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Large Orders in Small Markets:
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Agostino Capponi† Albert J. Menkveld‡ Hongzhong Zhang§
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Abstract

We model the execution of large uninformed sell orders in the presence of strategic
competitive market makers. We solve for the unique symmetric equilibrium of the
model in closed-form. Our equilibrium findings provide a rationale for the empirically
observed patterns of (i) short orders exhibiting higher intensity of execution and (ii)
price pressure potentially subsiding before execution is completed. The model further
generates a liquidity surface where the total price impact depends both on the size and
duration of the order. Lastly, our analysis demonstrates that large orders unequivocally
benefit market makers, while smaller investors stand to benefit only if the order trades
with a sufficiently high intensity.
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1 Introduction

The past few decades have seen a gradual rise in intermediated investment in securities
markets. For instance, French (2008, Table 1) highlights a notable trend wherein direct
holdings of U.S. equity decreased significantly from 47.9% in 1980 to 21.5% in 2007. The
Economist reports an even more dramatic trend with individual-investor ownership of U.S.
equity declining from 90% in 1950 to 30% in 2014.1 All this has given rise to large institutional
investors for whom asset re-allocations trigger liquidity demands that are large relative to
the markets they trade in. In response to concerns regarding liquidity risk management,
regulators have undertaken several initiatives of late. 2 This paper focuses on studying
liquidity within this particular context.

We investigate the execution of large uninformed sell orders in the presence of strategic
competitive market makers (à la Cournot). Other (small) investors are not strategic: they
arrive, potentially trade, and immediately leave forever. In the model, we assume the large
seller trades at constant intensity. We show in Remark 1 that this mirrors the so-called
percentage of volume trade (POV) trading algorithm, one of the three most common trade
execution strategies together with the time weighted and volume weighed average price strat-
egy. The model yields a tractable unique symmetric equilibrium with closed-form equilibrium
expressions that allow us to answer the following questions:

1. Can we rationalize empirically observed patterns of order execution? Data suggest
that shorter orders trade at higher intensities (see, e.g., Figure 3 and Brough 2010,
Table 2.6). Moreover, price pressure may vanish even before order execution ends
(Zarinelli et al. 2015, Figure 8).

2. Can the cost of executing large orders be characterized by a “liquidity surface”? In
other words, can the price impact of large orders be calculated as a function of size
and duration?

1See “Reinventing the Deal”, The Economist, Oct 24, 2015.
2In 2016 the Securities and Exchange Commission (SEC) proposed Rule 22e-4 that requires open-end

funds to disclose the liquidity risk associated with their holdings (SEC 2016). It triggered significant pushback
from the industry causing delays (see “SEC Tackles Fund Liquidity Complexity with Rule Proposal, Delay,
New Guidance,” Reuters, March 27, 2018). The European Securities and Markets Authority (ESMA) stopped
short of any regulatory steps but instead published guidelines on liquidity stress testing (ESMA 2019).
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3. Should regulators worry about large orders? In other words, does the presence of large
orders benefit or hurt market makers and/or other (small) investors?

Our analysis contributes to a large and well established theoretical literature on market
liquidity in scenarios where information is symmetric across agents. Examples of articles
surveying the vast literature on liquidity (including asymmetric-information models such as
Kyle 1985) are Madhavan (2000), Vayanos and Wang (2013), and Amihud, Mendelson, and
Pedersen (2005). This literature may be structured as follows. One set of models studies best
execution in the presence of exogenous liquidity supply, and endogenizes liquidity demand
(see, e.g., Bertsimas and Lo (1998), Almgren and Chriss (2001), Huberman and Stanzl
(2005), Obizhaeva and Wang (2013), Gatheral and Scheid (2011), Boulatov, Bernhardt, and
Larionov (2016), or van Kervel, Kwan, and Westerholm (2018)). Another set of models
does the opposite. It assumes liquidity demand to be exogenous and endogenizes liquidity
supply (see, e.g., Amihud and Mendelson (1980), Ho and Stoll (1981), Aı̈t-Sahalia and
Saglam (2017), Grossman and Miller (1988), Weill (2007), Hendershott and Menkveld (2014),
Liu and Wang (2016), Gayduk and Nadtochiy (2018), or Bank, Ekren, and Muhle-Karbe
(2018)). A third set of models considers demand and supply jointly (see, e.g., Vayanos
(2001), Goettler, Parlour, and Rajan (2005), Pritsker (2009), Rostek and Weretka (2015),
Gabaix et al. (2006), Choi, Larsen, and Seppi (2018), Choi, Larsen, and Seppi (2019), or
Fardeau (2019)).

Our contribution relative to this literature is to focus on dynamic liquidity supply to a
sliced-and-diced large order. The model yields tractable expressions for the endogenous price
response to such an order, including a bid-ask spread, depth at the best quotes, and price
pressure (i.e., the wedge between the midquote and fundamental value). The tractability of
our model enables us to address three main questions that, to the best of our knowledge,
have not been explored in existing studies.

Our endogenous price-impact results contribute to the understanding of liquidity by
industry professionals, regulators, and retail investors. Institutional investors, in particular,
can benefit from our insights. For instance, we demonstrate that each order size necessitates
a minimum duration for the market to absorb the order efficiently. If an order of the same
size is executed within a shorter period, selling fewer shares would result in higher total
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proceeds.3 Moreover, for any duration beyond the minimum duration, the equilibrium price
impact can be computed analytically. The availability of closed-form expressions allows
us to perform sensitivity analysis with respect to changing market conditions (e.g., fewer
market makers or higher funding cost). The model-implied liquidity surface is particularly
useful when having to meet the regulatory requirements on transparency (see footnote 2).
Relatedly, our findings are likely to be of interest to those who offer optimal-execution services
such as Goldman Sachs (GSET), BlackRock (Aladdin), or ITG (ACE).4

Results. An important baseline result is that the model yields a unique and tractable
symmetric equilibrium. Examining this equilibrium provides us with conclusive responses to
the key questions formulated in the introduction.

First, the equilibrium price paths are such that price pressure can subside before exe-
cution ends (i.e., prices start reverting back to fundamental value before execution ends).
This is somewhat surprising since the large seller sells at constant intensity (by assumption,
mirroring POV execution). The model can thus endogenously generate this price pattern
which has been observed in the data by Zarinelli et al. (2015, Fig. 8). Moreover, it can
generate a negative correlation between order duration and execution intensity, for which we
provide empirical evidence in Section 4.1.

Second, uniqueness of the equilibrium allows us to draw a liquidity surface. Fixing model
parameters, one can compute the equilibrium price impact for a large order as a function of
its size and duration (where intensity, in this case, is equal to size divided by duration). A
corollary result is that for each order size, there is a minimum amount of time needed for
the market to be able to absorb the order (as discussed above). The model is calibrated to
illustrate what the liquidity surface looks like for a typical blue-chip stock.

Third, we compare the market with and without a large seller to assess whether his
presence benefits or hurts others. Market makers unambiguously benefit from the presence
of a large seller, but other investors benefit only if he sells at a high enough intensity.

3This is equivalent to the standard monopolist case where rationing supply can generate larger total
profit.

4As a matter of fact, ACE is based on an (undisclosed) structural model. Investment Technology Group
(ITG) (2007) explicitly advertises its advantage by stating: “The ITG ACE model is not a purely econometric
model calibrated based on transaction cost data. Rather, it is a structural model that uses parameters
estimated econometrically.” Grinold and Kahn (1999, Ch. 15) emphasize the importance of a structural
dynamic model for transactions cost in their comprehensive analysis of active portfolio management.
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The trade-off for these investors is that, on the one hand, they benefit from temporarily
depressed prices because they become net buyers in this period. On the other hand, the bid-
ask spread is wider while the large seller executes and this hurts them. We show that the
former channel dominates the latter, if the large seller sells at a high enough intensity. This
should interest regulators who tend to worry about large temporary price “distortions.” Our
analysis shows that such distortions could be the healthy outcome of a participant paying
the price for immediacy that others happily provide (including participants other than the
market makers). The analyis, therefore, provide regulators with a comprehensive analysis of
market quality, including all market participants.

The structure of the paper is as follows. Section 2 presents and motivates the model. Sec-
tion 3 derives the unique symmetric equilibrium. Section 4 utilizes the tractable equilibrium
expressions to address the three main questions. Section 5 concludes.

2 Model

The model primitives capture a setting where a large investor sells at constant intensity for
a particular period of time. (The case of a large buyer is completely symmetric.) Other
investors arrive continuously and are “small” in the sense that they arrive, trade, and leave
forever. The amount they trade depends on the bid and ask prices prevailing in the market.
The net order flow is absorbed by a set of market makers who compete à la Cournot. They
start off with zero inventory. Bid and ask price trajectories are such that the market clears
at each point in time. The large investor is large in the sense that he, unlike others, requires
an interval to trade (i.e., the large investor slices and dices his order whereas others trade
in one go).

