 = x1 and ψ̂1 = 0. When using filters that arise from observation-driven models,

it is well known that so-called filter invertibility is a desirable property as it, for example, ensures

that the effect of the filter initialization dies out in the limit (Straumann and Mikosch, 2006).

The multivariate filter above is invertible whenever the MA polynomial of the equivalent ARIMA

model is invertible, but invertibility can also be verified directly using its score-driven specification

(Blasques et al., 2024).

Some remarks are in place. First, the score-driven model above can be extended straightfor-

wardly to accommodate ARIMA models with higher orders of integration. For instance, by adding

a third component γt which is specified as γt+1 = γt + zt with zt+1 = zt + λst for some coeffi-

cient λ, the model becomes equivalent to an ARIMA(p, 2, q) model. Second, our approach does

not rely on any application of the Kalman filter and smoothing methods (Durbin and Koopman,

2012). The “filtering” equations above suffice for the computation of trend and cycle components.

Third, the maximum likelihood estimator (MLE) of the static parameters relies on the numerical

maximization of the likelihood function, which can be constructed simply using the filters above.

3 A robust BN decomposition

The Gaussian score-driven model introduced in Section 2 can be modified by adopting different

distributions for εt in (1). In non-Gaussian settings the scaled score st will typically no longer be a

linear function of εt, which implies that the score-driven model is no longer equivalent to a linear

ARIMA model. For example, for Student’s t distributed εt with ν degrees of freedom and scale
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σ2, the scaled score function becomes robust to outliers,

st =
εt

1 + ν−1σ−2ε2t
,

and see Harvey and Luati (2014), which for finite ν downweights large values of εt. Other ex-

amples are a model where the innovations are distributed according to the exponential generalized

beta distribution of the second kind (Caivano and Harvey, 2014) or a finite mixture of normal distri-

butions (Blasques et al., 2024). In these cases the model is equivalent to an ARIMA with nonlinear

MA terms. Crucially, the decomposition as formulated in (1)-(2) as well as the interpretations of

trend τt and the stationary cycle ψt remain valid. The trend τt − ω remains to be the long-run

expectation at time t − 1. As such, the model no longer leads to a regular BN decomposition, but

instead it leads to a non-linear equivalent of it, which may for instance be robust to outliers.

Blasques et al. (2024) study the theoretical properties of MLE for models of the form (1)-(2).

In particular, consistency and asymptotic normality of the MLE is established for εt distributed

according to a finite mixture of normals for the case without short-run component ψt. Furthermore,

no issues seem to arise concerning the theoretical properties of the MLE in the setting with a short-

run component. Blasques et al. (2024) discuss in detail that in the unit root setting, it is not

possible to establish filter invertibility for models based on distributions with fatter tails than the

normal distribution, say the Student’s t distribution. Hence, consistency and asymptotic normality

of the MLE cannot be established for the Student’s t, while it can be established for the mixture

of normals. This consideration could be a motivation to adopt the mixture of normals in model

(1)-(2).

4 Empirical study: Industrial Production Index of Belgium

We illustrate our proposed methodology by studying the monthly IPI of Belgium3 from January

1960 to March 2023 (759 observations). We consider the Gaussian, mixture of normals and Stu-

dent’s t versions of the model in (1)-(2), see Blasques et al. (2024) and Harvey and Luati (2014),

respectively, for the model specifications. The Student’s t distribution has ν degrees of freedom

3Deseasonalized index of Total Industry Excluding Construction for Belgium (code BELPROINDMISMEI). Data
were retrieved from FRED, Federal Reserve Bank of St. Louis. The data were transformed by taking the natural
logarithm and multiplying by 100.
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and scale parameter σ2
1 . The mixture of normal distributions has J = 2 components with weights

w1 and w2, variances σ2
1 and σ2

2 and means zero. For each model, we select the lags p and q based

on the Bayesian Information Criterion (BIC). The first 24 observations (2 years) are burned to

allow the filters to converge to their correct paths.

Parameter estimates and information criteria for each model are shown in Table 1. The Gaus-

sian model has the largest AIC and BIC values, while the mixed normal model clearly has the low-

est AIC and BIC values. Hence, the overall in-sample preference is for the mixed normal model.

The short-run component ψt has cyclical dynamics for all three models: all AR polynomials of the

short-run component have complex roots.

For the Gaussian linear model, the estimate of κ, which is the long-run multiplier of the model

in ARIMA representation, is 0.440, implying that a shock has a long-run effect that is less than half

of its magnitude. For the nonlinear models, it is more difficult to directly interpret κ, due to the

nonlinearity of the score. Figure 1 shows the value of κst for different values of εt, which shows

the long-run impact of shocks in εt. For large values of εt, the long-term effect is lower for the

non-Gaussian models than for the Gaussian model, while for values of εt close to zero, the value

of κst is slightly higher for the non-Gaussian models.

