
 

 

TI 2023-017/V 

Tinbergen Institute Discussion Paper  

 

 

 

Distributionally Sensitive 

Measurement and Valuation of 

Population Health 

 

 

 
Shaun Da Costa1  

Owen O'Donnell2,3 

Raf Van Gestel2 
 

 

 

 

 

 
1 Paris School of Economics and University of Antwerp 
2 Erasmus University Rotterdam 

3 Tinbergen Institute 



 

 

 

 

 

Tinbergen Institute is the graduate school and research institute in economics of 

Erasmus University Rotterdam, the University of Amsterdam and Vrije Universiteit 
Amsterdam. 

 
Contact: discussionpapers@tinbergen.nl  
 

More TI discussion papers can be downloaded at https://www.tinbergen.nl  
 

Tinbergen Institute has two locations: 
 
Tinbergen Institute Amsterdam 

Gustav Mahlerplein 117 
1082 MS Amsterdam 

The Netherlands 
Tel.: +31(0)20 598 4580 
 

Tinbergen Institute Rotterdam 
Burg. Oudlaan 50 

3062 PA Rotterdam 
The Netherlands 
Tel.: +31(0)10 408 8900 
 

mailto:discussionpapers@tinbergen.nl
https://www.tinbergen.nl/


Distributionally Sensitive Measurement and Valuation

of Population Health

Shaun Da Costa Owen O’Donnell Raf Van Gestel ∗

March 24, 2023

Abstract

We introduce a measure of population health that is sensitive to dispersion in both age-
specific health and lifespan. The measure generalises health-adjusted life expectancy
without requiring more data. A transformation of change in the measure gives a
distributionally sensitive monetary valuation of change in population health and disease
burden. Application to Sub-Saharan Africa between 1990 and 2019 reveals that the
change in population health is sensitive to allowing for lifespan dispersion but is less
sensitive to age-specific health dispersion. Distributional sensitivity changes relative
burdens of diseases, reduces convergence between the burdens of communicable and
non-communicable diseases, and so could influence disease prioritisation. It increases
the value of health improvements relative to GDP.
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1 Introduction

Population health is usually measured with averages, such as life expectancy and health-

adjusted life expectancy. These measures ignore dispersion in lifespan and health, which

is inconsistent with stated preferences for extending a shorter (health-adjusted) life rather

than a longer one by a given amount (Dolan et al., 2005; Dolan & Tsuchiya, 2012; Robson

et al., 2023). If there is aversion to dispersion in lifespan and health, then an increase

in (health-adjusted) life expectancy will understate (overstate) improvement in population

health when mortality falls most at younger (older) ages (van Raalte et al., 2018). The

incomplete impression of population health given by averages may affect resource allocation

to and within a health system.

We introduce a measure of population health that is sensitive to dispersion in both age-

specific health and health-adjusted lifespan. We use nested equity equivalents (Berger &

Emmerling, 2020) to allow for aversion to dispersion in both the health and lifespan di-

mensions. The measure — equivalent health-adjusted lifespan (EHAL) — is in the life

years metric and nests health-adjusted life expectancy (HALE). To ensure maximum ap-

plicability, we deliberately constrain the measure to require no more data than HALE: a

health-extended period life table (Sullivan, 1971) and disease weights (Global Burden of

Disease Collaborative Network [GBDCN], 2021). Consequently, EHAL is both a generali-

sation of HALE (and life expectancy) and always a feasible alternative to it. As far as we

know, our population health measure is the only one that is sensitive to dispersion in the

distributions of both health and lifespan and does not require estimation or simulation of

their joint distribution.

With a period life table, individual lifetime health profiles are not observed. Conditional

on sex, there are no differences in ex ante health or lifespan. Our task is to aggregate

over simulated distributions of health at each age and ages at death. We do this by first

calculating the equally distributed equivalent (EDE) health at each age and then taking a
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concave aggregation of the EDE health over ages at death. This requires specification of the

degree of aversion to dispersion in each of age-specific health and health-adjusted lifespan.

A life years metric lacks comparability with costs of investments in population health

and does not monetize the social value of health returns on such investments. To address

these limitations, we derive societal willingness to pay for improvement in the distribution

of population health that is sensitive to dispersion in both age-specific health and health-

adjusted lifespan. This distributionally sensitive valuation of change in population health

is a function of the relative change in EHAL and parameters that derive from a budget

constraint and willingness to sacrifice consumption for health and lifespan.

We extend Silber’s (1983) equivalent length of life (ELL) measure that adjusts life ex-

pectancy for lifespan dispersion. This has been applied within and between countries (Goer-

lich, 2020; Le Grand, 1987; Muszyńska & Janssen, 2016; Shkolnikov et al., 2003) and is used

to produce the inequality-adjusted Human Development Index (Alkire & Foster, 2010; Fos-

ter et al., 2005; Hicks, 1997; United Nations Development Programme [UNDP], 2020). Our

measure adds adjustments for mean health and health dispersion to the ELL adjustment

for lifespan dispersion.

The contribution of our money metric to previous approaches to the valuation of popula-

tion health gains (Hall & Jones, 2007; Murphy & Topel, 2006) is through the incorporation

of aversion to dispersion in both health and lifespan. Murphy and Topel (2006) extend

estimation of the value of life and lifespan (Rosen, 1988; Schelling, 1968; Usher, 1973) to

partially include the value of health. However, they only capture the indirect effect of health

on lifetime utility through the optimal consumption path and do not allow for the value

of reduced health dispersion. Edwards (2013) and Córdoba and Ripoll (2017) extend the

value of a statistical life (V SL) framework to allow for aversion to lifespan dispersion but

do not incorporate the value of health and aversion to health dispersion.1 Our measure

1Córdoba and Ripoll (2017) claim their approach could be extended to allow for different types of risk
(dispersion) at each age. However, Bommier et al. (2022) show that their model is inadequate for assessing
the value of longevity gains when the intertemporal elasticity of substitution is less than one, which is the
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captures the value of both health and longevity with allowance for aversion to dispersion in

each dimension. This recognises that the value of progress against disease lies not only in

the consequent increase in health-adjusted life expectancy but also in reduced exposure to

variation of health and lifespan.

Adler et al. (2021) use a prioritarian social welfare function (Atkinson, 1970) to derive a

value of mortality risk reduction that respects the fair innings principle: the social value of

an extra year of life is greater when it extends a life that is otherwise shorter (Bognar, 2015;

Harris, 2006). We adopt a social welfare function in the same family and so ensure that

our measure respects the prioritarian ethic that any given benefit contributes most to social

welfare when it goes to the worst off (Parfit, 2000). While the general normative foundation

for our approach is consistent with that adopted by Adler et al. (2021), our objective is

different and our contribution differs in two main respects. First, we allow welfare to depend

on health and derive a measure that is sensitive to the distribution of health (and lifespan),

not only to change in mortality risk. Second, we obtain a money metric valuation of changes

in the distributions of health and lifespan. We derive the latter measure from willingness to

sacrifice consumption for health and lifespan, which brings us somewhat closer to the V SL

approach.

Healthcare interventions are often evaluated with respect to effects on quantity and qual-

ity of life that are observed, or more often simulated, at the individual level. Hougaard et al.

(2013) identify restrictions on social preferences that are required for a population health

evaluation function (PHEF ) to capture in a single number the two-dimensional health of

individuals in a population. For example, reliance on aggregate quality-adjusted life years

(QALY s) requires an assumption, among others, of indifference to dispersion in quantity of

life across individuals with equal quality of life. The authors identify distributionally sensi-

tive PHEFs that, like our EHAL, relax this assumption.2 Our objective is different. It is to

most empirically relevant case.
2Moreno-Ternero et al. (2023) characterise a more general class of distributionally insensitive PHEFs

defined over reference health, in addition to quantity and quality of life, observed for each individual. This
permits identification of axioms that link and distinguishQALY s and disability-adjusted life years (DALY s).
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add distributional sensitivity to measures that summarise population health captured by a

health-extended period life table. Hence, we do not define each individual by a fixed number

of remaining life years and an age invariant health level, and then assume individual-level

observation of each dimension of health. Rather, we start with a hypothetical cohort of

individuals, each facing a risk of death and a distribution of health in each year of life. We

allow for aversion to cohort dispersion in both lifespan and health at each age.