Before describing the model primitives in detail, it is useful to illustrate the model graph-
ically. Figure 1 provides such illustration (informed by the model calibration presented in
Appendix D). The top graph depicts the net flows by investors. The large investor sells his
order at constant intensity until time d (d for duration, red line). Others either buy or sell at
a particular intensity. This intensity depends on the relative bid and ask prices (i.e., bid and
ask prices minus fundamental value). Buyers, for example, buy more if relative bid prices
are more negative. We will refer to these relative prices simply as prices in the remainder of
the manuscript for ease of discussion. We will only add “relative” if emphasis is required.
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Figure 1: Model visualization. This figure illustrates the model by sketching the equi-
librium trajectories for key variables. The top graph plots the (continuous) net flow of the
large seller as well as the flow of the continuously arriving buy and sell investors. The mid-
dle graph plots the inventory of market makers, which results from the net flows in the top
graph. The bottom graph plots the bid and ask prices relative to fundamental value.
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The middle graph illustrates how aggregate inventory of market makers evolves with
time. As markets need to clear, their inventory equals the cumulative net flow from the top
graph, summed across all investors. Notice how the inventory of market makers increases
while the large seller is executing, but mean-reverts quickly to zero after the large seller
leaves the market.

The bottom graph illustrates the (relative) bid and ask price trajectories. The bid and
ask straddle zero symmetrically just before the large seller starts executing. They jump
down the moment the large seller enters which, as we will describe below, is the point at
which market makers learn about the presence of the large seller. They observe both his sell
intensity and the duration of his order, and respond strategically. Notice further that the
bid-ask spread widens while the large seller is executing, seemingly driven by bids adjusting
more to his presence than asks.

The remainder of this section describes the model primitives in full detail. To keep track
of all notation used, we provide a summary in Appendix A. The model is set in continuous
time, features a single security, and three types of agents: a large seller, N market makers,
and continuously arriving other investors who are either buyers or sellers.

Security. The security’s fundamental (common) value follows a Brownian motion with
volatility σ > 0:

dmt = σdZt. (1)

The fundamental value is common knowledge to all agents in the model.

Investors (other than the large seller). Investors other than the large seller are small.
They arrive, trade, and leave forever. The sense in which they are small is that they can
trade all they want instantly. The amount they trade, however, does depend on the bid and
ask prices they encounter in the market. Together these investors are modeled as a flow of
price-sensitive liquidity demand. The flow of buy demand is:

qat dt = δ ((mt + ω)− (mt + pat )) dt = δ (ω − pat ) dt, (2)

where pat is the (relative) ask quote. The parameter δ captures the level of trade activity for
the security, and ω represents its (relative) reservation value to buyers.
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The flow of sell demand is modeled analogously:

qbtdt = δ
(
pbt + ω

)
dt, (3)

where −ω is the (relative) reservation value of sellers.

Large seller. The larger seller arrives at time 0 and leaves at time d. He is not strategic.
He sells at constant intensity f and his total order size therefore is: S = f × d. Similar to
other investors who sell, his (relative) reservation value for the security is −ω.5 His surplus
from selling discounted to time 0 is:

Pd(f) =
∫ d

0
e−βtf

(
ω + pbt

)
dt, (4)

where β > 0 is the intertemporal discount rate. We do not endow the large seller with an
objective function. Instead, we map out all his options and what they mean in terms of price
impact (see, e.g., the liquidity surface in Section 4.2).

Market makers. Market makers are Cournot competitors who are in the market con-
tinuously. At each instant of time, they decide how much liquidity to supply: how many
securities to sell at the ask price and how many to buy at the bid. Denote by qajt = qajt(pat )
the sell intensity of market maker j at the ask price pat at time t. The total sell intensity
by market makers at that price therefore equals ∑N

j=1 q
a
jt. Market clearing requires that the

intensity of buy investors in Eq. (2) equals the sell intensity of market makers at the ask
price:

qat =
N∑
j=1

qajt. (5)

Combining this market-clearing condition with Eq. (2) yields an expression for the ask price
in terms of the sell intensities of market makers:

pat = ω − 1
δ

N∑
j=1

qajt. (6)

5Other than maintaining some homogeneity across investors, this assumption avoids the potential trivial
solution of market makers setting the bid at the large-seller’s reservation value in case it is strictly lower
than −ω, thus benefiting from his demand inelasticity.
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Following the same steps for the other side of the market yields the following expression for
the bid price:

pbt = 1
δ

 N∑
j=1

qbjt − f1{t<d}

− ω, (7)

where 1A is the indicator function which equals one if A holds and zero otherwise. Observe
that the difference between Eq. (6) and Eq. (7) is the (inelastic) sell intensity of the large
seller for the period when he is executing.6

Note that the pricing equations, Eq. (6) and Eq. (7), relate market-clearing prices to the
buy and sell intensities set by market makers. The inventory state of market maker j evolves
as

dijt = −qajtdt+ qbjtdt. (8)

We can now define his wealth dynamics as follows:

dWjt =
(
ω − 1

δ

N∑
n=1

qant

)
qajtdt−

(
−ω + 1

δ

(
N∑
n=1

qbnt − f1{t<d}
))

qbjtdt. (9)

The disutility of non-zero inventory to a market maker enters his objective function as a
pecuniary cost that scales with inventory squared (similar to, for example, Madhavan and
Smidt 1993, Hendershott and Menkveld 2014, Duffie and Antill 2020).7 With all these
ingredients, the value function of market maker j can now be defined explicitly as:

vMj (ijt, f, d, t) = sup
qj |q−j

∫ ∞
t

e−β(s−t)
(
dWjs − ηi2jsds

)
, (10)

where qjt is shorthand for
(
qajt, q

b
jt

)
which contains the sell intensity (at the ask) and the buy

intensity (at the bid), q−j is a vector with all market maker buy and sell intensities except
market maker j, and η parameterizes the flow cost associated with non-zero inventory. This

6Note that the equivalent of Eq. (5) here is

f1{t<d} + qb
t =

N∑
j=1

qb
jt.

7Almgren and Chriss (2001) develop a model of inventory costs for financial firms that is widely used in
the industry and in academic studies. They assume that the rate of inventory costs for trader j at time t is
ηi2jt for a fixed coefficient η.
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cost is increasing in a security’s fundamental volatility (σ), in market-maker risk-aversion,
or in funding cost.

We can now define the Cournot-Nash equilibrium formally as:

Definition 1. A Cournot equilibrium is a strategy profile q := (q1, . . . , qN) where each qj

solves (10) taking q−j as given.

We focus on symmetric strategy profiles only (following standard practice, e.g., Brunner-
meier and Pedersen 2005). Note that once equilibrium buy and sell intensities are solved for,
equilibrium prices follow immediately by plugging the intensities into Eq. (6) and Eq. (7).

3 Equilibrium

This section derives the equilibrium for the baseline case without a large seller and the case
with a large seller.

3.1 Baseline case: No large seller

Proposition 1 (Baseline case: No large seller). The baseline case without a large seller has
a unique symmetric equilibrium. The equilibrium buy and sell intensities are time invariant
and depend only on a market maker’s inventory state i. Note that total inventory summed
across all market makers is Ni due to symmetry. The (relative) bid and ask prices are:

pb(i) = −Aθ −BθNi, (Bid price) (11)

pa(i) = Aθ −BθNi. (Ask price) (12)

The implied bid-ask spread therefore is:

s(i) = pa(i)− pb(i) = 2Aθ (Bid-ask spread) (13)
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and the implied conditional price pressure Bθ (defined as midquote skew per unit of inventory,
Hendershott and Menkveld 2014) is:

(
pa(i)+pb(i)

2

)
Ni

= Bθ. (Conditional price pressure) (14)

Each market maker chooses the following buy and sell intensity:

qb(i) = Cθ −Dθi, (Bid intensity) (15)

qa(i) = Cθ +Dθi. (Ask intensity) (16)

The value function for a market maker is:

vM(i) = Eθ − Fθi2. (Value to market maker) (17)

If market makers start with a zero inventory (i.e., i0 = 0), then the inventory path is:

it = 0 ∀t > 0. (Market maker inventory) (18)

The constants Aθ, . . . , Fθ > 0 are closed-form expressions in the model parameters, whose
expressions are specified in Eq. (A8).

(All proofs are delegated to Appendix C.)
We discuss the economic insights that follow from Proposition 1 in two stages. We first

consider the special case of perfect competition for which the equilibrium expressions become
particularly friendly. We then present comparative statics by signing the partial derivatives
for various equilibrium variables, such as the bid-ask spread and conditional price pressure.