Table 1: Parameter estimates with their standard errors (s.e.) using Belgian IPI data
Gaussian Mixed Normal Student’s t
θ̂T s.e. θ̂T s.e. θ̂T s.e.

ω 0.207 0.037 0.181 0.032 0.200 0.032
κ 0.440 0.042 1.816 0.208 0.597 0.068
β1 1.804 0.059 1.807 0.048 1.817 0.045
β2 -0.845 0.061 -0.843 0.050 -0.852 0.047
α1 0.061 0.019 0.441 0.093 0.138 0.030
σ2
1 5.071 0.265 36.376 5.208 3.396 0.237
σ2
2 3.820 0.196
w1 0.025 0.009
w2 0.975 -
ν 7.611 1.387
LLH -1639.54 -1583.78 -1591.65
AIC 3291.08 3183.56 3197.31
BIC 3318.68 3220.36 3229.51

MLEs of parameters and corresponding log-likelihood values of model in (1)-(2) for different distributions, together
with their corresponding information criteria AIC and BIC. The mixed normal distribution uses J = 2 mixture
components.
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Figure 1: Increments of long-term component κst plotted as a function of εt for the three fitted
models of Table 1.

The model-based decompositions of the observations into a permanent and transitory compo-

nent are presented in Figure 2 together with recession periods in Belgium4. For the linear Gaussian

model, we obtain exactly the original BN decomposition. The filtered trends of the Student’s t and

mixed normal models are smoother and less sensitive to outliers than the filtered trend of the lin-

ear Gaussian model. The robust BN decomposition delivered by the non-Gaussian score-driven

models appear to be more satisfactory than the regular BN decomposition, because the long-term

trend is traced more accurately. For all models, the cycle component shows a downward motion in

virtually all of the recession periods.

4Indicated recession periods are the OECD based Peak through the Trough data for Belgium (code [BELREC]),
retrieved from FRED, Federal Reserve Bank of St. Louis.
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Figure 2: Filtered permanent component τ̂t−1 − ω (left panel) and transitory component xt −
τ̂t−1 + ω (right panel) corresponding to the estimates in Table 1. Shaded areas indicate Belgium’s
recession periods.
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Online Appendices

A BN decomposition of ARIMA model

Consider the ARIMA(p, 1, q) model for {xt} ∼ I(1)

φp(L)∆xt = c+ θq(L)εt, (A.1)

for t = 1, . . . , T , where φp(L) and θq(L) are invertible polynomials of orders p, q ∈ N0 in the

lag operator L, and ∆ = 1 − L. The disturbance εt is normally, independent and identically

distributed with mean zero and variance σ2. Assume that φp(L) is invertible, such that ∆xt has the

Wold representation:

∆xt = d+ ϑ∞(L)εt, ϑ∞(L) = φp(L)−1θq(L) =
∞∑
k=0

ϑkL
k,

where d = φp(1)−1 c and ϑ0 = 1. The BN decomposition relies on the lag polynomial identity

given by ϑ∞(L) = ϑ∞(1)+(1−L)ϑ†∞(L),where the coefficients of ϑ†∞(L) = ϑ†0+ϑ
†
1L+ϑ†2L

2+. . .

are implicitly defined and given by ϑ†j = −∑∞k=j+1 ϑk, for j = 0, 1, 2, . . .. The BN decomposition

for the non-stationary time series xt is then established as

xt = a+ d t+ (1− L)−1ϑ∞(1)εt + ϑ†∞(L)εt,

where a = x0 and (1−L)−1 = 1 +
∑∞

k=1 L
k. Equivalently, we can write xt = τ ∗t +ψ∗t , where the

trend τ ∗t and cycle ψ∗t are specified as the dynamic processes

τ ∗t = d+ τ ∗t−1 + ϑ∞(1)εt , ψ∗t = ϑ†∞(L)εt ,

with τ ∗0 = a.
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B Calculation of the score of Gaussian location model

In this section we calculate the scaled score st of the Gaussian location model defined in (1)-(2).

This is the scaled score function of the predictive likelihood contribution at time t with respect to

time-varying parameters. In this case, it suffices to take the derivative with respect to the location

µt, that is

st = St · ∂`(yt;ϕ) / ∂µt, `(yt;ϕ) = log p(yt|y1, . . . , yt−1;ϕ),

where p(·) is the predictive probability density function, ϕ is the fixed unknown parameter vec-

tor and St is some scaling function. For now, we take p(·) to be the normal density function

and ϕ = (ω , κ, α1, . . . , αq, β1, . . . , βp , σ
2)′. When the score is scaled with the inverse of the

Fisher information matrix. A regular choice of the scaling function is the inverse of the Fisher

information, or a function thereof. We then have

log p(yt|y1, . . . , yt−1;ϕ) = constant− 1

2
(yt − µt)

2 / σ2, ∂`(yt;ϕ) / ∂µt = (yt − µt) / σ
2,

and

St = −
[

E(∂2`(yt;ϕ) / ∂µ2
t )
]−1

= σ2.

