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Abstract

We propose a novel estimation approach for a general class of semi-parametric time series

models where the conditional expectation is modeled through a parametric function. The

proposed class of estimators is based on a Gaussian quasi-likelihood function and it relies

on the specification of a parametric pseudo-variance that can contain parametric restrictions

with respect to the conditional expectation. The specification of the pseudo-variance and

the parametric restrictions follow naturally in observation-driven models with bounds in the

support of the observable process, such as count processes and double-bounded time series.

We derive the asymptotic properties of the estimators and a validity test for the parameter

restrictions. We show that the results remain valid irrespective of the correct specification of

the pseudo-variance. The key advantage of the restricted estimators is that they can achieve

higher efficiency compared to alternative quasi-likelihood methods that are available in the

literature. Furthermore, the testing approach can be used to build specification tests for para-

metric time series models. We illustrate the practical use of the methodology in a simulation

study and two empirical applications featuring integer-valued autoregressive processes, where

assumptions on the dispersion of the thinning operator are formally tested, and autoregressions

for double-bounded data with application to a realized correlation time series.
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1 Introduction

A wide range of time series models have been proposed in the literature to model the conditional

mean of time series data. Their specification often depends on the nature of the time series variable

of interest. For example, AutoRegressive Moving Average (ARMA) models (Box et al., 1970) are

typically employed for time series variables that are continuous and take values on the real line.

INteger-valued AutoRegressive (INAR) models (Al-Osh and Alzaid, 1987; McKenzie, 1988) and

INteger-valued GARCH models (INGARCH) (Heinen, 2003; Ferland et al., 2006) are designed to

account for the discrete and non-negative nature of count processes. Autoregressive Conditional

Duration (ACD) models (Engle and Russell, 1998) are used for modeling non-negative continuous

processes. Beta autoregressive models (Rocha and Cribari-Neto, 2009) are employed for modeling

double-bounded time series data lying in a specified interval domain. The estimation of such

models can be carried out by the Maximum Likelihood Estimator (MLE), which constitutes the

gold standard approach for the estimation of unknown parameters in parametric models. However,

the MLE requires parametric assumptions on the entire distribution of the time series process. This

feature is not appealing when the interest of the study is only on modeling the conditional mean

instead of the entire distribution. Furthermore, the likelihood function can sometimes present a

complex form and the implementation of the MLE can become unfeasible. For instance, exact

likelihood inference of INAR models is well-known to be cumbersome and numerically difficult,

especially when the order of the model is larger than one (Bu et al., 2008; Drost et al., 2009; Pedeli

et al., 2015). In such situations, the use of quasi-likelihood methods becomes attractive.

The Quasi-MLE (QMLE), introduced by Wedderburn (1974), is a likelihood-based estimator

where there is a quasi-likelihood that is not necessarily the true distribution of the data. Quasi-

likelihoods are typically a member of the one-parameter exponential family. Gourieroux et al. (1984)

show that the QMLE is consistent for the true unknown parameters of the model. Nevertheless,

QMLEs can be inefficient because, given a parametric definition for the conditional mean of the

process, the conditional variance is implicitly constrained to be a function of the conditional mean

as determined by the exponential family of distributions that is considered. In order to improve the

estimation efficiency for the parameters of the conditional mean in time series models, Aknouche

and Francq (2021) propose a two-stage Weighted Least Squares Estimator (WLSE) where in the

first step the conditional variance of the process is estimated and it is then used in the second

step as weighting sequence for the solution of the weighted least squares problem. It is shown that

this WLSE leads to improved efficiency with respect to QMLE if the variance function is correctly

specified. A similar estimator has been more recently proposed in the context of estimating functions

approach leading to the same type of efficiency improvement (Francq and Zakoian, 2023).
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In this paper, we propose a novel class of QMLEs for the estimation of the conditional expecta-

tion of semi-parametric time series models. The estimators are based on a Gaussian quasi-likelihood

and a pseudo-variance specification, which can contain restrictions with the parameters of the condi-

tional expectation. The Pseudo-Variance QMLEs (PVQMLEs) only require parametric assumptions

on the conditional expectation as the pseudo-variance function does not need to be correctly speci-

fied. We establish strong consistency and asymptotic normality of the PVQMLEs under very general

conditions. The case in which the pseudo-variance formulation corresponds to the true conditional

variance of the process is obtained as a special case. We show that when no restrictions are imposed

between the mean and pseudo-variance, the resulting unrestricted PVQMLE has the same asymp-

totic efficiency of a particular WLSE. Furthermore, if the pseudo-variance is correctly specified it

achieves the same asymptotic efficiency as the efficient WLSE. On the other hand, when parameter

restrictions are considered, the resulting restricted PVQMLEs can achieve higher efficiency com-

pared to the efficient WLSE and alternative QMLEs. This result is theoretically shown in some

special cases and empirically verified for INAR models through an extensive numerical exercise. We

discuss how the specification of the pseudo-variance and the parameter restrictions naturally arise

for time series processes with bounded support. We obtain that the restricted PVQMLEs retain the

desired asymptotic properties when the imposed restrictions are valid with respect to the true pa-

rameter of the mean and a pseudo-true parameter of the conditional variance. The validity of such

restrictions can be tested without requiring correct specification of the conditional variance. We

derive a test for this purpose that can be used as a consistency test for restricted PVQMLEs. When

the evidence-based parameter constraints are identified and validated, they constitute a restriction

set where an higher-efficiency restricted PVQMLE can be obtained. Furthermore, under correct

specification of the pseudo-variance, the test can be used as a specification test on the underlying

process generating the data.

Finally, the practical usefulness of PVQMLE approach is illustrated by means of two real data

applications. One is concerned with INAR models and one with a Beta autoregression for double-

bounded data. INAR processes depend on the distribution assumed for the innovation and the

thinning specification (Lu, 2021). Our test allows us to test for the degree of dispersion in the

thinning operator as well as the error term. There exists a vast literature of INAR models in

testing innovations and marginal distributions dispersion (Schweer and Weiß, 2014; Aleksandrov

and Weiß, 2020), testing for serial dependence (Sun and McCabe, 2013), and general goodness of fit

tests (Weiß, 2018). However, to the best of our knowledge, specification tests are not available for

the thinning dispersion. The thinning operator is typically assumed to be binomial, which implies

underdispersion in the thinning. Once appropriate thinning and innovation restrictions are identified
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through the specification test, the corresponding PVQMLE is used to estimate the parameters of the

INAR model. The second application concerns the analysis of daily realized correlations between

a pair of stock returns, which forms a double-bounded time series as the realized correlation takes

values between minus one and one. We consider a pseudo-variance specification based on the implied

variance from Beta-distributed variables for the definition of PVQMLEs. We then test the validity

of parametric restrictions between the mean and pseudo-variance to validate the use of restricted

PVQMLEs.

The remainder of the paper is organized as follows. Section 2 introduces the general mean and

pseudo-variance framework and the PVQMLEs, together with some examples. Section 3 presents the

main theoretical results of the paper and a comparison between the PVQMLE and alternative quasi-

likelihood methods. Section 4 introduces the specification test for the validity of the constraints with

an extensive simulation study in the case of INAR models. Section 5 presents empirical applications.

2 Specification and estimation

2.1 PVQML estimators

Consider a stationary and ergodic time series process {Yt}t∈Z with elements taking values in the

sample space Y ⊆ R and with conditional mean given by

E(Yt|Ft−1) = λ(Yt−1, Yt−2, . . . ;ψ0) = λt(ψ0) , t ∈ Z, (1)

where Ft denotes the σ-field generated by {Ys , s ≤ t}, λ : R∞ × Ψ → R is a known measurable

function, and ψ0 ∈ Ψ ⊂ Rp is the true unknown p-dimensional parameter vector. We denote with

νt the conditional variance of the process, i.e. V(Yt|Ft−1) = νt, which is considered to have an

unknown specification. The model is a semi-parametric model as the quantity of interest is the

parameter vector of the conditional mean ψ0 and other distributional properties are left unspecified

and treated as an infinite dimensional nuisance parameter. The general specification of the model

in (1) includes a wide range of time series models as special case. For instance, it includes linear

and non-linear ARMA models when Y = R, INGARCH and INAR models when Y = N, ACD

models when Y = (0,∞), and Beta autoregressive models for bounded data when Y = (0, 1).

The main objective is to estimate the parameter vector ψ0 of the conditional expectation. For

this purpose, we consider the specification of a pseudo-variance

ν∗t (γ) = ν∗(Yt−1, Yt−2, . . . ; γ), t ∈ Z, (2)

where ν∗ : R∞ × Γ→ [0,+∞) is a known function that is indexed by the k-dimensional parameter

γ ∈ Γ ⊂ Rk. We refer to this as a pseudo-variance as it is not necessarily correctly specified,
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i.e. there may be no value γ ∈ Γ such that ν∗t (γ) = νt. The idea is to use the pseudo-variance ν∗t (γ)

to enhance the efficiency of the estimation of ψ0 by means of a Gaussian QMLE. We denote the

whole parameter vector that contains both the parameter of the mean and pseudo-variance with

θ = (ψ′, γ′)′ and θ ∈ Θ = Ψ× Γ ⊂ Rm, m = p+ k.

