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Abstract

We present a comprehensive framework for constructing dynamic density models

by combining optimization with concepts from information theory. Specifically, we

propose to recursively update a time-varying conditional density by maximizing the

log-likelihood contribution of the latest observation subject to a Kullback-Leibler

divergence (KLD) regularization centered at the one-step ahead predicted density.

The resulting Relative Entropy Adaptive Density (READY) update has attractive

optimality properties, is reparametrization invariant and can be viewed as an intu-

itive regularized estimator of the pseudo-true density. Popular existing models, such

as the ARMA(1,1) and GARCH(1,1), can be retrieved as special cases. Further-

more, we show that standard score-driven models with inverse Fisher scaling can

be derived as convenient local approximations of the READY update. Empirical

usefulness is illustrated by the modeling of employment growth and asset volatility.

∗I gratefully acknowledge helpful comments and suggestions from Dick van Dijk, Maria

Grith, Lukas Hoesch, Rutger-Jan Lange, André Lucas, Onno Kleen, Anne Opschoor, An-

dreas Pick and Ramon de Punder. Any remaining errors are my own.
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1 Introduction

The distribution of many empirically relevant time series is well known to be time-varying.

For example, the distribution of macroeconomic variables is generally characterized by de-

pendence on the business-cycle (Stock and Watson, 1999) and the dispersion of asset returns

displays so-called volatility clustering (Engle and Bollerslev, 1986). Many existing models

bring about time-variation of the conditional density by innovating the model parameters

using an appropriate ex-post estimator. In the context of asset volatility, for example,

ARCH-type models are innovated using the squared shock, see e.g. Teräsvirta (2009). How-

ever, such approaches are often hard to generalize, and, more importantly, it is often unclear

to what extent such a construction yields efficient updates of the conditional density.

We propose an information-theoretically motivated filter framework that allows for a

time-varying conditional density by alternating between prediction and update steps. The

key contribution is the Relative Entropy Adaptive Density (READY) update, which maxi-

mizes the log-likelihood contribution of the most recent observation subject to a Kullback-

Leibler divergence (KLD) penalization centered around the one-step ahead predicted density.

As a result, we update towards a density that would have been more likely to have gener-

ated the latest observation, while simultaneously incorporating persistence by requiring that

we do not stray too far from our predicted density. This optimization structure allows

the READY update to (i) fully exploit all information in the log likelihood contribution,

(ii) automatically produce a joint update of multiple time-varying characteristics and, (iii)

be reparameterization invariant. Popular existing time-series models, such as the ARMA,

GARCH and absolute-value GARCH, can be retrieved as special cases.

We demonstrate that the READY update can be viewed as a regularized estimator of

the pseudo-true density, that is, the density closest to the true density in a KLD sense. The

READY update can also be understood as a global information-theoretic version or density-

level equivalent of the class of score-driven models, acting in distribution space rather than

in Euclidean parameter space. In particular, approximating the KLD penalty of the READY
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update using a second-order Taylor approximation around the prediction yields the Proximal

Parameter (ProPar) framework of Lange et al. (2022) with penalty proportional to the Fisher

information matrix. When additionally linearizing the log-likelihood contribution, we obtain

the popular score-driven update used in generalized autoregressive score (GAS; Creal et al.,

2013) and dynamic conditional score (DCS; Harvey, 2013) models. This connection provides

new insights on the efficiency of score-driven models as well as on the ideal choice of scaling.

The form of the READY update allows for the derivation of powerful theoretical prop-

erties. Specifically, for a concave postulated log density controlled by a single time-varying

parameter, the READY update in expectation provides a global linear contraction into a

noise-dominated region around the pseudo-truth in a KLD sense. Only predictions that

already accurate may therefore in expectation not benefit from updating, while very bad

predictions are expected to benefit dramatically. This global optimality is on top of favor-

able local information-theoretic optimality properties, which in turn further strengthen those

of the GAS framework (Blasques et al., 2015) by removing the infinitesimally small step-size

constraint. Furthermore, we derive filter invertibility (i.e. differences due to initialization

disappear exponentially fast) for location-scale distributions with a log concave density and

either a time-varying location or scale. Interestingly, these theoretical results impose rel-

atively little demands on the form of the true distribution, such that the READY update

remains attractive even when the postulated distribution is substantially misspecified.

We demonstrate the usefulness of the READY framework in two short empirical illustra-

tions. Specifically, we consider filtering the mean of US employment growth and the volatility

of Dow Jones returns. For both illustrations, we use a conditional t-distribution such that

the READY update automatically downweights the effects of large shocks. For example, this

allows our model for US employment to effectively deal with the COVID-19 period. Com-

paring against the GAS/DCS equivalents, we find the READY update to provide a superior

fit for the employment data. For the volatility illustration, we find that the READY model is

virtually indistinguishable from the Beta-t-EGARCH model of Harvey and Sucarrat (2014).
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Our paper is most closely related to two strands of literature. First, it is associated with

the literature on extensions of (stochastic) proximal-point methods (Rockafellar, 1976; Ryu

and Boyd, 2016; Asi and Duchi, 2019). In particular, our paper is connected to the Kullback

proximal-point (KPP) algorithm, which iteratively optimizes the value function of interest

subject to a KLD regularization centered around a previous iterate, see Chrétien and Hero

(2000, 2008). The KPP structure has close ties with the natural-gradient method of Amari

(1998), which scales the gradient with the inverse Fisher matrix, motivated by arguments

from information geometry. Natural gradient methods often present strong efficiency gains

(Martens, 2020) and are popular in a wide variety of fields, including reinforcement learning

(Kakade, 2001), variational Bayes (Khan et al., 2015), optimizing neural networks (Des-

jardins et al., 2015) and estimating non-linear state-space models (Courts et al., 2023). The

READY update uses the KPP structure to construct a novel filter.

Second, our paper is related to a large literature on score-driven models which innovate

time-varying parameters using the log-likelihood score, see Creal et al. (2013) and Harvey

(2013). This allows the parameter update mechanism to exploit the distributional infor-

mation in a straightforward manner. Particularly relevant for economic and financial data

this leads to more robust update mechanics for heavy-tailed distributions (e.g. Creal et al.,

2011; Lucas and Zhang, 2016; Harvey and Lange, 2017; Opschoor et al., 2018; Gorgi, 2020).

Recently, Lange et al. (2022) propose an implicit score-driven method which yields favorable

theoretical advantages over the GAS update in terms of stability and optimality. The cur-

rent paper can be seen as a further extension of the ProPar method of Lange et al. (2022),

replacing the weighted ℓ2 proximal term with a KLD.

This paper is structured as follows. First, Section 2 presents the READY methodology.

The link with the class of score-driven models as well as further theoretical properties are

discussed in Section 3. Estimation and empirical illustrations are considered in Section 4 and

5, respectively. Section 6 concludes. Finally, proofs are contained in the Online Appendix.
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2 Methodology

2.1 Relative entropy adaptive density update

Let yt for t = 1, 2, . . . , T denote a possibly vector-valued observation generated by some

unknown continuous distribution with time-varying density p0
t := p0(·|θ0

t ) with real-valued

time-varying parameters θ0
t ∈ Θ0 ⊆ RN . Allowing for dependence on static parameters or

available exogenous information is possible, but omitted for clarity of exposition. Our aim

is to best track this true density p0
t , which is of direct interest for short-term forecasting.

We propose a new information-theoretically motivated filtering framework for construct-

ing time-varying density models that alternates between update and prediction steps. Specif-

ically, let pt|t−1 := p(·|θt|t−1) denote our (possibly misspecified) postulated predicted density

for time t constructed at time t−1. Here pt|t−1 is parameterized by some K×1 time-varying

parameter vector θt|t−1 taking its value in some non-empty convex set Θ ⊆ RK . We assume

that our postulated density is identified, such that p(·|θ1) = p(·|θ2) if and only if θ1 = θ2 ∈ Θ.

The update step at time t uses the observation yt and the predicted density pt|t−1 to construct

a nowcast or updated density pt|t := p(·|θt|t), θt|t ∈ Θ. In turn, the prediction step uses the

update pt|t to construct a density forecast for the next period pt+1|t := p(·|θt+1|t), θt+1|t ∈ Θ.

The main difficulty lies in devising an updating procedure that incorporates efficiently the

information found in the most recent observation. Naturally, we want our updated density

pt|t to fit our newest observation yt as best as possible. However, because yt is inherently

noisy, we also want to limit the total update magnitude from our prediction pt|t−1 to control

the variability of our filter. To tackle this problem head-on, we propose a dual-objective

optimization setup that i) measures the observation’s fit using the log likelihood, which has

attractive information-theoretical advantages (e.g. Akaike, 1973; Roulston and Smith, 2002;

Grünwald and Dawid, 2004) and, ii) quantifies the update magnitude using the Kullback-

Leibler divergence (KLD), which can be viewed as the appropriate corresponding measure

of closeness (e.g. Kullback and Leibler, 1951; Kullback, 1959; Gneiting and Raftery, 2007).
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Specifically, we propose the Relative Entropy Adaptive Density (READY) update, given as

θt|t := argmax
θ∈Θ

{
log p(yt|θ) − ρDt|t−1(θ)

}
,

:= argmax
θ∈Θ

{
log p(yt|θ) + ρ

y
Et|t−1[log p(y|θ)]

}
,

(1)

where
y
Et|t−1[·] denotes the expectation over y with respect to the predicted density pt|t−1,

Dt|t−1(θ) := D(p(·|θt|t−1)∥p(·|θ)) :=
∫∞

−∞ log
(
p(y|θt|t−1)
p(y|θ)

)
p(y|θt|t−1)dy =

y
Et|t−1[log p(y|θt|t−1)] −

y
Et|t−1[log p(y|θ)] denotes the KLD of the prediction pt|t−1 from the density p(·|θ) and ρ > 0

is a penalization parameter that controls the persistence. The equivalence between the two

forms of (1) follows from the fact that the entropy part of Dt|t−1(θ) only depends on θt|t−1,

not on the argument θ, and is therefore irrelevant for maximization.