We illustrate our distributionally sensitive measurement and valuation of population

health with an application to Sub-Saharan Africa (SSA) from 1990 to 2019 using data from

the Global Burden of Disease (GBD) (GBDCN, 2021). Sensitivity to dispersion in age-

specific health has relatively little impact on the change in population health over the period.

This is reassuring for the use of HALE. Sensitivity to dispersion in health-adjusted lifespan

has a large impact. Even allowing for only moderate aversion to dispersion in health and

lifespan, HALE increased by around 28% over the period, while EHAL increased by around

70% due to steeper reductions in mortality at younger ages.

We measure the contribution of each of 293 diseases to the overall disease burden in SSA

by eliminating morbidity and mortality caused by that disease from the health-extended

life table, recomputing HALE and EHAL under this counterfactual, and subtracting the

respective measure obtained from the complete life table. Switching from HALE to EHAL

substantially increases the burdens of communicable, maternal, neonatal, and nutritional

diseases (CMNNs), which are more prevalent at younger ages, relative to the burdens of

non-communicable diseases (NCDs), which are more prevalent at older ages. Allowing for

distributional sensitivity greatly reduces the extent to which the NCD burden is converging

on the CMNN burden and negates a previous finding that the NCD burden had overtaken

the CMNN burden in SSA (Gouda et al., 2019).

Allowing for distributional sensitivity causes steep increases in the estimated welfare cost

of CMNNs. For example in 2019, adjustment for effects on health and lifespan dispersion

increases the monetary equivalent of the burden of each of lower respiratory infections (LRI),
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diarrheal diseases, and malaria by at least eight percentage points of GDP. Without distri-

butional sensitivity, we estimate that LRI imposed a burden equivalent to around 6.5% of

GDP. With distributional sensitivity, the estimate increases to 16.1%. In contrast, distribu-

tional sensitivity reduces the welfare costs of some NCDs with particularly high prevalence

at older ages. For example, the monetary equivalent of the burden of ischemic heart dis-

ease/stroke falls from 4.5% of GDP without adjusting for effects on health and lifespan

dispersion to 3.9% with such adjustment. Such adjustment could affect the prioritization of

disease programmes.

Allowing for distributional sensitivity increases the estimated welfare gain from improve-

ments in population health in SSA between 1990 and 2019 from around 46.5% of baseline

Gross Domestic Product (GDP) to 67%.

The paper proceeds as follows. In section 2, we first derive our distributionally sensitive

population health measure and then use it to obtain a money equivalent of health change

and disease burden that takes account of how the impact of a disease on health and lifespan

dispersion affects willingness to pay to eliminate it. Section 3 describes the GBD data and

explains how we use them to simulate health and age-at-death distributions that, in turn,

are used to calculate the population health measures. Section 4 gives the results of the

application to population health and disease burden in SSA. The final section concludes by

discussing limitations and potential applications.

2 Theory

2.1 Distributionally sensitive measurement

2.1.1 Building blocks

Consider a hypothetical birth-year cohort of same-sex individuals who face the age-specific

mortality rates prevailing in their year of birth. The mean age at death of this period life-table
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cohort is life expectancy at birth (LE). Lack of attention to morbidity is addressed by health-

adjusted life expectancy (HALE): expected years lived in full health for a health-extended

life-table cohort exposed to age-specific disease incidence and mortality rates prevailing at

birth (Sullivan, 1971),

HALE =
T∑
x>0

r(x)
x−1∑
i=0

h(i) =
T∑
x>0

r(x)ym(x) , (1)

where T is the maximum postulated lifespan, r(x) is the proportion of the cohort that dies

in the age interval [x, x + 1) and h(i) =
∑

s ps(i)hs is expected health at age i, with ps(i)

∈ [0, 1] the probability of being in health state s at that age and hs ∈ [0, 1] the respective

level of health.3 For a state equivalent to death, hs = 0, while hs = 1 corresponds to full

health.4 Health states, s = 1, 2, .., S, are ordered, such that hs ≤ hs+1 ∀s. The cumulative

sum ym(x) =
∑x−1

i=0 h(i) is the (mean) health-adjusted lifespan, which is equivalent to the

number of years lived in full health up to age x. If no adjustment is made for mean health,

such that h(i) = 1 ∀i, then eq.(1) reduces to LE =
∑T

x=0 r(x)x.

LE and HALE are statistical expectations that capture an array of information on

mortality rates, disease incidence rates, and health state values that enter a health-extended

life table. Aggregation over this information to evaluate population health involves the

imposition of normative judgment. Restricting attention to the first moment of the age-

at-death distribution, as is done with LE, implies indifference to any change comprising

a reduction in younger-age mortality that is fully offset by a larger increase in older-age

mortality, leaving LE unchanged.5 Use of HALE imposes the further judgement that, at

any given age, only the mean health counts. Change in disease incidence rates that reduced

the variation in potential health outcomes without affecting the mean would not register as

3To save on notation, we derive the measures in this section assuming a one-year age interval. We relax
this assumption in section 3 and the application.

4Because health is normalised to zero at death, the age at which death occurs is omitted from the
summation over i in (1) and the first sum is over positive values of x.

5LE would change as a result of same-sized changes in younger-age and older-age mortality rates. How-
ever, LE gives the same weight to each additional life year irrespective of the length of the life that is
extended.
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an improvement in population health.6

We relax these restrictions by invoking a social decision maker (SDM) who may be averse

to dispersion in the distributions of age-specific health and lifespan generated by health-

extended period life tables. With no such aversion, the SDM prefers the distribution that

generates the highest HALE. Otherwise, the SDM is prepared to sacrifice HALE for less

dispersion in health-adjusted lifespan. We refer to dispersion rather than inequality to avoid

giving the impression that our objective is to adjust measures for unfairness arising from

social determination of health and lifespan.

Taking account of differences in both age-specific health and health-adjusted lifespan is

an example of the general problem of welfare evaluation through aggregation over multiple

dimensions. Berger and Emmerling (2020) show how to do this using nested equity equiva-

lents that have been used to produce indices of multidimensional well-being that are sensitive

to inequalities in different dimensions (Bosmans et al., 2015; Foster et al., 2005). We first

allow for aversion to dispersion in age-specific health distributions. Then, we introduce

distributional sensitivity to the aggregation of health-adjusted lifespans.7

2.1.2 Sensitivity to health distributions

At each age, there is a cumulative distribution of health, F (hs(i)) =
∑

t≤s pt(i), over the

hypothetical cohort members who survive to that age. Each distribution is assumed to

6HALE is sensitive to dispersion in lifespan. A permutation in the distribution of deaths that increases
lifespan by one year at a younger age and decreases lifespan by one year at an older age, leaving LE
constant, would increase HALE if average health were monotonically decreasing in age because the weight
on the additional year at a younger age would exceed that on the loss of one year at an older age (see eq.(1)).
In addition to having this implicit sensitivity to the age distribution of health, our measure is explicitly
sensitive to health dispersion at each age and to dispersion in health-adjusted lifespan.

7This is somewhat analogous to an approach to healthcare prioritisation proposed by Echazu and Nocetti
(2013) that allows for aversion to both individual-level exposure to health risk and inequality over individuals
in ex ante utility of health. We use a period life-table, and so there are no differences in ex ante health or
lifespan to consider.
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generate welfare according to an Atkinson (1970) social welfare function (SWF),

w (F (hs(i))) =


∑

s ps(i)
hs

1−ε

1−ε for ε ̸= 1,

∑
s ps(i)ln hs for ε = 1,

(2)

where ε ≥ 0 is the SDM’s degree of aversion to health dispersion across individuals of the

same age and ln hs is the logarithm of hs.
8 Larger values of ε give more weight to worse

health outcomes. In the extreme, we get the preferences of a Rawlsian SDM who ranks

distributions by the worst health outcome only: w (F (hs(i))) → min{hs(i)} as ε → ∞.

When ε = 0, eq.(2) collapses to mean health at age i. The iso-elastic function ensures that

the ranking of health distributions generated by the SWF is invariant to a proportionate

rescaling of the health measure (Atkinson, 1970).

Consider some equally distributed equivalent (EDE) level of health he(i), defined such

that if everyone at age i were to experience it, then social welfare would be the same as that

generated by the unequal age-specific health distribution: w (he(i)) = w (F (hs(i))). Solving

gives 9

he(i) =

[∑
s

ps(i)hs
1−ε

] 1
1−ε

. (3)

It is not necessary to invoke a SWF to derive this expression. It is simply the generalised

mean of health. For example, setting ε = 0, ε = 1, and ε = 2 gives the arithmetic, geometric,

and harmonic means, respectively. HALE restricts attention to the arithmetic mean. We

generalise to make the measure sensitive to the distribution of health at each age in a way

that is analogous to the inequality-adjusted Human Development Index (Alkire & Foster,

2010; Foster et al., 2005; UNDP, 2020).