We introduce the class of PVQMLEs that relies on a Gaussian quasi-likelihood for the mean

equation with the pseudo-variance as scale of the Gaussian density. We consider estimators based

on both unrestricted and restricted quasi-likelihood functions. Assume that we have an observed

sample of size T from the process defined in (1), given by {Yt}Tt=1. Since λt(ψ) and ν∗t (γ) can depend

on the infinite past of Yt, we define their approximations of λ̃t(ψ) and ν̃∗t (γ) based on the available

finite sample {Yt}Tt=1,

λ̃t(ψ) = λ(Yt−1, . . . , Y1, Ỹ0, Ỹ−1, . . . ;ψ) , ν̃∗t (γ) = ν∗(Yt−1, . . . , Y1, Ỹ0, Ỹ−1, . . . ; γ), (3)

where Ỹ0, Ỹ−1, . . . are given initial values. The Gaussian quasi-likelihood for ψ with the pseudo-

variance scaling is defined as

L̃T (θ) =
1

T

T∑
t=1

l̃t(θ) , l̃t(θ) = −1

2
log ν̃∗t (γ)− [Yt − λ̃t(ψ)]2

2ν̃∗t (γ)
. (4)

Based on the quasi-likelihood function in (4), we define the unrestricted and restricted PVQMLE.

The unrestricted PVQMLE is based on the unconstrained maximization of the pseudo-likelihood

without imposing any constrains between ψ and γ. The unrestricted PVQMLE θ̂ is defined as

θ̂ = arg max
θ∈Θ

L̃T (θ), (5)

where θ̂ = (ψ̂′, γ̂′)′ and ψ̂ is the unrestricted PVQMLE of ψ0. In Section 3, we shall see that the

unrestricted PVQMLE ψ̂ is a consistent estimator of ψ0 and, in fact, it is asymptotically equivalent

to a specific WLSE. If the pseudo-variance is correctly specified, i.e. there is γ0 ∈ Γ such that

ν∗(γ0) = νt, then ψ̂ is asymptotically equivalent to the efficient WLSE.

In models where the sample space Y is bounded, such as count-time series models, there can be

a natural relationship between the conditional mean and variance of the process. For example, in

a count time series process we have that if the mean goes to zero, then also the variance goes to

zero as, in fact, the limit case is the mean being exactly zero. Such relationship between mean and

variance, as given by parametric models, provide a natural way to introduce restrictions between

the mean and pseudo-variance parameters ψ and γ. Several examples are presented at the end of

this section.

To specify the restricted PVQMLE, we consider the constrained parameter set ΘR that imposes

r restrictions on the pseudo-variance parameters

ΘR = {θ ∈ Θ : Sγ = g(ψ)},

5



where S is a r × k selection matrix and g : Ψ→ Rr. The estimator derived from the maximization

of (4) over the set ΘR is the restricted PVQMLE,

θ̂R = arg max
θ∈ΘR

L̃T (θ) (6)

where θ̂R = (ψ̂′R, γ̂
′
R)′ and ψ̂R is the restricted PVQMLE of ψ0. In Section 3, we shall see that the

restricted PVQMLE ψ̂R is a consistent estimator of ψ0 if the constrains in ΘR hold with respect to

a pseudo-true parameter γ∗. The advantage of the restricted PVQMLE ψ̂R is that it can achieve

higher efficiency than the unrestricted one. Furthermore, as it shall be presented in Section 4, the

validity of the restrictions can be tested under both misspecification and correct specification of

the pseudo-variance. The test can be interpreted as a consistency test for the restricted estimator

when the pseudo-variance is misspecified. Instead, it can be employed as a specification test if we

assume correct specification of the pseudo-variance. For instance, it shall be employed to test for

underdispersion, equidispersion or overdispersion in the thinning operator of INAR models.

2.2 Examples

The model specification in (1) is very general and it covers a wide range of semi-parametric

observation-driven time series model. The unrestricted and restricted QMLE based on the pseudo-

variance in (2) can be employed for such general class of models. However, PVQMLEs are particu-

larly suited for time series processes where the support of the conditional mean is bounded and a

natural relationship with the conditional variance can be assumed. In Section 3.2 it will be shown

that in models where conditional mean and pseudo-variance share some parameter restrictions, a

more efficient estimator may be obtained with respect to alternative estimation approaches available

in the literature. The specification of the pseudo-variance and the parameter restrictions with the

conditional mean can be based on well known model specifications. The validity of such restrictions

is testable and the asymptotic properties do not require correct specification of the pseudo-variance.

This means that no assumptions on the true conditional variance are needed and the consistency of

the restricted PVQMLE can also be tested without relying on such assumptions. Below we present

some examples of models that are encompassed in the framework defined in equations (1) and (2),

and provide a general way to specify the pseudo-variance and the parameter restrictions with the

conditional mean.

Example 1 (INAR models). INAR models are widely used in the literature to model count time

series. The INAR(1) model is given by

Yt = a ◦ Yt−1 + εt , t ∈ Z, (7)
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where {εt}t∈Z is an iid sequence of non-negative integer-valued random variables with mean ω1 > 0

and variance ω2 > 0, and ‘◦’ is the thinning operator of Steutel and Van Harn (1979). For a given

N ∈ N and a ∈ (0, 1), the most general formulation of the thinning operator a ◦N is defined to be

a count random variable with mean aN . The most common formulation (Steutel and Van Harn,

1979) is the Bernoulli thinning where a◦N is a binomial random variable with N trials and success

probability a. The conditional mean of the INAR(1) is

λt = aYt−1 + ω1,

and the pseudo-variance can be specified as

ν∗t = bYt−1 + ω2.

As discussed in Section 5, several restrictions can be considered for the PVQMLE. For instance,

the restriction b = a(1− a) is implied by a binomial thinning and ω1 = ω2 is implied by a Poisson

error.

Example 2 (INGARCH models). Another popular model for time series of counts is the INGARCH

model. The conditional mean of the INGARCH(1,1) model takes the form

λt = ω1 + α1Yt−1 + β1λt−1 , (8)

where ω1, α1, β1 ≥ 0. The pseudo-variance can be specified as

ν∗t = ω2 + α2Yt−1 + β2λt−1 .

Also in this case, several restrictions can be considered for the PVQMLE. For instance, the restric-

tions ω2 = ω1, α2 = α1 and β2 = β1 are implied by an equidispersion assumption ν∗t = λt, which

follows assuming a conditional Poisson distribution for example. Alternatively, the restrictions

ω2 = cω1, α2 = cα1 and β2 = cβ1 with c > 0 are implied by a proportional variance assumption

ν∗t = cλt.

Example 3 (ACD models). ACD models are typically used to model non-negative continuous

time series variables, like durations or volumes. These models take the form Yt = λtεt where εt is

a sequence of positive variables with mean equal to 1. The conditional expectation λt may take

the form as in equation (8). The pseudo-variance can be specified in several ways and restrictions

can be imposed. For instance, the restriction ν∗t = λ2
t follows by assuming an exponential error

distribution. An alternative restriction is given by ν∗t = cλ2
t , c > 0.
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Example 4 (double-bounded autoregressions). For double-bounded time series data the condi-

tional mean λt can be specified as in equation (8), see Gorgi and Koopman (2021) for instance.

Several specifications and restrictions for the pseudo-variance can be considered. For instance, the

restriction ν∗t = λt(1 − λt)/(1 + φ) is implied by a beta conditional distribution with dispersion

parameter φ. Intermediate restrictions on the pseudo-variance are discussed in the corresponding

application in Section 5.

We note that the example presented in this section are focused on a linear mean equation

for simplicity of exposition. Several other non-linear model specifications are encompassed in the

general framework in (1) and (2), see for example Creal et al. (2013) and Christou and Fokianos

(2015).

3 Asymptotic theory

In this section, the asymptotic properties of the PVQMLEs in (5) and (6) are formally derived.

Although asymptotic results related to quasi-maximum likelihood estimators of observation-driven

models are well-established in the literature, the associated theory for PVQMLEs differs as it

relies on simultaneous estimation of mean and pseudo-variance parameters, where the latter can be

misspecified and present parameter restrictions with the mean. Since the pseudo-variance can be

misspecified, the estimator of the pseudo-variance parameter γ̂ will be consistent with respect to a

pseudo-true value γ∗, which is given by

γ∗ = arg max
γ∈Γ

−1

2
E

(
log ν∗t (γ) +

[Yt − λt(ψ0)]2

ν∗t (γ)

)
. (9)

We define the vector θ0 = (ψ′0, γ
∗′)′ that contains both true and pseudo-true parameters. The

estimator of the mean parameters preserves the consistency and asymptotic normality results to

the true parameter vector ψ0. Moreover, we will show that such result holds for both unrestricted

(5) and restricted (6) estimators.

We start by showing consistency and asymptotic normality of the unrestricted PVQMLE in (5).

