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Abstract

We propose two robust bootstrap-based simultaneous inference methods for time series models

featuring time-varying coefficients and conduct an extensive simulation study to assess their

performance. Our exploration covers a wide range of scenarios, encompassing serially correlated,

heteroscedastic, endogenous, nonlinear, and nonstationary error processes. Additionally, we

consider situations where the regressors exhibit unit roots, thus delving into a nonlinear cointe-

gration framework. We find that the proposed moving block bootstrap and sieve wild bootstrap

methods show superior, robust small sample performance, in terms of empirical coverage and

length, compared to the sieve bootstrap introduced by Friedrich and Lin (2022) for stationary

models. We then revisit two empirical studies: herding effects in the Chinese new energy market

and consumption behaviors in the U.S. Our findings strongly support the presence of herding

behaviors before 2016, aligning with earlier studies. However, we diverge from previous research

by finding no substantial herding evidence between around 2018 and 2021. In the second exam-

ple, we find a time-varying cointegrating relationship between consumption and income in the U.S.

Keywords: time-varying models, bootstrap inference, simultaneous confidence bands, energy

market, nonlinear cointegration.
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1 Introduction

A wide range of empirical studies in recent years have often revealed the presence of trending patterns

and time-varying relationships (see, for instance, Lee and Shaddick, 2007; Zanin and Marra, 2012;

Chang et al., 2016; Silvapulle et al., 2017; Hailemariam et al., 2019; Li et al., 2019; Friedrich et al.,

2020; Uddin et al., 2020; Wang et al., 2021; Gao et al., 2021; Awaworyi Churchill et al., 2021; Ren et al.,

2022; Anand et al., 2023; Friedrich et al., 2023; Sun et al., 2023). To capture evolving relationships

over time, it is common to enable coefficients in regression models to evolve deterministically and

smoothly across time. Subsequently, these coefficient curves are estimated nonparametrically (Cai,

2007). Both pointwise confidence intervals and simultaneous confidence bands have been established

to quantify the uncertainty of estimation in these models. Pointwise intervals, for example, help

determine whether a coefficient curve significantly deviates from zero at a specific time point. However,

it is also crucial in empirical studies, as mentioned above, to make assertions about the coefficient

curve being significantly different from zero over a particular period, in order to draw stronger

conclusions about the overall tendency. Friedrich and Lin (2022) propose a residual-based sieve

bootstrap (SB) framework specifically for these purposes. They find that when dealing with weakly

stationary regressors and errors, using the SB in small samples offers superior performance compared

to the asymptotic approach proposed by Zhou and Wu (2010).

Nevertheless, in scenarios involving more general dynamics, such as error processes with nonlinear

dependence structures or unit root regressors, the performance of bootstrap methods remains unknown

in the existing literature. This gap in understanding could limit the potential applications of bootstrap

methods. This paper aims to address this gap by providing the first set of finite sample evidence

that shows bootstrap methods can yield robust and accurate results in more complex contexts. More

specifically, based on the SB procedure by Friedrich and Lin (2022), we propose two additional

bootstrap schemes tailored for time-varying models. These schemes, moving block bootstrap (MBB)

initially proposed by Kunsch (1989), and sieve wild bootstrap (SWB) by Cavaliere and Taylor (2008,

2009) and Smeekes and Taylor (2012), have been previously explored for different purposes in time

series. Our findings suggest that the MBB and SWB outperform the SB method in terms of empirical

coverage and length of intervals/bands. This advantage is particularly noticeable when dealing with

nonstationary, nonlinear error processes, or nonlinear cointegration as considered in previous studies

such as Park and Hahn (1999), Phillips et al. (2017), and Li et al. (2020). Comparing the two proposed

methods, the MBB displays overall greater robustness than the SWB and could be considered a

preferred choice in practical applications.

We then revisit two empirical examples. First, we consider herding effects in the Chinese renewable

energy market. Previous research mostly relies on time-constant regressions (see Chang et al., 2000, for
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instance), or solely constructs pointwise intervals in time-varying models to detect herding behaviors

(see Ren and Lucey, 2023). Since simultaneous bands can be used to examine herding effects for any

sub-periods, we further construct simultaneous bands using the proposed bootstrap methods. We

find evidence of herding behaviors in one sub-period before 2016, supporting Ren and Lucey (2023).

However, our results also suggest that the time-varying herding effects may be insignificant in most

of the other sub-periods, thereby diverging from the conclusions drawn by Ren and Lucey (2023).

The primary reason for this difference lies in the occurrence of false discoveries when focusing solely

on pointwise intervals. This underscores the importance of conducting simultaneous inference in

practice. Second, we study the relationship between consumption and income in the U.S. using time-

varying cointegrating regression models. Our analysis suggests that these variables have nonlinear

cointegration without the presence of a drift component, instead of linear cointegration with a

time-varying drift, see the model employed in Kapetanios et al. (2020).

The remainder of this paper is structured as follows. Section 2 introduces the model and

nonparametric estimation. Section 3 describes the proposed residual-based bootstrap methods. We

also introduce the construction of confidence intervals/bands in this section. In Section 4, we conduct

an extensive Monte Carlo study. The empirical applications are provided in Section 5. Section 6

concludes. Additional simulation and empirical results are reported in the Online Appendix.

2 The set-up and nonparametric estimation

We consider the following regression models with time-varying coefficients:

yt = β0,t +
d∑

j=1

βj,txj,t + ut = β′
txt + ut, t = 1, . . . , n, (2.1)

where yt is a dependent variable, xt = (1, x1,t, . . . , xd,t)
′ stacks explanatory variables, and {ut}

is an error process that possibly has serial dependence and heteroscedasticity. Moreover, βt :=

(β0,t, β1,t, . . . , βd,t)
′ is a (d + 1)-dimensional vector of coefficients that varies over time, capturing

the time-varying relationships. Model (2.1) has been widely adopted in empirical studies (see, .e.g,

Park and Park, 2013; Mikayilov et al., 2018; Kapetanios et al., 2020) due to its interpretability and

robustness to model misspecification. In line with earlier studies, for instance, Cai (2007), we assume

βt = β(t/n), where β(·) = (β0(·), . . . , βd(·))′ : [0, 1] → Rd+1 is a vector of unknown smooth functions.

The focus of the current paper is to construct bootstrap-based simultaneous confidence bands and

pointwise confidence intervals for β(·). This focus is particularly on scenarios where errors exhibit

nonlinear temporal dependence, and/or the regressors contain unit roots.

There is an urgent need to gain a better understanding of the performance and implementation
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of bootstrap methods in the aforementioned scenarios. This understanding is crucial for ensuring

robust inference and catering to the prevalence in empirical studies. When the regressors are strictly

stationary, the benefits of employing bootstrap methods over the asymptotic approach (see Zhou

and Wu, 2010; Karmakar et al., 2022) have been demonstrated in Friedrich and Lin (2022), when

errors are linearly dependent. The performance of bootstrap methods for handling nonlinear, and

possibly nonstationary, errors is largely unexplored in the existing literature. Moreover, in cases

involving regressors with unit roots, leading to a nonlinear cointegrating framework, Li et al. (2020)

illustrate the occurrence of an asymptotic degeneracy problem, leading to a degenerate asymptotic

distribution. A remedy for this concern involves a nonstandard transformation that is path-dependent.

However, practically implementing such an approach requires addressing two key factors: (1) the

need for second-order bias correction in cases of endogeneity, and (2) the presence of prior knowledge

concerning the cointegration structure of nonstationary regressors. Moreover, simultaneous inference

based on large sample asymptotics has not yet been established in this setting. Bootstrap methods

offer a potential avenue to deal with these challenges. To the best of our knowledge, no bootstrap

method is currently available for this specific setting.

For inference, we shall first estimate the coefficient curves. We employ the local linear estimation,

proposed by Cai (2007), as described in the next section. Alternatively, one can formulate βt as a

latent process, written in a state-space representation. Subsequently, one can apply methods such as

the Kalman filter (Durbin and Koopman, 2012) or score-driven filters (Creal et al., 2013) to estimate

this process.

2.1 The local linear estimation

A brief overview of the estimation is provided here; we refer the interested reader to Cai (2007) for

more details. Let τt = t/n, then βj,t = βj(τt), for j = 0, . . . , d. By a first-order Taylor approximation,

for τ ∈ [0, 1], we have βt = β(τt) ≈ β(τ) + β(1)(τ)(τt − τ), where β(1)(·) =
(
β
(1)
0 (·), . . . , β(1)

d (·)
)′
, and

β
(1)
j (·), j = 0, . . . , d, is the first-order derivative of βj(·). Model (2.1) can then be approximated by:

yt = β′
txt + ut ≈ β(τ)′xt + β(1)(τ)′(τt − τ)xt + ut = zt(τ)

′θ(τ) + ut, (2.2)

where zt(τ) =
(
x′
t, (τt − τ)x′

t

)′
and θ(τ) =

(
β(τ)′,β(1)(τ)′

)′
. For each τ ∈ [0, 1], the local linear

estimator of θ(τ) can be obtained by solving the following minimization problem:

θ̂(τ) = argmin
θ(τ)

n∑
t=1

(
yt − zt(τ)

′θ(τ)
)2

K

(
τt − τ

h

)
, (2.3)
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where K(·) is a kernel function and h ↓ 0 is a bandwidth. A closed-form expression of θ̂(τ) exists,

given by

θ̂(τ) =

 β̂(τ)

β̂(1)(τ)

 =
(
Z(τ)′Kh(τ)Z(τ)

)−1

Z(τ)′Kh(τ)y, (2.4)

where Z(τ) =
(
z1(τ), . . . ,zn(τ)

)′
, y = (y1, . . . , yn)

′, and Kh(τ) = diag
[
K
(
τ1−τ
h

)
, . . . , K

(
τn−τ
h

)]
is a

diagonal matrix.

Indeed, the selections of the kernel function K(·) and bandwidth h need to be made prior to

estimation. In the nonparametric literature, it is widely recognized that the choice of the kernel

function generally has a minimal impact, unlike the bandwidth selection. For this reason, we employ

the common Epanechnikov kernel given byK(x) = 3/4(1−x2)1{|x|≤1} throughout the paper, where 1{·}

is an indicator function. The selection of the bandwidth involves a trade-off between bias and variance.

If the bandwidth is excessively large, it results in oversmoothed estimates and substantial bias.

Conversely, an overly small bandwidth leads to higher variance. Furthermore, given our emphasis

on inference, it is crucial to note that an “optimal” bandwidth for estimation does not always

coincide with the one “optimal” for constructing confidence intervals/bands. These intervals/bands

typically necessitate capturing local peaks and troughs. In the subsequent sections, we employ local

modified-cross-validation (LMCV) as introduced by Friedrich and Lin (2022), which combines local

cross-validation from Vieu (1991) and modified cross-validation from Chu and Marron (1991). It is

worth highlighting that a data-driven bandwidth offers practical guidance, but ensuring reasonable

outcomes requires visual assessment. If necessary, minor adjustments around the automatically

determined bandwidth may be applied in practice, see, for instance, Friedrich et al. (2020).