Perfect competition. The case of perfect competition is obtained by taking the number
of market makers to infinity as is done in the following corollary:

Corollary 1 (Perfect competition). The liquidity supplied by market makers in the case of
perfect competition (i.e., N →∞) can be characterized as follows. The bid-ask spread is:

lim
N→∞

pa(i)− pb(i) = lim
N→∞

2Aθ = 0, (Bid-ask spread) (19)
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the conditional price pressure is:

lim
N→∞

Bθ = 2η
β
, (Conditional price pressure) (20)

and the aggregate trading intensities the market makers supply at the bid and the ask price,
respectively, are:

lim
N→∞

NCθ +NDθi = δω − 2δ η
β
i, (Bid depth) (21)

lim
N→∞

NCθ +NDθi = δω + 2δ η
β
i. (Ask depth) (22)

The value function for a market maker is:

lim
N→∞

vM (0) = 0. (Value single market maker) (23)

Corollary 1 yields several insights. First, the bid-ask spread becomes zero when infinitely
many market makers enter. Second, the sum of bid and ask depth reaches its maximum
value: 2NCθ = 2δω.8 Third, conditional price pressure remains strictly positive. Fourth,
investors only pay or earn such price pressure if market maker inventory is non-zero. This,
however, never happens if market makers start off with zero inventory.

The expression for conditional price pressure in Eq. (20) yields some additional insight.
First, if holding inventory becomes more costly for market makers (i.e., higher η), then price
pressure increases. This result is intuitive. Second, if market makers care less about the
future (i.e., higher β) then price pressure declines. This finding is less intuitive. The reason
is that β affects a fundamental trade-off underlying equilibrium price pressure. The trade-off
for market makers is spending more money now to mean-revert out of non-zero inventory
(i.e., more price pressure) or saving this money but then staying longer on the inventory
and suffer the pecuniary costs associated with it (captured by η). If the future is discounted
more, then this trade-off shifts in favor of spending less now and therefore reducing price

8This result follows from the following two observations. First, from Eq. (2) and Eq. (3), it follows that
total depth is:

qa
t + qb

t = δ
(
2ω −

(
pa

t − pb
t

))
. (24)

Second, the bid-ask spread is constrained to be non-negative. It then immediately follows that the maximum
value of the right-hand side of Eq. (24) is 2δω.
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Table 1: Comparative statics equilibrium liquidity supply

This table summarizes how equilibrium liquidity supply in the baseline model changes when one of the
parameters is changed. The proof for these results is provided in Appendix C. Liquidity supply is character-
ized by the bid-ask spread and conditional price pressure (i.e., price change per unit of aggregate inventory
change). The results are obtained by signing partial derivatives.

Parameter Bid-ask spread Conditional price
pressure

Inventory-holding cost (η) Unchanged +
Number of market makers (N) − −
Discount rate (β) Unchanged −
Level of trade activity (δ) Unchanged −
Reservation value investors (ω) + Unchanged

pressure. Note that this effect cushions liquidity deterioration at times of crisis when market
makers much prefer a dollar now over a dollar in the future (i.e., β becomes higher).

Comparative statics. Table 1 provides comparative statics on equilibrium liquidity sup-
ply. Such supply is fully characterized by two complementary measures: the bid-ask spread
and conditional price pressure (i.e., the price change on a unit of aggregate inventory change).
The comparative statics serve mostly as a sanity check. The table, for example, shows that
price pressure increases when the cost of holding the security is higher, liquidity demand is
lower, or fewer market makers supply liquidity.

Some results in Table 1 are less trivial. First, conditional price pressure decreases when
the discount rate increases. This result reflects an increased desire of market makers to
save a dollar now, less price pressure, and, in return, accept a lower speed of inventory
mean-reversion (see the above discussion of Eq. (20)).

Second, if investors have higher reservation values (i.e., higher ω), then the bid-ask spread
increases and conditional price pressure remains unchanged. The spread result can be ex-
plained by the Cournot competition: Market makers squeeze out additional rent if demand
surplus is increased by raising ω. The unchanged price pressure, on the other hand, can be
understood by observing that changing ω does not change the sensitivity of liquidity demand
to price changes. If the speed of inventory mean-reversion is unchanged, then market makers
have no reason to change conditional price pressure.

13



3.2 Large-seller case

Proposition 2 (Large-seller case). Consider the baseline case and add a large seller who
sells at constant rate f during the interval [0, d]. The symmetric equilibrium remains unique
but equilibrium trading intensities are no longer time invariant. They now depend on both
(individual) market-maker inventory i and time t. The relative bid and ask price are:

pb(i, f, d, t) = pb(i)− 1{t≤d}f (Gθ (d− t) +Hθ) , (Bid price) (25)

pa(i, f, d, t) = pa(i)− 1{t≤d}f (Gθ (d− t)) , (Ask price) (26)

where pb (i) and pa (i) are the bid and ask price in the baseline case of Proposition 1. Gθ (τ)
is zero for τ = 0, strictly concave and strictly increasing in τ , and Hθ is a positive constant.
Therefore, the bid-ask spread is:

s(i, f, d, t) = s(i) + 1{t≤d}fHθ, (Bid-ask spread) (27)

where s(i) is the bid-ask spread in the baseline case. The conditional price pressure is the
same as in the baseline case:

Bθ = 1
Ni

pa(i) + pb(i)
2 . (Conditional price pressure) (28)

Each market maker chooses the following buy and sell intensity:

qb(i, f, d, t) = qb(i)− 1{t≤d}f
δ

N
(Gθ (d− t)−NHθ) , (Bid depth) (29)

qa(i, f, d, t) = qa(i) + 1{t≤d}f
δ

N
(Gθ (d− t)) . (Ask depth) (30)

The value function for a market maker is:

vM(i, f, d, t) = vM(i) + 1{t≤d} (Iθ (d− t, f) + fJθ (d− t) i) , (Value) (31)

where Iθ (τ, f) = 0 for τ = 0 or f = 0 and convex in f . Jθ (τ) = 0 for τ = 0 and strictly
decreases in τ .

Proposition 2 describes how the equilibrium changes when, relative to the baseline case,
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a large seller arrives at t = 0 and sells at constant intensity f until t = d (d for dura-
tion). Market makers learn all this information at the time the large seller arrives, and
respond strategically. It is useful to compare this large-seller case to the baseline case. Such
comparison yields the following insights.

First, the bid and ask prices are skewed downwards by an amount that is larger the
further t is from duration d. This skew is captured by the term Gθ(t − d), which is an
analytic function of the model parameters collected in the vector θ. While the large seller
is trading, the ask price smoothly converges to the baseline ask price that prevails just after
he finished trading at t = d (i.e., mathematically, Gθ(0) = G′θ(0) = 0).

The bid price, on the other hand, jumps up at t = d by Hθ > 0. Note that, relative to
the ask price, the bid price is shaded by this additional amount Hθ while the large seller is
trading. This is the result of market makers being strategic and understanding that part of
the liquidity demand of sellers is price inelastic in this period. In other words, they extract
additional rent from the fact that the large seller is trading at constant intensity f (i.e., f is
price insensitive).9

Second, because the bid is skewed more than the ask while the large seller is executing,
the bid-ask spread is wider in this period. This finding contributes to explain why Comerton-
Forde et al. (2010) find that spreads were wider when the NYSE specialist was carrying larger
inventories. The baseline model cannot explain this finding since, in that model, the spread
does not depend on inventory (similar to Hendershott and Menkveld 2014, Section 3.2.2.).
It is the presence of a price-insensitive large investor combined with imperfectly competitive
market making that drives this result.

Remark 1. POV determines the distribution of order trading intensity over the day using
a target percent of traded volume. Combining equations (2) and (3), we deduce that
the (gross) volume traded by the price-sensitive investors in each infinitesimal interval is
δ
(
2ω + pbt − pat

)
dt. This volume is constant because the bid-ask spread pat − pbt is constant

during the execution period [0, d], as seen from Eq. (27). This implies that, by selling at
a constant intensity f , the larger seller in our model is effectively implementing a POV
strategy.

9Observe that it is never optimal for market makers to let the bid price drop to −∞ if the large seller
liquidates at a finite rate. If this were the case, the demand of the price-sensitive end investors would cause
huge inventory imbalances and the resulting costs exceed trading gains.
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The equilibrium yields tractable expressions for the path of market-maker inventory and,
relatedly, the path of bid and ask prices. These are characterized in the following lemmas.