We first obtain the score function related to (4)

S̃T (θ) =
1

T

T∑
t=1

s̃t(θ), s̃t(θ) =
Yt − λ̃t(ψ)

ν̃∗t (γ)

∂λ̃t(ψ)

∂θ
+

[Yt − λ̃t(ψ)]2 − ν̃∗t (γ)

2ν̃∗2t (γ)

∂ν̃∗t (γ)

∂θ
. (10)

Furthermore, we define LT (θ), lt(θ), ST (θ) and st(θ) as the random functions obtained from L̃T (θ),

l̃t(θ), S̃T (θ) and s̃t(θ) by substituting λ̃t(ψ) and ν̃∗t (γ) with λt(ψ) and ν∗t (γ), respectively. We

consider the following assumptions.
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A1 The process {Yt, t ∈ Z} is strictly stationary and ergodic.

A2 λt(·) is continuous in Ψ, ν∗t (·) is continuous in Γ and the set Θ is compact. Moreover,

E sup
γ∈Γ
|log ν∗t (γ)| <∞ , E sup

θ∈Θ

[Yt − λt(ψ)]2

ν∗t (γ)
<∞ .

A3 λt(ψ) = λt(ψ0) a.s. if and only if ψ = ψ0.

A4 There is a constant ν∗ > 0 such that ν∗t (γ), ν̃∗t (γ) ≥ ν∗ for any t ≥ 1 and any γ ∈ Γ.

A5 Define at = supψ∈Ψ |λ̃t(ψ)− λt(ψ)| and bt = supγ∈Γ |ν̃∗t (γ)− ν∗t (γ)|, it holds that

lim
t→∞

(
1 + |Yt|+ sup

ψ∈Ψ
|λt(ψ)|

)
at = 0 , lim

t→∞

(
1 + Y 2

t + sup
ψ∈Ψ

λ2
t (ψ)

)
bt = 0 a.s.

A6 The pseudo-true parameter γ∗ ∈ Γ defined in (9) is unique.

A7 Define ct = supθ∈Θ ‖∂λ̃t(ψ)/∂θ − ∂λt(ψ)/∂θ‖, dt = supθ∈Θ ‖∂ν̃∗t (γ)/∂θ − ∂ν∗t (γ)/∂θ‖. The

following quantities are of order O(t−δ) a.s. for some δ > 1/2

sup
θ∈Θ

∥∥∥∂λt(ψ)

∂θ

∥∥∥at , sup
θ∈Θ

∥∥∥∂ν∗t (γ)

∂θ

∥∥∥(1 + |Yt|+ sup
ψ∈Ψ
|λt(ψ)|

)
at ,

sup
θ∈Θ

∥∥∥∂λt(ψ)

∂θ

∥∥∥( |Yt|+ sup
ψ∈Ψ
|λt(ψ)|

)
bt , sup

θ∈Θ

∥∥∥∂ν∗t (γ)

∂θ

∥∥∥(1 + Y 2
t + sup

ψ∈Ψ
λ2
t (ψ)

)
bt ,(

1 + |Yt|+ sup
ψ∈Ψ
|λt(ψ)|

)
ct ,

(
1 + Y 2

t + sup
ψ∈Ψ

λ2
t (ψ)

)
dt.

A8 λt(·) and ν∗t (·) have continuous second-order derivatives in their spaces. Moreover,

E sup
θ∈Θ

[Yt − λt(ψ)]4

ν∗2t (γ)
<∞ , E sup

θ∈Θ

∥∥∥ 1√
ν∗t (γ)

∂2λt(ψ)

∂θ∂θ′

∥∥∥2

<∞ ,

E sup
θ∈Θ

∥∥∥∥ 1

ν∗t (γ)

∂λt(ψ)

∂θ

∂λt(ψ)

∂θ′

∥∥∥∥ <∞ , E sup
θ∈Θ

∥∥∥∥ 1

ν∗t (γ)

∂λt(ψ)

∂θ

∂ν∗t (γ)

∂θ′

∥∥∥∥2

<∞ ,

E sup
θ∈Θ

∥∥∥∥ 1

ν∗2t (γ)

∂ν∗t (γ)

∂θ

∂ν∗t (γ)

∂θ′

∥∥∥∥2

<∞ , E sup
θ∈Θ

∥∥∥∥ 1

ν∗t (γ)

∂2ν∗t (γ)

∂θ∂θ′

∥∥∥∥2

<∞ .

A9 The matrices H(θ0) = E[−∂2lt(θ0)/∂θ∂θ′], I(θ0) = E[st(θ0)s′t(θ0)] exist with H(θ0) invertible.

A10 θ0 ∈ Θ̇, where Θ̇ is the interior of Θ.

A11 The sequence
√
TST (θ0) obeys the central limit theorem.
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The strict stationarity and ergodicity in assumption A1 depends upon the model formulation

in (1) and (2) and it can be established by means of different probabilistic approaches, see for

instance Straumann and Mikosch (2006) and Debaly and Truquet (2021). Assumption A2 is a

standard moment condition. Assumption A3 is required for the identification of the true parameter

ψ0. Assumptions A5 and A7 are needed to guarantee that the initialization of filters in (3) is

asymptotically irrelevant. Assumption A6 imposes the uniqueness of the pseudo-true parameter

for the variance equation. In Corollary 3 below, we show that this assumption can be dropped

if the researcher is not interested in the asymptotic normality of the estimator but only in the

consistency. Assumptions A8 and A9 impose moments on the second derivatives of the log-quasi-

likelihood that are required for asymptotic normality to apply. Assumption A10 is the standard

condition for asymptotic normality that the true parameter value is in the interior of the parameter

set. Finally, assumption A11 is an high-level condition that a central limit theorem applies to the

score. This is condition is left high-level for generality purposes since the score function st(θ0) is

not a martingale difference sequence, see equation (10). There are several alternative CLTs for

non-martingale sequences and the choice of the most appropriate one is strongly dependent on the

specific mean-variance model formulation. For example, CLTs appealing the concept of mixing

processes or mixingales are widely available, see the surveys in Doukhan (1994), Bradley (2005)

and White (1994). In case of correct conditional variance specification then assumption A11 can

be dropped, see Corollary 2. Theorem 1 delivers the consistency and asymptotic normality of the

unrestricted PVQMLE of the true parameter ψ0.

Theorem 1. Consider the unrestricted PVQMLE in (5). Under conditions A1-A6

ψ̂ −→ ψ0 , a.s. T →∞ . (11)

Moreover, if also A7-A11 hold, as T →∞
√
T
(
ψ̂ − ψ0

)
d−→ N(0,Σψ) , Σψ = H−1

ψ (θ0)Iψ(θ0)H−1
ψ (θ0) , (12)

where

Hψ(θ0) = E

[
1

ν∗t (γ∗)

∂λt(ψ0)

∂ψ

∂λt(ψ0)

∂ψ′

]
, Iψ(θ0) = E

[
νt

ν∗2t (γ∗)

∂λt(ψ0)

∂ψ

∂λt(ψ0)

∂ψ′

]
. (13)

The asymptotic properties of the estimator of the variance parameter γ are obtained in Corollary

1 below. Let st(θ0)′ = [s
(ψ)
t (θ0)′, s

(γ)
t (θ0)′]′ be the partition of the score with respect to the mean and

(pseudo-)variance parameters. Let Hγ(θ0) = E[−∂2lt(θ0)/∂γ∂γ′] and Iγ(θ0) = E[s
(γ)
t (θ0)s

(γ)
t (θ0)′].

Corollary 1. Under the assumptions of Theorem 1 we have that as T → ∞, a.s. γ̂ −→ γ∗ and
√
T (γ̂ − γ∗) d−→ N(0,Σγ), where Σγ = H−1

γ (θ0)Iγ(θ0)H−1
γ (θ0).
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Theorem 1 determines the asymptotic distribution of the unrestricted PVQMLE of ψ0 without

requiring correct specification of the pseudo-variance. The following result shows that in the special

case in which the variance is well-specified then the estimator ψ̂ gains in efficiency.

Corollary 2. Consider the assumptions of Theorem 1. If, in addition, the variance (2) is correctly

specified, i.e. ν∗t (γ∗) = νt, then A1-A10 entail (11) and

√
T
(
ψ̂ − ψ0

)
d−→ N(0, I−1

ψ ) , Iψ = E

[
1

νt

∂λt(ψ0)

∂ψ

∂λt(ψ0)

∂ψ′

]
, (14)

where Σψ − I−1
ψ is positive semi-definite.

We also note that in Corollary 2 the uniqueness of the variance parameter in assumption A6 is

implied by the condition ν∗t (γ) = ν∗t (γ∗) a.s. if and only if γ = γ∗. This follows immediately from the

correct specification of the pseudo-variance. Corollary 3 below shows that even if the pseudo-true

parameter γ∗ is not unique, i.e. assumption A6 does not hold, the consistency of the unrestricted

estimator ψ̂ is retained without any additional assumption. The overall estimator θ̂ will instead be

set consistent over the set of values that maximize the limit of the quasi-likelihood, Θ0, since the

pseudo-true parameter γ∗ is not uniquely identified.

Corollary 3. Consider the unrestricted PVQMLE (5) and assume conditions A1-A5 hold. Then,

as T →∞, infθ0∈Θ0 ‖θ̂ − θ0‖ −→ 0 a.s. and ψ̂ −→ ψ0 a.s.

We now treat the case in which the conditional mean and pseudo-variance parameters are con-

strained. We study the asymptotic properties of the restricted PVQMLE ψ̂R defined in (6).

A12 The equality Sγ∗ = g(ψ0) holds and g(·) is continuous.