With the estimation method in place, it is time to discuss the bootstrap methods for constructing

confidence intervals/bands of β(·) next.1

3 Bootstrap inference

Our proposed bootstrap procedures are detailed in Section 3.1. Building upon these procedures, we

then outline the steps to obtain confidence intervals/bands in Section 3.2.

3.1 Bootstrap procedures

The sieve bootstrap, proposed in Friedrich and Lin (2022), handles serial correlation in error pro-

cesses by fitting regression residuals with AR(p) models and subsequently resampling the residuals

1We provide the Python code for implementing local linear estimation and the proposed bootstrap methods in
Section 3 for constructing confidence intervals/bands on the website: https://yiconglin.com/research-2/.
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from the estimated AR(p) model. The underlying idea is that any purely deterministic, strictly

stationary processes with zero mean, regardless of their linear dependence characteristics, may be well

approximated by an AR(∞) process in a similar spirit to Wold’s representation (Kreiss et al., 2011).

While their simulation results indicate a degree of robustness, even when dealing with nonstationary

processes (specifically, unconditional heteroscedasticity), a wild component could be added on top

of this to introduce additional uncertainty for capturing heteroscedasticity. This suggestion aligns

with their Remark 5 and leads to the method called the sieve wild bootstrap (SWB). Recall τt = t/n,

t = 1, . . . , n. The procedure can be summarized in six steps as follows.

The SWB

SWB1 Estimate Model (2.1) using a larger bandwidth h̃ than the bandwidth h, i.e., h̃ > h, used

for the original estimate β̂(·). Compute the residuals as ût = yt − β̃(τt)
′xt, t = 1, . . . , n,

where β̃(τt) is the resulting estimator obtained using h̃ in estimation.

SWB2 Fit an AR(p) model to the residuals {ût}, then compute the residuals of AR(p) model

by ε̂t,p = ût −
∑p

j=1 ϕ̂jût−j, t = p + 1, . . . , n. Obtain the recentered residuals by ε̃t,p =

ε̂t,p − (n− p)−1
∑n

t=p+1 ε̂t,p. Let ε̃t,p = 0 for t = 1, . . . , p.

SWB3 Obtain ε∗t = ν∗
t ε̃t,p, t = 1, . . . , n, where ν∗

t
i.i.d.∼ N (0, 1).

SWB4 Generate the bootstrap innovations u∗
t =

∑p
j=1 ϕ̂ju

∗
t−j + ε∗t and subsequently the bootstrap

observations y∗t = β̃(τt)
′xt + u∗

t , where β̃(τt) is obtained in the step SWB1.

SWB5 With the bootstrap data
{
(y∗t ,xt)

}
, obtain the bootstrap estimator β̂∗(·) using the same

bandwidth h as used for β̂(·).

SWB6 Repeat SWB3 to SWB5 B times. Let

q̂j,α(τ) = inf

{
u ∈ R : P∗

(
β̂∗
j (τ)− β̃j(τ) ≤ u

)
≥ α

}
, j = 0, . . . , d, (3.1)

be the 100αth percentile of the B centered bootstrap statistics β̂∗
j (τ) − β̃j(τ), where P∗

denotes for the probability measure conditional on the samples.

A few comments are in order. First, an oversmoothed h̃ is required in SWB1 for bootstrap to

capture the second-order bias of the local linear estimator originated from the first-order Taylor

approximation (2.2). This is known as a vital technical step when bootstrapping nonparametric

regression models; the underlying intuition has been discussed in Friedrich and Lin (2022, Remark

4). In practice, the results are generally not sensitive to the selection of h̃. Second, the lag length

p ≡ p(n) in SWB2 can be determined using common information criteria such as AIC and BIC. We
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address the selection of h̃ and p in Section 4. Finally, similar to other wild bootstrap procedures, we

draw ν∗
t from a standard normal distribution in SWB3. Indeed, other distributions with zero mean

and unit variance could also be employed.2

Another frequently employed bootstrap approach that can potentially accommodate serial depen-

dence and heteroscedasticity is the moving block bootstrap (MBB), initially proposed by Kunsch

(1989). For instance, Brüggemann et al. (2016) have demonstrated the asymptotic validity of the

MBB within a VAR framework even when error processes are mixing; linear dependence is generally

not required. Such findings suggest that the MBB has the potential for broader application in settings

with complex dynamics. As such, we propose the following MBB procedure for inference in our

time-varying coefficient models.

More specifically, the procedure begins by stacking residuals into fixed-size, overlapping blocks of

consecutive observations, followed by resampling the blocks. In this way, the original (linear/nonlinear)

dependence structure can be preserved within each block. Similarly, the specific steps can be

summarized in six steps, with the first and the last two steps remaining the same as in the SWB

procedure. Therefore, we only highlight the different steps below.

The MBB

MBB2 Divide the residuals into (n − ℓ + 1) overlapping blocks,
{
Bi, i = 1, . . . , n − ℓ + 1

}
with

Bi =
(
ûi, . . . , ûi+ℓ−1

)
, where ℓ < n is a block length.

MBB3 Let N = ⌈n/ℓ⌉, where ⌈·⌉ is the ceilling function. Obtain B∗
1 , . . . , B

∗
N by drawing randomly

with replacement from the blocks B1, . . . , Bn−ℓ+1.

MBB4 Generate the bootstrap innovations u∗
1, . . . , u

∗
n by laying out B∗

1 , . . . , B
∗
N . Specifically, let(

u∗
1, . . . , u

∗
n, u

∗
n+1, . . . , u

∗
Nℓ) ≡ (B∗

1 , . . . , B
∗
N

)
, then discard the lastNℓ−n values u∗

n+1, . . . , u
∗
Nℓ.

Subsequently, compute the bootstrap observations y∗t = β̃(τt)
′xt + u∗

t .

Note that, under appropriate rate assumptions, the residuals in the first steps of both the SWB

and the MBB may be written as ût = ut + op(1), where op(1) is uniformly over [0, 1]. As previously

mentioned, the SWB, like the SB, captures the inherent serial dependence of ut by fitting an AR(p)

model to ût, whereas the MBB preserves the dependence structure through blocks of length ℓ.

Therefore, the tuning parameter ℓ ≡ ℓ(n) in MBB2 plays a role similar to the lag length p in the SWB,

determining the extent of retained temporal dependence. It is worth noting that one could potentially

incorporate a wild component alongside the MBB. Our extensive simulations show that the MBB

yields satisfactory empirical coverage, and including a wild component would therefore only increase

2Alternatively, one could generate the bootstrap innovations as ε∗t = ν∗t ε̂t,p without recentering ε̂t,p. The conditional
mean of ε∗t remains due to the mean-zero property of ν∗t . The results are similar without recentering in our investigation.
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the empirical length. During our preliminary investigation, we also implemented the autoregressive

wild bootstrap originally proposed by Smeekes and Urbain (2014). However, our simulations revealed

less satisfactory performance, and consequently, we have chosen to omit the results to conserve space.

3.2 Confidence intervals and bands

Using the bootstrap percentiles q̂j,α(·), j = 0, . . . , d, obtained in Section 3.1, we can immediately

construct (1− α)-level pointwise confidence intervals of βj(·):

I∗j,α(τ) =
[
β̂j(τ)− q̂j,1−α/2(τ), β̂j(τ)− q̂j,α/2(τ)

]
, τ ∈ (0, 1). (3.2)

For any given time point τ , pointwise intervals are designed to ensure that the probability of

βj(τ) ∈ I∗j,α(τ) is at least 1− α. In numerous applications (see Section 5), it is often crucial to study

the evolving relationships over a certain time period, say G ⊂ [0, 1]. In this case, the probability of

βj(τ) ∈ I∗j,α(τ) for all τ ∈ G is (simultaneously) required to be no less than 1 − α, leading to the

so-called simultaneous confidence bands.

Constructing simultaneous bands using large sample asymptotics presents substantial challenges;

it involves various nuisance parameters that are hard to estimate (Zhou and Wu, 2010; Karmakar

et al., 2022). Moreover, asymptotic simultaneous bands suffer from slow convergent speeds, often

at a log-log rate, requiring a large sample size for accurate coverage. Therefore, we opt for the

bootstrap-based procedure in Bühlmann (1998), Friedrich et al. (2020), and Friedrich and Lin (2022),

which has demonstrated good performance in small samples. It can be formulated as follows:

Step 1 Let G =
⋃m

i=1 Ui(h), where Ui(h) = [τi − ah, τi + bh] with τi ∈ (0, 1), a, b ≥ 0. For

each αp ∈ [1/B, α] and τ ∈ G, we compute pointwise quantiles q̂j,1−αp/2(τ) and q̂j,αp/2(τ),

j = 0, . . . , d.

Step 2 Choose a new significance level α̂s = α̂s(α) given by

α̂s = argmin
αp∈[1/B,α]

∣∣∣P∗(q̂j,αp/2(τ) ≤ β̂∗
j (τ)− β̃j(τ) ≤ q̂j,1−αp/2(τ), ∀τ ∈ G

)
− (1− α)

∣∣∣. (3.3)
Step 3 Given α̂s, construct the simultaneous bands:

IG∗
j,α̂s

(τ) =
[
β̂j(τ)− q̂j,1−α̂s/2(τ), β̂j(τ)− q̂j,α̂s/2(τ)

]
, τ ∈ G.

We briefly discuss the procedure. Note that Step 2 essentially determines a new level α̂s such that

#
{
β̂∗
j (τ)− β̃j(τ) ∈

[
q̂j,α̂s/2(τ), q̂j,1−α̂s/2(τ)

]
, ∀τ ∈ G

}
B

≈ 1− α,
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where #E counts how many times the event E occurs in the bootstrap samples. It often leads to

a level α̂s that is much smaller than α to ensure that the simultaneous coverage is approximately

1− α. It resembles the Bonferroni correction in multiple testing problems. Moreover, the relationship

between αp and coverage is straightforward: an increase of αp leads to lower coverage, meaning a

smaller value of P∗(q̂j,αp/2(τ) ≤ β̂∗
j (τ)− β̃j(τ) ≤ q̂j,1−αp/2(τ), ∀τ ∈ G

)
. This monotonic relationship

offers practical convenience. In the implementation, one can start with αp = 1/B. If the resulting

coverage is lower than 1− α, the procedure halts with α̂s = 1/B. If it is greater than 1− α, one can

then proceed with αp = 2/B, 3/B, . . . , α until finding the largest coverage smaller than 1− α. Let’s

say α0
p is the corresponding level. Then set α̂s = α0

p − 1/B.

Establishing the asymptotic bootstrap validity of the SWB and the MBB is a non-trivial task in

the current setting, particularly when considering flexible dynamic structures. We leave this for future

research. We can nevertheless provide extensive simulation evidence to illustrate their performance,

as will be presented in the next section.