Within a health-extended period life-table cohort, independence is imposed between

8In principle, our approach could allow aversion to age-specific health inequality to vary with age. In the
application, we do not allow this because there is no evidence on which to base specification of parameter
heterogeneity.

9We calculate this metric over those alive at each age and so hs > 0. For ε = 1, he(i) =
exp (

∑
s ps(i) ln hs).
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health at age i and both health and mortality at subsequent ages. Therefore, the lifetime

equivalent health generated by cohort members who die at age x is yd(x) =
∑x−1

i=0 he(i). This

is a measure of lifespan penalized for the distribution of health – both the mean and disper-

sion – at each age. If there were no aversion to variation in (health distribution-adjusted)

lifespans, then averaging would give a population health measure that we label restricted

equivalent health-adjusted lifespan (REHAL),

REHAL =
T∑
x>0

r(x)yd(x). (4)

This is HALE with a penalty for age-specific health dispersion that increases with aver-

sion to that dispersion.10 An increase in age-specific health dispersion, or in aversion to it,

increases the shortfall of he(i) from h(i), yd(x) from ym(x), and REHAL from HALE.

2.1.3 Sensitivity to lifespan distribution

Having adjusted lifespans for the age-specific distributions of health, the second stage of our

approach is to specify welfare as a nonlinear aggregation over these adjusted lifespans,

W (F (hs(x)) , G(x)) =


∑T

x>0 r(x)
yd(x)1−η

1−η for η ̸= 1,

∑T
x>0 r(x)ln y

d(x) for η = 1,

(5)

where G(x) =
∑x

i=0 r(i) is the cumulative age-at-death distribution and η ≥ 0 reflects the

SDM’s aversion to dispersion in adjusted lifespans.

HALE, in common with some attempts to value population health while taking account

of both its morbidity and lifespan dimensions (Murphy & Topel, 2006), limits attention

to the special case that adjusts lifespan with the arithmetic mean of age-specific health

(ε = 0 ⇒ yd(x) = ym(x)). In our more general approach, increasing the parameter η gives

more weight to an additional life year – adjusted for the age-specific distributions of health

10This can be confirmed by substituting he(i) for h(i) in eq.(1) to arrive at eq.(4). When there is no
aversion to age-specific health dispersion (ε = 0), REHAL = HALE.
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– when it extends a shorter life. With η > 0, a permutation of the distribution of deaths

that adds an adjusted life year at age x and subtracts an adjusted life year at age x′ > x

would leave REHAL constant but increase the welfare measure W.

At any age x, there is no variation in yd(x). The aggregation in eq.(5) is not over individu-

als with different lifetime health profiles, which are not observed in a health-extended period

life table. It is an aggregation over hypothetical individuals with different lifespans that are

adjusted for the distribution of health at each age. Consequently, the welfare measure is

sensitive to change in the distribution of health both at each age and over ages.11

Consider a health distribution-adjusted lifespan, yde , that is defined such that if all in-

dividuals in the cohort were to experience it, social welfare would be the same as that

generated by the unequal adjusted lifespans that emerge from the health-extended life table:

W
(
yde
)
= W (F (hs(x)) , G(x)) . Solving for this EDE produces a more general equivalent

health-adjusted lifespan,12

EHAL =

[
T∑
x>0

r(x)yd(x)1−η

] 1
1−η

(6)

This measure adjusts life expectancy for a) mean health at each age, as HALE, b) health

dispersion at each age, as REHAL, and c) dispersion in health-adjusted lifespans. It col-

lapses to the standard HALE when there is no aversion to health dispersion at each age

and to dispersion in adjusted lifespans, ε = η = 0. With no aversion to lifespan dispersion

(η = 0), it reduces to REHAL. With no aversion to age-specific health dispersion (ε = 0)

but with aversion to dispersion in (mean) health-adjusted life years, it corresponds to a dis-

11Consider ages x and x + k, k > 0, with an equal proportion of deaths at these ages, r(x) = r(x + k).
Holding the distribution of deaths constant, let there be a rise in mean health at x− 1 and fall of sufficiently
greater magnitude in mean health at x+k−1 such that the health distribution-adjusted lifespans change by
the same absolute amount, △yd(x) = −△yd(x+k). There would be no change inHALE or in REHAL. But,
provided η > 0, W (F (hs(x)) , G(x)) would increase, reflecting aversion to differences in health distribution-
adjusted lifespans. The increase would occur irrespective of whether such differences arose through the length
of life or through the age profile of the quality of life (health). Similarly, a fall in the variance of health at a
younger age and a sufficiently greater rise in the variance at an older age (such that, △yd(x) = −△yd(x+k))
would increase welfare without any change in mean health at each age or in the distribution of deaths over
ages.

12For η = 1, EHAL = exp
(∑T

x>0 r(x) ln y
d(x)

)
.

10



tributionally sensitive measure of population health that Norheim (2013) suggested but did

not derive or estimate.

2.1.4 Properties

EHAL is monotonically increasing in both unadjusted lifespan – as LE – and in health

distribution-adjusted lifespan.13 The measure will increase if mean health increases at least

at one age and does not decrease at any age provided health dispersion is constant at all

ages. It will also increase if dispersion falls at one or more ages, and does not rise at any

age, provided ε > 0.

Aversion to age-specific health dispersion is one channel through which EHAL prioritizes

gains to the worst off. In this case, the worst off corresponds to the least healthy state at

a given age. The second channel through which EHAL captures prioritarian (Parfit, 2000)

concerns for the worst off in health-lifespan space is the concave transformation (for η > 0)

of health distribution-adjusted lifespans. In the calculation of HALE, an additional year of

life in good health enjoyed at a younger age would be exactly offset by one less year of life in

good health at an older age, leaving that measure unchanged. The same permutation would

increase EHAL. In addition to reflecting prioritarian ethics, the measure captures the fair

innings principle (Harris, 2006) of favouring health and longevity gains to the young over

same sized gains to the old.14

Since there is greater variation in lifespans than there is in age-specific health, if η is set

equal to ε, then EHAL will be more sensitive to the distribution of lifespans than it is to

the distributions of health.

13 ∂EHAL
∂yd(x)

= EHAL
−η
1−η r(x)yd(x)−η > 0 ∀x.

14The measure does not allow for a discrete change in prioritisation of younger lives on reaching a threshold
health-adjusted lifespan, which is one version of the fair innings principle.

11



2.2 Distributionally sensitive valuation

We now derive a money metric valuation of potential or realised improvements in population

health that can also be used to value the burden of disease. The metric is the willingness to

pay (WTP) for change in EHAL. It inherits sensitivity to the distributions of age-specific

health and lifespan from that measure.

Let U (c(x), F (hs(x))) be the SDM’s evaluation of the lifetime welfare generated by each

life-table individual who lives to age x while enjoying a lifetime stream of consumption c(x)

and being exposed to age-specific health distributions F (hs(x)). For empirical tractability,

we assume a constant flow of consumption irrespective of age and health: c(x) = c ∀x

(Bleichrodt & Quiggin, 1999). The cost of this assumption is that we do not capture WTP

for any indirect benefits of health improvements that raise labour market productivity and

so consumption. In the application, we set c to equal GDP per capita.

The SDM’s lifetime welfare evaluation function U() is assumed to be multiplicatively

separable into an age-invariant function of consumption, u(c), and welfare generated by the

distributions of health up to the age of death, with the latter given by health distribution-

adjusted lifespan: U(c, F (hs(x))) = u(c)
∑x−1

i=0 he(i) = u(c)yd(x). Multiplicative separability

into welfare from consumption and health is a common restriction in derivations of WTP

for health (Hammitt, 2013).15

We again use an Atkinson SWF, now to capture aversion to dispersion in lifetime welfare,

W (c, F (hs(x)) , G(x)) =
T∑
x=0

r(x)
U (c(x), F (hs(x)))

1−ψ

1− ψ

=
u(c)1−ψ

1− ψ

T∑
x=0

r(x)yd(x)1−ψ ψ ̸= 1, (7)

where ψ ≥ 0 represents the degree of aversion to that dispersion.16 Given that there is no

15The restriction is necessary for cost-effectiveness analysis (equivalently, the quality-adjusted life years
model) to be consistent with cost-benefit analysis founded on willingness to pay (Bleichrodt & Quiggin,
1999).