Assumption A12 is required to ensure that θ0 ∈ ΘR, i.e. the imposed restrictions are valid

with respect to the true parameter ψ0 and the pseudo-true parameter γ∗. The continuity of g(·)
guarantees that ΘR remains compact. Define γ = (γ′1, γ

′
2)′ where γ1 = Sγ = g(ψ) is the sub-

vector of pseudo-variance parameters that are restricted to mean parameters and γ2 constitutes

the sub-vector of remaining free parameters. For θ ∈ ΘR, with some abuse of notation, we have

θ = (ψ′, γ′1, γ
′
2)′ = (ψ′, g(ψ)′, γ′2)′ = (ψ′, γ′2)′. Recall that Hx(θ0) = E [−∂2lt(θ0)/∂x∂x′] and Ix(θ0) =

E[s
(x)
t (θ0)s

(x)
t (θ0)′]. Moreover, define Hx,z(θ0) = E [−∂2lt(θ0)/∂x∂y′], Ix,z(θ0) = E[s

(x)
t (θ0)s

(z)
t (θ0)′]

and Iz,x(θ0) = I ′x,z(θ0). Analogously, set D(θ0) = H−1(θ0) and Dx,y(θ0) being the corresponding

partition related to rows x and columns y of D(θ0). Theorem 2 delivers the asymptotic distribution

of the restricted PVQMLE.

11



Theorem 2. Consider the restricted PVQMLE in (6). Under conditions A1-A6 and A12

ψ̂R −→ ψ0 , a.s. T →∞ . (15)

Moreover, if also A7-A11 hold, as T →∞
√
T
(
ψ̂R − ψ0

)
d−→ N(0,ΣR) , (16)

where

ΣR =Dψ(θ0)Iψ(θ0)Dψ(θ0) +Dψ,γ2(θ0)Iγ2,ψ(θ0)Dψ(θ0) (17)

+Dψ(θ0)Iψ,γ2(θ0)Dγ2,ψ(θ0) +Dψ,γ2(θ0)Iγ2(θ0)Dγ2,ψ(θ0) .

We note that Corollaries 1-3 can easily be adapted to hold also for θ̂R. In Section 3.2 below,

we shall see that the restricted PVQMLE can lead to substantial gains in efficiency with respect

to the unrestricted PVQMLE. The consistency of the restricted PVQMLE requires the additional

assumption L. However, as discussed in Section 4, this assumption can be tested and the correct

specification of the pseudo-variance is not required. Clearly, when ψ and γ do not have parameter

restrictions, i.e. ψ̂R = ψ̂, it can be noted that Theorem 1 is equivalent to Theorem 2 with ΣR = Σψ,

since Hψ,γ2(θ0) = 0, H(θ0) becomes block diagonal, its inverse has block elements Dx(θ0) = H−1
x (θ0)

and Dx,y(θ0) = Dy,x(θ0) = 0, implying that ΣR = Σψ.

3.1 Comparison to alternative estimators

In this section, we show that the unrestricted PVQMLE achieves the same asymptotic variance of

existing estimators. Consider the unrestricted PVQMLE depicted in Theorem 1. The partition of

the score related to the mean parameter ψ is

s̃
(ψ)
t (θ) =

Yt − λ̃t(ψ)

ν̃∗t (γ)

∂λ̃t(ψ)

∂ψ
. (18)

We compare (18) with some alternative semi-parametric estimators presented in the literature.

Consider the two-stage Weighted Least Squares (WLSE) of Aknouche and Francq (2021) defined

as

ψ̂W = arg max
ψ∈Ψ

1

T

T∑
t=1

l̃st(ψ, ŵt) , l̃st(ψ, ŵt) = − [Yt − λ̃t(ψ)]2

ŵt
,

where ŵt is a first-step estimator of the set of weights wt. The resulting score of the WLSE is

s̃t(ψ, ŵt) =
Yt − λ̃t(ψ)

ŵt

∂λ̃t(ψ)

∂ψ
. (19)

12



Since it is well-known that the conditional variance is the optimal weight for the WLSE, the same

authors set wt = ν∗t (ξ) = ν∗(Yt−1, Yt−2, . . . ; ξ) by defining a functional form for a pseudo-variance,

where the parameters ξ∗ may also contain ψ0 or parts of it. The corresponding first-step estimated

weights are ŵt = ν̃∗t (ξ̂), where ξ̂ represents the first-step estimate of the parameter ξ.

Consider the general QMLE of Wedderburn (1974) and Gourieroux et al. (1984) based on the

exponential family of quasi-likelihoods defined as

ψ̂Q = arg max
ψ∈Ψ

l̃T (ψ) ,

where the log-quasi-likelihood l̃T (ψ) is a member of the one-parameter exponential family with

respect to λ̃t(ψ). The corresponding score is given by

s̃t(ψ) =
Yt − λ̃t(ψ)

ν̃t(ψ)

∂λ̃t(ψ)

∂ψ
. (20)

where the conditional variance ν̃t(ψ) is typically a function of the mean, i.e. ν̃t(ψ) = h(λ̃t(ψ))

for some function h(·). For example, selecting the Poisson quasi-likelihood yields ν̃t(ψ) = λ̃t(ψ)

(Ahmad and Francq, 2016), see Aknouche and Francq (2021, Sec. 2.2) for other examples.

The expression of the scores in (18)-(20) highlight how the unrestricted PVQMLE is closely

related to WLSE and the QMLE based on the exponential family. The main difference between

the unrestricted PVQMLE and the QMLE with score in (20) is that the QMLE only considers the

specification of the conditional mean and the conditional variance is a function of the conditional

mean that is implied by the selected distribution in the exponential family. On the the other

hand, the unrestricted PVQMLE differs from the WLSE as the parameters are estimated jointly

instead of a multi-step estimation. The unrestricted PVQMLE, the QMLE and the WLSE enjoy

the same consistency property for the mean parameters ψ0 irrespective of the correct specification

of the conditional variance. Furthermore, when they have the same specification of the conditional

variance, these estimators are asymptotically equivalent.

Corollary 4. Assume Theorem 1 holds. Moreover, suppose the WLSE (19) with wt = ν∗t (γ∗) is

consistent and asymptotically normal with limiting variance ΣW . Then the unrestricted PVQMLE in

(5) is asymptotically as efficient as the WLSE, meaning that Σψ = ΣW . In addition, if ν∗t (·) = νt(·),

then ΣW = Σψ = I−1
ψ .

The result in Corollary 4 follows immediately from Theorem 1 and Corollary 2. We also note

that if Corollary 4 holds then also Corollaries 2.1-2.3 in Aknouche and Francq (2021) hold for the

unrestricted PVQMLE. This has two direct consequences: (i) if the variance is well-specified, the

unrestricted PVQMLE is asymptotically more efficient than the QMLE of ψ0, if the variance implied
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by the exponential family is not the true one, and (ii) if the conditional distribution of Yt comes

from the exponential family, then the well-specified PVQMLE is asymptotically as efficient as the

MLE of ψ0.

We note that the comparison discussed so far only concerns the unrestricted PVQMLE. This

equivalence of the PVQMLE with respect to the WLSE and the QMLE does not hold for the

restricted PVQMLE. This can be noted from the form of the score function given in equation (10)

and the fact that the partial derivative of ν̃∗t (γ) with respect to ψ is no longer equal to zero. Below

we discuss how the restricted PVQMLE can achieve higher efficiency compared to the unrestricted

PVQMLE.

3.2 Efficiency of PVQMLE

Given that the PVQMLE with distinct parameters on mean and pseudo-variance is asymptotically

equivalent to the WLSE for the mean parameters ψ0 (Corollary 4), it may be expected that if

the mean and pseudo-variance equations share common parameters in θ, i.e. ψ0 and γ∗ are not

completely distinct so that θ0 ∈ ΘR, then the restricted PVQMLE in (6) could show improved

efficiency over the unrestricted PVQMLE and the WLSE. This result cannot be proved in general

but for the following special cases it is verified.

A13 One of the following conditions holds:

A13.a Yt|Ft−1 ∼ q(λt, νt) where q(·) is Gaussian.

A13.b m = 1, q(·) is symmetric and is meso- or platy-kurtic.

A13.c m = 1, the first derivatives of the functions λt(ψ0) and νt(γ0) have the (opposite) same

sign, and q(·) is (positive) negative skewed and meso- or platy-kurtic.

Proposition 1. Assume that Assumptions A1-A13 hold with ν∗t (γ∗) = νt. Moreover, suppose that

the WLSE in (19) with wt = νt is consistent and asymptotically normal with asymptotic variance

I−1
ψ . Then, the restricted PVQMLE in (6) is asymptotically more efficient than the unrestricted

PVQMLE and the WLSE, i.e. I−1
ψ − ΣR is positive semi-definite.

The conditions stated in Assumption M can be somewhat restrictive, however, we note that

they are only sufficient conditions. In general, it is not straightforward to derive sharper theoretical

conditions under which the restricted PVQMLE is more efficient than the unrestricted PVQMLE.