Because −ρDt|t−1(θ) is strictly negative for all θ ̸= θt|t−1, we have that this term can

be interpreted as a penalty for deviating from the prediction pt|t−1. The READY update

thus fits the latest observation yt as best as possible, while not straying too far from the

prediction pt|t−1. Here ρ controls the relative weight of each component, where larger values

of ρ lead to larger penalties and therefore smaller-sized updates. From the second form,

one may interpret the READY update as maximum likelihood estimation (MLE) with the

observation yt as well as synthetic observations drawn from the predicted density pt|t−1 of

which the log-likelihood contributions are weighted by the probability of said observation

occurring according to the predicted density. This expression demonstrates a clear division

of the information available at time t in two parts. Namely, the observation yt captures

the newly arrived information, whereas the prediction pt|t−1 encapsulates all information

available at time t− 1 about time t.

The structure of the READY update presents three powerful advantages. First, by

formulating the update in terms of log likelihoods the parameter update dynamics fully

exploit all available distributional information. In particular, it makes efficient use of the

information in the observation yt via log p(yt|θ), thus adhering to the likelihood principle.
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For example, this produces robustified update dynamics for heavy-tailed distributions as will

be demonstrated in the empirical illustrations in Section 5.

Second, the update of multiple time-varying characteristics is automatically coordinated

in such a way to best update the density as a whole. Therefore, we do not need large system

matrices (such as e.g. the scaling matrix in the score-driven models of Creal et al., 2013)

to approximate these interactions; the READY update only requires one static parameter ρ

regardless of the dimension of θ. This keeps the model highly parsimonious.

Third, the READY update is unaffected by the choice of parameterization, similar to

MLE. The READY update (1) could therefore also be formulated as a functional optimiza-

tion problem over a distribution space. We opt for the parameter level notation both for

notational simplicity and to facilitate the comparison with existing methods later.

Proposition 1 (Parameter invariance) Define ψ := g(θ) for some invertible mapping

g : Θ → Ψ, Θ,Ψ ⊆ RK. If θt|t = argmax
θ∈Θ

f(θ|yt, θt|t−1, ρ), where f(θ|yt, θt|t−1, ρ) := log p(yt|θ)−

ρDt|t−1(θ), then,

ψt|t := g(θt|t) = argmax
ψ∈Ψ

f ∗(ψ|yt, ψt|t−1, ρ), (2)

where f ∗(ψ|yt, ψt|t−1, ρ) = f(g−1(ψ)|yt, g−1(ψt|t−1), ρ) = f(g−1(ψ)|yt, θt|t−1, ρ).

Proposition 1 implies that the READY framework eliminates the arbitrariness of parame-

terization choice. For example, for a time-varying volatility model it does not matter if we

formulate our model in terms of σ, σ2, 1
σ

or 1
σ2 and optimize over (0,∞) or formulate our

model in terms of log(σ) and optimize over R; all yield the exact same density update pt|t.

The structure of the READY update is similar to that of the Kullback proximal point

(KPP) algorithm of Chrétien and Hero (2000) used to accelerate expectation-maximization

algorithms. Comparable mathematical structures are also used in Bayesian variational infer-

ence, see e.g. Blei et al. (2017). By using the KLD as a regularizer we take into account the

geometry of the distributions, which provides a more appropriate notion of distance between

distributions than the Euclidean distance at the parameter level. This in turn yields efficient
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algorithms that have been found useful in a variety of applications (see e.g. Ravikumar et al.,

2010; Khan et al., 2015; Cen et al., 2022). While the mathematical structure of the READY

update is similar, we are interesting in filtering rather than estimating a set of static param-

eters. This leads to important differences in the specification of the penalty. In particular,

for estimation one requires a sufficiently fast increase of the penalty parameter ρ in order to

reach convergence. In contrast, we leave ρ untouched in order to remain responsive.

We make the following assumption regarding the existence and uniqueness of a solution

to the READY problem in (1).

Assumption 1 (Existence and uniqueness) The solution set of argmax
θ∈Θ

{
log p(yt|θ) − ρDt|t−1(θ)

}
has exactly one element with probability one.

Assumption 1 is common in the optimization literature and may be verified in practice by

showing that θt|t is found in some compact set in which log p(yt|θ)−ρDt|t−1(θ) is upper-semi

continuous and strictly concave. The former provides existence by Weierstrass’ theorem,

while the latter implies uniqueness. Existence is therefore generally not an issue when work-

ing with continuous distributions. Uniqueness could theoretically be violated. Practically,

on the rare occasion that multiple solutions are found one could always consider a simple

tie-breaker, such as selecting the smallest-sized update, or consider a mixture solution.

To further understand the theoretical appeal of the READY update, we may write it as

an intuitive regularized estimator of the pseudo-true density. That is, a natural objective we

ideally would like to solve is given by

θ∗
t := argmin

θ∈Θ
D0
t (θ)

:= argmax
θ∈Θ

y
E0
t [log p(y|θ)]

:= argmax
θ∈Θ

∫ ∞

−∞
log p(y|θ) dF 0

t (y)

(3)

where D0
t (θ) := D(p0(·|θ0

t )∥p(·|θ)) denotes the KLD of the true density p0
t from the density

p(·|θ),
y
E0
t is the expectation over y with respect to p0

t and F 0
t (y) :=

∫ y
−∞ p0(q|θ0

t )dq the true
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cumulative distribution function (CDF) at time t. The equivalence between the first two

expressions in (3) follows from the fact that the entropy component of D0
t (θ) does not depend

on θ, while the third line expresses the expectation using a Riemann-Stieltjes integral. We

refer to p∗
t := p(·|θ∗

t ) as the pseudo-true density with pseudo-true parameter θ∗
t , because it

is closest to the true density p0
t in a KLD sense, but may be misspecified (i.e. we allow for

p0
t (·) ̸= p(·|θ), ∀θ ∈ Θ). In the correctly specified case, the identification implies θ∗

t = θ0
t .

However, optimization (3) is generally infeasible because it depends on the true density p0
t .

The READY update will provide a feasible alternative with the information that is available.

To draw the connection between (3) and the READY update (1), we write the latter as

θt|t := argmax
θ∈Θ

{
log p(yt|θ) + ρ

y
Et|t−1[log p(y|θ)]

}
:= argmax

θ∈Θ

{
1

1 + ρ y
Eet [log p(y|θ)] + ρ

1 + ρ y
Et|t−1[log p(y|θ)]

}

:= argmax
θ∈Θ

∫ ∞

−∞
log p(y|θ) d

(
1

1 + ρ
F e
t + ρ

1 + ρ
Ft|t−1

)
(y),

(4)

where
y
Eet [·] denotes the expectation over y with respect to the empirical distribution at

time t with CDF F e
t (y), which has all probability mass on y = yt. The second line of (4)

follows from the definition of
y
Eet [·] and multiplication with 1

1+ρ > 0, which is a positive

scalar and therefore does not affect the location of the maximum. The third line of (4)

expresses the expectations using Riemann-Stieltjes integrals and combines them in a single

expression using the linearity properties of the integrator. The READY update can thus be

seen to approximate the true unknown distribution F 0
t in (3) with the discrete-continuous

mixture distribution 1
1+ρF

e
t + ρ

1+ρFt|t−1. The intuition is clear: the empirical CDF provides

an unbiased, yet noisy, estimator of the true CDF F 0
t , while the predicted CDF Ft|t−1(y) :=∫ y

−∞ p(q|θt|t−1)dq acts as a regularizer to control the variability. These CDFs are then linearly

combined with weights 1
1+ρ and ρ

1+ρ , respectively, such that the result is again a proper CDF.

The READY update finds the density within the postulated distribution space closest to this

discrete-continuous mixture, producing a simple regularized estimator of the pseudo-truth.
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2.2 Prediction step

Because the one-step ahead prediction pt+1|t uses the same information set as the update

pt|t, we have that the quality of the prediction step depends entirely on its ability to mimic

the dynamics of the DGP. For example, if we believe that the true process evolves according

to some type of random walk, then we may set pt+1|t = pt|t. Empirically, however, we often

observe a degree of mean-reversion. We therefore present two different prediction steps that

allow for a type of mean-reversion, where each offers distinct advantages.

First, we propose a density-level prediction step as follows

θt+1|t := argmax
θ∈Θ

{
y
Et|t[log p(y|θ)] + τ

ȳ
E[log p(y|θ)]

}
:= argmin

θ∈Θ

{
Dt|t(θ) + τD̄(θ)

}
,

(5)

where
y
Et|t[·] and

ȳ
E[·] denote the expectation over y with respect to the updated density

pt|t and some static density p̄ := p̃(·|θ̄) with θ̄ ∈ Θ̃, respectively. Similarly, Dt|t(θ) :=

D(p(·|θt|t)∥p(·|θ)) and D̄(θ) := D(p(·|θ̄)∥p(·|θ)) denote the KLD of the update pt|t and p̄

from p(·|θ). In addition, τ > 0 is a penalization parameter that controls the level of mean-

reversion. Here the density p̄ may informally be understood as a long-run density in the

sense that the filter will be centered around it, while repeated application of the prediction

step (5) yields converge towards it. A comparable idea of ‘mixing’ the updated distribution

with a static long-run distribution is used in dynamic kernel density estimation, see Harvey

and Oryshchenko (2012). The prediction step in (5) shares two key advantages with the

update step in (1) and requires an assumption similar to Assumption 1. Specifically, it is

parsimonious, requiring only one parameter τ , and it is reparameterization invariant.