Lemma 1 (Market-maker inventory path). If market makers start with zero inventory, then
their inventory

• strictly increases in time while the large seller is executing,

• is homogeneous of degree one in the large seller’s trade intensity, and

• exhibits exponential decay towards zero after the seller completed the execution of his
order.

Lemma 1 establishes that, if market makers start with zero inventory, they accumulate
inventory while the large seller is executing his order. When he is done, inventory decays
back to zero exponentially. Interestingly, if the large seller increases his trade intensity
then inventory increases proportionally (i.e., homogeneity of degree one). These results
for inventory paths can now be used to characterize price paths since these are linear in
inventory. This leads to the following lemma.

Lemma 2 (Equilibrium bid and ask price path). If the market makers start with zero
inventory, then bid and ask price for t ≤ d:

• jump down at t = 0,

• are convex in t,

• strictly decline initially,

• but potentially increase in t provided d is large enough.

For t > d the price paths

• are concave in t and

• strictly increase in t.

At time t = d, only the bid price jumps up.
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The characterization of equilibrium price paths in Lemma 2 yields the following insights.
First, if market makers start with zero inventory (i.e., the steady state in the baseline case),
then (relative) prices straddle symmetrically around zero, but jump down when the large
seller starts executing. The reason is that market makers observe entry of the large seller
and understand that this implies directional liquidity demand until t = d.

Second, prices keep declining after the initial jump, but might show reversal before the
seller is done executing. This result is somewhat surprising given that the large seller does
not release his sell pressure in the final stages of his order execution. This result demonstrates
the power of our model being a dynamic one. The core trade-off market makers face at any
point in time is whether to skew quotes more (by adjusting trading intensities) and thus
pay investors a larger subsidy to revert out of non-zero inventory, or stay longer on costly
non-zero inventory. This trade-off explains why in the final stages of the sell-order execution,
market makers might become less willing to pay a subsidy given that they will soon be able
to mean-revert paying a lower subsidy (i.e., after the large seller has left the market). This
pattern of prices reverting before an execution ends, has been documented based on Abel
Noser data (Zarinelli et al. 2015, Fig. 8). Our equilibrium result can rationalize this hitherto
somewhat puzzling empirical finding.

4 Results

We use the equilibrium developed in the previous section to provide answers to the three
main questions of our study. Section 4.1 establishes results on the negative relation between
order duration and execution intensity. Section 4.2 plots the liquidity surface that relates
price impact to the size and the duration of a large order. Section 4.3 discusses how welfare
of other market participants is affected by the presence of a large seller. We henceforth
assume that market makers start with zero inventory.

4.1 Order duration and execution intensity

We first establish a strong empirical relationship between the trade intensity of a large order
and its duration. We then show, theoretically, that a monotonically decreasing relation
between order duration and execution intensity can be produced by our model.
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4.1.1 Short order executed at faster rates

We use Abel Noser data on large-order executions by institutional investors in US equity
markets. These data have become a standard source for empirical studies on institutional
order flow. In their survey of Abel Noser studies, Hu et al. (2018) estimate that the institu-
tional volume in Abel Noser data is about 12% of total volume, which shows that coverage
is substantial.

In the Abel Noser sample, we only observe meta statistics on orders, such as average
execution price, the date/time that an order started executing, the date/time that it ended
executing, and the total size of the order. While the start and end dates are known for all
orders, we only observe the start and end times (i.e., an intraday timestamp) for a subset
of orders. We use this subset for our analysis. We remove orders for which the start time is
9:30:00 or the end time is 16:00:00. This removes orders that had missing observations on
these data fields, because Abel Noser filled these fields with 9:30:00 and 16:00:00, respectively
(Hu et al. 2018, p. 149).

Our final sample consists of 405,548 institutional orders in 1134 US equities from 2009
through 2011, after applying the following (additional) filters. First, we select orders that
execute in a single day, which holds for the vast majority of orders. The reason is that (i)
high-frequency market makers “live within the day” as they prefer to end the day with zero
inventory and (ii) non-trading periods are out of scope in our model (i.e., overnight periods).
Second, we select sell orders by plan sponsors to stay close to the model which focuses on
sell orders by uninformed investors. Plan sponsors execute pre-specified plans (e.g., fund
pensions), and trade for allocation reasons rather than for informational reasons. Third, we
retain only stocks that have at least 100 institutional orders to ensure a sufficient number of
observations for our key analysis, which is done stock by stock (i.e., correlate intensity with
duration, see below).

Table 2 presents several summary statistics that lead to the following observations. First,
the average order duration is 1.23 hours. There is a strong right skew as the median order
lasts only 0.33 hours. Second, the average order intensity computed as the ratio of order
size and market volume in the execution period, is 8.36%. Intensity also exhibits right skew
because median intensity is only 2.00%. Third, the number of orders per stock is 357.6 on
average, again showing right skew as the median is only 222.5 orders.
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Table 2: Summary statistics Abel Noser sample

This table presents summary statistics for our Abel Noser sample. It consists of institutional orders in US
equities from 2009 through 2011.

Mean Median Q(.10) Q(.90)

Order duration in hours 1.23 0.33 0.02 4.30
Order intensity 0.0836 0.0200 0.0004 0.2521
# Observations per stock 357.6 222.5 116.0 759.5
Total # of observations 405,548
Number of stocks 1134
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Figure 2: Empirical distribution of order intensity and order duration. This figure
illustrates the empirical distribution of order intensity and order duration. Order intensity
is defined as order size divided by market volume in the order-execution interval. Duration
is the length of the execution interval.
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Figure 3: Correlation order intensity vs. order duration. This figure illustrates
the distribution of the statistically significant correlations between order duration and order
intensity (significance level is 5%). For each stock we calculate such correlation and we retain
only significant ones for this plot. It turns out that 991 out of 1134 stocks show significant
correlations.

Figure 2 plots the empirical distribution of intensity and duration. It suggests a strong
relationship between the two variables. Shorter orders trade at higher intensities. The
marginal distributions illustrate the right skew in both series (consistent with Table 2).

The relationship suggested by Figure 2 could be driven by heterogeneity across stocks.
Perhaps it simply shows a relationship between a dichotomy of stocks: some stocks are only
traded at high intensity for short durations while others are only traded at low intensities for
long durations. It is for this reason that we prefer to remove such heterogeneity completely
by focusing on within-stock variation only.

We test whether the intensity-duration correlation is significantly different from zero at
the stock level. For 991 out of the 1134 stocks we find such significance at the 5% significance
level. The distribution of intensity-duration correlations across these 991 stocks is shown in
Figure 3. Most correlations are between -0.4 and -0.1. None of these correlations is positive.
1011

10Two further results are worth mentioning. First, we verify that these sell orders are uninformed. We
find that relative to the price just prior to the start of the execution (i.e., the reference price), the sell order
executes at a lower average price. Yet, the average price two days after the execution ended, is above the
reference price. Second, the Abel Noser price information provides some support for VWAP trading. The
average transaction price for the sell order is closest to the VWAP for the execution interval, when compared
to the price at the start of the interval, the price at end of the interval, or the average of these two.

11We verify that these sell orders are uninformed. We find that relative to the price just prior to the start
of the execution (i.e., the reference price), the sell order executes at a lower average price. Yet, the average
price two days after the execution ended, is above the reference price.
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The following proposition shows how our model can reproduce the negative relation
between order duration and execution intensity documented above.

Proposition 3 (Optimal liquidation intensity at a given duration). For every duration d >

0, there exists an optimal intensity f ? > 0 such that for any f 6= f ?, we have Pd(f ?) > Pd(f).
This maximum intensity f ? is decreasing in d.

Proposition 3 essentially says that there is a saturation point for each duration. That
is, if one trades at an intensity higher than this saturation point, then this reduces total
proceeds are reduced. In other words, for each duration, there is a maximum size for large
orders (which is equal to the expression f ? × d in the proposition).

4.2 Model-implied liquidity surface

Regulators have started encouraging investors to manage and report their liquidity risk
(see footnote 2). A critical part of such liquidity management is a reliable methodology to
predict the price impact that investors incur when they need to suddenly liquidate part of
their portfolio. Such a need may arise when, for example, investors seek to redeem their
shares in an open-end fund (e.g., Capponi, Glasserman, and Weber 2021).

MSCI, an important consultant on liquidity, argues that this is best characterized by
a “liquidity surface” (MSCI 2019). Such a surface plots the price impact of an order as a
function of its size and duration. Panel (a) in Figure 4 is taken from their report. The
following clarification is taken, word for word, from their report (MSCI 2019, p. 2):

1. Bid-ask spread: Half bid-ask spread is the expected transaction cost for small orders
traded on whatever time horizon.