However, for specific models, we can appeal to numerical methods to obtain the asymptotic covari-

ance matrix of the two estimators and evaluate their relative efficiency.
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We consider the INAR(1) model in (7) with binomial thinning and Poisson error distribution

as an example. The unrestricted PVQMLE ψ̂ is based on the following conditional mean and

pseudo-variance equations

λt(ψ) = aYt−1 + ω1 , ν∗t (γ) = bYt−1 + ω2 , (21)

where ψ′ = (a, ω1) and γ′ = (b, ω2). Instead, the restricted PVQMLE ψ̂R imposes the restrictions

b = a(1− a) and ω2 = ω1 = ω.

We focus on the analysis of the asymptotic variances of these estimators. To this aim, we simulate

a long time series (T = 10, 000) from the INAR(1) process (binomial thinning and Poisson errors)

for different values of the parameters a and ω1 over a grid. The asymptotic covariance matrices

of the two estimators are computed by approximating their expectations with the corresponding

sample means. Figure 1 reports an heatmap plot of the ratio (in log10 scale) between the asymptotic

variance of the unrestricted and the restricted PVQMLEs for the parameter estimates of a and ω1.

The regions of the parameter set where the log10-variance ratio is greater than zero, i.e. variance

ratio is greater than one, indicate the parameter values for which the restricted estimator is more

efficient of the unrestricted one, and vice versa. The pictures suggest that the restricted estimator

ψ̂R is more efficient than the unrestricted estimator ψ̂ in most cases, except when a and ω1 are close

to zero. Furthermore, the lack of efficiency of the restricted PVQMLE in the green areas is showed

to be minimal. For example, a log10-variance ratio around −0.05 indicates a variance ratio around

0.9. Therefore, for small values of a and ω1 the two estimators are essentially equivalent. Instead,

for larger values of a and ω1, the variance ratio gets substantially larger with the unrestricted

PVQMLE estimator having up to 30 times larger variance of the restricted one. This is further

illustrated in Figure 2, which displays a graph of cross-section of the log10-variance ratio for some

fixed values of a and ω1.

Another way to grasp the intuition behind the improved efficiency of the restricted PVQMLE

comes from the literature on saddlepoint approximations (Daniels, 1954). Saddlepoint approxima-

tions are used to approximate a density function with a function that is based on the cumulant gen-

erating function of the data, which is typically called saddlepoint density. Pedeli et al. (2015) show

that the conditional saddlepoint density can approximate the conditional density of the INAR(p)

model in (7) to a certain degree of accuracy. It is not hard to see that the conditional saddlepoint

density is approximately equal to the pseudo-variance quasi-likelihood in (4) with correctly speci-

fied variance (Pedeli et al., 2015, Sec. 3.4). Therefore, when the variance is correctly specified, the

restricted PVQMLE of the INAR(p) model is close to the maximizer of the log-likelihood obtained

by the saddlepoint density, which in turn is expected to get closer to the MLE as λt →∞. This is

confirmed empirically from the results in figures 1 and 2, where the efficiency of restricted PVQMLE
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Figure 1: Contour plots of log10-variance ratios for the INAR coefficients. Left: ratio

log10[V ar(â)/V ar(âR)] plotted for several values of a and ω. Right: ratio log10[V ar(ω̂)/V ar(ω̂R)]

plotted for several values of a and ω. The green area indicates a variance ratio smaller than one.
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Figure 2: Log10-variance ratios plots for the INAR coefficients. Dashed red line: y-axis=0.

Left: ratio log10[V ar(â)/V ar(âR)] plotted for several values of a and ω = 3. Right: ratio

log10[V ar(ω̂)/V ar(ω̂R)] plotted for several values of ω and a = 0.85.

over the unrestricted PVQMLE grows as a, w → ∞ i.e. where restricted PVQMLE approximates

more accurately the MLE. We conjecture that similar results may apply also to other models. For

case of independent observations, Goodman (2022) has recently shown that the approximation error

in using saddlepoint approximation is negligible compared to the inferential uncertainty inherent in

the MLE. Although the literature is still under development, these arguments provide reliable evi-

dence on the higher asymptotic performance of restricted PVQMLEs compared to the unrestricted

one and other quasi-likelihood methods presented in Section 3.1.
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Finally, we consider a simulation study to assess the small sample properties of PVQMLEs in

comparison with several other alternative estimators. The study consists of 1,000 Monte Carlo

replications where we generate data from the Poisson INAR(1) process and estimate the mean

parameter vector ψ. We consider several PVQMLEs based on different restrictions of the variance

parameter vector γ. The unrestricted PVQMLE ψ̂ is based on the mean and pseudo-variance

equations in (21). The first restricted PVQMLE ψ̂R1 imposes the restriction R1 : b = a(1 − a),

the second restricted PVQMLE ψ̂R2 imposes the restriction R2 : ω2 = ω1, and the third restricted

PVQMLE ψ̂R3 imposes the restriction R3 : b = a(1 − a), ω2 = ω1. Furthermore, we consider the

QMLE based on the Poisson quasi-likelihood ψ̂Q, the conditional least squares estimator (CLSE)

ψ̂LS, the WLSE in (19) with weights ŵt = âLS(1 − âLS)Yt−1 + ω̂LS where (ω̂LS, âLS)′ = ψ̂LS are

first-step estimates obtained from the CLSE, and the unfeasible WLSE ψ̂WUN with weights given

by the true conditional variance. The results of the simulation study are reported in Table 1.

Table 1: Bias and RMSE of estimators of the mean parameters when the data generating process

is an INAR(1) with a = 0.85 and ω = 3, and sample sizes T = 500 and T = 2000.

T = 500 T = 2000

ω1 a ω1 a

Est. Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ψ̂Q 0.1190 0.5080 -0.0063 0.0255 0.0323 0.2425 -0.0016 0.0121

ψ̂LS 0.1206 0.5003 -0.0064 0.0251 0.0290 0.2401 -0.0014 0.0119

ψ̂W 0.1175 0.5001 -0.0062 0.0251 0.0301 0.2392 -0.0015 0.0119

ψ̂WUN 0.1174 0.5001 -0.0062 0.0251 0.0300 0.2393 -0.0015 0.0119

ψ̂ 0.1159 0.5021 -0.0061 0.0252 0.0295 0.2388 -0.0015 0.0119

ψ̂R1 0.1103 0.4819 -0.0058 0.0241 0.0305 0.2314 -0.0015 0.0115

ψ̂R2 0.1109 0.4911 -0.0059 0.0246 0.0246 0.2332 -0.0012 0.0115

ψ̂R3 0.0052 0.2028 -0.0006 0.0098 0.0027 0.1011 -0.0001 0.0049

Since the PVQMLE without constraints on the first two moments is asymptotically equivalent to

the WLSE, it can be expected that the restricted PVQMLE where suitable constraints corresponding

to the true model are imposed should show improved performances over the other estimators.

Indeed, from Table 1 it can be seen that QMLE, CLSE, WLSE and unrestricted PVQMLE of model

(21) share similar performances both in terms of bias and RMSE. Instead, a partial specification

of the true constraints underlying the model in ψ̂R1 and ψ̂R2 already leads to an improvement with

respect to the other estimation techniques; such improvement becomes substantial in ψ̂R3 where all

the correct constraints are considered.
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4 Testing restrictions

In the previous section, we have seen that correctly identified constraints on mean and pseudo-

variance equations can deliver a restricted PVQMLE with improved efficiency. In this section, we

develop a test based on the unrestricted estimator in (5) which allows us to test the validity of the re-

striction Sγ = g(ψ). We define r(θ) = Sγ−g(ψ) and we denote with Σ(θ0) = H−1(θ0)I(θ0)H−1(θ0)

the asymptotic covariance matrix of the entire unrestricted estimator vector θ̂. Moreover, consider

the following plug-in estimators of H(θ0) and I(θ0) given by H̃T (θ̂) = T−1
∑T

t=1−∂2l̃t(θ̂)/∂θ∂θ
′ and

ĨT (θ̂) = T−1
∑T

t=1 s̃t(θ̂)s̃
′
t(θ̂), respectively. The following result holds.

Proposition 2. Assume that the assumptions of Theorem 1 hold. Consider the test H0 : r(θ0) = 0

versus H1 : r(θ0) 6= 0 where the function r(·) is continuously differentiable. Let R(θ) = ∂r(θ)/∂θ′.

Then, under H0, as T →∞

WT = Tr′(θ̂)
[
R(θ̂)Σ̃T (θ̂)R′(θ̂)

]−1
r(θ̂)

d−→ χ2
r,

where Σ̃T (θ̂) = H̃−1
T (θ̂)ĨT (θ̂)H̃−1

T (θ̂).

The result follows immediately by the multivariate delta method, the continuous mapping theo-

rem and standard asymptotic convergence arguments. Proposition 2 provides us a testing procedure

for H0 : θ0 ∈ ΘR versus H1 : θ0 /∈ ΘR. It is worth nothing that the hypothesis test depicted in

Proposition 2 does not require the variance of the model to be correctly specified. In the special

case in which the pseudo-variance is correctly specified, then the test can be interpreted as a test

of correct specification.