16W (c, F (hs(x)) , G(x)) =
∑T

x=0 r(x) ln U (c(x), F (hs(x))) for ψ = 1.
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variation in consumption, it is reasonable to assume that aversion to dispersion in lifetime

welfare is equal to aversion to dispersion in health distribution-adjusted lifespans, ψ = η.

Consider a change in population health comprising shifts in age-specific health dis-

tributions from F (hs(x)) to F ∗ (hs(x)) and a shift in the age-at-death distribution from

G(x) to G∗(x). The WTP for such a combination of changes is defined implicitly by

W (c−WTP,F ∗ (hs(x)) , G
∗(x)) = W (c, F (hs(x)) , G(x)).

To obtain a closed form solution, we assume that the SDM uses an iso-elastic function to

evaluate the utility from consumption: u(c)) = (c1−γ − c1−γ) / (1− γ), where γ ≥ 0 (γ ̸= 1)

(Murphy & Topel, 2006).17 The parameter c is a subsistence level of consumption at which

there is indifference between life in full health and death (Hall & Jones, 2007; Rosen, 1988).

Larger values of c imply a lower value of being alive relative to dead. This parameter arises

from the normalisation of utility when dead to zero. At a higher level of consumption, and

so lower marginal utility of consumption (with γ > 0), a marginal extension to lifespan is

worth more because it increases lifetime utility by more than can be achieved through an

increase in consumption (Hall & Jones, 2007). This effect is stronger at a larger value of γ

since the marginal utility of consumption declines more steeply with rising consumption.18

Assuming ψ = η, we obtain

WTP = c−
[
EHAL

EHAL∗

(
c1−γ − c1−γ

)
+ c1−γ

] 1
1−γ

(8)

where EHAL and EHAL∗ are obtained from eq.(6) applied to the distributions F (hs(x))

and G(x) and to F ∗ (hs(x)) and G
∗(x), respectively (see Appendix A for derivation).

WTP for a change in population health captured by the ratio of EHALmeasures depends

on three preference parameters that reflect aversion to dispersion in age-specific health (ε),

aversion to dispersion in lifespan (η), and the curvature of consumption utility (γ), as well

17u(c) = ln c for γ = 1.
18Through this mechanism, an anticipated rise in future consumption due to economic growth would raise

the value of any extension to lifespan (Ponthiere, 2011). Since we hold the level of consumption constant,
we will miss this effect and so underestimate the welfare gain from increased longevity.
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as on the level of consumption in relation to subsistence (c and c).

Aversion to lifespan dispersion (η > 0) ensures that WTP is positive for any change

in the distribution of deaths that would extend lifespan before death at a younger age and

reduce lifespan by the same amount before death at an older age, leaving average lifespan

constant. A larger value of η will raise the WTP for any such reduction in the dispersion of

lifespan. Similarly, with ε > 0, there is positive WTP for a reduction in health dispersion

at any age with all else held constant. And for any given reduction in age-specific health

dispersion, WTP is rising with the value of ε.

If there were no aversion to dispersion in both health and lifespan (ε = η = 0), then

eq.(8) would reduce to the WTP for a change in health-adjusted life expectancy:

WTP = c−
[(

HALE

HALE∗

)(
c1−γ − c1−γ

)
+ c1−γ

] 1
1−γ

(9)

where HALE and HALE∗ are obtained from (1) applied to the respective health and age-at-

death distributions. This solution is similar to the valuation of changes in lifespan proposed

by Becker et al. (2005).

Positive dependence of WTP on the level of consumption arises through three channels.

First, with concavity of the consumption component of utility (γ > 0), the opportunity cost

of a marginal dollar of consumption that is forgone to improve (distributions of) health and

lifespan is lower at a higher level of consumption. At any given level of consumption, higher

γ implies greater WTP because the opportunity cost of investing in health and lifespan

is also lower. Second, diminishing marginal utility of consumption also means that at a

higher level of consumption the gain in lifetime utility that can be achieved through living

longer rises relative to the respective gain obtainable through increased consumption. Third,

multiplicative separability of welfare in consumption and health implies that the marginal

welfare gain from health is increasing with consumption. So, the marginal benefit of paying

more for health is higher, while the marginal (opportunity) cost is lower.

Positive dependence of WTP on the level of consumption does not mean that improve-
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ments in the health of populations of poorer countries are less valuable from a global per-

spective. Rather, it reflects the high opportunity cost of resources spent on health in those

countries. If external sources of health financing were available, then c could be set above

GDP per capita and this would increase the WTP for any change in population health.

Setting a higher level of subsistence consumption (relative to the mean) would reduce WTP

since there would then be less available to spend on health after reaching the level of con-

sumption at which life (even in full health) is considered to be no better than death.

3 Data and method

3.1 Global Burden of Disease data

We use the measures introduced in the previous section to quantify population health and

the burden of disease in Sub-Saharan Africa (SSA) in 1990, 2004, and 2019. All data are

from the 2019 Global Burden of Disease (GBD) that provides estimates for 293 disease causes

disaggregated by sex and age (GBDCN, 2021; Murray et al., 1996). There are data on all

46 countries in the SSA region, including those established between 1990 and 2019. We use

aggregated data for SSA in order to assess trends in population health across the region as a

whole. For each sex, age, and disease partition, we observe disease prevalence and mortality

rates, and disability adjusted life years (DALYs). We stratify all analyses and measures by

sex.

3.2 Health distributions

Calculation of the measures given by equations (1), (4), and (6) requires a distribution

of health at each age. From the disease-level GBD data, we generate an individual-level

dataset in which diseases are assigned to simulated individuals on the basis of age-specific

prevalence rates. Within each of 21 age partitions, we simulate 100,000 individuals and use
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prevalence rates for 293 causes of disease to randomly assign diseases to simulants. Within

each partition, we follow the GBD in assuming independence between diseases — being

assigned disease k does not change the probability of being assigned disease j. There is some

allowance for comorbidities by defining disease combinations, e.g. HIV and tuberculosis, as

a separate disease with its own prevalence. Further, the probability of comorbidities arising

by chance varies with disease prevalence rates across age partitions. But given the absence

of more explicit allowance for comorbidities in the GBD, our approach should be considered

a first order approximation of the true distribution of health outcomes at each age.

We use the data on disease prevalence and DALYs to recover disease-specific disability

weights (zk ∈ [0, 1]) (see Appendix B). Each weight is intended to represent the proportionate

health loss (severity) associated with a disease. It is not a preference for avoiding that disease

compared with any other (Hausman, 2012). A weight of 0 indicates full health, while 1 is

equivalent to death. We reverse the scale to get a measure of health for each disease.

The health of a simulant that is assigned a set K of diseases is hs=
∏

k∈K(1− zk), So, a

health state is defined by a set of diseases, not a particular disease. At each age, a proportion

ps of the 100,000 individuals we simulate shares the same combination of diseases. Together,

hs and ps ∀s define the distribution of health at each age, F (hs(x)), that is used in the

analysis.19

To measure the burden of disease k, we construct counterfactual distributions of health

that would emerge from elimination of that disease by setting zk = 0 while holding constant

zj ∀j ̸= k. We denote these counterfactual distributions as F ∗(hs(x)).
20

19Appendix B Figure B1 shows that the simulated health distribution has a lower mean and is more
dispersed for older compared with younger age groups.

20One could construct a counterfactual for the elimination of a group of diseases, which require assuming
independence only between groups, and not within them.
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3.3 Age-at-death distributions

For each sex, we construct an age distribution of deaths in a life-table cohort of size (l0 =)

100,000. We use age-specific all-cause mortality rates (nMx) provided by the GBD for 21 age

intervals, [x, x+n). We first estimate the probability of death in each age interval conditional

on survival to the exact age that defines its start. Iterative application of these conditional

probabilities to the life table cohort gives the number deaths in each age interval and so an

estimate of the age-at-death distribution, G(x), that is used in the analysis (see Appendix

C for details).