Second, we propose a more standard linear prediction step at the parameter level, i.e.,

θt+1|t = ω + Φθt|t, (6)
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where ω denotes a K×1 parameter vector of constants and Φ a K×K autoregressive matrix.

Two advantages of this linear prediction step over the density-level prediction step in (5) are

that the former is easier to execute and allows for more flexible mean-reversion dynamics

through the specification of Φ. This may be useful if different time-varying characteristics

display very distinct levels of mean-reversion. On the other hand, the linear prediction

step in (6) may need a link function to remain in the appropriate range, is generally less

parsimonious and is dependent on the parameterization chosen.

2.3 Examples of READY models

Applying the READY framework to the location of a normal distribution yields a stationary

ARMA(1,1) model, while applying it to the variance gives the stationary GARCH(1,1) model

of Bollerslev (1986). For the scale of a Laplace distribution the READY model coincides

with the dynamics of the absolute value GARCH(1,1) (AV-GARCH(1,1)) model of Taylor

(2008). Interestingly, the density-level and linear prediction steps in (5) and (6) produce the

same dynamics for these examples, provided that Φ ∈ (0, 1). Appendix A contains additional

examples for the Poisson, exponential and binomial distributions.

Example 1 (ARMA) Consider a normal distribution p(·|µt, σ) with dynamic mean µt and

static variance σ2 > 0. Then the READY update (1) with penalty parameter ρ > 0 combined

with the linear prediction (6) with ω ∈ R and Φ ∈ (−1, 1) from µt|t−1 to µt+1|t using the

observation yt yields

yt+1 = ω + Φyt + ψεt + εt+1, (7)

where εt := yt − µt|t−1 and ψ := −Φ ρ
1+ρ ∈ (−1, 1).

Example 2 (GARCH) Consider a normal distribution p(·|µ, σt) with static mean µ ∈ R

and dynamic variance σ2
t . Then the READY update (1) with penalty parameter ρ > 0

combined with the linear prediction (6) with ω ∈ R and Φ ∈ [0, 1) from σ2
t|t−1 to σ2

t+1|t using
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the observation yt is given as

σ2
t+1|t = ω + α(yt − µ)2 + βσ2

t|t−1, (8)

where α := Φ 1
1+ρ and β := Φ ρ

1+ρ with α > 0, β > 0 and α + β < 1.

Example 3 (AV-GARCH) Consider a Laplace distribution p(·|µ, σt) with static location

µ ∈ R and dynamic scale σt. Then the READY update (1) with penalty parameter ρ > 0

combined with the linear prediction (6) with ω ∈ R and Φ ∈ [0, 1) from σt|t−1 to σt+1|t using

the observation yt is given as

σt+1|t = ω + α|yt − µ| + βσt|t−1, (9)

where α := Φ 1
1+ρ and β := Φ ρ

1+ρ with α > 0, β > 0 and α + β < 1.

3 Theory

3.1 Connection with score-driven updates

In order to further characterize the READY update in (1) and to facilitate the derivation of

theoretical properties, we make assumptions regarding boundary solutions, differentiability

and the interchangability of the expectation and the differential operator.

Assumption 2 (Interior solution) θt|t−1, θt|t ∈ Int(Θ) with probability one.

Assumption 3 (Differentiability) log p(y|θ) and Dt|t−1(θ) are at least twice continuously

differentiable in θ, ∀θ, θt|t−1 ∈ Int(Θ) and ∀y ∈ Dom(y).

Assumption 4 (Interchangeability of expectation and derivative) ∀θt|t−1, θt|t ∈ Int(Θ)

∂

∂θ y
Et|t−1[log p(y|θ)]

∣∣∣∣
θ=θt|t

=
y
Et|t−1

[
∂

∂θ
log p(y|θ)

∣∣∣∣
θ=θt|t

]
, (10)
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∂2

∂θ∂θ′ y
Et|t−1[log p(y|θ)]

∣∣∣∣
θ=θt|t

=
y
Et|t−1

[
∂2

∂θ∂θ′ log p(y|θ)
∣∣∣∣
θ=θt|t

]
. (11)

Under Assumptions 1-3 the READY update can be found by solving its first-order condition

(FOC), which using Assumption 4 may be written as a gradient-type update.

Proposition 2 (READY update as an implicit gradient update) For a given t > 0

let Assumptions 1-4 hold, then with probability one,

∇(yt|θt|t) = ρIt|t−1(θt|t)(θt|t − θt|t−1), (12)

where ∇(yt|θt|t) := ∂
∂θ

log p(yt|θ)
∣∣∣∣
θ=θt|t

is the log-likelihood score at time t with respect to θ

evaluated in the update θt|t and It|t−1(θt|t) is the negative expected average Hessian between

θt|t−1 and θt|t where the expectation is with respect to the predictive density, that is,

It|t−1(θt|t) := −
y
Et|t−1

[∫ 1

0

∂2

∂θ∂θ′ log p(y|θ)
∣∣∣∣
θt|t−1+q(θt|t−θt|t−1)

dq
]
. (13)

If It|t−1(θt|t) is invertible, then the READY update takes the form of a second-order implicit

stochastic gradient update,

θt|t = θt|t−1 + ρ−1I−1
t|t−1(θt|t)∇(yt|θt|t). (14)

The form in (14) reveals that the READY update can be written as an implicit stochastic

gradient update (see e.g. Bianchi, 2016; Patrascu and Necoara, 2018; Toulis et al., 2021).

The update is implicit because θt|t is present on both sides of the equation and it is stochastic

because it depends on the realization yt. Furthermore, (14) can be viewed as a second-order

gradient update as it uses the information on the expected curvature between the prediction

and the update It|t−1(θt|t) to scale the score, see also Toulis et al. (2016). The quantity

It|t−1(θt|t) can be understood as a measure of the information content of the prediction pt|t−1

about the parameter θ. As a result, ‘larger’ (‘smaller’) values of It|t−1(θt|t) will lead to
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‘smaller’ (‘larger’) updates.

Because the READY update is invariant to the choice of parameterization, one could

interpret the READY update as a gradient-type update that occurs in distribution space

rather than in Euclidean parameter space. The READY update is therefore closely related

to the class of natural gradient methods, which use gradients scaled by a Fisher information

matrix, see Amari (1998). In particular, note that It|t−1(θt|t) is similar to the Fisher infor-

mation matrix It|t−1(θt|t−1) := −
y
Et|t−1

[
∂2

∂θ∂θ′ log p(y|θ)
∣∣∣∣
θt|t−1

]
=

y
Et|t−1[∇(y|θt|t−1)∇(y|θt|t−1)′]

via the information matrix equality. Because natural gradients are (locally) invariant to

the choice of parameterization they enjoy attractive information-theoretical properties and

are known to generally present substantial efficiency gains over standard gradient ascent

methods (Yang and Amari, 1997; Martens, 2020).

To provide additional intuition for the READY gradient update form in (14), we con-

sider first-order and second-order Taylor approximations of the READY problem in (1). In

combination with a linear prediction step as in (6) this yields score-driven models of the

type as introduced in Creal et al. (2013), Harvey (2013) and recently in Lange et al. (2022).

Specifically, suppose we approximate the KLD penalty Dt|t−1(θ) in the READY problem

in (1) using a second-order Taylor expansion around the prediction θt|t−1, that is under

Assumptions 3 and 4 we have

Dt|t−1(θ) ≈ 1
2∥θ − θt|t−1∥2

It|t−1(θt|t−1). (15)

Using this approximation, we directly obtain the proximal parameter (ProPar) framework of

Lange et al. (2022) with penalty matrix ρIt|t−1(θt|t−1). Note that the constant and first-order

terms of the approximation in (15) vanish because Dt|t−1(θt|t−1) = 0 and
y
Et|t−1[∇(y|θt|t−1)] =

0, where the latter follows by differentiability and the fact that θt|t−1 is the unique minimizer

of Dt|t−1(θ).
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The associated FOC of the READY problem using the approximation in (15) reads

θProPar
t|t = θt|t−1 + ρ−1I−1

t|t−1(θt|t−1)∇(yt|θProPar
t|t ), (16)

provided θProPar
t|t ∈ Θ and where It|t−1(θt|t−1) is invertible by the assumption of identification.

The ProPar framework with a penalty matrix proportional to the Fisher matrix therefore

yields a similar implicit-gradient update as the READY framework. However, instead of

fully accounting for the curvature between the prediction and the update, the ProPar model

uses the local approximation It|t−1(θt|t−1). That is, It|t−1(θt|t−1) measures the curvature at

the prediction only and, unlike It|t−1(θt|t), does not use the information contained in the new

observation yt. This lightens computational demands, but may also lead to a slight efficiency

loss. Additionally, we introduce dependence on the particular parameterization.