For example, consider the INAR(1) model in (7) with conditional mean and pseudo-variance

equations as defined in equation (21). We may consider the following test

H0 : b = a(1− a) vs H1 : b 6= a(1− a) , (22)

which is a test for the assumption of a binomial thinning operator ‘◦’. This follows from the

definition of the INAR model in (7) as the autoregressive coefficient of the variance takes the form

b = a(1 − a) under the assumption of binomial thinning. Alternative thinning specifications can

be tested leading to a different form of the autoregressive variance parameter b, see Latour (1998)

for the properties of INAR models with a general thinning specification. For instance, if we have

a Poisson distribution for the thinning operator we have the restriction b = a. The corresponding

test is

H0 : b = a vs H1 : b 6= a, (23)
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Table 2: Empirical size for test in (23). The model considered under H0 is an INAR(1) model with

Poisson thinning as well as Poisson error with parameter values a = 0.5 and ω = 2.

T

Nominal size 250 500 1000 2000

0.1000 0.1224 0.1170 0.1058 0.1094

0.0500 0.0690 0.0662 0.0542 0.0582

0.0100 0.0218 0.0182 0.0110 0.0138
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Figure 3: Empirical power for test in (23). The true parameter values of the INAR(1) model

with negative binomial thinning and Poisson error are a = 0.5 and ω = 2. The value of the

dispersion parameter v changes as indicated in the horizontal axis through the % of overdispersion:

1− a/(a+ a2/v).

which assesses the validity of the assumption of equidispersion in the thinning operator versus either

overdispersion or underdispersion.

We carry out a simulation study with 5000 Monte Carlo replications to assess the empirical

size and power of the test of the parameter restrictions for the INAR(1) model. We consider the

hypothesis in (23). To assess the size of the test we simulate under H0 from a model with Poisson

thinning operator and a Poisson distribution of the error term. Table 2 reports the results on the

empirical size of the test. We can see that the test is slightly oversized for the smallest sample size,

though still close to the nominal level, and it quickly becomes correctly sized as the sample size

increases. Next, we evaluate the power of the test by simulating under the alternative. We consider

a negative binomial thinning specification such that a ◦ X has a negative binomial distribution

with mean aX and variance bX, b = a+ a2/v, where v is the dispersion parameter of the negative

binomial. We note that this generates overdipersion in the thinning as b = a + a2/v > a and
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the smaller the parameter v the more the overdispersion. Figure 3 shows the power of the test

in (23) to reject the null hypothesis. As expected, we see that the power increases as the relative

overdispersion 1− a/b increases (v decreases) and as the sample size increases. Overall, the results

show how the test has appropriate size and it has power against alternative hypotheses.

5 Real data applications

In this section, we present two empirical applications where we employ PVQMLEs. We consider

the test described in Section 4 to select appropriate parameter restrictions and compare different

PVQMLEs. The first application concerns a dataset of crime counts, where the INAR model

is considered for the specification of the conditional mean and the pseudo-variance. The second

application concerns the realized correlation between two financial assets that forms a double-

bounded time series, where we consider a beta autoregression for the specification of the conditional

mean and the pseudo-variance.

5.1 INAR model for crime counts

We consider an empirical application to the monthly number of offensive conduct reports in the city

of Blacktown, Australia, from January 1995 to December 2014. This dataset has been employed

in several articles featuring the INAR(1) model (Gorgi, 2018; Leisen et al., 2019). The time series

is displayed in Figure 4. In the literature, the distributional structure of the INAR innovation

term εt is typically allowed to be flexible or left unspecified but the thinning operator is typically

considered to be binomial. We consider the test proposed in the previous section to formally test

the validity of binomial thinning assumption as well as the dispersion of the error term. We obtain

the unrestricted PVQMLE for the INAR conditional mean and pseudo-variance equations in (21)

and test several restrictions based on the test in Proposition 2. We test for equidispersion in the

error H0 : ω1 = ω2, binomial thinning H0 : b = a(1− a), Poisson thinning H0 : a = b and geometric

thinning H0 : b = a+ a2.

Table 3: p-values of the restriction tests for the INAR(1) model.

ω1 = ω2 Thinning

binomial Poisson geometric

0.372 0.005 0.043 0.229
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Figure 4: Monthly number of offensive conduct reports in Blacktown, Australia, from January 1995

to December 2014.

Table 4: PVQMLEs of the INAR(1) model for the crime time series dataset. Standard errors in

brackets.

ω̂1 ω̂2 â b̂

Unrestricted 4.559 6.644 0.509 1.170

(0.520) (2.374) (0.058) (0.330)

binomial thinning 6.280 - 0.371 -

(0.434) (0.040)

Poisson thinning 4.820 - 0.524 -

(0.523) - (0.058) -

geometric thinning 4.129 - 0.592 -

(0.500) - (0.059) -

The results of the tests are summarized in Table 3. We can see that the test does not reject

the hypothesis of equidispersion in the error ω1 = ω2. As it concerns the tests on the thinning, the

binomial and Poisson thinning are rejected at 5% significance level, instead, the geometric thinning

is not rejected. This indicates that there is overdispersion in the thinning and the geometric one

may be appropriate to describe the degree of overdispersion. Table 4 reports the estimation results

for several PVQMLEs that are based on the different restrictions on the thinning operator. We can

see that restricting to a binomial thinning leads to substantially biased estimates with respect to

the unrestricted PVQMLE. Instead, from the geometric thinning we do not have such bias and the

estimator can be expected to have an higher efficiency.
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5.2 Double-bounded autoregression for realized correlation

The second application we present concerns the modelling of daily realized correlations between

Boeing and Honeywell stocks as considered in Gorgi and Koopman (2021). Figure 5 reports the

plot of the time series. The sample size is T = 2515. Realized correlation measures take values in

the interval [−1, 1] and the transformation Yt/2 + 1/2 is applied to rescale the realized correlation

in the unit interval [0, 1]. We refer to Gorgi and Koopman (2021) for a discussion on how models

on the unit interval can be extended to a general interval with known bounds.
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Figure 5: Daily time series of realized correlations between Boeing (BA) and Honeywell (HON)

asset returns, from January 2001 to December 2010.

We consider the following specification for the conditional mean and pseudo-variance

λt = δ1 + α1Yt−1 + β1λt−1,

ν∗t =
µt(1− µt)

1 + φ
, µt = δ2 + α2Yt−1 + β2µt−1,

where the double-bounded nature of the data requires δi + αi + βi < 1 for i = 1, 2 and φ > 0.

Besides the unrestricted PVQMLE, we consider a restricted PVQMLE with δ2 = δ1, α2 = α1,

β1 = β2, which implies µt = λt. These restrictions impose that the pseudo-variance is equal

to the conditional variance implied by a beta distribution with mean parameter λt and precision

parameter φ (see Example 4). In this way, we can also test the adequacy of the beta autoregression

for modelling the analyzed data through the specification test on the restriction. Table 5 reports

the estimation results together with the restriction tests. We can see that the specification test

rejects the null hypothesis of equality for the estimated α coefficients. For the same reason also the

null assumption of the combined joint test is rejected. However, the null hypothesis is instead not
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rejected for δ and β coefficients at 1% level. This leans in favour of the restricted PVQMLE. We

also notice that the estimated coefficients and the corresponding standard errors of the restricted

PVQMLE are fairly close to the ones obtained from the beta autoregression reported in Table 1 of

Gorgi and Koopman (2021).

Table 5: Estimation results for the realized correlation series. Standard errors in brackets. The

bottom of the table reports the p-values of the tests on the restrictions.

δ̂1 α̂1 β̂1 φ̂ δ̂2 α̂2 β̂2

Unrestricted 0.01 0.163 0.822 22.226 0.055 0.045 0.898

(0.003) (0.013) (0.015) (2.745) (0.019) (0.007) (0.022)

Restricted 0.01 0.161 0.826 36.963 - - -

(0.003) (0.013) (0.015) (1.073)

H0 δ1 = δ2 α1 = α2 β1 = β2 joint test

p-value 0.02 <0.001 0.01 <0.001

Appendix A: Proofs of Results

A.1 Proofs

Proof of Theorem 1: Let L(θ) = E[lt(θ)] be the limit log-quasi-likelihood. In what follows we

show the following intermediate results.

(i) Uniform convergence: supθ∈Θ |L̃T (θ)− L(θ)| → 0 almost surely, as T →∞.

(ii) Identifiability: the true parameter value θ0 is the unique maximizer of L(θ), i.e. E [lt(θ)] <

E [lt(θ0)] for all θ ∈ Θ, θ 6= θ0.

In order to prove (i) the uniform convergence of the two summands of (A.1) should be shown.

|L̃T (θ)− L(θ)| ≤ |L̃T (θ)− LT (θ)|+ |LT (θ)− L(θ)| . (A.1)

The first term converges uniformly by Lemma 1, under A4-A5, implying that the starting value

of the process is asymptotically unimportant for the quasi-likelihood contribution. By assumption

A1 the log-quasi-likelihood contribution lt(θ) is stationary and ergodic. Moreover, it is uniformly

bounded

E sup
θ∈Θ
|lt(θ)| ≤

1

2
E sup

γ∈Γ
|log ν∗t (γ)|+ 1

2
E sup

θ∈Θ

(
[Yt − λt(ψ)]2

ν∗t (γ)

)
<∞
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by assumption A2. For the continuity of the quasi-likelihood and the compactness of Θ, Straumann

and Mikosch (2006, Thm. 2.7) applies providing the uniform convergence of the second term in (A.1);

in symbols supθ∈Θ |LT (θ)− L(θ)| → 0 almost surely, as T →∞. This concludes the proof of (i).