To measure the burden of a disease, we simulate a counterfactual age-at-death distri-

bution if it were eliminated. The GBD all-cause mortality rate is a sum of disease specific

mortality rates, and so the counterfactual age-specific mortality rate after elimination of

disease k is nM
−k
x =nMx−nM

k
x . We estimate these counterfactual mortality rates from GBD

estimates of disease-specific mortality rates for each age interval. We then transform them

into corresponding counterfactual conditional probabilities of death in each interval and,

again, apply these iteratively to get the counterfactual number of deaths in each interval

(see Appendix C). This gives a counterfactual age-at-death distribution, which we refer to

generically as G∗(x).

We use these counterfactual age-at-death distributions and the respective counterfactual

age-specific health distributions to calculate the impact that elimination of a disease would

have on the population health measures. And we estimate the willingness to pay to elimi-

nate that disease. In common with other studies that simulate contributions of diseases to

population health, we assume that if one set of cause-specific mortality rates were set to

zero, the corresponding rates from other causes would remain unchanged. This could bias

estimates downward if a disease increases mortality from other causes. On the other hand,

if deaths from a disease that is eliminated would occur at the same age due to some other

cause in any case, then our estimates will be biased in the other direction. Given these two
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offsetting potential biases, the approach can be considered a first order approximation of the

true distribution of deaths that would be observed if a disease were eliminated.

3.4 Parameter values

Most of the evidence on aversion to dispersion in health and lifespan is from experiments

in which participants choose between distributions of life years or health-adjusted life years

(McNamara et al., 2020). This evidence is most informative for choice of the value of η.

There is less evidence on aversion to dispersion in age-specific health to guide the setting of

ε.21

Some studies that elicit aversion to dispersion in health-adjusted life years find extremely

high estimates of η, reaching an implausible 28 (Dolan & Tsuchiya, 2011; McNamara et

al., 2020; Robson et al., 2017). However, these studies are designed to estimate aversion

to socioeconomic differences in life years, which tends to be stronger than aversion to all

differences in life years (Hardardottir et al., 2021; Hurley et al., 2020; McNamara et al., 2021).

Attempts to elicit the latter type of aversion can still produce incredibly high estimates of η

in the range of 5.8-7.6 (Edlin et al., 2012; McNamara et al., 2020; McNamara et al., 2021).

Using a representative sample in Ontario, Hurley et al. (2020) elicit aversion to univariate

dispersion in health-adjusted life years and find a median value of η̂ of around 1.0-1.5, with

substantial heterogeneity: η̂ < 1 for around a half of the sample and η̂ > 3 for most of the

other half. A study using a representative sample of the UK population obtains a median

estimate of η̂ = 3.2 and a pooled estimate of η̂ = 1.4 (Robson et al., 2023).22

The United Nations uses η = 1 to capture sensitivity to lifespan dispersion in its

inequality-adjusted Human Development Index (UNDP, 2020), which lends this parame-

21Attema et al. (2015) elicit social preferences over distributions of health (quality of life) at each of a
number of ages but do not estimate ε.

22Studies that elicit personal preferences over individual health or lifespan risk under the assumption of
iso-elastic utility (Delprat et al., 2016; Herrera-Araujo et al., 2020) tend to find aversion parameter estimates
that are smaller than the analogous estimates of (iso-elastic) social preferences over population distributions
of health or lifespan, which are relevant here.
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ter value some legitimacy as a benchmark. For our main estimates, we set each of η and ε

to 1. We test sensitivity to setting each parameter to 2.

To calculateWTP , we assume that aversion to dispersion in lifetime utility and in lifespan

are equal, ψ = η. We are not aware of any preference elicitation studies that distinguish

between these two parameters. The curvature of consumption utility parameter, γ, can be

inferred from either the inter-temporal elasticity of substitution (IES) or constant relative

risk aversion (CRRA) for consumption. Most estimates of IES range from around 0.5 to

just above 1 (Browning et al., 1999; Hall, 1988; Havranek et al., 2015), implying values of

γ roughly between 1 and 2. There is some evidence that IES is smaller (γ larger) in low-

income countries (Atkeson & Ogaki, 1996; Havranek et al., 2015; Ogaki et al., 1996). Direct

estimates of CRRA are more variable. Several studies also find values ranging from 1 to 2

(D. Meyer and J. Meyer 2005), while some report estimates as large as 10. Indirect estimates

obtained from the wage elasticity of labour supply are below 2 (Chetty, 2006). We follow

Murphy and Topel (2006) in setting γ = 1.25.

We set the level of consumption (c) to GDP per capita for SSA in the respective year

(World Bank, 2022). We are not aware of any direct evidence on a level of subsistence

consumption that would leave someone indifferent between life in full health and death (c).

While the value of this parameter is often inferred from estimates of the value of a statistical

life (V SL) (Hall & Jones, 2007; Jones & Klenow, 2016; Murphy & Topel, 2006), there are

few reliable V SL estimates for SSA. Some studies set c to zero (Crafts & Haacker, n.d.;

Murphy & Topel, 2003; Usher, 1973) and so assume that any life is worth living regardless

of the level of consumption achieved. Other studies opt for a value close to the international

extreme poverty line (Becker et al., 2005; Soares, 2007) which implies that survival at

consumption below $2.15 per day amounts to a life that is not worth living (Cookson et al.,

2021). Following Murphy and Topel (2006) again, we set c at 10% of GDP per capita.
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4 Results

4.1 Population health

Table 1 shows population health measures for SSA in 1990, 2004, and 2019. Between 1990

and 2004, when the HIV epidemic ravaged the region, life expectancy (LE) was stagnant

for females and increased only marginally for males. Between 2004 and 2019, when there

was rapid expansion of antiretroviral therapy coverage, LE increased by about ten years

for both sexes. The HALE estimates indicate that the average female (male) born in SSA

in 2019 could expect to live for the equivalent of 62.3 (58.5) years in full health. In the

2004-2019 period, absolute and relative increases in HALE were even steeper than those

in LE. Improvements in quality of life added to increases in length of life. If instead of

adjusting LE for the arithmetic mean of health at each age to get HALE we adjust for

the respective geometric means (ε = 1), then the resulting REHAL estimates are 0.23-0.34

years in full health below the respective HALE values. The relative improvements between

1990 and 2019 in population health measured by REHAL are similar to those obtained with

the distributionally insensitive HALE measure.

Table 1: Population health measures, Sub-Saharan Africa

1990 2004 2019 2019-1990
∆ %∆

Female
LE 55.76 55.89 66.66 10.90 19.6%
HALE 48.57 48.76 62.28 13.70 28.2%
REHAL 48.25 48.42 62.05 13.80 28.6%
EHAL 27.16 30.30 45.63 18.47 68.0%
Male
LE 51.41 52.86 62.13 10.71 20.8%
HALE 45.82 47.14 58.47 12.65 27.6%
REHAL 45.54 46.84 58.27 12.73 28.0%
EHAL 23.86 27.80 40.85 16.99 71.2%

Note: LE=Life Expectancy, HALE=Health-Adjusted Life Expectancy, eq.(1), REHAL=Restricted Equiva-
lent Health-Adjusted Lifespan, eq.(4) with ε = 1, EHAL=Equivalent Health-Adjusted Lifespan, eq.(6) with
ε = η = 1. See Appendix D, Table D1 for measures at other parameter values.
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Adjustment for dispersion in lifespan has a much greater impact on the changes in pop-

ulation health. With aversion to lifespan and age-specific health dispersion both set to one

(η = ε = 1), the distributionally sensitive EHAL measure increased by more than two thirds

between 1990 and 2019 for both sexes. This is substantially larger than the increases in the

distributionally insensitive measures because gains in LE and HALE were largely driven by

reductions in both infant mortality and, in the latter period, HIV-related mortality among

younger adults, which reduced dispersion in the age-at-death distribution.

Raising the degree of aversion to dispersion in age-specific health has relatively little

impact on the measures, while raising aversion to lifespan dispersion dramatically reduces

the magnitude of EHAL because more weight is placed on infant deaths (Appendix D

Table D1). Introducing aversion to lifespan dispersion before aversion to age-specific health

dispersion does not change the finding that the measure is more sensitive to the former

(Appendix D Table D1).