Furthermore, if we additionally approximate the log-likelihood contribution log p(yt|θ) in

(1) using a first-order Taylor approximation around the prediction θt|t−1, that is,

log p(yt|θ) ≈ log p(yt|θt|t−1) + ⟨∇(yt|θt|t−1), θ − θt|t−1⟩, (17)

where ⟨·, ·⟩ denotes the inner product, then the associated FOC yields the score-driven update

used in generalized autoregressive score (GAS; Creal et al., 2013) and dynamic conditional

score (DCS; Harvey, 2013) models with inverse Fisher scaling,

θGAS
t|t = θt|t−1 + ρ−1I−1

t|t−1(θt|t−1)∇(yt|θt|t−1), (18)

provided θGAS
t|t ∈ Int(Θ). The approximation of the log-likelihood contribution is thus re-

flected by the approximation of the implicit score ∇(yt|θt|t) with its explicit counterpart

∇(yt|θt|t−1). Because we now no longer use all the information in the log-likelihood con-

tribution, this may lead to an efficiency loss. In particular, as all new information flows

via this term (i.e. yt is not found in the penalty term), this will turn out to be a more
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severe issue for optimality than the second-order approximation of the penalty in (15), see

Section 3.2. However, practically, we have that (18) is an explicit relationship that can be

executed directly and does not require solving unlike the READY and ProPar updates. The

above derivation essentially provides a global information-theoretic intuition for the use of

GAS models as well as a direct motivation for using the inverse predictive Fisher matrix

I−1
t|t−1(θt|t−1) for scaling the score, as suggested by Creal et al. (2013). Namely, by using this

scaling, we approximately remove the dependence on the chosen parameterization.

In sum, the READY update can be viewed as a global information-theoretic version or

density-level equivalent of the score-driven models of Creal et al. (2013), Harvey (2013) and

Lange et al. (2022), where the learning rate is proportional to the inverse Fisher information.

The accuracy of the approximations in (15) and (17) depend on the update magnitude, such

that the differences between the updates of the three methods will be small if θt|t and θt|t−1

are very close, but can grow substantially as the distance between θt|t and θt|t−1 increases.

If the signal-to-noise ratio of the data is low, we expect small update steps and therefore

close agreement between the three methods. Conversely, if the signal-to-noise ratio is large,

we expect substantial benefits from using the READY update over the GAS update, with

the ProPar update somewhere in between. In Section 5, we provide two illustrations of

the READY model and compare them against standard score-driven equivalents. The first

illustration demonstrates a case where the READY update outperforms the GAS update

and the second illustration displays a scenario where they produce similar estimates.

3.2 Optimality

Naturally, we are interested in determining whether the READY update yields an updated

density that is closer to the (pseudo-)true density compared the predicted density. To this

end, we first consider local optimality and afterwards consider the global case. Proposition 3

presents the local information-theoretic properties of the READY update.
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Proposition 3 (Local improvement of the READY update) Let Assumption 1 hold

and assume that θt|t ̸= θt|t−1. Then, with probability one, the update is strictly likelihood

concordant, that is,

p(yt|θt|t) > p(yt|θt|t−1). (19)

In addition, if the postulated density p(y|θ) is continuous in y, then, with probability one,

the update yields a local KLD improvement. That is, ∃δ > 0 such that for Y := {y ∈

Dom(y)| ∥y − yt∥2 ≤ δ } we have that Pr(y ∈ Y|θ0
t ) :=

∫
Y p

0(y|θ0
t )dy > 0 and

∆t(Y) :=
y
E0
t [log p(y|θt|t) − log p(y|θt|t−1)|y ∈ Y ] > 0, (20)

where ∆t(Y) denotes the difference in local KLD divergencies from the prediction and the

update to the truth over the set Y ⊆ Dom(y).

The first result of Proposition 3 shows that updating always improves the fit of the

newly arrived observation yt. Namely, it makes it so that the information is incorporated

in accordance with the likelihood. Conversely, it completely eliminates the possibility of a

maladaptation, i.e., when updating using the observation yt decreases the models capacity

to fit yt. This is a key advantage of the optimization setup.

The second result of Proposition 3 strengthens the first result to a set of positive proba-

bility containing yt, which yields an improvement in terms of the local realized KLD ∆t(Y).

Proposition 3 is similar to the one of Lange et al. (2022) and can be viewed as a global-

ized version of the local realized KLD optimality of Blasques et al. (2015) for GAS models.

Namely, GAS models generally additionally require infinitesimally small stepsizes to achieve

the same result. The local optimality of the GAS update is therefore local in terms of

both y and θ, while the READY and ProPar update are only local in y and global in θ.

This is a direct result of the fact that the READY and ProPar updates both use the full

log-likelihood contribution in the optimization procedure, while the GAS framework uses a

first-order approximation, see again (17).
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Next, we consider the global optimality properties of the READY framework. Because

the information of the observation yt about the (pseudo-)true density comes with a certain

amount of noise, we have that fully globalizing the result of Proposition 3 (i.e. selecting

Y = Dom(y)) is fundamentally impossible. That is, if our prediction is already very close to

the (pseudo-)truth, this noise will dominate and a possible deterioration is unpreventable.

We refer to this zone as the noise-dominated region (NDR), similar to e.g. Ryu and Boyd

(2016). On the other hand, if the prediction is far from the truth then the signal is expected

to outweigh the noise, such that an improvement is likely, precisely when we need it most.

Our global optimality result formalizes such a contraction of the update towards the NDR.

To simplify matters, we restrict ourselves to the scalar time-varying parameter case (K =

1) here and leave the multi-parameter case for future research. To control global behavior,

Assumption 5 poses that the log density is concave in its parameter. While this assumption

is likely too strong it yields the cleanest expressions and is commonly used to prove the

convergence of gradient-based algorithms (e.g. Toulis et al., 2014). Note that this concerns

a property of the model and not one of the DGP and can therefore be easily verified in

practice. An immediate consequence is that the penalty Dt|t−1(θ) is convex in θ. Also, due

to the parameterization invariance of the READY update (see Proposition 1), it follows

that there simply needs to exist a suitable concave parameterization; one does not need

to analyze the form of the update in this parameterization in detail. In order to quantify

optimality, Assumption 6 poses the existence of a unique pseudo-truth p∗
t (see again (3))

with finite-valued KLD D∗
t (θ) := D(p(·|θ∗

t )∥p(·|θ)), ∀θ ∈ Θ.

Assumption 5 (Concave log likelihood) log p(y|θ) is concave in θ, ∀y ∈ Dom(y).

Assumption 6 (Existence pseudo-truth) There exists a unique p∗
t that solves (3) and

D∗
t (θ) < ∞, ∀θ ∈ Θ.

Lemma 1 indicates that the KLD from the update to the pseudo-truth D∗
t (θt|t) is at

most equal to a convex combination of the KLD from the prediction and the KLD from the
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one-period maximum likelihood (ML) density p̂t := p(·|θ̂t) to the pseudo-truth, denoted by

D∗
t (θt|t−1) and D∗

t (θ̂t), respectively. Therefore, if the density p̂t is closer to the pseudo-truth

p∗
t than the prediction pt|t−1, then the update yields an improvement for any choice of penalty

parameter ρ > 0.

Lemma 1 (READY update as smoothed MLE) Let Θ ⊆ R and let Assumptions 1-6

hold. In addition, assume that the one-period ML estimator θ̂t(yt) exists, is unique and that

θ̂t ∈ Int(Θ). Then, with probability one,

D∗
t (θt|t) ≤ A(yt|θt|t, θt|t−1)D∗

t (θt|t−1) + [1 − A(yt|θt|t, θt|t−1)]D∗
t (θ̂t), (21)

with smoothing coefficient A(yt|θt|t, θt|t−1) ∈ (0, 1) given as

A(yt|θt|t, θt|t−1) := [ρIt|t−1(θt|t) − H(yt|θt|t)]−1ρIt|t−1(θt|t), (22)

where H(yt|θt|t) is the realized average Hessian between θ̂t and θt|t, that is,

H(yt|θt|t) :=
∫ 1

0

∂2

∂θ∂θ′ log p(yt|θ)
∣∣∣∣
θ̂t+q(θt|t−θ̂t)

dq. (23)

The mixture weight A(yt|θt|t, θt|t−1) admits an intuitive form by measuring the relative curva-

ture of the penalty between the prediction and update, ρIt|t−1(θt|t), to the realized curvature

of the observation between the one-period ML estimator and the update, H(yt|θt|t). These

curvatures can informally be understood as measures of the information content of the pre-

diction pt|t−1 and the observation yt about the parameter θ, respectively. ‘Larger’ (‘smaller’)

H(yt|θt|t) relative to ρIt|t−1(θt|t) will therefore lead to ‘larger’ (‘smaller’) update steps.

Theorem 1 formalizes the idea of a contraction when the prediction is far from the

pseudo-truth by specifying upper and lower bounds on the curvature of the log-likelihood

contribution and the penalty using strong concavity or convexity and Lipschitz continuity of

the gradients. Theorem 1 bears some resemblance to the contraction result of Lange et al.
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(2022); the difference being that the latter formulates the contraction at the parameter level.

Theorem 1 (Global linear contraction to the NDR) Let the conditions of Lemma 1

hold. In addition, let log p(yt|θ) be αt(yt)-strongly concave and βt(yt)-smooth in θ and let

Dt|t−1(θ) be α̃t-strongly convex and β̃t-smooth in θ, then,

yt
E0
t [D∗

t (θt|t)] ≤ ηtD∗
t (θt|t−1) + λtσt, (24)

ηt :=
yt
E0
t [

ρβ̃t

ρβ̃t + αt
] ∈ (0, 1), λt := yt

E0
t [ βt

ρα̃t+βt
D∗
t (θ̂t)]

yt
E0
t [D∗

t (θ̂t)]
∈ (0, 1), σt :=

yt
E0
t [D∗

t (θ̂t)] ∈ (0,∞).