2. Market impact: The dependence of price impact on order size; larger orders usually
demand larger transaction costs.

3. Market elasticity: The speed, and to what extent, a market regenerates the liquidity
removed by a trade and reverts back to its previous state. This determines how much
transaction costs decrease with longer time horizons.
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(a) MSCI liquidity surface (b) Model-implied liquidity surface

Order size Order duration (hours)
(% of ADV) 1 2 3 4 5 6

0 1.62 1.62 1.62 1.62 1.62 1.62
1 2.68 2.15 1.97 1.88 1.82 1.79
2 3.76 2.71 2.34 2.16 2.05 1.97
3 4.84 3.26 2.72 2.44 2.27 2.16
4 5.92 3.81 3.09 2.72 2.50 2.35
5 6.99 4.37 3.46 3.00 2.72 2.54
6 8.07 4.92 3.83 3.28 2.95 2.73
7 9.15 5.47 4.20 3.56 3.17 2.91

(c) Model-implied liquidity surface, panel (b) in numbers

Figure 4: Liquidity surface. This figure plots the liquidity surface: the price impact of a
large order as a function of its size and duration. The top-left graph depicts the MSCI version
of it (MSCI 2019, p. 2). The top-right graph plots the model-implied liquidity surface. The
bottom panel presents the numbers on which this plot is based.
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4. Market depth: The maximum (buy and sell) size thresholds above which trades are
expected to meet either no sufficient supply/demand or otherwise distressed, unpre-
dictable prices.

Our model generates a model-implied, equilibrium liquidity surface. One might argue
that a model is not needed if one has historical data on price impact, size, and duration.
However, the benefit of generating the surface off of a calibrated model is that one can assess
how the price impact changes when market conditions change (e.g., exit of market makers
or less investor participation).

We believe that the model-implied liquidity surface will be particularly useful for a fund
to manage its liquidity and to carry out its compliance duties. It will help the fund gauge
which securities qualify as “highly liquid” dependent on market conditions. SEC (2016)
requires that at least 85% of the assets of a fund must be highly liquid.12

Panel (b) in Figure 4 plots the liquidity surface based on the calibrated model.13 It plots
the price impact of orders up to 10% of ADV and lasting for up to a day.14 Let us revisit the
four aspects of liquidity according to MSCI, and discuss the model-implied liquidity surface
accordingly. First, (infinitely) small orders pay half the bid-ask spread which is 1.62 basis
points.

Second, large orders pay more than the half spread to compensate market makers for
carrying costly inventory through time. If one executes an order that is seven percent of
ADV over a one-hour period, then the model-implied price impact is 9.15 basis points.
Coincidentally, this price impact of 1.62 and 9.15 basis points for small and large orders is
comparable to the 0.5 × 0.0345 = 1.7 and 11.9 basis points, respectively, reported for US
institutional orders in 2007 (Anand et al. 2013, Table 1 and 2).15

12See also “Get Used to It: New Regulations on Liquidity Risk,” Haaretz, December 1, 2018.
13Given an order of size S and duration d, we first compute the implied sell intensity f = S/d. We then

estimate the price impact as
1
d

∫ d

0
pb (is, f, d, s) ds assuming i0 = 0.

We further assume symmetry across buy and sell orders to create the plot.
14It is common practice to express the size of large order size in ADV units (see, e.g., Anand et al. 2013).

One reason is that this makes order size more comparable across stocks.
15The average order size in Anand et al. (2013) is 2.2% of ADV (Table 1). They do not report durations

but if we take our Abel Noser duration mean of 1.23 hours as a guideline, then their order executes at an
average intensity of 2.2/(1.23/6.50) = 11.6% (note that they also use Abel Noser data).
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Figure 5: Minimum duration as a function of order size. This plot illustrates how
long a large seller needs to take to sell an order of a particular size (expressed as a percentage
of average daily volume, ADV). It is a minimum in the sense that if he were to execute over
a slightly shorter period, then his total proceeds would be strictly higher if a slightly smaller
order were traded. The plot is based on the calibration of our model (see Appendix D).

Third, market elasticity is such that if for the 7%-ADV order, one takes two hours instead
of one, the price impact shrinks by about 40%, from 9.15 to 5.4 basis points. This dimension
of liquidity is more commonly referred to as market resiliency in the academic literature
(e.g., Obizhaeva and Wang 2013).

Fourth, (maximum) market depth is implicitly part of the plot, because this market depth
determines the edges of the liquidity surface. That is, for each order size, there is a minimum
duration. If one were to execute the order over a period slightly shorter than this minimum,
then the total proceeds would be strictly higher if a slightly smaller order were executed.
Figure 5 plots makes this minimum duration explicit by plotting it as a function of order
size. Not surprisingly, larger orders require longer durations. This result is stated formally
in the next proposition.

Proposition 4 (Minimum duration). For every order size S > 0, there exists a minimum
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duration d > 0 such that for any 0 < d′ < d there exists an S ′ < S such that Pd′(S
′

d′
) > Pd′( Sd′ ).

This minimum duration d is increasing in S.

4.3 Value of the presence of a large seller to others

In this final section, we analyze how the presence of a large seller affects the value of others:
market makers and other (small) investors. The benchmark in this analysis is the baseline
case where there is no large seller (i.e., we compare the equilibrium in Proposition 2 with
that in Proposition 1).

Market makers Market makers unequivocally benefit from the presence of a large seller.
Proposition 5 states this result formally. This finding should not be too surprising given that
the presence of a large seller adds to total liquidity demand.

Proposition 5 (The value of the presence of a large seller to market makers). Market makers
with zero initial inventory are better off in case there is a large seller when compared to the
baseline case (without such a seller):

vM(i0 = 0, f, d, t = 0) > vM(i0 = 0) for f, d > 0. (32)

Other investors. While the presence of a large seller benefits market makers unambigu-
ously, it benefits other investors only if the seller sells at a high enough intensity. The
threshold level decreases with duration. In a sense, it seems that directionality in liquidity
demand needs to be painful enough for market makers to make them share part of the gains
from trade with other investors. Directionality becomes painful to them either if intensity is
extremely high or duration is very long.

To state this result formally, we first need to define the value of trading to investors
other than the large seller. A natural definition is to set it equal to the expected realized
surplus of all investors, discounted appropriately, assuming that market makers start with
zero inventory. Mathematically, this definition is:

vI =
∫ ∞

0
e−βs

(1
2δ (ω − pas)

2 + 1
2δ
(
ω + pbs

)2
)

ds, (33)

with i0 = 0.
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Proposition 6 (Value of large-seller presence to other investors). If market makers start
with zero inventory, then the realized surplus of investors other than the large seller, is convex
in large-seller trade intensity f . There exists a threshold f̄(d) such that investors are

• strictly worse for f < f̄(d),

• equally well off when f = f̄(d), and

• strictly better off when f > ¯f(d).

The threshold level f̄(d) strictly decreases in duration d.

Proposition 6 states formally that the presence of a large seller can hurt or benefit other
investors. Fixing d, the proposition says it only benefits investors if f is high enough. This
result reflects the interplay of two opposing forces. First, the presence of a large seller
temporarily increases the bid-ask spread which hurts other investors, because they pay the
spread. The bid-ask spread increases linearly in f (see Proposition 2).

Second, the presence of a large seller causes prices to be pressured downward which
benefits other investors because they are net buyers in the period when market makers
carry positive inventory. Note that conditional price pressure (i.e., price pressure per unit of
inventory) is unaffected by the presence of large seller. It is equal to Bθ in both the baseline
model and the large-seller model (see Proposition 1 and 2, respectively). Yet, more intense
selling implies that market makers carry larger inventories which, in turn, causes prices to
become more pressured. This effect is super-linear given that increasing sell intensity adds
to price pressure contemporaneously, but also in the future given that inventory needs to
mean-revert.

Taken together, these two observations on how the presence of a large seller affects other
investors explains the threshold result on sell intensity. The cost of a higher spread is linear
in sell intensity, while the benefit of stronger price pressure is super-linear in sell intensity.
It is therefore not surprising that there is a threshold intensity level above which the benefit
dominates the cost. Figure 6 re-plots the liquidity surface of Figure 4 to illustrate in what
part investors benefit from the presence of a large seller and in what part they are hurt by
it.
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Part where large-seller presence is
costly to other investors

Part where large-seller presence is
beneficial to other investors

Figure 6: When do other investors benefit from the presence of a large seller?
This figure re-plots the model-implied liquidity surface of panel (b) in Figure 4 to illustrate
for which part of the liquidity surface, the presence of a large seller hurts other investors
(bottom-left panel) and for which part it benefits them (bottom-right part).
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5 Conclusion

We analyze a model in which a large seller trades continuously at a constant intensity for a
particular period of time. This mirrors the slicing and dicing of a large uninformed order in
real-world markets targeting a POV execution strategy. Liquidity is supplied dynamically
by a set of Cournot-competitive market makers.