Hence, the scaled score st is equal to st ≡ yt − µt ≡ εt.

C Equivalence ARMA and Gaussian score-driven model

C.1 Stationary ARMA case

The ARMA(p, q) model refers to an autoregressive moving average model of orders p and q, for

any p, q ∈ N0, and, for a stationary univariate time series yt, is represented by the dynamic process

φp(L)yt = c+ θq(L)εt, (C.1)

for t = 1, . . . , T , where the autoregressive and moving average polynomials are defined as φp(L) =

1 − φ1L − . . . − φpL
p and θq(L) = 1 + θ1L + . . . + θqL

q, with fixed and unknown coefficients

φ1, . . . , φp, θ1, . . . , θq, and the disturbance εt is normally, identical and independently distributed
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with mean zero and variance σ2, that is εt ∼ NID(0, σ2). We assume that both lag polynomials

φp(L) and θq(L) have their characteristic roots lying outside the unit circle. Hence, the process

(C.1) for yt is stationary.

The linear Gaussian ARMA(p, q) model in (C.1) can alternatively be represented as a stationary

score-driven location model. For example the ARMA(1, 1) model can alternatively be represented

by the two equations

yt = µt + εt, µt+1 = ω + βµt + αst, (C.2)

where µt represents time-varying location, the normally distributed disturbance εt is as in (C.1),

coefficients ω, α and β are treated as fixed unknown parameters, and st is the score, which we

saw is equal to yt − µt ≡ εt under Gaussian innovations. In case st is a stationary process, the

stationary condition for the dynamic process of µt is simply |β| < 1.

It then follows that the score-driven location model (C.2) with a normally distributed distur-

bance εt ∼ NID(0, σ2) , reduces to the stationary ARMA(1, 1) model. This equivalence becomes

evident from the following steps

yt+1 = µt+1 + εt+1

= ω + βµt + αst + εt+1

= ω + βyt − βεt + αst + εt+1

= ω + βyt + (α− β)εt + εt+1 ,

which is the stationary ARMA(1, 1) in model equations (C.1) with p = q = 1 and

c ≡ ω, φ1 ≡ β, θ1 ≡ α− β.

We notice that in case α ≡ β, the specification reduces to an AR(1) process. These arguments

extend naturally and straighforwardly to any combination of p, q ∈ N0 for the ARMA(p, q) model.

C.2 Nonstationary ARIMA case

Consider the Gaussian version of the model in (1)-(2), where we assume that the the roots of the

characteristic equation of the AR polynomial are outside the unit circle. We will now demonstrate
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that this model is equivalent to an ARIMA(p, 1,max(p, q) + 1) model:

xt = τt + ψt + εt

⇐⇒ (1− L)xt = (1− L)τt + (1− L)ψt + (1− L)εt

⇐⇒ ∆xt = ω + κεt−1 + (1− L)(1− β1L− . . .− βpLp)−1(α1L+ . . .+ αqL
q)εt + ∆εt

⇐⇒ βp(L)∆xt = βp(1)ω + κβp(L)εt−1 + (α1L+ . . .+ αqL
q)∆εt + βp(L)∆εt ,

where βp(L) = 1 − β1L − . . . − βpL
p. The final expression clearly shows that {xt}t∈N is an

ARIMA(p, 1,max(p, q) + 1) process, see (A.1) for the definition of an ARIMA process. The drift

parameter c is equal to βp(1)ω and the autoregressive coefficients φi are equal to βi for i = 1, . . . , p.

The moving average coefficients θi are functions of the parameters of the score-driven model. For

example, the first-order MA coefficient is α1− β1 + κ− 1. In case q < p, the MA coefficients will

be restricted, as there are only q + 1 ‘free parameters’ for the MA coefficients (κ and α1, . . . , αq)

and p + 1 MA lags. On the other hand, in case q ≥ p it can be shown straightforwardly that any

combination of q + 1 MA coefficients can be obtained. It then also follows immediately that if

q ≥ p, the score-driven model can be made equivalent to an ARIMA(p, 1, q∗) model with q∗ < p+1

under particular restrictions on the parameters κ and α1 . . . , αq, which ensure that certain MA lags

cancel out. For example for p = 1 and q = 1, setting κ = 1/(1 − β1) and α1 = −β2
1/(1 − β1)

leads to an ARIMA(1, 1, 0) process with autoregressive coefficient β1.
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