(25)

Theorem 1 demonstrates that the READY update with a concave log density yields

a contraction to a NDR around the pseudo-true density, in line with the intuition of the

READY update as an estimator of the pseudo-truth, see again (4). Specifically, we have

that the expected KLD from the update to the pseudo-truth
yt
E0
t [D∗

t (θt|t)] is upper-bounded

by a linear function of the KLD from the prediction D∗
t (θt|t−1) (to the pseudo-truth). The

slope ηt quantifies the rate of contraction, while λt measures the exposure to the irreducible

noise σt. Specifically, σt denotes the expected KLD from the one-period ML density p̂t to

the pseudo-truth and reflects the inherent expected error from using yt to update in a ML

setting. If our prediction is already highly accurate, then the additive noise term λtσt may

dominate and an expected deterioration is possible. In contrast, if our prediction is bad (i.e.

D∗
t (θt|t−1) > λt

1−ηt
σt), then we expect a linear contraction to the pseudo-truth.

The contraction rate ηt is governed by the strength of concavity of the log-likelihood

contribution αt relative to the smoothness of the gradient of the penalty measured by β̃t.

Furthermore, ηt is positively related to the penalty parameter ρ, while λt is negatively related.

In the limit, we have limρ→∞ ηt = 1 and limρ→∞ λt = 0 and limρ↓0 ηt = 0 and limρ↓0 λt = 1.

Consequently, we have that the choice of ρ presents a trade-off between the rate of contraction

towards the NDR (governed by ηt) and the exposure to the irreducible noise σt (measured
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by λt), which determines the size of the NDR. A low value of ρ leads to a model with little

persistence and thus larger improvements when the predictions are ‘bad’, but also to more

deteriorations when the prediction are ‘good’. The appropriate value of ρ can be determined

using the entire estimation sample as will be elaborated upon in Section 4.

3.3 Stability

We now consider the stability aspect of our proposed framework. In particular, we are

interested in proving that differences due to initialization disappear sufficiently fast. We

proceed with the case of a scalar time-varying parameter and a concave log model density.

In addition, we make the following assumption about the form of the KLD penalty.

Assumption 7 (Translationally invariant penalty) Consider Θ ⊆ R and let

D(p(·|θt|t−1 + c)∥p(·|θ + c)) = D(p(·|θt|t−1)∥p(·|θ)) =: Dt|t−1(θ), (26)

∀c ∈ R and ∀θt|t−1, θ ∈ Θ such that θt|t−1 + c, θ + c ∈ Θ.

Assumption 7 asserts that the KLD only depends on the Euclidean distance from the pre-

diction, i.e. ∥θ − θt|t−1∥, not on the location of that distance. While Assumption 7 may

appear rather strong, it encompasses the entire family of location-scale distributions with ei-

ther a time-varying location or a time-varying scale. Namely, for this family of distributions

the KLD depends only on the difference in locations or the scale ratio, see Nielsen (2019)

for proofs. It immediately follows that the KLD is translationally invariant in the location

parameter and the logarithmic scale parameter.

Lemma 2 (Update stability) Let Θ ⊆ R and let Assumptions 1-5 and Assumption 7

hold. Consider two predictions θt|t−1, θ̃t|t−1 ∈ Θ that are updated using the READY update

in (1) to two updates θt|t, θ̃t|t ∈ Θ. Then, with probability one,

∥θt|t − θ̃t|t∥ ≤ ∥θt|t−1 − θ̃t|t−1∥. (27)

20



If log p(yt|θ) is αt-strongly concave in θ and Dt|t−1(θ) is β̃t-smooth in θ, then, with probability

one,

∥θt|t − θ̃t|t∥ ≤ ζt∥θt|t−1 − θ̃t|t−1∥, ζt := ρβ̃t

ρβ̃t + αt
∈ (0, 1). (28)

Lemma 2 shows that the READY update at time t from θt|t−1 to θt|t is non-expansive. That

is, updating cannot increase the Euclidean distance between two different filtered parameter

paths. The second result of Lemma 2 shows that this result can be strengthened to a strict

contraction with Lipschitz coefficient ζt ∈ (0, 1), comparable to ηt in Theorem 1, in case the

log-likelihood contribution is αt-strongly concave and the penalty is β̃t-smooth. In line with

intuition, the dependence of ζt on ρ is positive, such that larger values of ρ will yield more

persistent dynamics and thus slower contractions.

Theorem 2 demonstrates that composing a non-expansive READY update with a strictly

contracting linear prediction map (i.e. |ϕ| < 1) yields a strictly contracting composed map-

ping from prediction to prediction. It follows that if this holds for all points in time that the

differences due to initialization disappear exponentially fast almost surely. This so-called

filter invertibility is a crucial ingredient for the consistency of the ML estimator of the static

parameters such as ρ, see Straumann and Mikosch (2006) and Blasques et al. (2022) for

detailed discussions on this matter.

Theorem 2 (Invertibility) Let Θ ⊆ R and let Assumptions 1-5 and Assumption 7 hold

for all t > 0. Then the filter composed of the READY update (1) and the linear prediction

step (6) with |ϕ| < 1 is invertible. That is, for any two initial values θ0|0, θ̃0|0 ∈ Θ producing

two sequences {θt|t−1}t≥1 and {θ̃t|t−1}t≥1, we have that there exists a constant c(·) > 1 such

that, with probability one,

lim
t→∞

ct(·)∥θt|t−1 − θ̃t|t−1∥2
(·) → 0, (29)

for any norm (·).

Interestingly, Theorem 2 makes almost no assumptions regarding the DGP. In particular,

if Assumptions 1-2 hold for all y, then it is completely independent. This means that the
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READY filter is invertible at a fundamental level, which is a direct result of the inherent

stability of regularized maximization with a concave target and a convex penalty. For the

ℓ2 penalty this is the well-known non-expansiveness property of the proximal operator (e.g.

Parikh and Boyd, 2014), which is why a similar result as Theorem 2 is available for the

ProPar framework (see Theorem 1 of Lange et al., 2022). Besides the READY and ProPar

frameworks this invertibility result is generally rare. For example, GAS models, like all

explicit gradient methods, require careful tuning of the learning rate parameter (ρ−1) to

avoid divergence, whereby the maximum stable learning rate is usually linked to the true

unknown DGP, see Blasques et al. (2022).

4 Estimation

The optimal values of the penalty parameter ρ and the prediction parameters (ω and Φ

for the linear prediction (6) or τ for the density prediction (5)) are generally unknown and

require estimation. Because the predicted density for time t + 1 is available at time t,

the proposed framework is observation-driven, see Cox et al. (1981). As a result, the log

likelihood of the entire sample can be obtained using the prediction-error decomposition

and is closed-form given the sequence {θt|t−1}. We therefore propose to estimate ρ and the

prediction parameters jointly with possible static parameters using MLE, similar to the GAS

methodology. In the two empirical illustrations of the next section, we combine the READY

update with the linear prediction step (6). This simplifies estimation and facilitates the

comparison with existing methods, which also use a linear specification.

In terms of the theoretical properties of this ML estimator, we borrow from the theory

for GAS models as recently established in Blasques et al. (2022). The bottleneck of these

proofs is usually filter invertibility. For the class of log-concave location-scale distributions

Theorem 2 provides this required filter invertibility. The empirical volatility illustration falls

in this category. Under standard assumptions, such as stationarity and ergodicity of the
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DGP in combination with sufficient moments, we therefore obtain the desired consistency

and asymptotic normality, see Blasques et al. (2022) for details. The other illustration

regarding employment falls within the location-scale setting but does not possess a concave

log density. In this case, the asymptotic validity of the ML estimator is a conjecture and may

require assumptions about the exclusion of badly behaved DGPs. Note that there generally

always exists a value of the autoregressive parameter Φ sufficiently close to 0 for which the

filter is invertible. Empirically, we find our method to work well even in this non-concave

case, similar to how gradient-based optimization methods also tend to work well in practice

outside of stylized settings such as the case of global concavity.

5 Empirical illustrations

5.1 Employment

Employment has a rich history as a key indicator of the economy. Furthermore, it is well

established that the conditional mean changes alongside the business cycle characterized by

periods of slow growth and shorter periods of more rapid decline, see e.g. Stock and Watson

(1999). We therefore propose the following dynamic location model for the monthly log

growth rates of employment yt,

yt = µt + σεt, εt
i.i.d.∼ t(ν), (30)

where µt denotes the time-varying location, σ a static scale parameter and εt an i.i.d. dis-

turbance that follows a Student’s t-distribution with degrees of freedom ν > 1. For the

prediction step we use a linear specification, that is,

µt+1|t = ω + ϕµt|t, (31)

where ω ∈ R and ϕ ∈ (−1, 1) are parameters.
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We consider monthly US employment log growth rates from January 1939 until August

2022 retrieved from the FRED database1. Figure 1 displays the evolution of the predictions

µt|t−1 for the READY, ProPar and GAS approaches for the model outlined in (30)-(31). We

note that the associated Fisher matrix relevant for the latter two approaches is constant.

For comparison purposes, we also include the ARMA(1,1) model with a normal distribution,

which is the READY, ProPar and GAS equivalent of (30)-(31) for the normal distribution.

Figure 1: Time-evolution of µt|t−1 for the READY, ProPar, GAS and ARMA(1,1) models
for monthly US employment, January 1939 until August 2022.

Note: the grey line line reflects the evolution of monthly employment itself to compare the models against.

In Figure 1, we observe that all three likelihood-driven models making use of the t-

distribution correctly downweight the large shock in April 2020 associated with the onset

of the COVID-19 pandemic. The ARMA(1,1) model, however, possesses no such innate
1All Employees, Total Nonfarm from https://fred.stlouisfed.org/series/PAYEMS
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robustness and makes a large adjustment, which leads to a sizeable forecast error for the

next month. This is the strength of linking the evolution of the time-varying parameters to

the density as long been recognized by the score-driven literature.