4.2 Disease burdens

We now examine the impact of distributional sensitivity on measures of disease burden

by comparing the simulated increase in HALE that would occur if a disease were elim-

inated with the respective simulated increase in EHAL. That is, we compare ∆HALE

= HALE∗ −HALE with ∆EHAL = EHAL∗ − EHAL, where HALE∗ and EHAL∗ are

calculated from equations (1) and (6), respectively, using the counterfactual distributions of

health, F ∗(hs(x)), and age-at-death, G∗(x), that would be achieved if a disease were elimi-

nated. Figure 1 shows 2019 estimates for the 20 diseases with the largest burdens measured

by ∆HALE. The lighter shaded bars show the respective disease burdens measured by

∆EHAL that are estimated with both dispersion aversion parameters set to 1.23

For both females and males, the largest differences between the measures of disease

burden are for diseases that primarily affect neonates, infants, and young children: lower

23See Appendix D Figures D1 and D2 for the disease burdens in 1990 and 2004, respectively.
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(a) Female

(b) Male

Figure 1: Top 20 disease burdens with and without distributional sensitivity, 2019

Notes: ∆HALE = HALE∗ −HALE, where each variable is obtained from eq. (1) applied to the observed
distributions F (hs(x)) and G(x) for HALE and the counterfactual distributions F ∗(hs(x)) and G∗(x) ob-
tained if a disease were eliminated for HALE∗. ∆EHAL = EHAL∗ − EHAL, where each variable is
obtained from eq. (6) with ε = η = 1 and application is to the observed or counterfactual distribution. 20
diseases/conditions with largest burdens measured by ∆HALE.
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respiratory infections (LRI), diarrhea, malaria, neonatal encephalopathy, neonatal preterm

birth, and protein energy malnutrition. If these conditions were eliminated, it would increase

expected lifespan in good health and reduce lifespan dispersion. Consequently, these condi-

tions impact the distributionally sensitive EHAL by substantially more than they impact

HALE.

Distributional sensitivity has the opposite effect on the estimated disease burdens of

non-communicable diseases (NCDs) and chronic conditions that have greater prevalence at

older ages. For example, elimination of each of breast cancer, alzheimer’s disease, hearing

loss, ischemic stroke and heart disease, depression, chronic obstructive pulmonary disease

(COPD), back pain, and diabetes, would increase EHAL by less than it would increase

HALE. This is because the consequent improvements in health and extensions of life at

older ages would increase dispersion in health-adjusted lifespans.

Figure 2 extends the analysis to all 293 diseases. The x-axis shows disease ranks by

burden measured with ∆HALE. A rank of 1 indicates the disease with the largest bur-

den. The y-axis shows ranks by ∆EHAL, with ε = η = 1. Each mark represents a disease.

Colours/symbols distinguish between communicable, maternal, neonatal, and nutritional dis-

eases (CMNNs), NCDs, and injuries. Many CMNNs lie below the 45 degree line, indicating

that their burdens are relatively larger using the distributionally sensitive EHAL measure.24

This is because these conditions disproportionately impact at younger ages. Adjusting for

impacts on health and lifespan dispersion moves many NCDs in the opposite direction. Their

disease burdens rank lower (further from 1) with EHAL because this measures penalizes the

increase in disparity in health-adjusted lifespan that would result from eliminating diseases

that are more prevalent at older ages.25 Discrepancy between the disease burden ranks pro-

duced by the two measures increases substantially when the dispersion aversion parameters

are increased to 2 (Appendix D, Figure D3). For females, Kendall’s rank correlation coef-

24For females, out of 77 CMNNs, 43, 25, and 9 are below, above, and on the diagonal respectively. For
males, the respective numbers are 40, 16, and 25.

25For females, out of 186 NCDs, 40, 128, and 18 are below, above, and on the diagonal. For males, the
respective numbers are 39, 119, and 28.
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ficient for disease burdens measured by ∆HALE and ∆EHAL falls from 0.88 (p-value <

0.01) with ε = η = 1 to 0.59 (p-value < 0.01) with ε = η = 2. For males, there is a similar

decrease (0.89 to 0.65).

a) Female b) Male

Figure 2: Disease burden ranks with distributionally sensitive and insensitive measures, 2019

Notes: x-axis and y-axis show disease burden ranks by ∆HALE and ∆EHAL, respectively. See notes to
Figure 1 for definitions. Lower number indicates higher disease burden rank.

The left column of Figure 3 shows total burdens of all CMNNs and all NCDs measured

by ∆HALE. In 1990, females and males in SSA lived in full health for about 14 years less

because of CMNNs. The respective burden of NCDs in 1990 was around 8-9 health-adjusted

life years. By 2019, the the CMNN burden had fallen substantially for both sexes, with most

of the decrease occurring between 2004 and 2019. Over the 1990-2019 period, the NCD

burden remained roughly constant for females and increased for males. As a result, there

was little difference between the CMNN and NCD burdens in 2019.

The right column of the figure shows CMNN and NCD burdens measured by ∆EHAL

with (ε = η = 1). For both sexes, allowing for distributional sensitivity increases the
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(a) Female

(b) Male

Figure 3: Communicable and non-communicable disease burdens with and without distri-
butional sensitivity

Notes: Top panel shows ∆HALE for counterfactual in which all communicable, maternal, neonatal, and
nutritional diseases (CMNNs) or all non-communicable diseases (NCDs) are eliminated. Bottom panel shows
∆EHAL, with ε = 1, η = 1, for same counterfactuals.
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magnitude of the CMNN burden and slows its decline between 2004 and 2019 substantially.

The NCD burdens are smaller with distributional sensitivity because these diseases constrain

dispersion in health-adjusted lifespans, as well as reducing the mean. While for both sexes the

distributionally sensitive NCD burden increases, mainly between 2004 and 2019, it remains

a long way short of the respective CMNN burden in 2019. The previously claimed shifting

burden of disease from CMNNs to NCDs in SSA (Gouda et al., 2019) is much less evident

when the impact of each disease group on the dispersion of health-adjusted life years is taken

into account.

4.3 Valuation of disease burden and health change

Figure 4 shows, for 2019, the extent to which distributional sensitivity affects disease burdens

expressed in monetary values. The left panel shows estimates obtained without aversion to

health and lifespan dispersion. Each value is a per person WTP to eliminate a disease as a

percentage of GDP per capita. It is calculated using eq.(9), where HALE∗ is obtained from

the counterfactual health and age-at-death distributions that would emerge if there were no

disability or mortality from that disease. This WTP can be interpreted as the monetary

equivalent of the welfare cost imposed by a disease. Diseases are ranked from top to bottom

in decreasing WTP. We show the 20 diseases that impose the largest welfare cost, plus a few

others that are in the top 20 using the distributionally sensitive valuation shown in the right

panel.26 Colours again distinguish between CMNNs, NCDs, and injuries.

For females, we estimate that HIV/AIDS imposed the largest per capita welfare cost,

equivalent to 6.3% GDP per capita. LRI is a close second (6.1% GDP). For males, the top

two are LRI (6.8% GDP) and diarrheal diseases (6.3% GDP).27

The right panel of Figure 4 shows the value of the welfare cost of each disease with

26The top 20 diseases by WTP calculated from eq.(9) are necessarily the same as the top 20 by the
∆HALE measure.

27We estimate WTP per capita as a % of GDP per capita. Hence, the total welfare cost is a weighted
average of the female and male estimates, not the sum of the two.
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(a) Female

(b) Male

Figure 4: Welfare costs of diseases with and without distributional sensitivity, 2019

Notes: orange = CMNN, blue = NCD, yellow = Injury. Welfare cost isWTP to eliminate disease calculated
from equations (9) and (8) (ε = η = 1) to give distributionally insensitive and sensitive valuations, respec-
tively. In each case, γ = 1.25, c =GDP per capita, and c = 10% of GDP per capita. Left panel shows the 20
diseases with the largest welfare costs using the distributionally insensitive valuation, plus those that move
into the top 20 using the distributionally sensitive valuation.
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allowance for distributional sensitivity. These values are obtained from eq.(8) with ε =

η = 1.28 Adjustment for aversion to health and lifespan dispersion generally increases the

welfare cost of CMNNs. Among females, the per capita welfare cost of LRI increases from

6.1% to 15.7% of GDP per capita. For each of diarrheal diseases and malaria, distributional

sensitivity increases the welfare cost by about 8 percentage points of GDP. There is a more

modest impact on the welfare cost of HIV/AIDS because mortality from this disease peaks

at an older age than mortality from LRI, diarrhea, and malaria, which are largely childhood

illnesses.

Distributional sensitivity has less impact on the monetary values of NCD and injury

burdens, and even reduces some of these burdens for conditions that are more prevalent at

older ages. For example, among females, the welfare cost of ischemic heart disease falls from

4.3% to 3.8% of GDP because this disease mostly affects those who already enjoy more than

the average equivalent life years in full health. WTP to eliminate the disease is reduced

because doing so would increase dispersion in the distribution of health-adjusted lifespan.