4 A simulation study

In this section, we conduct a Monte Carlo study to investigate the finite sample performance of

the proposed bootstrap procedures under different scenarios. As a benchmark, we also implement

the sieve bootstrap (SB) proposed by Friedrich and Lin (2022) for linearly dependent errors. For

performance comparison, we adopt their method of calculating empirical (pointwise and simultaneous)

coverage and length of confidence bands, see their p. 12.3 Given our practical interests, we evaluate

the empirical simultaneous coverage over three different subsets of [0, 1]: (i) Gsub = U1(h)
⋃

U4(h),

(ii) G =
⋃4

i=1 Ui(h), and (iii) {i/n, i = 1, . . . , n} (labeled as FS, meaning full sample), where

Ui(h) = {(i/5)− h+ j/100, j = 0, . . . , ⌊200h⌋}
⋂
[0, 1]. Several decisions need to be made prior to

implementation. Firstly, we set h̃ = 2h5/9 for the oversmoothing bandwidth as suggested in Friedrich

and Lin (2022). Secondly, the lag length p in SWB2 is determined through AIC, with p ∈
[
0, 10 log(n)

]
.

Lastly, we opt for the common choice of block length ℓ = 1.75n1/3 in MBB2, see, e.g., Smeekes and

Urbain (2014). All results are reported based on 500 replicates and B = 1, 299 bootstrap draws.

3(i) Empirical pointwise coverage: For j = 0, . . . , d and for each Monte Carlo iteration, we calculate the percentage
of βj(τt) covered by the bootstrap intervals for t = 1, . . . , n. Then, we calculate the average of these percentages over
the total of M iterations. (ii) Empirical simultaneous coverage: For j = 0, . . . , d and for each Monte Carlo iteration, we
determine whether the set

{
βj(τ), τ ∈ G

}
is entirely contained within the confidence bands over G. If this condition is

met, it is counted as a success for achieving simultaneous coverage over G. The empirical simultaneous coverage is
then calculated as the success rate across all M iterations. (iii) Empirical length: For each Monte Carlo iteration, we
compute the median length of intervals/bands across the time grid {1/n, 2/n, . . . , n/n}. The average of these medians
is then computed over M iterations. For GARCH settings, we use the median of the medians of the lengths instead of
the average of the medians to mitigate the impact of outliers.
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4.1 Data generating processes

Consider the time-varying coefficient model as adopted in Friedrich and Lin (2022):

yt = β1(t/n)x1,t + β2(t/n)x2,t + ut, t = 1, . . . , n,

β1(τ) = 1.5 exp
(
− 10(τ − 0.2)2

)
+ 1.6 exp

(
− 8(τ − 0.8)2

)
,

β2(τ) = −0.5τ − 0.5 exp
(
− 5(τ − 0.8)2

)
,

where the function β1(·) has two peaks, making simultaneous coverage relatively challenging, and

β2(·) gradually decreases. Let xt = (x1,t, x2,t)
′ follow a bivariate VAR(1) process:

xt = Axt−1 + ξt, ξt
i.i.d.∼ N (0, I2). (4.1)

The eigenvalues of the coefficient matrix A control the degree of serial dependence of {xt}. Similar

to Chang (2004), we generate A as follows. First, create a 2 × 2 random matrix U with elements

drawn from a standard uniform distribution U(0, 1). Second, let A = HLH ′, where L = diag(λ1, λ2)

and H = U (U ′U )−1/2. We consider three cases: (λ1, λ2) ∈
{
(0.3, 0.2), (1, 0.2), (1, 1)

}
. The first case

(λ1, λ2) = (0.3, 0.2) represents strictly stationary regressors. The second choice (λ1, λ2) = (1, 0.2)

signifies a combination of I(1) and I(0) regressors, while the final selection (λ1, λ2) = (1, 1) yields

both I(1) regressors.

We consider five different error processes {ut}, with the first one being an autoregressive process,

which serves as a benchmark.

AR ut = ϕut−1 + εt, where εt
i.i.d.∼ N

(
0, (1− ϕ2)/2

)
. Let ϕ = 0.3.

ENDO ut follows the same AR process process above. Nevertheless, εt is allowed to be correlated

with the innovation ξt of xt, which implies endogeneity (labeled as ENDO). More specifically,

let ηt := (ξ′t, εt)
′ i.i.d.∼ N (0,Σ), where Σ =

(
1 ρ ρ2

ρ 1 ρ
ρ2 ρ σ2

ε

)
, σ2

ε = (1 − ϕ2)/2, ϕ = 0.3, and

ρ ∈ {0.3, 0.5}.

GARCH ut = σtνt, where νt follows a standard normal distribution, σ2
t = (1−α−β)+αu2

t−1+βσ2
t−1,

with (α, β) ∈ {(0.2, 0.7), (0.3, 0.6)}. The case with (α, β) = (0.2, 0.7) is labeled as GARCH1,

while the other case is labeled as GARCH2.

NL1 ut = 1/4
∑500

j=0 a(t/n)
jζt−j where a(τ) = 1/2− (τ − 1/2)2 and ζt

i.i.d.∼ N (0, 1).

NL2 ut = 1/8
[∑500

j=0 a(t/n)
jζt−j

][∑500
j=0 c(t/n)

jϵt−j

]
, where a(τ) is defined in NL1, c(τ) = 1/4 +

τ/2. Moreover, ζt and ϵt follow standard normal distributions.

Some remarks can be provided as follows. In the second case (ENDO), we introduce endogeneity
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through the parameter ρ. A larger value of ρ indicates a stronger level of endogeneity. Note that

in cointegration literature, endogeneity is allowed when xt are I(1) due to the super-consistency

properties. However, this introduces second-order bias, in addition to the bias originating from the

Taylor approximation in Section 2.1, resulting in extra challenges when conducting inference (Li et al.,

2020). Fully modified estimation is often employed to tackle this bias in asymptotic inference (see,

e.g., Lin and Reuvers, 2022a,b). Bootstrap methods may offer an automatic way to mitigate the issue.

Moreover, in the third scenario (GARCH), we introduce conditional heteroscedasticity. Lastly, we

consider two nonstationary scenarios with highly nonlinear (NL) dependence, namely, NL1 and NL2,

similar to the settings in Zhou and Wu (2010). To examine the impact of the dynamics present in

{ut}, we first consider fix the values of bandwidth h ∈ {0.09, 0.12, 0.15}. Subsequently, we assess the

influence of bandwidth selection using the LMCV approach as mentioned in Section 2.1.

We provide the complete results in the Online Appendix Section A. To save space, we highlight

the key findings here and organize the discussions for each simulation setting as described on p. 10.

4.2 Autoregressive errors (AR)

The empirical coverage of 95%-level confidence intervals/bands in the benchmark settings with AR

errors can be found in Table 1. Our observations are summarized as follows.

(a) When the regressors are stationary, matching the settings considered in Friedrich and Lin

(2022), it is evident that all bootstrap methods yield values of empirical coverage that are

close to the nominal coverage of 95%. As found in Friedrich and Lin (2022), we observe

that the pointwise coverage of all methods is relatively insensitive to the choice of bandwidth.

However, the selection of bandwidth proves to be crucial for simultaneous coverage, with, for

instance, h = 0.12 outperforming other values. This observation is expected, as the choice of

bandwidth plays a critical role in determining whether the local linear estimates can capture

local fluctuations. Consequently, this impacts whether the simultaneous bands can uniformly

cover the true curves (across specific subsets of the interval [0, 1], such as Gsub).

(b) When there is a unit root in regressors, leading to a nonlinear cointegration regression, the MBB

has the overall best empirical coverage, followed by the SWB, even while maintaining a shorter

empirical length (Table A2, Online Appendix). The SB mostly performs well except for the full

sample simultaneous coverage. The SWB consistently achieves higher empirical coverage than

the SB, albeit at the cost of a longer empirical length. This difference arises because the SWB

introduces additional randomness through a wild component.
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Table 1: Empirical coverage 95%-level confidence intervals and bands for β1(·) and β2(·) in the presence of
serially correlated errors (AR). The panel labeled as ”I(0) xt” corresponds to stationary regressors with
(λ1, λ2) = (0.3, 0.2) for Eq. (4.1), whereas ”I(0)/I(1) xt” represents a combination of stationary and unit
root regressors with (λ1, λ2) = (1, 0.2).

β1 β2

h PW Gsub G FS PW Gsub G FS

I(0) xt

0.09 0.941 0.930 0.920 0.896 0.941 0.936 0.932 0.902
SB 0.12 0.940 0.934 0.898 0.926 0.941 0.940 0.918 0.914

0.15 0.934 0.910 0.892 0.880 0.940 0.914 0.912 0.890

0.09 0.946 0.964 0.958 0.944 0.947 0.966 0.958 0.942
SWB 0.12 0.945 0.948 0.954 0.944 0.946 0.972 0.972 0.946

0.15 0.938 0.930 0.920 0.912 0.945 0.956 0.950 0.942

0.09 0.941 0.934 0.932 0.918 0.943 0.930 0.932 0.912
MBB 0.12 0.941 0.912 0.892 0.934 0.940 0.940 0.918 0.938

0.15 0.932 0.910 0.898 0.894 0.941 0.944 0.930 0.918

I(0)/I(1) xt

0.09 0.962 0.968 0.972 0.818 0.962 0.976 0.968 0.818
SB 0.12 0.966 0.962 0.968 0.882 0.968 0.962 0.954 0.870

0.15 0.964 0.926 0.934 0.906 0.971 0.942 0.938 0.906

0.09 0.965 0.974 0.982 0.872 0.967 0.990 0.994 0.880
SWB 0.12 0.969 0.980 0.974 0.896 0.971 0.978 0.976 0.908

0.15 0.968 0.964 0.960 0.930 0.975 0.956 0.954 0.922

0.09 0.966 0.960 0.962 0.954 0.967 0.958 0.962 0.954
MBB 0.12 0.967 0.968 0.958 0.972 0.970 0.956 0.954 0.964

0.15 0.960 0.944 0.952 0.952 0.972 0.968 0.960 0.966

4.3 Endogenous errors (ENDO)

As mentioned, when regressors are unit root nonstationary, common least square estimators become

super-consistent. Endogenous errors, i.e., errors that are correlated with regressors, are therefore

allowed in the cointegration literature. We present the results of ρ = 0.5 in Table 2. The case of

ρ = 0.3 yields slightly better results, see Table A4.

(c) When strong endogeneity is present, the MBB consistently achieves the most accurate coverage

compared to the other two methods. The empirical full sample simultaneous coverage of the SB

clearly deteriorates in the presence of strong endogeneity, with approximately 88% (β1) and

85% (β2) for the full sample, in contrast to the MBB’s approximately 94% (β1) and 90% (β2).

However, it is important to highlight that all methods maintain accurate empirical pointwise

coverage.
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Table 2: Empirical coverage of confidence bands for β1(·) and β2(·) with endogenous errors (ENDO), where
ρ = 0.5 (level of endogeneity) and (λ1, λ2) = (1, 1).