Further comparing the three methods, we find that the READY and ProPar frameworks

are highly similar with some more differences relative to the GAS approach. Namely, the

READY and ProPar models are more responsive for the earlier decades compared to the

GAS model, while all three methods tend to agree on the later dates. This is in line with

intuition as the early years are characterized by strong (but sufficiently persistent) time-

variation, leading to larger update magnitudes, such that the optimization problems used

by the READY, ProPar and GAS methods tend to differ more. Because the fit of the

READY and ProPar models is quite close (log likelihoods 59.26 and 58.33, respectively),

it appears that a second-order approximation is accurate enough overall, while a first-order

approximation by the GAS model leaves some efficiency on the table (log likelihood 16.50).

Another possible explanation for the gain of the READY and ProPar models over the GAS

method may be due to the robustness of implicit updates against mispecification of the

learning rate (e.g. Toulis et al., 2014). As a result, a constant learning rate (ρ−1) for long

samples may be less impactful for the READY and ProPar update then for the GAS method.

5.2 Volatility

The workhorse model commonly employed for volatility forecasting is the celebrated GARCH

model by Bollerslev (1986). However, it is well known that the conditional distribution of

asset returns deviates substantially from the normal, which in turn could make innovating

using the squared shock inefficient. The Beta-t-EGARCH model of Harvey and Sucarrat

(2014) considers a conditional t-distribution for the error term and updates the logaritmic

scale using a score-driven update recursion. As a result, information on the fat-tailed nature

of the density is used in the update of the volatility, effectively reducing the impact of very

large shocks. We entertain a similar setup but update the volatility using the READY
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strategy instead. Specifically, we consider

yt = µ+ exp(λt)
√
ν − 2
ν

zt, zt
i.i.d.∼ t(ν), (32)

λt+1|t = ω + ϕλt|t, (33)

where µ denotes a static mean, λt the dynamic log volatility, zt an i.i.d. Student’s t-

distributed error term with degrees of freedom ν > 2 and ω ∈ R and ϕ ∈ (−1, 1) parameters.

We implement the update portion from λt|t−1 to λt|t using the READY, ProPar and Beta-

t-EGARCH (i.e. the GAS/DCS equivalent) frameworks, where we note that the associated

Fisher information is again constant. Specifically, Figure 2 demonstrates the evolution of

the volatility predictions σt|t−1 := exp(λt|t−1) of the three models using daily Dow Jones log

returns from January 2000 until June 2022, retrieved from the Oxford-Man library2.

Figure 2: Time-evolution of σt|t−1 for the READY, ProPar and Beta-t-EGARCH models for
daily Dow Jones index log returns, January 2000 until June 2022.

Note: the grey line represents the absolute returns |yt|, which serve as crude ex-post measures of the daily
volatility.

2https://realized.oxford-man.ox.ac.uk/
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We observe in Figure 2 that the estimates of all three methods are almost identical, with

only very minor differences around peaks. This indicates that in this scenario the approxima-

tions used by the ProPar and GAS/DCS frameworks are highly accurate, producing updates

virtually indistinguishable from the READY update. The differences with the employment

illustration may be due to the fact that it is generally harder to estimate a second moment

compared to a first moment from a single observation, which is evident from the squared

nature of variance proxies. This volatility illustration clearly demonstrates a practical case

where the GAS/DCS approach is computationally cheap yet effectively efficient.

6 Conclusion

We propose a new framework for constructing time-varying density models by combining

concepts from information theory with optimization techniques. The resulting Relative En-

tropy Adaptive Density (READY) update maximizes the log-likelihood contribution of the

latest observation subject to a Kullback-Leibler divergence (KLD) regularization that penal-

izes deviations from a one-step ahead predicted density. Because the optimization occurs at

the density level, we have that the READY update of multiple time-varying characteristics is

automatically joint and unaffected by the choice of parameterization. We demonstrate that

the READY update can be viewed as an intuitive regularized estimator of the pseudo-true

density. For a single time-varying parameter we derive conditions for a new type of global

optimality as well as filter invertibility. Furthermore, we show that the READY framework

nests several popular existing time-series models, such as the ARMA and GARCH, and al-

lows for rich connections with the score-driven methods of Creal et al. (2013), Harvey (2013)

and Lange et al. (2022). Empirical effectiveness is illustrated by the modeling of employment

growth and asset volatility.
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A Examples

A.1 Example 1: ARMA(1,1)

The READY update at time t for a normal distribution with mean µt and static variance

σ2 takes the following form

µt|t = argmax
µ∈R

{
−log (σ

√
2π) − (yt − µ)2

2σ2 − ρ

[
log

(
σ

σ

)
+ σ2 + (µ− µt|t−1)2

2σ2 − 1
2

]}

= argmax
µ∈R

{
−(yt − µ)2

2σ2 − ρ
(µ− µt|t−1)2

2σ2

}
,

(A.1)

where the second characterization removes all arguments that do not depend on µ. The

associated FOC multiplied by σ2 reads

(yt − µt|t) + ρ(µt|t−1 − µt|t) = 0, (A.2)

such that rearranging yields

µt|t = 1
1 + ρ

yt + ρ

1 + ρ
µt|t−1. (A.3)

A.2 Example 2: GARCH(1,1)

The READY update at time t for a normal distribution with mean µ and variance σ2
t takes

the following form

σ2
t|t = argmax

σ2∈R+

{
−log (σ

√
2π) − (yt − µ)2

2σ2 − ρ

[
log

(
σ

σt|t−1

)
+
σ2
t|t−1 + (µ− µ)2

2σ2 − 1
2

]}

= argmax
σ2∈R+

−1
2log (σ2) − (yt − µ)2

2σ2 − ρ

1
2log

(
σ2

σ2
t|t−1

)
+
σ2
t|t−1

2σ2

 ,
= argmax

σ2∈R+

{
−log (σ2) − (yt − µ)2

σ2 − ρ

[
log (σ2) +

σ2
t|t−1

σ2

]}
,

(A.4)
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where the final line multiplies by a factor two and removes terms that do not depend on σ2.

The associated FOC reads

− 1
σ2
t|t

(1 + ρ) + (yt − µ)2

σ4
t|t

+ ρ
σ2
t|t−1

σ4
t|t

= 0, (A.5)

such that multiplying by σ4
t|t and rearranging yields

σ2
t|t = 1

1 + ρ
(yt − µ)2 + ρ

1 + ρ
σ2
t|t−1. (A.6)

A.3 Example 3: AV-GARCH(1,1)

The READY update at time t for a Laplace distribution with static location µ and scale σt

is given as

σt|t = argmax
σ∈R+

{
−log(2σ) − |yt − µ|

σ
− ρ

[
log
(

σ

σt|t−1

)
+ σt|t−1

σ
− 1

]}

= argmax
σ∈R+

{
−log(σ) − |yt − µ|

σ
− ρ

[
log(σ) + σt|t−1

σ

]}
,

(A.7)

where the associated FOC is given by

− 1
σt|t

(1 + ρ) + |yt − µ|
σ2
t|t

+ ρ
σt|t−1

σ2
t|t

= 0. (A.8)

Multiplying the FOC with σ2
t|t and rearranging yields

σt|t = 1
1 + ρ

|yt − µ| + ρ

1 + ρ
σt|t−1. (A.9)
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A.4 Example 4: Poisson

The READY update at time t for a Poisson distribution with parameter λt using the obser-

vation yt ∈ N0 is given as

λt|t = argmax
λ∈R+

{
−log(yt!) − λ+ ytlog(λ) − ρ

[
λt|t−1log

(
λt|t−1

λ

)
+ λ− λt|t−1

]}

= argmax
λ∈R+

{
−λ+ ytlog(λ) − ρ

[
λ− λt|t−1log(λ)

]}
,

(A.10)

where the second form removes terms that do not depend on λ. The associated FOC reads

−(1 + ρ) + yt + ρλt|t−1

λt|t
= 0. (A.11)

Multiplying with λt|t and rearranging yields

λt|t = 1
1 + ρ

yt + ρ

1 + ρ
λt|t−1. (A.12)

A.5 Example 5: Exponential

The READY update at time t for an exponential distribution with scale λt using the obser-

vation yt ≥ 0 is given as

θt|t = argmax
θ∈R+

{
−log(θ) − yt

θ
− ρ

[
log
(

θ

θt|t−1

)
+ θt|t−1

θ
− 1

]}

= argmax
θ∈R+

{
−log(θ) − yt

θ
− ρ

[
log(θ) + θt|t−1

θ

]}
,

(A.13)

where the second form removes terms that do not depend on θ. The associated FOC reads

−1 + ρ

θt|t
+ yt + ρθt|t−1

θ2
t|t

= 0. (A.14)
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Multiplying with θ2
t|t and rearranging yields

θt|t = 1
1 + ρ

yt + ρ

1 + ρ
θt|t−1. (A.15)

A.6 Example 6: Binomial

The READY update at time t for a binomial distribution with fixed number of trails n and

probability of success θt using the observation yt ∈ {0, 1, . . . , n}, directly suppressing terms

that do not depend on θ for brevity, is given as

θt|t = argmax
θ∈∈[0,1]

{
ytlog(θ) + (n− yt)log(1 − θ) + ρ

[
log(θ)nθt|t−1 + log(1 − θ)n(1 − θt|t−1)

]}
.