The welfare cost of low back pain is approximately the same (≈1.4-1.5% GDP for females

and ≈1.6-1.7% GDP for males) with and without distributional sensitivity.

We use eq.(8) and eq.(9) to obtain distributionally sensitive and insensitive, respectively,

valuations of welfare gains generated by changes in population health. For example, to get

the distributionally sensitive valuation of the change between 1990 and 2019, we use eq.(8)

with EHAL equal to the 1990 value and EHAL∗ equal to the 2019 value. Table 2 shows the

estimates for all pairwise comparisons of years. Without allowing for distributional sensitiv-

ity, the change in female population health between 1990 and 2004 reflected in the HALE

measure is valued at the equivalent of only 1.2% of 1990 GDP. The respective valuation

of the change that occurred between 2004 and 2019 is an estimated welfare gain of 46.4%

of baseline GDP. The steep increase in the welfare gain from improved health is also seen

for males. In part, it is due to the progress made in reducing mortality from HIV in the

28See Appendix D, Figure D4 for estimates with ε = η = 2.
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latter period. For both females and males, the value of the welfare gain from improvements

in health between 1990 and 2019 is larger by about 20 percentage points of baseline GDP

using the distributionally sensitive valuations. This is due to the greater weight placed on

the disproportionate reductions in CMNN-related mortality at younger ages.

Table 2: Welfare gains from population health changes, % of baseline GDP

1990-2004 2004-2019 1990-2019
Female
Distributionally insensitive 1.20% 46.44% 46.88%
Distributionally sensitive 26.67% 60.51% 66.56%
Male
Distributionally insensitive 8.26% 42.99% 46.34%
Distributionally sensitive 34.20% 58.86% 67.43%

Note: Distributionally insensitive estimates from eq.(9) with HALE and HALE∗ given by eq.(1) applied to
the baseline and endline years, respectively. Distributionally sensitive estimates from eq.(8) with EHAL and
EHAL∗ given by eq.(6) applied to the baseline and endline years, respectively. Distributionally sensitive
estimates use ε = η = 1. Valuations expressed at % of GDP in the baseline year.

5 Discussion

Our measure allows monitoring of trends in population health that takes into account changes

in dispersion of both age-specific health and health-adjusted lifespan and yet does not require

more data than current measures. It offers the opportunity to evaluate and compare disease

burdens while paying attention to impacts on health and lifespan dispersion. This potential

for distributionally sensitive measurement and valuation of population health can be used to

better inform social decision makers seeking to narrow health and lifespan differences, and

not only to improve average outcomes.

Application to the burden of disease in Sub-Saharan Africa reveals that an apparent

convergence of the burdens of communicable and non-communicable diseases is not robust

to distributionally sensitive measurement. While measures of disease burden do not identify

potential effects of feasible policies, they do inform deliberations that lead to the setting of

healthcare priorities. The measure used could influence the prioritisation of programmes.
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We find that while allowing for aversion to dispersion in health-adjusted lifespan has

a large effect on population health trends in SSA, there is less sensitivity to age-specific

health dispersion. One explanation would be that a relatively small proportion of the SSA

population survives to old ages at which health is most dispersed. Inconsistent with this

hypothesis, we found similar insensitivity to age-specific health dispersion when we applied

mortality rates of high-income countries to the SSA data. An alternative explanation is that

there is much less dispersion in age-specific health than there is in lifespan. With iso-elastic

social preferences, it may be that a larger parameter value is required to capture aversion to

the more limited dispersion in age-specific health.

Interesting potential applications of our measure are not limited to low-income, high-

mortality populations. For example, in the years immediately preceding the COVID-19

pandemic, life expectancy was stagnant in the United States as a result of falling older-age

mortality offsetting rising mortality among younger and middle-age adults (Acciai & Fire-

baugh, 2017; Case & Deaton, 2017, 2020; Harper et al., 2021; Woolf & Schoomaker, 2019).

By penalizing life expectancy for the increase in lifespan dispersion, our measure would re-

veal the full extent of deterioration in population health in this period. Since mortality

from COVID-19 has been much higher at older ages, it has reduced lifespan dispersion and

our measure would show a more muted negative impact than is indicated by the change in

(health-adjusted) on life expectancy.

Our method of aggregation is normatively founded on the principle that an additional

health-adjusted life year is of greater social value when it extends a shorter (health-adjusted)

life. Not everyone will agree with this ethic. Initially, the GBD explicitly age-weighted

health-adjusted life years, giving the lowest weights in infancy and the highest weight at age

25 (Murray et al., 1996; World Bank, 1993). This non-monotonic age-weighting was intended

to indirectly allow for the instrumental value of health through its consequences for the well-

being of dependents (Murray, 1994). It was discontinued after criticism of its logical and

ethical justification (Anand & Hanson, 1997; Bognar, 2008; Brock, 2004; Broome, 2002). We
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do not explicitly weight on age. Rather, we take a concave aggregation over (simulated) lives

that differ in quantity and quality. Concavity ensures that the loss of a health-adjusted life

year from a shorter life counts more than the same loss from a longer life. Rather than using

age as a proxy for an equity-relevant characteristic (Bognar, 2008), our approach directly

captures ethical concerns that may motivate age weighting. One is the prioritarian concern

for the worst off with the least health-adjusted life years (Adler et al., 2021; Parfit, 2000).

Another is that justice is served by giving first to those who are in greatest need in the sense

of having had least of a good (Kamm, 2002) — again, those with fewest health-adjusted life

years. Coherent objections to the ethical foundations of our approach can certainly be made

(Broome, 2002). But this is true of any population health measure that is interpreted other

than strictly descriptively. Aggregation involves assigning different degrees of importance to

different aspects of a distribution.

To ensure that our approach is feasible whenever standard population health measures

are used, we constrained the measure to require no more data than those in a health-extended

period life table. Hence, the measure summarises distributions of morbidity and mortality

for a hypothetical cohort. It does not capture the morbidity and mortality currently living

individuals were exposed to when younger and will experience when (and if) older. Nor does

it take account of correlation between health states at different ages and between health

and lifespan. Clearly, these are limitations. But they are inherited from the population

health measures — LE, HALE, and DALY s — that we extend by adding distributional

sensitivity. If a cohort of individuals could be followed from birth until death, then it would

be possible to measure and value cohort health allowing for aversion to dispersion in observed

lifetime health profiles. One could simulate these profiles if estimates of disease-specific illness

duration and correlation between health and lifespan were available. With information on

the correlation structure at some aggregate level, copulas might be used to estimate joint

distributions of health and lifespan at each age from the marginal distributions (Wu et al.,

2014).
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Aggregation over cohorts would raise methodological and ethical issues. Taking a weighted

average of the health of age groups, with each group weighted by its population size, would

conflate demographic and mortality processes. For instance, more weight would be placed

on younger age groups in countries with higher fertility rates. Yet fertility, and so the pop-

ulation age structure, is endogenous to longevity (Wolpin, 1997). By limiting attention to

a single (albeit hypothetical) cohort of fixed size, we avoid the question of how to value

health-induced change in population size and sidestep Parfit’s (1984) repugnant conclusion.

Unlike other attempts to value changes in population health (Hall & Jones, 2007; Murphy

& Topel, 2006), our approach allows for aversion to dispersion in health and lifespan. But

it does not allow for the instrumental value of health in raising human capital and earning

capacity. It misses, for example, the negative impact that HIV/AIDS had on education

(Baranov & Kohler, 2018) and income (McDonald & Roberts, 2006; Tompsett, 2020) in SSA

as well as the positive effects that antiretroviral therapy had on these outcomes (Da Costa,

2023). Jones and Klenow (2016) measure country well-being as a function of levels of life

expectancy, consumption, and leisure as well as inequalities in the latter two dimensions.

Their approach could possibly be generalised to allow for aversion to inequalities health

status and lifespan.
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APPENDICES

Appendix A Derivation of WTP for health change

Define the willingness to pay (WTP) for change in age-specific health distributions from

F (hs(x)) to F ∗ (hs(x)) and the age-at-death distribution from G(x) to G∗(x) by W (c −

WTP,F ∗(hs(x)),G
∗(x)) = W (c, F (hs(x)),G(x)), where W () is given by eq.(7).