β1 β2

h PW Gsub G FS PW Gsub G FS

0.09 0.947 0.932 0.954 0.814 0.918 0.876 0.910 0.746
SB 0.12 0.956 0.928 0.950 0.880 0.934 0.874 0.898 0.838

0.15 0.954 0.898 0.898 0.882 0.935 0.870 0.876 0.848

0.09 0.953 0.962 0.980 0.884 0.924 0.912 0.962 0.864
SWB 0.12 0.961 0.964 0.970 0.906 0.939 0.906 0.922 0.888

0.15 0.959 0.928 0.934 0.890 0.939 0.904 0.912 0.888

0.09 0.956 0.936 0.958 0.922 0.935 0.890 0.902 0.862
MBB 0.12 0.963 0.940 0.958 0.944 0.946 0.898 0.914 0.900

0.15 0.957 0.910 0.914 0.928 0.943 0.888 0.890 0.902

Table 3: Empirical coverage of confidence bands for β1(·) and β2(·) with GARCH errors (GARCH1) and
(λ1, λ2) = (1, 0.2) (nonlinear cointegration).

β1 β2

h PW Gsub G FS PW Gsub G FS

0.09 0.953 0.936 0.920 0.742 0.947 0.938 0.924 0.734
SB 0.12 0.956 0.928 0.914 0.826 0.955 0.922 0.910 0.800

0.15 0.954 0.888 0.882 0.834 0.957 0.888 0.884 0.824

0.09 0.956 0.960 0.964 0.812 0.952 0.952 0.944 0.806
SWB 0.12 0.959 0.944 0.938 0.858 0.959 0.942 0.940 0.832

0.15 0.959 0.916 0.928 0.890 0.961 0.912 0.910 0.856

0.09 0.963 0.946 0.938 0.938 0.958 0.932 0.938 0.918
MBB 0.12 0.962 0.940 0.928 0.950 0.961 0.930 0.932 0.950

0.15 0.955 0.924 0.934 0.932 0.963 0.924 0.928 0.924

4.4 Conditional heteroscedastic errors (GARCH)

We present the results for the GARCH1 setting in Table 3, where xt includes a unit root, i.e.,

(λ1, λ2) = (1, 0.2). Similar findings are obtained in other settings, as evidenced in Tables A5 to A8 in

the Online Appendix.

(d) As before, the MBB outperforms the other two methods in terms of coverage and has a slightly

shorter length than SWB bands in most cases. The lower empirical simultaneous coverage of

the SB is expected because the SB is not specifically designed for heteroscedastic data.
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Table 4: Empirical coverage and length of 95%-level intervals and bands for β1(·) and β2(·) with nonstationary,
nonlinear errors (NL1) and (λ1, λ2) = (1, 0.2) (nonlinear cointegration).

β1 β2

h PW Gsub G FS PW Gsub G FS

Empirical Coverage

0.09 0.979 0.990 0.990 0.836 0.982 0.996 0.994 0.822
SB 0.12 0.979 0.976 0.970 0.860 0.986 0.988 0.988 0.856

0.15 0.971 0.926 0.924 0.890 0.987 0.936 0.942 0.896

0.09 0.980 0.994 0.990 0.844 0.983 0.998 0.998 0.852
SWB 0.12 0.980 0.988 0.990 0.884 0.987 0.994 0.998 0.878

0.15 0.974 0.938 0.940 0.904 0.989 0.950 0.948 0.910

0.09 0.990 0.990 0.992 0.992 0.989 0.990 0.986 0.978
MBB 0.12 0.986 0.980 0.978 0.988 0.989 0.990 0.986 0.992

0.15 0.971 0.938 0.938 0.952 0.987 0.990 0.984 0.988

Empirical Length

0.09 0.289 0.411 0.441 0.456 0.276 0.390 0.436 0.425
SB 0.12 0.274 0.358 0.398 0.441 0.274 0.376 0.402 0.438

0.15 0.268 0.386 0.384 0.408 0.271 0.379 0.386 0.411

0.09 0.302 0.450 0.482 0.533 0.292 0.430 0.474 0.492
SWB 0.12 0.291 0.395 0.447 0.482 0.295 0.420 0.445 0.483

0.15 0.284 0.428 0.425 0.444 0.283 0.414 0.434 0.455

0.09 0.271 0.380 0.409 0.418 0.283 0.393 0.435 0.450
MBB 0.12 0.254 0.323 0.360 0.398 0.270 0.372 0.385 0.427

0.15 0.237 0.343 0.338 0.360 0.254 0.362 0.361 0.385

4.5 Nonlinear, nonstationary errors (NL)

Recall that our particular focus lies in scenarios where there might be nonlinear cointegration and

highly nonlinear errors. The outcomes for the NL1 setting, where xt contains a unit root, are presented

in Table A12, and similar observations hold true for the NL2 setting and when xt is stationary (Tables

A9 - A12, Online Appendix).

(e) All methods yield a slightly conservative pointwise coverage. This is due to the super-consistency

of local linear estimators in nonlinear cointegration regressions. The empirical pointwise coverage

is accurate for all methods with a smaller bandwidth of h = 0.09 when the regressors are

stationary, see Tables A9 and A11.

(f) When dealing with nonstationary regressors, it is noteworthy that the SB exhibits the lowest

empirical simultaneous coverage for the full sample construction, with the SWB following closely

behind. On the other hand, the MBB demonstrates over-coverage, but it also has the shortest

empirical length. Consequently, the over-coverage observed in the MBB is not a severe concern.
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Table 5: Empirical coverage of 95%-level intervals and bands for β1(·) and β2(·) when the bandwidth is
selected by LMCV(ℓ), i.e., leaving (2ℓ+ 1) out with ℓ = 0, 2, 4, 6, as well as their averages (labeled as AVG),
see Friedrich and Lin (2022) for further details. Here, we have NL1 errors and stationary regressors, i.e.,
(λ1, λ2) = (0.3, 0.2).

β1 β2

PW Gsub G FS PW Gsub G FS

LMCV0 0.950 0.950 0.952 0.916 0.957 0.970 0.970 0.908
LMCV2 0.943 0.952 0.952 0.922 0.958 0.978 0.974 0.932

SWB LMCV4 0.936 0.946 0.932 0.916 0.958 0.970 0.958 0.920
LMCV6 0.935 0.928 0.932 0.914 0.958 0.978 0.964 0.938
AVG 0.948 0.956 0.962 0.932 0.959 0.974 0.962 0.932

LMCV0 0.949 0.932 0.922 0.902 0.954 0.954 0.942 0.920
LMCV2 0.938 0.926 0.898 0.896 0.954 0.960 0.938 0.930

MBB LMCV4 0.932 0.896 0.886 0.886 0.954 0.952 0.920 0.930
LMCV6 0.929 0.880 0.858 0.894 0.955 0.954 0.922 0.930
AVG 0.943 0.934 0.918 0.940 0.956 0.952 0.918 0.934

Interestingly, in cases where the regressors are stationary, we note that the MBB displays greater

sensitivity to bandwidth selection compared to the other methods (Tables A9 and A11).

Based on our Monte Carlo results, we can now draw several key observations. First, the SWB

method exhibits robustness in capturing error processes that feature characteristics like serial correla-

tion, heteroscedasticity, or a combination of both. However, it is worth noting that the SWB method

tends to produce confidence intervals/bands with relatively larger empirical lengths. In contrast to

the SWB method, the SB method produces bands with shorter empirical lengths. However, it may

not perform as accurately when confronted with heteroscedasticity. The MBB method proves to be a

versatile choice when dealing with error processes that exhibit complex and flexible structures, such

as high nonlinearity and endogeneity. Additionally, when working with I(1) regressors, the MBB

method seems to be the superior option, offering good empirical coverage while maintaining relatively

shorter lengths.

4.6 Impacts of data-driven bandwidth

In a final investigation, we assess the performance of the bootstrap methods when the bandwidth is

selected using an automatic procedure, specifically LMCV as described in Section 2.1. Our earlier

results have clearly demonstrated that empirical simultaneous coverage is highly sensitive to the

choice of bandwidth for all the methods employed in this study. For our implementation, we adopt

the same set of tuning parameters as provided in Section 4.1 of Friedrich and Lin (2022). We consider

“leave (2ℓ+ 1) out”, where ℓ ∈ {0, 2, 4, 6} and their averages (labeled as “AVG”). The complete set of

results is presented in Tables A13 - A15 in the Online Appendix; the results for highly nonlinear NL1
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errors with stationary regressors are presented in Table 5.

(g) Both bootstrap methods perform well when using the AVG across different dynamics of the

error process. However, upon closer examination, we observe that the MBB is more sensitive to

the tuning parameter ℓ, which determines how many observations to be left out according to

Friedrich and Lin (2022), in contrast to the SWB.

Given this observation, the AVG shall be employed in our empirical applications in the next section.

5 Empirical applications

In this section, we revisit two empirical examples using the proposed bootstrap methods. The first

example is about the presence of herding behaviors in the Chinese renewable energy market, while

the second investigates time variations in consumption behavior.

5.1 Herding effects in Chinese renewable energy market

Herding effects in stock markets pertain to the phenomenon where investors tend to follow the actions

and judgments of others rather than making independent decisions based on their own information

and analysis. It is widely recognized that the herding phenomenon can lead to stocks being improperly

priced, resulting in market inefficiencies. As highlighted in Ren and Lucey (2023), China, being one

of the largest producers of various forms of renewable energy and the leading global investor in this

sector, possesses the potential to play a significant role in worldwide renewable energy investments.

Nonetheless, realizing this potential requires a focus on stabilizing the financial market and improving

market efficiency. Thus, identifying potential herding behaviors in the stock market is important.

To offer insight into the modeling approach for capturing herding effects, we begin by introducing

a basic linear regression model as proposed in Chang et al. (2000):

CSADm,t = γ0 + γ1Rm,t + γ2|Rm,t|+ γ3R
2
m,t + εt, t = 1, . . . , n. (5.1)

Here, CSADm,t = N−1
∑N

i=1 |Ri,t −Rm,t| represents the cross-sectional absolute deviation of returns

(CSAD) that measures the dispersion; γ0 is an intercept; Ri,t is the stock return of individual stock i

at time t; Rm,t corresponds to the average market return across N stocks at time t. In a rational

stock market, one would expect a linear and positive relationship between dispersion and market

returns. On the other hand, during periods of substantial price fluctuations, irrational investors are

more likely to display herding behaviors. Consequently, the expected changes in dispersion might

appear less pronounced than anticipated or could potentially even go the opposite. This can lead to a
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negative and nonlinear relationship between CSADm,t and Rm,t. For this reason, R
2
m,t is included in

the model. A negative value of the coefficient γ3, associated R2
m,t, could be interpreted as indicative

of local herding behavior.