We now prove (ii). First note that by the uniform limit theorem L(θ) = E[lt(θ)] is a continuous

function and it attains at least a maximum in Θ since Θ is compact. We now prove that such

maximum is unique so that it can be univocally identified. Recall that θ = (ψ′, γ′)′, assumption

A2 provides E supψ∈Ψ |lt(ψ, γ)| <∞ and E supγ∈Γ |lt(ψ0, γ)| <∞ so also the function lt(ψ, γ) has

at least a maximum for ψ ∈ Ψ, and lt(ψ0, γ) has at least a maximum for γ ∈ Γ. Consider now

E {lt(θ)− lt(θ0)} = E {lt(θ)− lt(ψ0, γ)}+ E {lt(ψ0, γ)− lt(θ0)}.

E {lt(θ)− lt(ψ0, γ)} = E

{
−E[(Yt − λt(ψ))2 |Ft−1]

2ν∗t (γ)
+

νt
2ν∗t (γ)

}

≤ E

{
− νt

2ν∗t (γ)
+

νt
2ν∗t (γ)

}
= 0

with equality if and only if ψ = ψ0 by assumption A3. Moreover, E {lt(ψ0, γ)− lt(θ0)} = E [lt(ψ0, γ)]−
E [lt(ψ0, γ

∗)] ≤ 0 by assumption A6. This concludes the proof of (ii). The consistency of the

whole estimator θ̂ follows from (i), (ii) and the compactness of Θ by Pötscher and Prucha (1997,

Lemma 3.1). This implies (11).

To prove the asymptotic normality of the estimator we establish additional intermediate results.

(a)
√
T supθ∈Θ ‖ST (θ)− S̃T (θ)‖ → 0 almost surely, as T →∞.

(b) Define VT (θ) = T−1
∑T

t=1−∂2lt(θ)/∂θ∂θ
′. VT (θ)→ H(θ0) almost surely uniformly over θ ∈ Θ,

as T →∞.

(c) E[st(θ0)] = 0.

The condition (a) is satisfied by Lemma 2, under A4-A5 and A7 implying that initial values of

the process do not affect the asymptotic distribution of the PVQMLE.

Consider the second derivative of the log-quasi-likelihood contribution.

∂2lt(θ)

∂θ∂θ′
=

(
1

2ν∗2t (γ)
− [Yt − λt(ψ)]2

ν∗3t (γ)

)
∂ν∗t (γ)

∂θ

∂ν∗t (γ)

∂θ′

− Yt − λt(ψ)

ν∗2t (γ)

(
∂λt(ψ)

∂θ

∂ν∗t (γ)

∂θ′
− ∂ν∗t (γ)

∂θ

∂λt(ψ)

∂θ′

)
− 1

ν∗t (γ)

∂λt(ψ)

∂θ

∂λt(ψ)

∂θ′
+
Yt − λt(ψ)

ν∗t (γ)

∂2λt(ψ)

∂θ∂θ′

+

(
[Yt − λt(ψ)]2

2ν∗2t (γ)
− 1

2ν∗t (γ)

)
∂2ν∗t (γ)

∂θ∂θ′
.
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Assumption A8 and the Cauchy-Schwarz inequality yield E supθ∈Θ |∂2lt(θ)/∂θi∂θj| < ∞ for all

i, j = 1, . . . ,m. Furthermore, the second derivative is a continuous, stationary and ergodic sequence.

Then, an application of Straumann and Mikosch (2006, Thm. 2.7) provides the condition (b). Note

that since in this case ∂λt(ψ)/∂γ = ∂ν∗t (γ)/∂ψ = 0 the matrix H(θ0) is block diagonal with

diagonal block matrices Hψ(θ0) = E [−∂2lt(θ0)/∂ψ∂ψ′] and Hγ(θ0) = E [−∂2lt(θ0)/∂γ∂γ′]. The

former is defined in (13).

For establishing the asymptotic normality of the estimator θ̂ the proof of (c) is needed. Let

st(θ0) = [s
(ψ)
t (θ0)′, s

(γ)
t (θ0)′]′ be the partition of the score between mean and pseudo-variance param-

eters. Observe that E(s
(ψ)
t (θ0)|Ft−1) = 0 but E (st(θ0)|Ft−1) 6= 0. Note that supθ∈Θ |∂lt(θ)/∂θi| ≤

2 [supθ∈Θ |lt(θ)|]
1/2 [supθ∈Θ |∂2lt(θ)/∂θi∂θi|]1/2, by Rudin (1976, p. 115). Moreover, E supθ∈Θ |lt(θ)| <

∞, and E supθ∈Θ |∂2lt(θ)/∂θi∂θj| < ∞. Then an application of Cauchy-Schwarz inequality entails

E supθ∈Θ |∂lt(θ)/∂θi| < ∞. Finally, ‖∂lt(θ)/∂θ‖ ≤ supθ∈Θ ‖∂lt(θ)/∂θ‖ and an application of the

dominated convergence theorem leads to E [∂lt(θ)/∂θ] = ∂E [lt(θ)] /∂θ. By noting that θ0 is the

unique maximizer of E [lt(θ)] the result (c) follows.

For T large enough θ̂ ∈ Θ̇ by A10, so the following derivatives exist almost surely

0 =
√
T S̃T (θ̂) =

√
TST (θ̂) + o(1) =

√
TST (θ0)− VT (θ̄)

√
T (θ̂ − θ0) + o(1),

where the first equality comes from the definition (4), the second equality holds by (a), and the third

equality is obtained by Taylor expansion at θ0 with θ̄ lying between θ̂ and θ0. By assumption A11

and (c) we have
√
TST (θ0)

d−→ N(0, I(θ0)) with I(θ0) = E [st(θ0)st(θ0)′]. This fact and (b) establish

the asymptotic normality of the estimator θ̂ with covariance matrix Σ(θ0) = H−1(θ0)I(θ0)H−1(θ0)

by assumption A9, where

H(θ0) =

(
Hψ(θ0) 0

0 Hγ(θ0)

)
, I(θ0) =

(
Iψ(θ0) Iψ,γ(θ0)

Iψ,γ(θ0)′ Iγ(θ0)

)
, (A.2)

with Hx(θ0) = E [−∂2lt(θ0)/∂x∂x′], Ix(θ0) = E[s
(x)
t (θ0)s

(x)
t (θ0)′] and Ix,z(θ0) =

E[s
(x)
t (θ0)s

(z)
t (θ0)′]. In particular, standard algebra shows that Iψ(θ0) equals (13). See also equation

(18). A suitable block matrix multiplication of (A.2) provides

Σ(θ0) =

(
Σψ(θ0) Σψ,γ(θ0)

Σψ,γ(θ0)′ Σγ(θ0)

)
,

where Σψ(θ0) takes the form defined in (12). Finally, note that for the marginal property of the

multivariate Gaussian distribution result (12) holds with covariance matrix Σψ being the partition

of Σ(θ0) for the mean parameters ψ . �
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Proof of Corollary 2: Condition A11 is not required since in this case is easily showed by (10)

that E (st(θ0)|Ft−1) = 0. Recall that
√
TsT (θ0) = T−1/2

∑T
t=1 Ut where Ut = st(θ0). Note that

{Ut,Ft} is a stationary martingale difference, and due to A9 it has finite second moments. Then

A11 follows by the central limit theorem for martingales (Billingsley, 1961) and the Cramér-Wold

device. The consistency and asymptotic normality of θ̂ follow as above. Finally, in view of (18) and

E(s
(ψ)
t (θ0)|Ft−1) = 0

Var
[
H−1
ψ (θ0)s

(ψ)
t (θ0)− I−1

ψ (θ0)s
(ψ)
t (θ0)

]
= Σψ − Iψ

being necessarily positive semi-definite. �

Proof of Corollary 3: Analogously to the proof of Theorem 1, A1-A5 guarantee that Lt(θ) is

continuous and a.s. uniformly convergent to E[lt(θ)]. By recalling that Θ is compact the result

follows by Pötscher and Prucha (1997, Lemma 4.2). �

Proof of Theorem 2: The consistency of θ̂R follows from the fact that by the proof of Theorem 1

we have that E[lt(ψ, γ)] ≤ E[lt(ψ0, γ
∗)] for any θ ∈ Θ with equality holding only if θ = (ψ0

′, γ∗′)′,

and assumption L ensures that (ψ0
′, γ∗′)′ ∈ ΘR with ΘR ⊆ Θ. The consistency in (15) follows.

The asymptotic normality of the estimator θ̂R follows as in the proof of Theorem 1 with covariance

matrix Σ(θ0) = H−1(θ0)I(θ0)H−1(θ0). In this case Hessian and Fisher information matrices can be

written in the following block matrix form

H(θ0) =

(
Hψ(θ0) Hψ,γ2(θ0)

Hψ,γ2(θ0)′ Hγ2(θ0)

)
, I(θ0) =

(
Iψ(θ0) Iψ,γ2(θ0)

Iψ,γ2(θ0)′ Iγ2(θ0)

)
. (A.3)

Moreover, recall that

H−1(θ0) = D(θ0) =

(
Dψ(θ0) Dψ,γ2(θ0)

Dψ,γ2(θ0)′ Dγ2(θ0)

)
. (A.4)

By computing Σ(θ0) using the block matrix multiplication as defined in (A.3) and (A.4) the parti-

tion of Σ(θ0) for the mean parameters ψ equals ΣR. This entails (16). �

Proof of Proposition 1: It is not hard to show that under the conditions of Proposition 1 the

Hessian and information matrices of (4) take the form defined in (A.5) and (A.6), respectively.