A particularly attractive feature of our setting is that there is a unique symmetric equi-
librium that can be solved analytically. This allows us to generate three main findings: (i)
explaining empirically observed patterns of order flow execution by institutional investors,
(ii) the price impact of the large order can be plotted as a function of order size and duration
(liquidity surface), and (iii) the presence of a large seller benefits markets makers always,
and other investors only if he sells at a high enough intensity.

The tractability of our model setting opens up possibilities for further investigation. For
instance, can alternative execution patterns, other than the percentage of volume strategy,
mitigate price impact? What if multiple large orders are executed during overlapping peri-
ods? How does the liquidation strategy change if market makers only detect the large order
with a delay?

28



Appendices

A Notation

The following schema summarizes the notation used throughout the paper.

β Intertemporal discount rate used by all agents in the market.
δ The level of trade activity for the security.
η The flow cost of carrying inventory for a market maker is ηi2, where i denotes his

inventory.
ω The relative reservation value of the security to investors (i.e., the reservation value

minus common value mt). It is ω for buy investors and it is −ω for sell investors and
the large seller.

σ The standard deviation of the security’s fundamental value mt.
θ Vector that includes all parameters: θ = (β,N, η, δ, ω).
d The duration of the sell order that the large investor is executing.
i A single market maker’s inventory.
pat The relative ask price at time t (i.e., the ask price minus mt).
pbt The relative bid price at time t (i.e., the bid price minus mt).
mt The security’s common value at time t (i.e., fundamental value).16

N The number of market makers.
qat Trade intensity of buy investors at the ask price at time t.
qbt Trade intensity of sell investors (excluding the large seller) at the bid price at time t.

B Auxiliary technical results

Lemma B.1. Let hγ(u) = 1−e−γu
γ

for γ > 0. If β1 > β2, the function hβ1(d)/hβ2(d) is strictly
decreasing in d, and strictly convex in d.

Proof. Let h(d) = log(hβ1(d)/hβ2(d)), we first prove that h(d) is strictly decreasing in d, and
16“m” stands for martingale.
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strictly convex in d. To that end, taking derivative

h′(d) = β1e
−β1d

1− e−β1d
− β2e

−β2d

1− e−β2d

= β2 − β1 + β1

1− e−β1d
− β2

1− e−β2d
,

h′′(d) = − β2
1e
−β1d

(1− e−β1d)2 + β2
2e
−β2d

(1− e−β2d)2 .

Note that h′(+∞) = 0. To proceed, let us define g(y, c) = c2

1−yc , then to prove h′′(d) > 0, it
suffices to demonstrate that

g

(
e−β2x,

β1

β2

)
− g

(
e−β2x, 1

)
< 0.

In other words, with y = e−β2x ∈ (0, 1), and c = β1
β2
> 1, we need to prove that

g(y, c)− g(y, 1) < 0,

for all 0 < y < 1 and c > 1. Because g(y, c = 1) − g(y, 1) = 0, it suffices to prove that
g(y, c), or equivalently, log g(y, c) is strictly decreasing in c for c > 1. The latter monotone
property of log g(y, c) can be verified with standard analysis. Therefore, we know that h(d)
is also strictly decreasing in d, and strictly convex in d.

Finally, note that eh(d) is also strictly decreasing in d, and from

(eh(d))′′ = eh(d)[h′′(d) + (h′(d))2] > 0,

we know that eh(d) = hβ1(d)/hβ2(d) is strictly convex in d.

C Proofs of Lemmas, Corollaries, and Propositions

Proof of Proposition 1. In the absence of the institutional investor, the trading intensi-
ties by each market maker are time homogenous and only depend on the size of that market
maker’s inventory:

qajt = qa(ijt), qbjt = qb(ijt),
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where qa(i) and qb(i) are deterministic functions of the inventory. We can then rewrite the
equation that governs the dynamics of ijt, given in (8), as a time-homogenous autonomous
equation:

dijt = −qa(ijt)dt+ qb(ijt)dt, ∀t > 0.

Similarly, the trading revenue of each market maker follows the dynamics

dWjt =
(
ω − 1

δ

N∑
n=1

qa(int)
)
qa(ijt)dt−

(
1
δ

N∑
n=1

qb(int)− ω
)
qb(ijt)dt, ∀t > 0.

By virtue of the dynamic programming principle, the value function vMj (i) of the control
problem solved by the j-th market maker is the solution to the Bellman equation:

ηi2 + βvMj (i) = sup
qaj ,q

b
j

[(
ω − 1

δ

N∑
n=1

qan

)
qaj −

∂

∂i
vMj (i)qal

−
(

1
δ

N∑
n=1

qbn − ω
)
qbj + ∂

∂i
vMj (i)qbl

]∣∣∣∣∣
qan=qa,?j ,qbn=qb,?j for all n6=j

, (A1)

where (qa,?j , qb,?j ) is the optimizer of the Hamiltonian above, in which we set qan = qa,?j , qbn = qb,?j

for all n 6= j because we are considering a symmetric Markov perfect equilibrium. We make
the ansatz that the value function vMj (i) is quadratic and concave in i. Moreover, since
all market makers are identical, value function and strategies are the same for all market
makers, i.e.,

vMj (i) = vM(i) = −Ai2 +Bi+ C, (A2)

for some constant A > 0. It then follows that the optimal control strategy for each market
maker is given by

qa = ω + 2Ai−B
N + 1 δ, qb = ω − 2Ai+B

N + 1 δ (A3)

Using the expressions above, we can then rewrite (A1) as

(η − βA)i2 + βBi+ βC = 8A2δ

(N + 1)2 i
2 + 8δA

(N + 1)2Bi+ 2δ(B2 + ω2)
(N + 1)2 .
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By matching the coefficients of i2, i and the constant term on both sides, we obtain that
(A,B,C) must satisfy the following equations

η − βA = 8δA2

(N + 1)2 , (A4)

βB = 8δA
(N + 1)2B, (A5)

βC = 2δ(B2 + ω2)
(N + 1)2 . (A6)

Hence, A? must be the unique positive solution to quadratic equation (A4), and B? = 0
otherwise (A5) would not hold. Define

C? = 1
β

2δω2

(N + 1)2 . (A7)

Then we obtain that a solution to (A4)-(A6) is given by (A?, 0, C?). Hence, the value function
is given by

v(i) = −A?i2 + C?.

The ask and bid price policy functions follow from the defining expression (7), and the ex-
pressions for the traded intensities given by (A3) in which A and C are replaced, respectively,
by the coefficients A? and C? of the optimal value function vM(i). Overall, for parameter
θ = (β, ν,N, η, δ, ω), the results in Proposition 1 holds with positive constants:

Aθ = ω

N + 1 , Bθ = 2A?
N + 1 , Cθ = δω

N + 1 ,

Dθ = 2δA?
N + 1 , Eθ = C?, Fθ = A?. (A8)

Proof of Corollary 1. We notice that the right hand side of equation (A4) is strictly
decreasing in N and strictly increasing in A, whereas the left hand side is strictly decreasing
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in A. Hence, the unique positive solution to (A4), A?, is strictly increasing in N , and

lim
N→∞

A? = η

β
. (A9)

It follows that

lim
N→∞

Aθ = lim
N→∞

Bθ = lim
N→∞

Cθ = lim
N→∞

Dθ = lim
N→∞

Eθ = 0, lim
N→∞

Fθ = η

β
.

Moreover, we also have

lim
N→∞

NCθ = δω, lim
N→∞

NDθ = 2δ η
β
.

This completes the proof.

Proof of Results in Table 1. Recall that A? is given by

A? =
−β +

√
β2 + 32δη

(N+1)2

16δ
(N+1)2

= 2η
β +

√
β2 + 32δη

(N+1)2

(A10)

Clearly, A? is strictly increasing in η, and is strictly increasing in N , and is strictly decreasing
in β, and is strictly decreasing in δ, and does not depend on ω.

Because the spread in the baseline is equal to 2ω
N+1 , we immediately know that the claims

in the column for the bid-ask spread hold.
Moreover, recall that the conditional price pressure Bθ = 2A?

N+1 , so we know all sensitivity
results with respect to η, β, δ, ω hold. Finally, from

A?

N + 1 = 2η
β(N + 1) +

√
β2(N + 1)2 + 32δη

, (A11)

we deduce that the conditional price pressure Bθ = 2A?
N+1 is strictly decreasing in N . This

completes the proof.