Numerous existing studies indicate that market conditions, inherently subject to temporal varia-

tions, exert varying degrees of influence on herding behavior, see Ren and Lucey (2023) and references

therein. Hence, the parameters in Model (5.1) might be subject to time variation. To identify

time-varying herding effects across different periods, Ren and Lucey (2023) propose the following

model:

CSADm,t = γ0(t/n) + γ1(t/n)Rm,t + γ2(t/n)|Rm,t|+ γ3(t/n)R
2
m,t + γ4(t/n)CSADm,t−1 + εt. (5.2)

The inclusion of the first lag of CSADm,t aims to reduce the level of serial dependence in the error

process εt. This adjustment is made since their bootstrap method (a wild bootstrap) lacks the

capability to account for serial correlation in errors, which sets it apart from our proposed procedures.

For the purpose of direct comparison, we adopt their model (5.2). However, to ensure the robustness

of our findings, we also present results in the Online Appendix (Section B.2) by omitting the lagged

term. Importantly, the conclusions and results remain qualitatively the same across both cases.

To account for situations where herding effects might be influenced by other markets during

periods without within-industry evidence of herding, the next model includes an additional explanatory

variable, Rint,t, representing the return of another market of interest that could affect herding effects:

CSADm,t = γ0(t/n) + γ1(t/n)Rm,t + γ2(t/n)|Rm,t|+

γ3(t/n)R
2
m,t + γ4(t/n)R

2
int,t + γ5(t/n)CSADm,t−1 + εt. (5.3)

Negative values of γ4(t/n) can be interpreted as an indication of herding influenced by the market of

interest when there is no within-industry herding.

The data for CSADm,t and Rm,t used in this paper were obtained from Ren and Lucey (2023).

These values were calculated using China Securities Index Co., Ltd. (CSI) New Energy Index data,

covering the period from January 2015 to April 2022, resulting in a total of n = 1, 778 observations.

The CSI New Energy Index comprises a selection of the leading 80 securities involved in different

segments of the renewable energy sector in China. This index serves as a benchmark for evaluating

the overall performance of the Chinese renewable energy industry. In addition, we use the CSI 300

Index price as Rint,t. The CSI 300 Index tracks the performance of the top 300 stocks traded on the

Shanghai Stock Exchange and the Shenzhen Stock Exchange, serving as a barometer for the overall

Chinese stock market. Furthermore, employing the dynamic programming algorithm for estimating

17



Figure 1: CSAD and the market return in G1.

Figure 2: CSAD and CSI300 return in G3.

multiple break dates developed by Bai and Perron (2003), Ren and Lucey (2023) found five break

dates within the dataset. The entire time period can be partitioned by these five break dates into six

consecutive sub-periods denoted as G1 to G6 in chronological order. These partitions are indicated

by the dark-grey vertical lines in Figure 3 below. For instance, the period preceding the first break

date (G1) spans until approximately March 2016.

To gain further insights, we plot the CSAD alongside the market return during the G1 period in

Figure 1 and with the return of CSI300 during G3 in Figure 2. In Figure 1, the movement of the two

variables appears to be in opposite directions during the G1 period. In Figure 2, a negative correlation

possibly exists between CSI300 and CSAD in G3. These plots suggest that within-industry herding

may exist in G1 while herding influenced by the whole market may be present in G3.

5.1.1 Empirical results of herding behavior

We first discuss the results of Model (5.2). Pointwise intervals and simultaneous bands of γ3(t/n) are

constructed using the proposed methods in Section 3. These simultaneous bands, as elaborated upon

in Section 3.2, are established using both the full sample and two sub-intervals. To be precise, the full
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Figure 3: Estimated curve of γ3(·) (black line) and resulting 95%-level confidence intervals (grey, labeled as
PW) and bands using the MBB for Model (5.2). Simultaneous bands labeled as ST(FS) are constructed
based on the full sample, while ST(G) refers to either sub-interval G1 or G6. The vertical lines in dark grey
represent the estimated break dates provided in Ren and Lucey (2023).

sample consists of all 1, 778 observations, while we also focus on two separate sub-intervals: periods

G1 (January 2015 to March 2016) and, separately, G6 (starting from May 2021). These sub-intervals

are of particular interest as Ren and Lucey (2023) have found significant herding behavior during

these periods. However, the evidence so far has been derived from bootstrapping pointwise intervals in

time-varying coefficient models, which may not provide statistically valid conclusions about variation

over any of the time periods (that obviously contain infinitely many points). This underlines the

importance of using simultaneous bands. Foreshadowing our results (e.g., Figures 3 and 5), pointwise

intervals can appear significantly narrower compared to simultaneous bands, potentially resulting in

false discoveries.

Considering the robust performance of the AVG approach for bandwidth selection demonstrated in

the simulations, we employ it to determine the values of the optimal bandwidth. As a result, we obtain

bandwidth values of 0.06 and 0.0975 for Models (5.2) and (5.3), respectively. As suggested by various

empirical studies such as Friedrich et al. (2020), it is necessary to visually inspect whether data-driven

bandwidths lead to reasonable results. Since a bandwidth of 0.06 produces somewhat wiggly estimates

and might lead to overfitting, we take 0.0975 for both models, which yields satisfactory results.

Our findings strongly suggest the presence of herding behavior during period G1, while such

behavior does not exhibit statistical significance in G6 (Figure 3). More specifically, we observe that

the estimated curve γ̂3(·) remains mostly negative during both periods. The 95%-level simultaneous

confidence bands using the MBB, derived from both the full sample and the sub-intervals, corroborate

the presence of significant herding behavior in G1. This supports Ren and Lucey (2023). The authors

argue that the introduction of the Paris Agreement may have stimulated herding behavior in G1, given

its direct impact on attracting investors’ attention to emerging new energy stocks. However, during
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Figure 4: The residuals obtained from Model (5.2) show the existence of both serial correlation and
heteroscedasticity.

Figure 5: Estimated curve of γ4(·) (black line) and resulting 95%-level confidence intervals (grey, labeled as
PW) and bands using the MBB for Model (5.3). Simultaneous bands labeled as ST(FS) are constructed
based on the full sample, while ST(G) refers to one of the sub-intervals from G2 to G5. The vertical lines in
dark grey represent the estimated break dates provided in Ren and Lucey (2023).

the G6 period, the simultaneous bands contain zero within the bands, indicating that the estimates

in G6 are not statistically significant in contrast to the findings in their study. Therefore, herding

effects may not be present during this period, possibly due to the impact of COVID-19. During this

period, the temporary energy shortage led investors to recognize the importance of renewable energy.

This is not surprising, intuitively speaking, since our bootstrap methods show greater robustness to

the dynamics of error processes. Despite the inclusion of a lagged term in Models (5.2) and (5.3),

there may still exist a level of temporal dependence in errors (Figure 4), potentially resulting in

larger type-I errors. Regarding the remaining four sub-periods, simultaneous full sample bands do not

provide indications of herding within the industry. These results align with the conclusions presented

in Ren and Lucey (2023).

It is worth recalling that Model (5.3) is employed to explore whether herding effects are influenced
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by other markets. Therefore, for Model (5.3), we follow the same procedures for γ̂4(·) as in the previous

model, but our focus shifts to the sub-periods G2 to G5 due to the absence of significant herding

effects observed in the prior model. The estimated curve and the resulting intervals/bands based

on the MBB are shown in Figure 5. The simultaneous bands based on one of the sub-intervals from

G2 to G5 (green line) reveal significant evidence of herding behavior influenced by other industries

during the periods of G2 and G3, in alignment with the findings presented in Ren and Lucey (2023).4

However, the authors also identify noteworthy evidence around the break date approximately in

November 2019. Zooming in, pointwise intervals do suggest significantly negative values at local

time points, while the simultaneous bands suggest that this tendency quickly diminishes, leading to

overall insignificance. Indeed, examining intervals and bands jointly enables us to draw more powerful

conclusions.

In the Online Appendix, specifically in Section B.1, we provide the SWB intervals and bands as

part of a robustness check. It is worth noting that the conclusions drawn earlier remain unchanged.

5.2 Case of time-varying consumption behavior

In this section, we examine the classic example of the cointegrating relationship between consumption,

income, and interest rates. We adopt a quarterly dataset of aggregate U.S. data obtained from the

Federal Reserve Economic Data (FRED). The dataset covers the period from the first quarter of

1959 to the first quarter of 2023, comprising n = 258 observations. It includes natural logarithm-

transformed personal consumption expenditures (logCt), disposable personal income (log It), also in

natural logarithm, and the interest rate (Rt), expressed as a percentage.5 We plot the data series

in Figure 6. It is clear that logCt and log It exhibit trending patterns and co-movements. Standard

augmented Dickey-Fuller tests imply both variables are trend-nonstationary. Furthermore, Rt is I(1).

Similar to the settings in Park and Hahn (1999) and Li et al. (2020), we begin with the following

base model, which incorporates a time-varying cointegrating relationship:

logCt = β1(t/n) log It + β2(t/n)Rt + εt, t = 1, . . . , n. (M1)

With a data-driven bandwidth of 0.07, the full sample simultaneous bands indicate substantial time

variations in β1(·) during the periods from around 1969 to 1982 (marked by high inflation in the U.S.)

4In fact, the Chinese stock market experienced a prolonged bubble collapse starting in June 2015, reaching its lowest
point around February 2016.

5The data is available at:

• Personal consumption expenditures: https://fred.stlouisfed.org/series/PCE;

• Disposable personal income: https://fred.stlouisfed.org/series/DSPI;

• Interest rates (federal funds effective rate): https://fred.stlouisfed.org/series/FEDFUNDS.
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Figure 6: Aggregate US data for log consumption, log income, and interest rate from 1959 to 2023.

Figure 7: Estimated curves (black line) and resulting 95%-level confidence intervals (grey, labeled as PW)
and bands (red) using the MBB for Model (M1).

and from the end of 2001 (the 9/11 attack) onwards, as depicted in Figure 7. Furthermore, there

has been a substantial surge since the onset of the COVID-19 pandemic, and this tendency shows a

growth pattern potentially exceeding 1. Conversely, we observe that β2(·) is not significantly different

from zero across the sample periods.

Considering the absence of evidence that β2(·) significantly deviates from zero, we are led to

further explore the following two models:

log
(
Ct/It

)
= β0(t/n) + εt, , (M2)

logCt = β1(t/n) log It + εt. (M3)
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Figure 8: Estimated curve of β0(·) (black line) and resulting 95%-level confidence intervals (grey, labeled as
PW) and bands (red) using the MBB for Model (M2).