Assuming aversion to dispersion in lifetime welfare (ψ) is equal to aversion to dispersion

in health distribution-adjusted lifespan (η), we get

WTP = c− u−1

u(c)
[∑T

x=0 r(x)y
d(x)1−η

] 1
1−η

[∑T
x=0 r

∗(x)yd∗(x)1−η
] 1

1−η

 . (A1)

Using eq.(6), we can write eq.(A1) as,

WTP = c− u−1

[
u(c)

EHAL

EHAL∗

]
. (A2)

Specifying u(c)) = (c1−γ − c1−γ) / (1− γ) and solving eq.(A2) gives eq.(8).
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Appendix B Disability weights and health distributions

DALYs are the sum of years of life lost (Y LL) due to premature mortality and the years of

life in full health that are lost due to living with disability (Y LD). For disease k,

DALYk = Y LLk + Y LDk, (B1)

where Y LLk =
∑

xDk,x ·Lx, Dk,x is the number of deaths due to disease k at age x, and Lx

is the number of years by which that age falls short of life expectancy at birth. The latter

term is derived from a reference life table constructed from the lowest age-specific mortality

rates across all locations worldwide with populations greater than 5 million.

Y LDk = Pk · zk, where Pk is the number of disease cases prevalent in the population

across all ages and zk ∈ [0, 1] (≡ DWk in GBD notation) is the disease’s disability weight.

We derive the weights from GBD data on Y LDk and Pk. A weight of 0 corresponds to full

health, while a weight of 1 is equivalent to death. To estimate the weights, survey respondents

in five countries (including one in SSA) were asked to make pairwise comparisons of health

vignettes, each of which described impairments associated with a disease state. They had to

identify the vignette representing better health overall (Salomon et al., 2012). The relative

severity of a disease state is derived from the relative frequency of respondents who judged

the corresponding vignette to represent worse health than the comparison. The weights

are anchored on a value of 1 for death by asking some respondents to say which of two

programmes would generate more total health – one that prevented 1000 immediate deaths

or another that prevented a larger number of people succumbing to a non-fatal disease that

caused impairments described by a corresponding vignette.

Figure B1 shows the simulated distribution of health f (hs(i)) obtained from 100,000

simulants within each of six sex-age partitions that are assigned diseases according to sex-

age specific prevalence rates. Given the set of diseases, K, assigned to each simulant, health

is obtained from hs =
∏

k∈K(1− zk).
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Figure B1: Simulated health distributions by sex and age
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Appendix C Derivation of age-at-death distributions

We stratify all analyses by sex. Here, we describe the derivation of age-at-death distributions

for one sex.

To construct a life table and an age-at-death distribution (G(x)) for the life-table cohort,

we need the conditional probability of death in each age interval, [x, x+n): nqx = ndx
lx
, where

ndx is the number of cohort deaths in the interval and lx is the number of cohort survivors

to exact age x. We estimate these conditional probabilities from

nqx =
n · nMx

1 + (n− nax) · nMx

, (C1)

where nMx is the age-interval mortality rate and nax is the average number of years lived

in the interval for those who die within it (Chiang, 1968). We use GBD estimates of all-cause

mortality rates for 21 age partitions: [0, 1), [1, 4), [5, 9), ..., [90, 94), [95,∞)(GBDCN, 2021).

We use values of nax for SSA provided by the UN World Population Prospects (United

Nations, 2019).

Starting with a radix of (l0 =) 100,000 births, we obtain the number of survivors to

each exact age by iterative application of the conditional probabilities, lx+n = lx(1 − nqx).

The number of cohort deaths in each age interval (more precisely, at age x + nax) is then

ndx = lx − lx+n. We use the proportion of cohort deaths at each age to define G(x) that is

used in the analysis.

To calculate cause-deleted life tables and counterfactual age-at-death distributions, we

use the fact that the GBD all-cause mortality rate is an additive sum of disease specific mor-

tality rates: nMx=
∑

k
nD

k
x

nPx
=

∑
k nM

k
x , where nD

k
x is the number of deaths due to disease k in

the age interval and nPx is the respective mid-year population size. Then, the counterfactual

mortality rate after elimination of mortality caused by disease k is nM
−k
x = nMx−nM

k
x . We
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obtain these counterfactual mortality rates — denoted generically by nM
∗
x — from GBD esti-

mates of cause-specific mortality rates and transform them into corresponding counterfactual

conditional probabilities of death within each interval using

nq
∗
x =

n · nM∗
x

1 + (n− na
∗
x) · nM∗

x

, (C2)

where na
∗
x is the counterfactual average number of years lived in the age interval for

those who die within it. To our knowledge, there are no disease specific SSA data for this

variable. We therefore set na
∗
x = nax in all calculations. While this may introduce some bias,

it should be small given the highly disaggregated disease level data and the limited scope

for the values of nax to impact on the population health measures (Preston et al., 2001).

We estimate counterfactual values for the number of survivors to each age and the number

of deaths within each age interval by applying the formulas given above to the counterfactual

conditional probabilities. The proportions of deaths within each and every interval under

the counterfactual that a disease is eliminated gives an estimate of G∗(x) that is used in the

analysis.
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Appendix D Additional results

Table D1: Measures of population health, Sub-Saharan Africa

1990 2004 2019 2019-1990
∆ %∆

Female
REHAL (ε = 2) 47.74 48.01 61.77 13.92 29.1%
EHAL (ε = 0, η = 1) 27.32 30.48 45.78 18.47 67.6%
EHAL (ε = 0, η = 2) 3.12 3.39 3.84 0.72 23.0%
EHAL (ε = 2, η = 2) 3.11 3.38 3.83 0.72 23.3%
Male
REHAL (ε = 2) 45.19 46.46 58.02 12.84 28.4%
EHAL (ε = 0, η = 1) 23.98 27.95 40.98 17.00 70.9%
EHAL (ε = 0, η = 2) 2.57 3.01 3.36 0.79 30.7%
EHAL (ε = 2, η = 2) 2.56 2.99 3.35 0.79 31.0%

Note: REHAL=Restricted Equivalent Health-Adjusted Lifespan, eq.(4), EHAL=Equivalent Health-Adjusted
Lifespan, eq.(6).

Table D2: Welfare gains from population health changes, $ per capita

1990-2004 2004-2019 1990-2019
Female
Distributionally insensitive 8.84 434.71 344.07
Distributionally sensitive 195.79 566.37 488.56
Male
Distributionally insensitive 60.64 402.35 340.13
Distributionally sensitive 251.02 550.93 494.92

Note: Distributionally insensitive estimates from eq.(9) with HALE and HALE∗ given by eq.(1) applied to
the baseline and endline years, respectively. Distributionally sensitive estimates from eq.(8) with EHAL and
EHAL∗ given by eq.(6) applied to the baseline and endline years, respectively. Distributionally sensitive
estimates use ε = η = 1. Valuations are per capita expressed in 1990 $ amounts.
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(a) Female

(b) Male

Figure D1: Top 20 disease burdens with and without distributional sensitivity, 1990

Notes: Increases in HALE and EHAL(ε = 1, η = 1) from elimination of each of the 20 diseases/conditions
with largest burdens measured by increase in HALE.
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(a) Female

(b) Male

Figure D2: Top 20 disease burdens with and without distributional sensitivity, 2004

Notes: Increases in HALE and EHAL(ε = 1, η = 1) from elimination of each of the 20 diseases/conditions
with largest burdens measured by increase in HALE.
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a) Female b) Male

Figure D3: Disease burden ranks with distributionally sensitive and insensitive measures,
2019 (ε = η = 2)

Notes: x-axis shows disease ranks by HALE∗ - HALE, where HALE is from eq. (1) applied to the observed
distributions and HALE∗ is from the counterfactual distributions after elimination of the respective disease.
y-axis shows ranks by EHAL∗ - EHAL, where each measure is obtained from eq. (6) with ε = η = 2. Lower
number indicates higher disease burden rank. Dashed line is at 45-degree.
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(a) Female

(b) Male

Figure D4: Top 20 disease burdens ranked by distributionally insensitive and sensitive will-
ingness to pay, 2019

Notes: CMNN=orange, NCD=blue, Injuries=yellow. Distributionally insensitive WTP from (9). Distribu-
tionally sensitive WTP from (8) with ε = η = 2. In each case, γ = 1.25, c =GDP per capita, and c = 10%
of GDP per capita. The figure shows the top 20 ranked diseases using the distributionally insensitive or
sensitive WTP measures. Diseases are ordered from top to bottom by distributionally insensitive WTP.
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