(A.16)

The associated FOC reads

yt + ρnθt|t−1

θt|t
−

(n− yt) + ρn(1 − θt|t−1)
1 − θt|t

= 0. (A.17)

Multiplying with θt|t(1 − θt|t) yields

θt|t = yt + ρnθt|t−1

yt + ρnθt|t−1 + (n− yt) + ρn(1 − θt|t−1)
, (A.18)

which can be written as

θt|t = 1
1 + ρ

yt
n

+ ρ

1 + ρ
θt|t−1. (A.19)
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B Proofs

B.1 Proposition 1

This result is similar to the reparameterization invariance of the ML estimator and follows

directly from the definitions.

B.2 Proposition 2

Using Assumptions 1-3 the READY update solves the first-order condition (FOC) given as

∇(yt|θt|t) = −ρ ∂
∂θ y

Et|t−1[log p(y|θ)]
∣∣∣∣
θ=θt|t

. (B.20)

Using the interchangability of the partial derivative operator and the expectation (Assump-

tion 4) and the fact that
y
Et|t−1[∇(yt|θt|t−1)] = 0 (which follows from differentiability and

identification), we obtain

∇(yt|θt|t) = −ρ
y
Et|t−1[∇(yt|θt|t) − ∇(yt|θt|t−1)]. (B.21)

Using second-order continuous differentiability (Assumption 3), we may then write the differ-

ence in gradients on the right-hand side as an integral involving the Jacobian of the gradient

(i.e. the Hessian),

∇(yt|θt|t) = −ρ
y
Et|t−1

[∫ 1

0

∂2

∂θ∂θ′ log p(y|θ)
∣∣∣∣
θt|t−1+q(θt|t−θt|t−1)

dq
]

(θt|t − θt|t−1). (B.22)

Using the definition of It|t−1(θt|t) this gives the first result. Left-multiplying on both sides

by the inverse of It|t−1(θt|t), provided it exists, and rearranging gives the second result.

5



B.3 Proposition 3

By the assumption of identification, we have that Dt|t−1(θ) is uniquely minimized at θ =

θt|t−1. Therefore, if θt|t ̸= θt|t−1, we have Dt|t−1(θt|t) > Dt|t−1(θt|t−1) = 0. Because θt|t is the

unique maximizer of the objective log p(yt|θ) − ρDt|t−1(θ) by Assumption 1, we have

log p(yt|θt|t) − ρDt|t−1(θt|t) > log p(yt|θt|t−1) − ρDt|t−1(θt|t−1) = log p(yt|θt|t−1), (B.23)

from which it directly follows that log p(yt|θt|t) > log p(yt|θt|t−1). In other words, because θt|t

is strictly worse than θt|t−1 in terms of penalty, it must have a strictly higher likelihood fit

(otherwise it would not be the unique maximizer of log p(yt|θ) − ρDt|t−1(θ)). Monotonicity

of the logarithm then provides p(yt|θt|t) > p(yt|θt|t−1), which is the first result.

Having obtained that log p(yt|θt|t) > log p(yt|θt|t−1) if θt|t ̸= θt|t−1, we may use the assumed

continuity of the density in its first argument to extend this improvement to a neighbourhood

of yt. Specifically, using an ε-δ argument we have that ∃δ > 0 such that for Y := {y ∈

Dom(y)| ∥y − yt∥2 ≤ δ } we have that ∀ỹ ∈ Y ,

log p(ỹ|θt|t) − log p(ỹ|θt|t−1) > ε > 0. (B.24)

In addition, we also have that Pr(y ∈ Y|θ0
t ) :=

∫
Y p

0(y|θ0
t )dy > 0. This follows directly from

the fact that Y has non-zero Lebesgue measure. In other words, if Pr(y ∈ Y|θ0
t ) = 0, yt

would not be a possible outcome. Combining these two insights we obtain the final result,

∆t(Y) :=
y
E0
t [log p(y|θt|t) − log p(y|θt|t−1)|y ∈ Y ] > 0. (B.25)

6



B.4 Lemma 1

From Proposition 2, we have that

∇(yt|θt|t) = ρIt|t−1(θt|t)(θt|t − θt|t−1). (B.26)

Using the assumption of the existence of the one-period ML estimator θ̂t ∈ Int(Θ) and

differentiability (Assumption 3), we have that ∇(yt|θ̂t) = 0. Subtracting ∇(yt|θ̂t) on the

left-hand side and 0 on the right-hand side and again writing the difference in gradients as

an integral involving the Hessian we obtain,

H(yt|θt|t)(θt|t − θ̂t) = ρIt|t−1(θt|t)(θt|t − θt|t−1), (B.27)

where H(yt|θt|t) is given as

H(yt|θt|t) :=
[∫ 1

0

∂2

∂θ∂θ′ log p(yt|θ)
∣∣∣∣
θ̂t+q(θt|t−θ̂t)

dq
]
. (B.28)

Collecting all terms involving θt|t on the left, we obtain

[H(yt|θt|t) − ρIt|t−1(θt|t)]θt|t = Ĥtθ̂t − ρIt|t−1(θt|t)θt|t−1. (B.29)

Finally, multiplying with [H(yt|θt|t) − ρIt|t−1(θt|t)]−1 gives

θt|t = [IK − A(yt|θt|t, θt|t−1)]θ̂t + A(yt|θt|t, θt|t−1)θt|t−1, (B.30)

where IK denotes the K-dimensional identity matrix and A(yt|θt|t, θt|t−1) := [ρIt|t−1(θt|t) −

H(yt|θt|t)]−1ρIt|t−1(θt|t). Note that invertibility of ρIt|t−1(θt|t) − H(yt|θt|t) follows from the

fact that −H(yt|θt|t) > 0 and It|t−1(θt|t) > 0. This is a result of the concavity of the log

7



density in θ (Assumption 5) in combination with the following second-order conditions

∂2

∂θ∂θ′ log p(yt|θ)
∣∣∣∣
θ̂t

< 0, ∂2

∂θ∂θ′ y
Et|t−1 [log p(y|θ)]

∣∣∣∣
θt|t−1

= −It|t−1(θt|t−1) < 0, (B.31)

where the second equation uses the interchangability of derivative and expectation (As-

sumption 4). These second-order conditions are due to the fact that θ̂t and θt|t−1 uniquely

maximize log p(yt|θ) and
y
Et|t−1[log p(y|θ)] in combination with second-order differentiabil-

ity and interior values (Assumption 2, θ̂t ∈ Int(Θ) and Assumption 3). By continuity of

the Hessian (Assumption 3) it follows that −H(yt|θt|t) > 0 and It|t−1(θt|t) > 0, such that

ρIt|t−1(θt|t) − H(yt|θt|t) > 0, which yields 0 < A(yt|θt|t, θt|t−1) < 1.

Because the log likelihood is concave in θ for all y, it follows that any KLD from p(·|θ)

is convex in θ, such that,

D∗
t (θt|t) ≤ A(yt|θt|t, θt|t−1)D∗

t (θt|t−1) + [1 − A(yt|θt|t, θt|t−1)]D∗
t (θ̂t), (B.32)

where the quantities are finite-valued by Assumption 6. This completes the proof.

B.5 Theorem 1

By quantifying the minimum and maximum curvature of the log-likelihood contribution and

the penalty, we may obtain bounds for A(yt|θt|t, θt|t−1) found in Lemma 1. That is, assuming

that log p(yt|θ) is αt(yt)-strongly concave and βt(yt)-smooth in θ and Dt|t−1(θ) is α̃t-strongly

convex and β̃t-smooth in θ, we obtain,

A(yt|θt|t, θt|t−1) = ρIt|t−1(θt|t)
ρIt|t−1(θt|t) − H(yt|θt|t)

≤ ρβ̃t

ρβ̃t + αt
∈ (0, 1), (B.33)

and, similarly,

A(yt|θt|t, θt|t−1) ≥ βt
ρα̃t + βt

∈ (0, 1). (B.34)

8



Filling in these bounds for A(yt|θt|t, θt|t−1) and taking the expectation over yt using the true

distribution, we obtain

yt
E0
t [D∗

t (θt|t)] ≤
yt
E0
t [

ρβ̃t

ρβ̃t + αt
]D∗

t (θt|t−1) +
yt
E0
t [

βt
ρα̃t + βt

D∗
t (θ̂t)], (B.35)

which in turn provides the final result:

yt
E0
t [D∗

t (θt|t)] ≤ ηtD∗
t (θt|t−1) + λtσt, (B.36)

ηt :=
yt
E0
t [

ρβ̃t

ρβ̃t + αt
] ∈ (0, 1), λt := yt

E0
t [ βt

ρα̃t+βt
D∗
t (θ̂t)]

yt
E0
t [D∗

t (θ̂t)]
∈ (0, 1), σt :=

yt
E0
t [D∗

t (θ̂t)] ∈ (0,∞).

(B.37)

B.6 Lemma 2

We first prove the non-expansiveness result of Lemma 2 and afterwards use strong concavity

and smoothness to quantify the contraction rate. Consider two predictions θt|t−1, θ̃t|t−1 ∈

Int(Θ) ⊆ R. By concavity (Assumption 5) and differentiability (Assumption 3), there is at

most a single interval I = (a, b) ⊆ Θ, with a ≤ b for which ∇(yt|θ) = 0, ∀θ ∈ I. This is

because multiple such intervals would contradict concavity.

Assume that this interval I exists, then we need to consider four subcases. First, if

both θt|t−1 ∈ I and θ̃t|t−1 ∈ I, we obtain θt|t = θt|t−1 and θ̃t|t = θ̃t|t−1, such that the first

result of Lemma 2 trivially holds. Second, suppose that one of the two predictions is within

the interval and one is not. That is, without loss of generality assume that θt|t−1 < a and

θ̃t|t−1 ∈ I. From the objective function used to obtain θt|t, we can see that ∀θ ∈ Θ, θ > θ̃t|t−1

and ∀θ ∈ Θ, θ < θt|t−1 are strictly dominated by θ̃t|t−1 and θt|t−1, respectively. This because

these points have both an equal or higher log likelihood as well as a strictly smaller penalty

(by concavity and identification a strictly larger update yields a strictly larger penalty).