We first discuss Model (M2). In this model, we use β0(·) to account for potential left-over dynamics

when subtracting log It from both sides of Model (M1). Given that we do not impose any specific

functional forms on β0(·), this model offers greater flexibility in comparison to common trend break

models. Traditional trend break models usually permit only a single break, primarily due to the

difficulties associated with estimating and inferring multiple trend breaks (see, e.g., Perron and Zhu,

2005; Harvey and Leybourne, 2014, 2015; Beutner et al., 2023). Moreover, Model (M2) has been

employed in Kapetanios et al. (2020) to investigate the so-called “great ratios”, which propose that a

set of ratios, such as consumption-output and income-output, either remain constant or converge

towards a stable value, suggesting a long-run equilibrium relationship. Previous studies examining

“great ratios” report mixed evidence regarding the existence of such ratios (see, e.g., Sarantis and

Stewart, 1999; Attfield and Temple, 2010; Chudik et al., 2023). Interestingly, Kapetanios et al. (2020)

find strong evidence of cointegration by incorporating a time-varying drift. The LHS of Model (M2),

which represents the consumption-income ratio, also belongs to this set of great ratios. Displayed in

Figure 8, our estimated curve of β0(·) in Model (M2) using the bandwidth of 0.07 aligns with the

results presented in Kapetanios et al. (2020). Specifically, it reveals that the time-varying drift is

indeed statistically significant across the entire sample period.

On the other hand, Model (M3) is a natural consequence of Model (M1). Note that Model (M3)

can be equivalently written as:

log
(
Ct/It

)
=

(
β1(t/n)− 1

)
log It + εt.

Given that log It is dominated by a mildly nonlinear, deterministic trend (Figure 6), Model (M3)

may be well approximated by (M2). In other words, we can write
(
β1(t/n)− 1

)
log It ≈ β0(t/n). To

verify this conjecture, we show plots of the residuals and fits for both models in Figure 9. Indeed, the
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Figure 9: Residuals and fits for Models (M2) and (M3).

residuals and fits display an expected similarity. Additionally, it is worth noting that the residuals

exhibit serial correlation but remain mostly stationary, with the exception of the recent sudden shock.

This suggests that log consumption and log income are potentially nonlinearly cointegrated without

a drift component, instead of linearly cointegrated with a time-varying drift.

6 Conclusions

In this paper, we have studied linear time series models with time-varying parameters. We proposed

two bootstrap methods, namely the moving block bootstrap (MBB) and the sieve wild bootstrap

(SWB), for conducting robust inference. Our extensive simulation study encompassed scenarios

involving serial correlation, heteroscedasticity, endogeneity, nonlinear dependence, nonstationarity in

error processes, as well as time-varying cointegrating relationships. The results of our study indicate

that both proposed methods outperform the previously suggested sieve bootstrap inference method

by Friedrich and Lin (2022) for stationary models. Specifically, the MBB exhibits overall accurate

empirical coverage while maintaining a shorter empirical length in comparison to the SWB. Our

results provide initial insights into the potential extensions and performance of bootstrap methods for

these widely adopted models.

We then applied the proposed methods in two empirical studies. In the first study, we uncovered

statistically significant herding effects in the Chinese renewable energy market before 2018. These

effects could potentially be attributed to other markets between approximately March 2016 and

early 2018, supporting the findings of Ren and Lucey (2023), as confirmed by our simultaneous

confidence bands. However, we did not observe significant effects between 2018 and 2021, which

diverges from the results reported by Ren and Lucey (2023). In the second application, we explored
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the cointegrating relationship between consumption and income in the U.S. Our analysis revealed

significant time variations in this relationship. Interestingly, we discovered that both a model with

a time-varying drift component (previously adopted in Kapetanios et al., 2020) and a time-varying

coefficient model without a drift yielded similar outcomes. This suggests that consumption and

income could potentially exhibit nonlinear cointegration without a drift component, instead of being

linearly cointegrated with a time-varying drift.

As shown in our study, bootstrap methods can be readily applied without the need for complicated

estimation of nuisance parameters, such as second-order bias terms and long-run covariance matrices,

or data transformations as proposed in Li et al. (2020). Despite these simplifications, it robustly

delivers accurate inference results. Looking ahead, a crucial avenue for future research involves

establishing asymptotic bootstrap consistency, particularly in settings with complex dynamics, such

as nonlinear cointegration with endogenous regressors.
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A Additional simulation results

Table A1: Empirical coverage and length of 95%-level intervals and bands for β1(·) and β2(·) with n = 200
and homoskedastic errors (AR) and I(0) xt.

β1 β2

h PW Gsub G FS PW Gsub G FS

Empirical Coverage

0.09 0.941 0.930 0.920 0.896 0.941 0.936 0.932 0.902
SB 0.12 0.940 0.934 0.898 0.926 0.941 0.940 0.918 0.914

0.15 0.934 0.910 0.892 0.880 0.940 0.914 0.912 0.890

0.09 0.946 0.964 0.958 0.944 0.947 0.966 0.958 0.942
SWB 0.12 0.945 0.948 0.954 0.944 0.946 0.972 0.972 0.946

0.15 0.938 0.930 0.920 0.912 0.945 0.956 0.950 0.942

0.09 0.941 0.934 0.932 0.918 0.943 0.930 0.932 0.912
MBB 0.12 0.941 0.912 0.892 0.934 0.940 0.940 0.918 0.938

0.15 0.932 0.910 0.898 0.894 0.941 0.944 0.930 0.918

Empirical Length

0.09 0.555 0.772 0.842 0.905 0.560 0.773 0.848 0.906
SB 0.12 0.479 0.641 0.692 0.771 0.480 0.668 0.695 0.780

0.15 0.425 0.606 0.621 0.633 0.430 0.610 0.626 0.639

0.09 0.567 0.836 0.898 1.051 0.571 0.844 0.911 1.064
SWB 0.12 0.486 0.691 0.762 0.813 0.490 0.725 0.766 0.812

0.15 0.435 0.652 0.676 0.690 0.437 0.658 0.674 0.691

0.09 0.552 0.758 0.834 0.876 0.554 0.759 0.843 0.880
MBB 0.12 0.476 0.631 0.677 0.759 0.476 0.652 0.679 0.762

0.15 0.422 0.598 0.614 0.634 0.425 0.599 0.615 0.634
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Table A2: Empirical coverage and length of 95%-level intervals and bands for β1(·) and β2(·) with n = 200
and homoskedastic errors (AR) and I(0)/I(1) xt.

β1 β2

h PW Gsub G FS PW Gsub G FS

Empirical Coverage

0.09 0.962 0.968 0.972 0.818 0.962 0.976 0.968 0.818
SB 0.12 0.966 0.962 0.968 0.882 0.968 0.962 0.954 0.870

0.15 0.964 0.926 0.934 0.906 0.971 0.942 0.938 0.906

0.09 0.965 0.974 0.982 0.872 0.967 0.990 0.994 0.880
SWB 0.12 0.969 0.980 0.974 0.896 0.971 0.978 0.976 0.908

0.15 0.968 0.964 0.960 0.930 0.975 0.956 0.954 0.922

0.09 0.966 0.960 0.962 0.954 0.967 0.958 0.962 0.954
MBB 0.12 0.967 0.968 0.958 0.972 0.970 0.956 0.954 0.964

0.15 0.960 0.944 0.952 0.952 0.972 0.968 0.960 0.966

Empirical Length

0.09 0.504 0.711 0.769 0.809 0.469 0.667 0.719 0.721
SB 0.12 0.463 0.598 0.667 0.738 0.427 0.592 0.618 0.686

0.15 0.426 0.606 0.617 0.641 0.397 0.554 0.568 0.593

0.09 0.524 0.779 0.841 0.954 0.483 0.729 0.767 0.850
SWB 0.12 0.479 0.655 0.746 0.794 0.438 0.655 0.687 0.740

0.15 0.436 0.654 0.672 0.689 0.422 0.618 0.644 0.658

0.09 0.496 0.682 0.737 0.781 0.470 0.657 0.723 0.742
MBB 0.12 0.440 0.574 0.622 0.694 0.416 0.575 0.588 0.659

0.15 0.400 0.562 0.570 0.594 0.380 0.539 0.546 0.568
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Table A3: Empirical coverage and length of 95%-level intervals and bands for β1(·) and β2(·) with n = 200
and homoskedastic errors (ENDO) ρ = 0.3 and I(1) xt .

β1 β2

h PW Gsub G FS PW Gsub G FS

Empirical Coverage

0.09 0.973 0.974 0.984 0.860 0.961 0.946 0.968 0.840
SB 0.12 0.977 0.966 0.972 0.918 0.968 0.944 0.962 0.902

0.15 0.971 0.942 0.944 0.920 0.965 0.936 0.938 0.912

0.09 0.976 0.986 0.990 0.900 0.964 0.980 0.992 0.928
SWB 0.12 0.979 0.978 0.978 0.942 0.971 0.972 0.978 0.948

0.15 0.975 0.956 0.956 0.936 0.968 0.948 0.954 0.934

0.19 0.980 0.966 0.978 0.968 0.970 0.944 0.960 0.946
MBB 0.12 0.980 0.970 0.974 0.970 0.973 0.960 0.968 0.960

0.15 0.969 0.962 0.968 0.970 0.968 0.940 0.944 0.954

Empirical Length

0.09 0.508 0.723 0.807 0.821 0.542 0.779 0.868 0.877
SB 0.12 0.473 0.591 0.724 0.766 0.506 0.725 0.787 0.824

0.15 0.449 0.646 0.662 0.713 0.485 0.700 0.717 0.781

0.09 0.523 0.790 0.897 0.948 0.555 0.845 0.962 1.013
SWB 0.12 0.488 0.639 0.772 0.855 0.519 0.781 0.832 0.928

0.15 0.466 0.697 0.715 0.763 0.496 0.749 0.770 0.823

0.09 0.543 0.755 0.820 0.841 0.622 0.859 0.938 0.963
MBB 0.12 0.495 0.590 0.736 0.766 0.577 0.795 0.859 0.895

0.15 0.457 0.649 0.665 0.706 0.534 0.753 0.776 0.824
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Table A4: Empirical coverage and length of 95%-level intervals and bands for β1(·) and β2(·) with n = 200
and homoskedastic errors (ENDO) ρ = 0.5 and I(1) xt .

β1 β2

h PW Gsub G FS PW Gsub G FS

Empirical Coverage

0.09 0.947 0.932 0.954 0.814 0.918 0.876 0.910 0.746
SB 0.12 0.956 0.928 0.950 0.880 0.934 0.874 0.898 0.838

0.15 0.954 0.898 0.898 0.882 0.935 0.870 0.876 0.848

0.09 0.953 0.962 0.980 0.884 0.924 0.912 0.962 0.864
SWB 0.12 0.961 0.964 0.970 0.906 0.939 0.906 0.922 0.888

0.15 0.959 0.928 0.934 0.890 0.939 0.904 0.912 0.888

0.09 0.956 0.936 0.958 0.922 0.935 0.890 0.902 0.862
MBB 0.12 0.963 0.94 0.958 0.944 0.946 0.898 0.914 0.900

0.15 0.957 0.910 0.914 0.928 0.943 0.888 0.890 0.902

Empirical Length

0.09 0.553 0.788 0.880 0.894 0.585 0.843 0.936 0.947
SB 0.12 0.511 0.638 0.788 0.827 0.542 0.774 0.843 0.881

0.15 0.484 0.695 0.714 0.770 0.515 0.745 0.767 0.828

0.09 0.569 0.859 0.975 1.033 0.597 0.911 1.039 1.091
SWB 0.12 0.527 0.694 0.840 0.932 0.555 0.835 0.886 0.992

0.15 0.501 0.748 0.771 0.818 0.528 0.793 0.817 0.870

0.09 0.598 0.826 0.901 0.923 0.672 0.930 1.013 1.041
MBB 0.12 0.546 0.647 0.811 0.842 0.622 0.854 0.923 0.960

0.15 0.505 0.709 0.728 0.777 0.575 0.809 0.835 0.886
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Table A5: Empirical coverage and length of 95%-level intervals and bands for β1(·) and β2(·) with n = 200
and GARCH errors (GARCH1) and I(0) xt.