Proof of Proposition 2. The market is completely the same as in case of no large seller
if t > d. Hence, the results are those given in Proposition 1. For t ≤ d, by the dynamic pro-
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gramming principle the value function vM(i, f, d, t) of each market makers’ control problem
is the solution to the Bellman equation:

0 = −ηi2 − βvM + ∂

∂t
vM + sup

qaj ,q
b
j

[(
ω − 1

δ

N∑
n=1

qan

)
qaj −

∂

∂i
vM qaj

−
(
−ω + 1

δ

(
N∑
n=1

qbn − f
))

qbj + ∂

∂i
vM qbj

]∣∣∣∣∣
qan=qa,?j , qbn=qb,?j for all n6=j

, (A12)

where (qa,?j , qb,?j ) is the optimizer of Hamiltonian above in which we set qan = qa,?j , qbn = qb,?j

for all n 6= j because we are focusing symmetric Markov perfect equilibria. We make the
following quadratic ansatz for the value function

vM(i, f, d, t) = −A(t, f, d)i2 +B(t, f, d)i+ C(t, f, d), ∀t ≥ 0, (A13)

where for notational simplicity we have suppressed f in the arguments of the right hand side
above, and noted that the value function is the same for all market makers given that they
have the same inventory costs and equally split the incoming trading flow. It then follows
from the HJB equation (A12) that the optimal control (qa,?j , qb,?j ) is the same for each market
marker, and given by

qa(i, t, f, d) = ω + 2A(t, f, d)i−B(t, f, d)
N + 1 δ

qb(i, t, f, d) =
ω + f

δ
− 2A(t, f, d)i+B(t, f, d)

N + 1 δ,

as long as A(t, f, d) > 0. By using (A13), and matching the coefficient of i2 in (A12), we
obtain an ordinary differential equation in time

η − βA(t) + A′(t) = 8δ(A(t))2

(N + 1)2 , A(d) = A?, (A14)

where we only highlight the dependence on the time variable above. It follows from the
definition of A? is the unique positive solution to (A4) that A′(d) = 0. By the uniqueness
of the solution to an ODE, we obtain that A(t) ≡ A?. Similarly, by matching the coefficient
of i in (A12), we obtain an ODE in the time variable for B(t, f, d), where we only highlight
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the dependence on the time variable:

0 = −βB(t) +B′(t)− 4A?(f + 2δB(t))
(N + 1)2

= −
(
β + 8δA?

(N + 1)2

)
B(t) +B′(t)− 4A?

(N + 1)2f

= − η

A?
B(t) +B′(t)− 4A?

(N + 1)2f.

subject to the terminal condition B(d) = 0. The solution of the above ODE is

B(t, f, d) = −f 4A?
(N + 1)2

1− e− η
A?

(d−t)

η/A?
=: fb(d− t), ∀t ∈ [0, d]. (A15)

The function C(t, f, d) can be determined similarly: for t ∈ [0, d], we have the following ODE
in the time variable t, where again we only emphasize the dependence on t:

0 = C ′(t)− βC(t) + 2δ2(B2(t) + ω2) + 2δ(B(t) + ω)f + f 2

(N + 1)2δ
.

Letting C1(t) := C(t)− Eθ, then C1(d) = 0 and

0 = C ′1(t)− βC1(t) + 2δ2B2(t) + 2δ(B(t) + ω)f + f 2

(N + 1)2δ
.

It follows that the solution is

C(t, f, d) = Eθ + 1{t≤d}
1

δ(N + 1)2[
2δωf 1− e−β(d−t)

β
f + f 2

(∫ d−t

0
e−β(d−t−s)(1 + 2δ2b2(s) + 2δb(s))ds

)]
,

where Eθ is given in the proof of Proposition 1.
Finally, using the expressions for the ask and bid price policy functions in the absence

of liquidation, the expression for the optimal trading intensities, and the expressions for the
value function given in the proof of Proposition 1, we obtain that the ask and bid relative
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price policy functions in the presence of liquidation are given by

pa(i, f, d, t) = pa(i)− 1{t≤d}f (Gθ(d− t)) ,

pb(i, f, d, t) = pb(i)− 1{t≤d}f (Gθ(d− t) +Hθ) ,

where Gθ(t) = −Nb(t)/(N + 1) and Hθ = 1/(δ(N + 1)). The optimal control is given by

qa(i, f, d, t) = qa(i) + 1{t≤d}f
δ

N
(Gθ(d− t)) ,

qb(i, f, d, t) = qb(i)− 1{t≤d}f
δ

N
(Gθ(d− t)−NHθ) ,

Finally, the value function takes the form

vM(i, f, d, t) = vM(i) + 1{t≤d} (Iθ (d− t, f) + fJθ (d− t) i) ,

where Iθ(d − t, f) = C(t) − Eθ, which is strictly increasing in variable “d − t” for t ≤ d

and strictly convex in f , and Jθ(d − t) = B(t), which is negative and increasing in t. This
completes the proof.

Proof of Lemma 1. We first derive an explicit expression for the inventory. We use (8),
(29) and (30) to obtain the dynamics of a market maker’s inventory:

dijt =−
(
Cθ +Dθijt + 1{t≤d}δ

f

N
Gθ(d− t)

)
dt

+
(
Cθ −Dθijt − 1{t≤d}δ

f

N
(Gθ(d− t)−NHθ)

)
dt.

It follows that ijt satisfies the ODE:

d
dtijt = −2Dθijt + 1{t≤d}δ

f

N
(NHθ − 2Gθ(d− t)) ,
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subject to the initial condition ij0 = 0. Solving the ODE we obtain that ijt = f×g(t), where

g(t) =


M

4δA?

[
βA?

η

1− e−Mt

M
+
(

1− βA?

η

)
e
η
A?
t − e−Mt

η
A?

+M

]
, t ≤ d,

g(d)e−M(t−d), t > d,

where M = 4δA?
N+1 . A straightforward calculation yields ∂g(t)

∂t
> 0 for t ≤ d. This completes

the proof.

Proof of Lemma 2. By combining (25) with the explicit expression for ijt in the proof of
Lemma 1, we obtain that the relative bid price is given as follows: for t ≤ d,

pb(ijt, f, d, t) = − ω

N + 1 −
f

2δ(N + 1)×[
2 +N

(
1−

η
A?
− β

M + η
A?

e−
η
A?

(d−t) − βA?

η
e−Mt −

η
A?
− β
η
A?

M

M + η
A?

e−
η
A?
d−Mt

)]
, (A16)

for t > d,

pb(ijt, f, d, t) = − ω

N + 1 −
fN

2δ(N + 1)×(
βA?

η

[
1− e−Md

]
+ (η − βA?)

η

M

M + η
A?

[
1− e−(M+ η

A?
)d
])
e−M(t−d),

where M = 4δA?
N+1 . Straightforward calculation yields that pb(ijt, t) is strictly convex in t for

t < d. Moreover, because17

∂

∂t
pb(ijt, f, d, t)

∣∣∣
t=0
∝ η − βA?

MA? + η

η

A?
e−

η
A?
d −

(
βA?

η
+ η − βA?

η

M

M + η
A?

e−
η
A?
d

)
M.

17The symbol ∝ means proportional to, i.e., the left hand side is a positive constant multiple of the right
hand side.
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Clearly, the right hand side of the above expression is monotone in d, and is negative if d > 0
is sufficiently large. As d→ 0, this expression converges to

−2β + η
A?
−M

M + η
A?

= 1
M + η

A?

(
− β −MN − 1

N + 1

)
< 0.

Thus, we know that for all d > 0 it holds that ∂
∂t
pb(ijt, f, d, t)|t=0 < 0, and the relative bid

price is decreasing in t for small t, as claimed. Moreover,

∂

∂t
pb(ijt, f, d, t)

∣∣∣
t=d
∝ η − βA?

MA? + η

η

A?
−
(
βA?

η
+ η − βA?

η

M

M + η
A?

e−
η
A?
d

)
Me−Md.

Thus, if d > 0 is sufficiently large, we have ∂
∂t
pb(ijt, f, d, t)|t=d > 0, so the relative bid price

is increasing in t if t and d are both sufficiently large. The properties for relative bid price
after d hold obviously. For the relative ask price, we obtain the results via relationship

pa(ijt, f, d, t) = pb(ijt, f, d, t) + 2Aθ + f Hθ1{t≤d}.

This completes the proof.

Proof of Lemma 3. Using (4) and (A16), we can express the objective of the large seller
in (4) as

sup
f≥0

(
P (d) f −Q(d) f 2

)
, (A17)

where P (d) and Q(d) are positive functions given by

P (d) = Nω

N + 1hβ(d), (A18)

Q(d) =hβ(d)/(2δ)
N + 1

{
(N + 2) +N

[
β

M + η
A?

− βA?