H(θ0) = E

[
1

νt(γ0)

∂λt(ψ0)

∂θ

∂λt(ψ0)

∂θ′
+

1

2ν2
t (γ0)

∂νt(γ0)

∂θ

∂νt(γ0)

∂θ′

]
, (A.5)
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I(θ0) =E

[
1

νt(γ0)

∂λt(ψ0)

∂θ

∂λt(ψ0)

∂θ′
+

ht
2ν3

t (γ0)

(
∂λt(ψ0)

∂θ

∂νt(γ0)

∂θ′
+
∂νt(γ0)

∂θ

∂λt(ψ0)

∂θ′

)]
+ E

[(
kt

ν2
t (γ0)

− 1

)
1

4ν2
t (γ0)

∂νt(γ0)

∂θ

∂νt(γ0)

∂θ′

]
, (A.6)

where ht = E[(Yt − λt(ψ0))3 |Ft−1] and kt = E[(Yt − λt(ψ0))4 |Ft−1]. From (A.5) and (A.6), we can

see that when the variance is correctly specified the PVQMLE can be considered as a Gaussian

QMLE. In case the data are normally distributed the PVQMLE eventually becomes MLE since

ht = 0 and kt = 3ν2
t implying I(θ0) = H(θ0). So the Gaussian case in assumption A13 is trivial.

For the other cases we have m = 1, so ψ = θ and I(θ0) ≤ H(θ0), then ΣR = I(θ0)/H(θ0)2 ≤ 1/I(θ0).

�

A.2 Technical lemmas

Lemma 1. Consider the PVQMLE in (5) with log-quasi-likelihood (4). Under conditions A4-A5,

almost surely as T →∞, supθ∈Θ |L̃T (θ)− LT (θ)| → 0.

Proof of Lemma 1: From assumption A4, we have that

sup
θ∈Θ
|lt(θ)− l̃t(θ)|

≤ sup
θ∈Θ

∣∣∣∣∣ [λ̃t(ψ)− λt(ψ)][λ̃t(ψ) + λt(ψ)− 2Yt]

2ν̃∗t (γ)
+

[ν∗t (γ)− ν̃∗t (γ)][Yt − λt(ψ)]2

2ν∗t (γ)ν̃∗t (γ)

∣∣∣∣∣
+

1

2
sup
γ∈Γ

∣∣∣∣log
ν̃∗t (γ)

ν∗t (γ)

∣∣∣∣
≤ 1

ν∗
at

(
at + |Yt|+ sup

ψ∈Ψ
|λt(ψ)|

)
+

1

ν∗2
bt

(
Y 2
t + sup

ψ∈Ψ
λ2
t (ψ)

)
+

1

2
sup
γ∈Γ

∣∣∣∣log

(
1 +

ν̃∗t (γ)− ν∗t (γ)

ν∗t (γ)

)∣∣∣∣
≤ 1

ν∗
at

(
1 + |Yt|+ sup

ψ∈Ψ
|λt(ψ)|

)
+

1

ν∗2
bt

(
Y 2
t + sup

ψ∈Ψ
λ2
t (ψ)

)
+

1

2ν∗
bt,

for t large enough since, by assumption A5, a.s. at → 0 as t→∞ and by noticing that log(1+x) ≤ x

for x > −1. Assumption A5 and an application of Cesaro’s lemma lead to

sup
θ∈Θ
|L̃T (θ)− LT (θ)| ≤ T−1

T∑
t=1

sup
θ∈Θ
|l̃t(θ)− lt(θ)| → 0 , a.s.

as T →∞. �
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Lemma 2. Consider the PVQMLE in (5) with score (10). Under conditions A4-A5 and A7,

almost surely as T →∞,
√
T supθ∈Θ ‖S̃T (θ)− ST (θ)‖ → 0.

Proof of Lemma 2: We obtain that

sup
θ∈Θ
‖st(θ)− s̃t(θ)‖ ≤ sup

θ∈Θ

∥∥∥∥ 1

2ν̃∗t (γ)

∂ν̃∗t (γ)

∂θ
− 1

2ν∗t (γ)

∂ν∗t (γ)

∂θ

∥∥∥∥
+ sup

θ∈Θ

∥∥∥∥∥Yt − λ̃t(ψ)

ν̃∗t (γ)

∂λ̃t(ψ)

∂θ
− Yt − λt(ψ)

ν∗t (γ)

∂λt(ψ)

∂θ

∥∥∥∥∥
+ sup

θ∈Θ

∥∥∥∥∥ [Yt − λ̃t(ψ)]2

2ν̃∗2t (γ)

∂ν̃∗t (γ)

∂θ
− [Yt − λt(ψ)]2

2ν∗2t (γ)

∂ν∗t (γ)

∂θ

∥∥∥∥∥ = δ1
t + δ2

t + δ3
t ,

with obvious notation. We now bound the single terms individually. In what follows the notation

o(1) almost surely, as t→∞, will be abbreviated to o(1).

δ1
t ≤ sup

θ∈Θ

∥∥∥∥ 1

2ν̃∗t (γ)

(
∂ν̃∗t (γ)

∂θ
− ∂ν∗t (γ)

∂θ

)
+

[ν∗t (γ)− ν̃∗t (γ)]

2ν̃∗t (γ)ν∗t (γ)

∂ν∗t (γ)

∂θ

∥∥∥∥
≤ dt

2ν∗
+

bt
2ν∗2

sup
θ∈Θ

∥∥∥∥∂ν∗t (γ)

∂θ

∥∥∥∥ .
Similarly,

δ2
t ≤ sup

θ∈Θ

∥∥∥∥∥Yt − λ̃t(ψ)

ν̃∗t (γ)

(
∂λ̃t(ψ)

∂θ
− ∂λt(ψ)

∂θ

)∥∥∥∥∥
+ sup

θ∈Θ

∥∥∥∥∥∂λt(ψ)

∂θ

(
λt(ψ)− λ̃t(ψ)

ν̃∗t (γ)
+
Yt − λt(ψ)

ν̃∗t (γ)
− Yt − λt(ψ)

ν∗t (γ)

)∥∥∥∥∥
≤ ct
ν∗

(
|Yt|+ sup

ψ∈Ψ
|λt(ψ)|+ at

)
+ sup

θ∈Θ

∥∥∥∥∂λt(ψ)

∂θ

∥∥∥∥( atν∗ + sup
θ∈Θ

∣∣∣∣ [ν∗t (γ)− ν̃∗t (γ)] [Yt − λt(ψ)]

ν̃∗t (γ)ν∗t (γ)

∣∣∣∣)
≤ ct
ν∗

(
|Yt|+ sup

ψ∈Ψ
|λt(ψ)|+ o(1)

)
+ sup

θ∈Θ

∥∥∥∥∂λt(ψ)

∂θ

∥∥∥∥( atν∗ +
bt
ν∗2

(
|Yt|+ sup

ψ∈Ψ
|λt(ψ)|

))
.
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Using similar arguments for δ3
t and assumption A5 leads to

δ3
t ≤

dt
ν∗2

sup
θ∈Θ

(
Y 2
t + λ2

t (ψ) + a2
t + 2atλt(ψ)

)
+ sup

θ∈Θ

∥∥∥∥∂ν∗t (γ)

∂θ

∥∥∥∥ sup
θ∈Θ

∣∣∣∣∣ [λ̃t(ψ)− λt(ψ)][λ̃t(ψ) + λt(ψ)− 2Yt]

2ν̃∗2t (γ)

∣∣∣∣∣
+ sup

θ∈Θ

∥∥∥∥∂ν∗t (γ)

∂θ

∥∥∥∥ sup
θ∈Θ

∣∣∣∣∣ [ν∗t (γ)− ν̃∗t (γ)] [ν∗t (γ) + ν̃∗t (γ)] [Yt − λt(ψ)]2

2ν∗2t (γ)ν̃∗2t (γ)

∣∣∣∣∣
≤ dt
ν∗2

(
Y 2
t + sup

ψ∈Ψ
λ2
t (ψ) + o(1)

)
+ sup

θ∈Θ

∥∥∥∥∂ν∗t (γ)

∂θ

∥∥∥∥ at
ν∗2

(
|Yt|+ sup

ψ∈Ψ
|λt(ψ)|+ o(1)

)
+ sup

θ∈Θ

∥∥∥∥∂ν∗t (γ)

∂θ

∥∥∥∥ 2bt
ν∗3

(
Y 2
t + sup

ψ∈Ψ
λ2
t (ψ)

)
.

By assumption A7, δjt = O(t−δ), for δ > 1/2 and j = 1, 2, 3. Therefore
√
T supθ∈Θ ‖ST (θ)−S̃T (θ)‖ ≤

T−1/2
∑T

t=1O(t−δ) converges to 0 almost surely as T →∞. �
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