β1 β2

h PW Gsub G FS PW Gsub G FS

Empirical Coverage

0.09 0.936 0.890 0.870 0.784 0.943 0.908 0.896 0.814
SB 0.12 0.937 0.878 0.872 0.828 0.944 0.902 0.882 0.858

0.15 0.936 0.864 0.864 0.820 0.948 0.894 0.892 0.858

0.09 0.941 0.92 0.900 0.892 0.947 0.952 0.934 0.884
SWB 0.12 0.940 0.908 0.916 0.860 0.948 0.934 0.932 0.884

0.15 0.939 0.900 0.908 0.866 0.950 0.924 0.924 0.896

0.09 0.941 0.908 0.892 0.888 0.949 0.916 0.906 0.902
MBB 0.12 0.941 0.900 0.902 0.928 0.951 0.918 0.898 0.924

0.15 0.939 0.892 0.894 0.876 0.950 0.918 0.910 0.898

Empirical Length

0.09 0.723 1.026 1.116 1.190 0.727 1.026 1.111 1.192
SB 0.12 0.622 0.838 0.905 1.012 0.617 0.873 0.896 1.002

0.15 0.555 0.796 0.815 0.834 0.550 0.787 0.804 0.825

0.09 0.739 1.120 1.198 1.412 0.743 1.118 1.199 1.409
SWB 0.12 0.634 0.912 1.004 1.070 0.628 0.947 0.994 1.063

0.15 0.561 0.860 0.881 0.912 0.557 0.849 0.881 0.902

0.09 0.736 1.057 1.159 1.250 0.730 1.054 1.150 1.246
MBB 0.12 0.631 0.862 0.933 1.059 0.623 0.897 0.928 1.045

0.15 0.560 0.817 0.834 0.861 0.556 0.809 0.835 0.853
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Table A6: Empirical coverage and length of 95%-level intervals and bands for β1(·) and β2(·) with n = 200
and GARCH errors (GARCH1) and I(0)/I(1) xt.

β1 β2

h PW Gsub G FS PW Gsub G FS

Empirical Coverage

0.09 0.953 0.936 0.920 0.742 0.947 0.938 0.924 0.734
SB 0.12 0.956 0.928 0.914 0.826 0.955 0.922 0.910 0.800

0.15 0.954 0.888 0.882 0.834 0.957 0.888 0.884 0.824

0.09 0.956 0.960 0.964 0.812 0.952 0.952 0.944 0.806
SWB 0.12 0.959 0.944 0.938 0.858 0.959 0.942 0.940 0.832

0.15 0.959 0.916 0.928 0.890 0.961 0.912 0.910 0.856

0.09 0.963 0.946 0.938 0.938 0.958 0.932 0.938 0.918
MBB 0.12 0.962 0.940 0.928 0.950 0.961 0.930 0.932 0.950

0.15 0.955 0.924 0.934 0.932 0.963 0.924 0.928 0.924

Empirical Length

0.09 0.605 0.848 0.919 0.967 0.588 0.816 0.904 0.888
SB 0.12 0.549 0.705 0.796 0.882 0.514 0.713 0.737 0.832

0.15 0.511 0.725 0.743 0.766 0.465 0.665 0.686 0.705

0.09 0.624 0.916 0.995 1.135 0.603 0.912 0.966 1.084
SWB 0.12 0.573 0.781 0.897 0.948 0.522 0.783 0.840 0.888

0.15 0.525 0.793 0.815 0.837 0.479 0.724 0.748 0.781

0.09 0.608 0.850 0.938 0.977 0.596 0.863 0.916 1.012
MBB 0.12 0.524 0.686 0.761 0.865 0.512 0.739 0.763 0.873

0.15 0.470 0.679 0.693 0.716 0.464 0.662 0.678 0.690
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Table A7: Empirical coverage and length of 95%-level intervals and bands for β1(·) and β2(·) with n = 200
and GARCH errors (GARCH2) and I(0) xt.

β1 β2

h PW Gsub G FS PW Gsub G FS

Empirical Coverage

0.09 0.932 0.872 0.83 0.758 0.935 0.890 0.856 0.770
SB 0.12 0.930 0.870 0.812 0.800 0.937 0.906 0.852 0.830

0.15 0.925 0.836 0.802 0.762 0.937 0.878 0.862 0.818

0.09 0.936 0.92 0.884 0.880 0.938 0.932 0.886 0.878
SWB 0.12 0.932 0.912 0.884 0.836 0.942 0.934 0.902 0.848

0.15 0.929 0.892 0.860 0.850 0.941 0.926 0.914 0.890

0.09 0.938 0.906 0.868 0.864 0.941 0.928 0.888 0.866
MBB 0.12 0.934 0.908 0.872 0.886 0.944 0.912 0.890 0.892

0.05 0.930 0.886 0.860 0.844 0.942 0.916 0.900 0.884

Empirical Length

0.09 0.695 0.980 1.060 1.157 0.694 0.983 1.060 1.146
SB 0.12 0.595 0.805 0.873 0.965 0.597 0.836 0.875 0.969

0.15 0.530 0.762 0.780 0.797 0.529 0.751 0.777 0.792

0.09 0.709 1.071 1.172 1.380 0.704 1.069 1.168 1.367
SWB 0.12 0.603 0.873 0.971 1.019 0.606 0.922 0.969 1.025

0.15 0.539 0.826 0.851 0.880 0.535 0.817 0.842 0.876

0.09 0.704 1.041 1.127 1.236 0.701 1.029 1.117 1.215
MBB 0.12 0.602 0.841 0.920 1.024 0.599 0.875 0.911 1.021

0.15 0.535 0.791 0.812 0.841 0.532 0.789 0.803 0.824
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Table A8: Empirical coverage and length of 95%-level intervals and bands for β1(·) and β2(·) with n = 200
and GARCH errors (GARCH2) and I(0)/I(1) xt.

β1 β2

h PW Gsub G FS PW Gsub G FS

Empirical Coverage

0.09 0.957 0.942 0.934 0.772 0.951 0.936 0.912 0.740
SB 0.12 0.961 0.920 0.906 0.806 0.956 0.938 0.918 0.812

0.15 0.961 0.882 0.886 0.832 0.960 0.906 0.902 0.840

0.09 0.960 0.962 0.942 0.836 0.955 0.946 0.934 0.800
SB 0.12 0.963 0.944 0.948 0.844 0.959 0.956 0.954 0.850

0.15 0.963 0.924 0.924 0.874 0.964 0.936 0.938 0.882

0.09 0.965 0.946 0.940 0.930 0.959 0.930 0.930 0.922
MBB 0.12 0.964 0.946 0.934 0.942 0.962 0.948 0.936 0.956

0.15 0.957 0.922 0.928 0.918 0.963 0.944 0.944 0.942

Empirical Length

0.09 0.587 0.846 0.911 0.945 0.556 0.798 0.863 0.864
SB 0.12 0.531 0.695 0.780 0.861 0.498 0.711 0.721 0.809

0.15 0.492 0.699 0.718 0.735 0.454 0.655 0.665 0.692

0.09 0.617 0.922 0.990 1.123 0.569 0.881 0.951 0.999
SWB 0.12 0.555 0.757 0.873 0.919 0.515 0.781 0.823 0.879

0.15 0.512 0.768 0.793 0.816 0.474 0.719 0.735 0.767

0.09 0.581 0.837 0.906 0.984 0.574 0.826 0.915 0.958
MBB 0.12 0.500 0.685 0.750 0.849 0.496 0.718 0.741 0.835

0.15 0.441 0.661 0.661 0.680 0.444 0.663 0.655 0.680
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Table A9: Empirical coverage and length of 95%-level intervals and bands for β1(·) and β2(·) with n = 200
and (NL1) errors and I(0) xt.

β1 β2

h PW Gsub G FS PW Gsub G FS

Empirical Coverage

0.09 0.954 0.946 0.942 0.922 0.955 0.966 0.942 0.934
SB 0.12 0.943 0.904 0.890 0.922 0.956 0.960 0.948 0.950

0.15 0.911 0.838 0.822 0.806 0.955 0.956 0.940 0.928

0.09 0.958 0.964 0.960 0.958 0.960 0.984 0.974 0.970
SWB 0.12 0.947 0.960 0.944 0.946 0.961 0.976 0.980 0.966

0.15 0.916 0.888 0.882 0.878 0.960 0.964 0.966 0.954

0.09 0.953 0.930 0.934 0.950 0.957 0.954 0.948 0.958
MBB 0.12 0.939 0.878 0.858 0.912 0.956 0.950 0.940 0.970

0.15 0.904 0.810 0.790 0.798 0.953 0.952 0.940 0.946

Empirical Length

0.09 0.238 0.333 0.360 0.386 0.237 0.332 0.361 0.385
SB 0.12 0.207 0.279 0.299 0.336 0.206 0.288 0.298 0.334

0.15 0.187 0.264 0.271 0.277 0.186 0.265 0.270 0.276

0.09 0.244 0.364 0.390 0.455 0.243 0.362 0.390 0.453
SWB 0.12 0.212 0.300 0.332 0.350 0.211 0.314 0.331 0.349

0.15 0.190 0.286 0.296 0.304 0.189 0.286 0.294 0.301

0.09 0.236 0.325 0.355 0.374 0.235 0.325 0.356 0.374
MBB 0.12 0.204 0.271 0.293 0.327 0.203 0.282 0.290 0.325

0.15 0.183 0.258 0.264 0.270 0.182 0.258 0.263 0.272
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Table A10: Empirical coverage and length of 95%-level intervals and bands for β1(·) and β2(·) with n = 200
and (NL1) errors and I(0)/I(1) xt.