η

hM+β(d)
hβ(d)

− β

(M + β)
h η
A?

(d)
hβ(d) −

(η − βA?)
η

M

M + η
A?

M + β + η
A?

M + η
A?

hM+β+ η
A?

(d)
hβ(d)

]}
, (A19)
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with M = 4δA?
N+1 and hγ(u) = 1−e−γu

γ
for any positive parameter γ > 0. It follows that the

optimal liquidation intensity is given by

f ∗(d) = P (d)
2Q(d) .

Next, we show the monotonicity of f ∗(d) in d. First, we notice that

1
f ∗(d) =2Q(d)

P (d)

= 1
δNω

{
(N + 2) +N

[
( η
A?
− β)

η
A?

+M

βA?

η − βA?
− βA?

η

hM+β(d)
hβ(d)

− β

(M + β)
h η
A?

(d)
hβ(d) −

(η − βA?)
η

M

M + η
A?

M + β + η
A?

M + β

hM+β+ η
A?

(d)
hβ(d)

]}
(A20)

Using Lemma B.1, we can express 1/f ∗(d) as

1
f ∗(d) = A− h(d),

where A > 0 is a constant, and h(d) > 0 is a positive function that is strictly decreasing
in d, and strictly convex in d. Therefore, we know that f ∗(d) is strictly decreasing in d.
Moreover, using standard analysis one can verify that 0 < f ∗(∞) < f ∗(0) < Nδω

2 , so it holds
that A− h(0) > 0.

Proof of Proposition 4. We continue the proof of Proposition 3. For the optimal intensity
f ?(d) defined in (A20), we have the following expression for the derivative

(
1

df ∗(d)

)′
= −A+ h(d)− h′(d)d

d2 .

Because h(d) is strictly convex in d, we know that h(d)− h(0) < h′(d)d, and then
(

1
df ∗(d)

)′
<
−A+ h(0)

d2 < 0.
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It follows that df ∗(d) is strictly increasing. Moreover, because 0 < f ∗(∞) < f ∗(0) < Nδω
2 ,

we know that the range of the liquidation size df ∗(d) is (0,∞).
Hence, for any size S > 0, there is a unique d > 0 defined as d ·f ∗(d) = S, and d is strictly

increasing with S. For any d′ < d, from d′f ∗(d′) < df ∗(d) = S we know that the implied
liquidation rate with size S and duration d′, S/d′, is larger than the optimal liquidation rate
f ∗(d′). By the optimality of f ∗(d′), we know that Pd′(S/d′) < Pd′(f ∗(d′)). In other words,
liquidating size S in duration d′ (which is shorter than d) is worse than liquidating a smaller
size S ′ = d′ × f ∗(d′) < S with the same duration d′.

Proof of Proposition 5.

vM(i0 = 0, f, d, t = 0)− vM(i0 = 0)

= Iθ (d, f)

= 1
δ(N + 1)2

[
2δωf 1− e−βd

β
f + f 2

(∫ d

0
e−β(d−s)(1 + 2δ2b2(s) + 2δb(s))ds

)]

>
1

δ(N + 1)2

[
2δωf 1− e−βd

β
f + f 2

(∫ d

0
e−β(d−s)(1 + δb(s))2ds

)]
> 0.

Above, the first inequality came from 1+2δ2b2(s)+2δb(s) > 1+δ2b2(s)+2δb(s) = (1+δb(s))2

for b(s) < 0. This completes the proof.

Proof of Proposition 6. Let us denote the surplus without the large seller by

vI(i, t) =
∫ ∞
t

e−β(s−t)
(1

2δ (ω − pas)
2 ds+ 1

2δ
(
ω + pbs

)2
ds
)
,

where ijt = i. If there is no liquidation, the market makers use stationary strategies, so
vI(t, i) will be independent of time t. In this case, vI(0, i) solves the equation

βvI(i, 0) =
(
δ

2(ω − pat )2 + ∂

∂i
vI(i, 0)·(

− δ

N
(ω − pat )) + δ

2(ω + pbt)2 + ∂

∂i
vI(i, 0) · δ

N
(pbt + ω)

)
,
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where pat = pa(i) and pbt = pb(i) are given in (12) and (11), respectively. In this case, following
a similar argument to that in the proof of Proposition 1, we obtain that

vI(i) = EI
θ + F I

θ i
2,

where

EI
θ = δN2

β(N + 1)2ω
2, F I

θ = Aω,

with
Aω = 4δN2(A?)2

β(N + 1)2 + 8δ(N + 1)A? > 0, (A21)

Notice that this also gives the welfare of the end-investor for t > d if the liquidation duration
is d > 0.

Similarly, when a larger seller who liquidates at intensity f > 0 for a duration d > 0 is
present, we denote by vI the surplus of end-user investors. Then vI(i, d, f, t) solves

0 =− βvI + ∂vI

∂t
+
(
δ

2(ω − pat )2 + ∂

∂i
vI(i, t) ·

(
− δ

N
(ω − pat ) + f

N

)

+δ

2(ω + pbt)2 + ∂

∂i
vI(i, t) · δ

N
(pbt + ω)

)
,

for t ∈ [0, d], where pat = pa(i, d, f, t) and pbt = pb(i, d, f, t) are given in (26) and (25),
respectively.

Following the argument used in the proof of Proposition 2, we can show that

vI(i, d, f, t) = vI(i) + 1{t≤d}
(
IIθ (d− t, f) + J Iθ (d− t)f i

)
,

where

J Iθ (u) =
∫ u

0
e−(β+M)(u−s) · 2

N

(
Aω + [N2A? − (N + 1)Aω](1− 2δNb(s))

(N + 1)2

)
ds, (A22)
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and b(s) is defined in (A15). Because b(s) < 0 for all s > 0, and

N2A? − (N + 1)Aω =N2A?(N + 1) β(N + 1) + 4δA?
β(N + 1)2 + 8δ(N + 1)A? > 0,

we know that
J Iθ (u) > 2

N
Aω

∫ u

0
e−(β+M)(u−s)ds > 0.

Moreover,

IIθ (u, f) =− f ωN

(N + 1)2
1− e−βu

β
+ f 2

∫ u

0
e−β(u−s) (1 + 2δb(s))J Iθ (s)

N + 1 ds

+ f 2
∫ u

0
e−β(u−s) (1− 2δNb(s) + 2δ2N2b2(s))

2δ(N + 1)2 ds. (A23)

Because for any s > 0 we know that J Iθ (s) > 0, and 0 > 2δb(s) > −η−βA?
η

> −1, we deduce
that the coefficient of f 2 in (A23) is positive, while that of f in (A23) is negative. Hence,
there exists f̄ > 0 such that IIθ (d, f) > 0 if and only if f > f̄ , and IIθ (d, f) < 0 if and only if
0 < f < f̄ .

D Model calibration

The calibration procedure picks the seven model parameters to match equally many real-
world variables for the baseline case where time is measured in days:

• β = − log(0.9998): In their discrete-time model, Hendershott and Menkveld (2014) set
the daily discount rate equal to 0.9998. The continuous-time analogue is the negative
of the log.

• N = 10: We believe a natural real-world equivalent of the model’s market makers are
high-frequency traders. Therefore the number of market makers was set to ten based
on Scandinavian equity trading on Nasdaq-OMX.18

18“Europe’s Top 10 High-Frequency Kingmakers (in Scandinavia, at Least),” Financial News, 2014.
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• The remaining three parameters are based on Menkveld (2013) who analyzed trading
by one large high-frequency market maker for a 2007-2008 sample of Dutch blue chip
equities. Its particular appeal is that it contains estimates of the conditional price
pressure.19 The calibration focuses on afternoon trading in large-cap stocks.

– η = 0.2434 bps/(e1000), δ = e18 × 106/bps, and ω = 17.6 bps where “bps” is
basis points: These parameters are set at values to match the following three vari-
ables: Bid-ask spread (3.2 bps), conditional price pressure (0.026 bps/e1000), and
the average traded volume of (e31, 400×17, 000+ e2500×16, 800 = e575, 800, 000
from incumbent and entrant markets altogether) (Menkveld 2013, Table 1). The
value of these parameters are recovered as the unique solution of a system of three
equations in three unknowns:

ω

N + 1 = 1.6,

2× δ
(
ω − ω

N + 1

)
= 575800,

2A?
N + 1 = 2

N + 1
2η

β +
√
β2 + 32δη

(N+1)2

= 0.0026.

To derive the equations above, we have applied Proposition 1 in the case the
market makers’ initial inventory is zero. In particular, the daily trading volume is
given by the trading flow with the end investors when the relative ask/bid price
is given by ± ω

N+1 . We have also used Eq. (A10) to deduce the third equality.
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