Combined with the fact that θ̃t|t = θ̃t|t−1 it follows that θt|t−1 ≤ θt|t ≤ θ̃t|t = θ̃t|t−1, such that
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∥θt|t − θ̃t|t∥ ≤ ∥θt|t−1 − θ̃t|t−1∥. Third, suppose that neither point is within the interval I and

one of the two is on the left of I, while the other is on the right of I. It easy to see that

both predictions move towards I, but cannot ‘cross’, such that again the updated distance

is smaller than those of the predictions. Fourth, neither point is within I and both are on

the same side. This subcase can be treated the same as if the interval I does not exist.

Assuming that either I does not exist or that neither prediction is contained in I and on

the same side, then we have that both predictions have a non-zero gradient of the same sign.

Without loss of generality assume that θ̃t|t−1 < θt|t−1 and ∇(yt|θ̃t|t−1) > 0, ∇(yt|θt|t−1) > 0.

Under Assumptions 2 and 3, it follows that the updates solve the following FOCs:

∇(yt|θ̃t|t) = −ρ ∂
∂θ ỹ

Et|t−1[log p(y|θ)]
∣∣∣∣
θ=θ̃t|t

, ∇(yt|θt|t) = −ρ ∂
∂θ y

Et|t−1[log p(y|θ)]
∣∣∣∣
θ=θt|t

, (B.38)

where
ỹ
Et|t−1 denotes the expectation over y using the prediction p(·|θ̃t|t−1). Using both

concavity and the translational invariance of the penalty (Assumption 7), we may deduce

that the ordering is maintained, that is, θ̃t|t ≤ θt|t. Namely, looking at the FOCs these

assumptions imply that the left-hand sides are non-increasing in θ, while the right-hand

sides are non-decreasing. Specifically, if θ̃t|t ≥ θt|t, then ∇(yt|θ̃t|t) ≤ ∇(yt|θt|t) by concavity

and similarly −ρ ∂
∂θ ỹ
Et|t−1[log p(y|θ)]

∣∣∣∣
θ=θ̃t|t

≥ −ρ ∂
∂θ y
Et|t−1[log p(y|θ)]

∣∣∣∣
θ=θt|t

by concavity and

translational invariance. The latter inequality is due the fact that the penalty only depends

on the Euclidean distance between update and prediction combined with that if θ̃t|t > θt|t

and θ̃t|t−1 < θt|t−1 then ∥θ̃t|t − θ̃t|t−1∥ > ∥θt|t − θt|t−1∥. By the Assumption of uniqueness of

the updates (Assumption 1), we must have that at least one of the two is a strict inequality

if θ̃t|t > θt|t. Together with ∇(yt|θt|t) = −ρ ∂
∂θ y
Et|t−1[log p(y|θ)]

∣∣∣∣
θ=θt|t

, it follows that ∀θ ∈ Θ,

θ > θt|t are not solutions of the FOC of θ̃t|t, i.e., θt|t dominates all points above it. Conversely,

if θ̃t|t > θt|t this would directly invalidate θt|t as the unique maximizer of its objective.

It remains to be proven that the movement of θ̃t|t−1 to θ̃t|t upwards is at least as large as the

movement of θt|t−1 to θt|t. In other words, we require that θ̃t|t− θ̃t|t−1 ≥ θt|t−θt|t−1. Consider
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the candidate point θ̄ = θ̃t|t−1 +θt|t−θt|t−1. It follows that if and only if θ̃t|t ≥ θ̄ that we have

the required θ̃t|t − θ̃t|t−1 ≥ θt|t − θt|t−1. Because of the translational invariance of the penalty

and the fact that ∥θ̄ − θ̃t|t−1∥ = ∥θt|t − θt|t−1∥ it follows that −ρ ∂
∂θ ỹ
Et|t−1[log p(y|θ)]

∣∣∣∣
θ=θ̄

=

−ρ ∂
∂θ y
Et|t−1[log p(y|θ)]

∣∣∣∣
θ=θt|t

. Combined with ∇(yt|θ̃t|t) ≥ ∇(yt|θt|t) by concavity and the

uniqueness of the updates, we conclude that ∀θ ∈ Θ, θ < θ̄ are not solutions of the FOC of

θ̃t|t, i.e., θ̄ strictly dominates all points below it. Conversely, if θ̃t|t < θ̄ this would invalidate

θt|t as the unique maximizer of its objective. Together with the order preserving (θ̃t|t ≤ θt|t),

this means again that also in this final scenario that ∥θt|t − θ̃t|t∥ ≤ ∥θt|t−1 − θ̃t|t−1∥.

Having established the non-expansiveness of the update, we may construct an upper-

bound for the contraction rate using αt-strong concavity of the log-likelihood contribution

and β̃t-smoothness of the penalty. First, note that should the interval I now exist, then

it consists of only a single point. In particular, this point in I is then the one-period ML

estimator θ̂t. From the proof of Lemma 1, we have that

θt|t = [IK − A(yt|θt|t, θt|t−1)]θ̂t + A(yt|θt|t, θt|t−1)θt|t−1, (B.39)

whereA(yt|θt|t, θt|t−1) = [ρIt|t−1(θt|t)−H(yt|θt|t)]−1ρIt|t−1(θt|t) and the invertibility of [ρIt|t−1(θt|t)−

H(yt|θt|t)] is guaranteed by strong concavity. Similar to the argument used in Theorem 1,

we may upperbound A(yt|θt|t, θt|t−1) as

A(yt|θt|t, θt|t−1) = ρIt|t−1(θt|t)
ρIt|t−1(θt|t) − H(yt|θt|t)

≤ ρβ̃t

ρβ̃t + αt
=: ζt ∈ (0, 1). (B.40)

Using this bound we obtain that

∥θt|t − θ̂t∥ = |A(yt|θt|t, θt|t−1)|∥θt|t−1 − θ̂t∥ ≤ ζt∥θt|t−1 − θ̂t∥, (B.41)

with a similar expression for θ̃t|t. It is not hard to see that therefore if θ̃t|t−1 ≤ θ̂t ≤ θt|t−1 or

11



θt|t−1 ≤ θ̂t ≤ θ̃t|t−1 that

∥θt|t − θ̃t|t∥ ≤ ζt∥θt|t−1 − θ̃t|t−1∥. (B.42)

We now only need to consider the case where both predictions have a non-zero gradient of the

same sign (i.e. either θ̂t does not exist or if it exists then both predictions are either strictly

smaller or strictly larger than it). Without loss of generality again assume that θ̃t|t−1 < θt|t−1

and ∇(yt|θ̃t|t−1) > 0, ∇(yt|θt|t−1) > 0 and consider the candidate point θ̄ = θ̃t|t−1+θt|t−θt|t−1.

In the proof of non-expansiveness above we have established that θ̄ ≤ θ̃t|t ≤ θt|t. Using the

FOC, αt-strong concavity of the log-likelihood contribution β̃t-smoothness of the penalties

we obtain,

∇(yt|θt|t) + αt(θt|t − θ̃t|t) ≤ ∇(yt|θ̃t|t) = −ρ ∂
∂θ ỹ

Et|t−1[log p(y|θ)]
∣∣∣∣
θ=θ̃t|t

≤ −ρ ∂
∂θ ỹ

Et|t−1[log p(y|θ)]
∣∣∣∣
θ=θ̄

+ ρβ̃t(θ̃t|t − θ̄).
(B.43)

Note that −ρ ∂
∂θ ỹ
Et|t−1[log p(y|θ)]

∣∣∣∣
θ=θ̄

= −ρ ∂
∂θ y
Et|t−1[log p(y|θ)]

∣∣∣∣
θ=θt|t

because of translational

invariance of the penalty and the fact that ∥θ̄ − θ̃t|t−1∥ = ∥θt|t − θt|t−1∥. Also using the

other FOC, we have that ∇(yt|θt|t) = −ρ ∂
∂θ y
Et|t−1[log p(y|θ)]

∣∣∣∣
θ=θt|t

. Together this means that,

∇(yt|θt|t) = −ρ ∂
∂θ ỹ
Et|t−1[log p(y|θ)]

∣∣∣∣
θ=θ̄

. Combining this with (B.43), we obtain

αt(θt|t − θ̃t|t) ≤ ρβ̃t(θ̃t|t − θ̄), (B.44)

where filling in the definition of θ̄ yields

αt(θt|t − θ̃t|t) ≤ ρβ̃t(θ̃t|t − θ̃t|t−1 − θt|t + θt|t−1). (B.45)

Further rearranging in turn gives,

(θt|t − θ̃t|t) ≤ ρβ̃t

αt + ρβ̃t
(θt|t−1 − θ̃t|t−1), (B.46)
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where both sides are positive because θ̃t|t−1 < θt|t−1 and θ̃t|t < θt|t. Taking the absolute value

and using the definition of ζt gives the final result

∥θt|t − θ̃t|t∥ ≤ ζt∥θt|t−1 − θ̃t|t−1∥. (B.47)

B.7 Theorem 2

Using the result of Lemma 2 and the submultiplicativity property of Lipschitz mappings, it

follows that the composed mapping from prediction to prediction for each point in time has

at most Lipschitz coefficient |ϕ| < 1. The composition of all these |ϕ|-Lipschitz contracting

mappings trivially produces exponential almost sure convergence of the parameter paths.

By norm equivalence it follows that this convergence happens in every norm.
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