β1 β2

h PW Gsub G FS PW Gsub G FS

Empirical Coverage

0.09 0.979 0.990 0.990 0.836 0.982 0.996 0.994 0.822
SB 0.12 0.979 0.976 0.970 0.860 0.986 0.988 0.988 0.856

0.15 0.971 0.926 0.924 0.890 0.987 0.936 0.942 0.896

0.09 0.980 0.994 0.990 0.844 0.983 0.998 0.998 0.852
SWB 0.12 0.980 0.988 0.990 0.884 0.987 0.994 0.998 0.878

0.15 0.974 0.938 0.940 0.904 0.989 0.950 0.948 0.910

0.09 0.990 0.990 0.992 0.992 0.989 0.990 0.986 0.978
MBB 0.12 0.986 0.980 0.978 0.988 0.989 0.990 0.986 0.992

0.15 0.971 0.938 0.938 0.952 0.987 0.990 0.984 0.988

Empirical Length

0.09 0.289 0.411 0.441 0.456 0.276 0.390 0.436 0.425
SB 0.12 0.274 0.358 0.398 0.441 0.274 0.376 0.402 0.438

0.15 0.268 0.386 0.384 0.408 0.271 0.379 0.386 0.411

0.09 0.302 0.450 0.482 0.533 0.292 0.430 0.474 0.492
SWB 0.12 0.291 0.395 0.447 0.482 0.295 0.420 0.445 0.483

0.15 0.284 0.428 0.425 0.444 0.283 0.414 0.434 0.455

0.09 0.271 0.380 0.409 0.418 0.283 0.393 0.435 0.450
MBB 0.12 0.254 0.323 0.360 0.398 0.270 0.372 0.385 0.427

0.15 0.237 0.343 0.338 0.360 0.254 0.362 0.361 0.385
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Table A11: Empirical coverage and length of 95%-level intervals and bands for β1(·) and β2(·) with n = 200
and (NL2) errors and I(0) xt.

β1 β2

h PW Gsub G FS PW Gsub G FS

Empirical Coverage

0.09 0.967 0.952 0.954 0.936 0.972 0.968 0.958 0.928
SB 0.12 0.949 0.904 0.906 0.920 0.974 0.966 0.960 0.946

0.15 0.884 0.748 0.762 0.748 0.975 0.968 0.966 0.940

0.09 0.969 0.974 0.980 0.974 0.974 0.984 0.980 0.950
SWB 0.12 0.953 0.942 0.946 0.942 0.976 0.988 0.984 0.958

0.15 0.890 0.824 0.836 0.844 0.976 0.980 0.974 0.962

0.09 0.966 0.950 0.958 0.954 0.973 0.968 0.964 0.958
MBB 0.12 0.944 0.892 0.900 0.940 0.973 0.972 0.968 0.970

0.15 0.867 0.696 0.710 0.708 0.973 0.956 0.958 0.952

Empirical Length

0.09 0.157 0.223 0.242 0.264 0.156 0.222 0.240 0.263
SB 0.12 0.137 0.187 0.204 0.226 0.136 0.195 0.202 0.225

0.15 0.124 0.179 0.184 0.188 0.123 0.178 0.182 0.186

0.09 0.160 0.248 0.270 0.321 0.159 0.243 0.266 0.318
SWB 0.12 0.140 0.206 0.231 0.239 0.138 0.211 0.227 0.238

0.15 0.126 0.196 0.201 0.211 0.125 0.195 0.201 0.208

0.09 0.155 0.224 0.242 0.262 0.154 0.221 0.240 0.260
MBB 0.12 0.135 0.185 0.200 0.227 0.133 0.191 0.198 0.225

0.15 0.121 0.176 0.181 0.185 0.120 0.175 0.179 0.183
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Table A12: Empirical coverage and length of 95%-level intervals and bands for β1(·) and β2(·) with n = 200
and (NL2) errors and I(0)/I(1) xt.

β1 β2

h PW Gsub G FS PW Gsub G FS

Empirical Coverage

0.09 0.981 0.986 0.982 0.852 0.987 0.990 0.998 0.870
SB 0.12 0.983 0.972 0.976 0.882 0.992 0.996 0.996 0.866

0.15 0.971 0.918 0.920 0.898 0.993 0.976 0.982 0.940

0.09 0.983 0.988 0.988 0.886 0.988 0.995 0.998 0.892
SWB 0.12 0.984 0.986 0.984 0.902 0.992 0.998 0.998 0.896

0.15 0.974 0.944 0.940 0.914 0.994 0.988 0.988 0.954

0.09 0.994 0.994 0.996 0.994 0.996 0.996 0.996 0.992
MBB 0.12 0.991 0.988 0.990 0.992 0.995 0.998 0.998 0.998

0.15 0.975 0.948 0.954 0.956 0.993 0.986 0.988 0.990

Empirical Length

0.09 0.234 0.331 0.360 0.370 0.231 0.324 0.366 0.362
SB 0.12 0.235 0.295 0.343 0.374 0.235 0.332 0.353 0.379

0.15 0.233 0.331 0.343 0.352 0.239 0.331 0.347 0.363

0.09 0.245 0.372 0.396 0.439 0.243 0.364 0.408 0.431
SWB 0.12 0.248 0.330 0.386 0.426 0.245 0.370 0.392 0.422

0.15 0.247 0.370 0.376 0.399 0.253 0.371 0.395 0.408

0.09 0.230 0.317 0.337 0.360 0.231 0.324 0.357 0.369
MBB 0.12 0.221 0.263 0.312 0.342 0.220 0.307 0.315 0.348

0.15 0.209 0.296 0.292 0.316 0.208 0.286 0.296 0.316
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Table A13: Empirical coverage of 95%-level intervals and bands for β1(·) and β2(·) when the bandwidth is
selected by LMCV(ℓ), i.e., leaving (2ℓ+ 1) out with ℓ = 0, 2, 4, 6, as well as their averages (labeled as AVG),
see Friedrich and Lin (2022). Here, we have AR errors and I(0) xt.

β1 β2

PW Gsub G FS PW Gsub G FS

SWB

LMCV0 0.940 0.930 0.940 0.912 0.941 0.948 0.942 0.916
LMCV2 0.942 0.936 0.946 0.920 0.942 0.950 0.946 0.912
LMCV4 0.938 0.942 0.948 0.930 0.941 0.942 0.944 0.934
LMCV6 0.940 0.934 0.924 0.914 0.941 0.938 0.940 0.926
AVG 0.942 0.936 0.934 0.924 0.941 0.942 0.934 0.928

MBB

LMCV0 0.937 0.906 0.916 0.898 0.936 0.902 0.890 0.876
LMCV2 0.937 0.920 0.918 0.896 0.939 0.890 0.888 0.892
LMCV4 0.936 0.896 0.908 0.904 0.939 0.902 0.904 0.896
LMCV6 0.935 0.904 0.892 0.902 0.938 0.914 0.902 0.902
AVG 0.939 0.922 0.904 0.898 0.938 0.900 0.890 0.894
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Table A14: Empirical coverage of 95%-level intervals and bands for β1(·) and β2(·) when the bandwidth is
selected by LMCV(ℓ), see Figure A13 for further details. Here, we have AR errors and I(0)/I(1) xt.

β1 β2

PW Gsub G FS PW Gsub G FS

SWB

LMCV0 0.961 0.970 0.974 0.854 0.959 0.982 0.978 0.868
LMCV2 0.963 0.980 0.986 0.896 0.963 0.976 0.976 0.884
LMCV4 0.963 0.964 0.970 0.892 0.966 0.976 0.978 0.902
LMCV6 0.964 0.970 0.968 0.904 0.969 0.974 0.982 0.928
AVG 0.964 0.976 0.974 0.888 0.965 0.978 0.992 0.900

MBB

LMCV0 0.969 0.950 0.966 0.950 0.964 0.946 0.960 0.920
LMCV2 0.971 0.970 0.968 0.970 0.967 0.954 0.964 0.936
LMCV4 0.971 0.970 0.974 0.972 0.969 0.946 0.958 0.956
LMCV6 0.970 0.964 0.962 0.958 0.969 0.946 0.954 0.960
AVG 0.972 0.966 0.968 0.968 0.970 0.948 0.962 0.948
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Table A15: Empirical coverage of 95%-level intervals and bands for β1(·) and β2(·) when the bandwidth is
selected by LMCV(ℓ), see Figure A13 for further details. Here, we have GARCH1 errors and I(0) xt.

β1 β2

PW Gsub G FS PW Gsub G FS

SWB

LMCV0 0.929 0.894 0.864 0.844 0.942 0.920 0.898 0.862
LMCV2 0.930 0.884 0.882 0.842 0.943 0.914 0.908 0.880
LMCV4 0.929 0.914 0.892 0.860 0.945 0.934 0.924 0.904
LMCV6 0.927 0.898 0.888 0.858 0.947 0.940 0.930 0.912
AVG 0.929 0.906 0.898 0.866 0.944 0.916 0.910 0.896

MBB

LMCV0 0.933 0.868 0.852 0.826 0.938 0.908 0.866 0.848
LMCV2 0.934 0.886 0.880 0.868 0.940 0.908 0.878 0.858
LMCV4 0.933 0.876 0.874 0.878 0.940 0.922 0.898 0.870
LMCV6 0.931 0.888 0.870 0.866 0.940 0.906 0.874 0.858
AVG 0.935 0.886 0.874 0.860 0.940 0.916 0.892 0.880
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B Additional empirical results

B.1 The SWB confidence intervals and bands for Models (5.2) and (5.3)

Figure 10: Estimated curve of γ3(·) (black line) and resulting 95%-level confidence intervals (grey, labeled
as PW) and bands using the SWB for Model (5.2), see Figure 3 for further information.

Figure 11: Estimated curve of γ4(·) (black line) and resulting 95%-level confidence intervals (grey, labeled
as PW) and bands using the SWB for Model (5.3), see Figure 5 for further information..
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B.2 Models without lag terms

Our bootstrap methods allow error processes that are serially dependent. As a robustness check, we

consider the lag-free counterparts of Models (5.2) and (5.3):

CSADm,t = γ0(t/n) + γ1(t/n)Rm,t + γ2(t/n)|Rm,t|+ γ3(t/n)R
2
m,t + εt, (B.1)

CSADm,t = γ0(t/n) + γ1(t/n)Rm,t + γ2(t/n)|Rm,t|+ γ3(t/n)R
2
m,t + γ4(t/n)R

2
int,t + εt. (B.2)

B.2.1 The MBB confidence intervals and bands for Models (B.1) and (B.2)

Figure 12: Estimated curve of γ3(·) (black line) and resulting 95%-level confidence intervals (grey, labeled
as PW) and bands using the MBB for Model (B.1), see Figure 3 for further information.

Figure 13: Estimated curve of γ4(·) (black line) and resulting 95%-level confidence intervals (grey, labeled
as PW) and bands using the MBB for Model (B.2), see Figure 5 for further information.
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B.2.2 The SWB confidence intervals and bands for Models (B.1) and (B.2)

Figure 14: Estimated curve of γ3(·) (black line) and resulting 95%-level confidence intervals (grey, labeled
as PW) and bands using the SWB for Model (B.1), see Figure 3 for further information.

Figure 15: Estimated curve of γ4(·) (black line) and resulting 95%-level confidence intervals (grey, labeled
as PW) and bands using the SWB for Model (B.2), see Figure 5 for further information.
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