
 

 
TI 2023-016/III 
Tinbergen Institute Discussion Paper  
 

 
Extremum Monte Carlo Filters: 
Real-Time Signal Extraction via 
Simulation and Regression 
 
Revision: December 2023 
 
 
Francisco Blasques 1 

Siem Jan Koopman2 

Karim Moussa3 

 

 

 
 
 
 
 
 
 
1 Vrije Universiteit Amsterdam and Tinbergen Institute  

2 Vrije Universiteit Amsterdam and Tinbergen Institute 

3 Vrije Universiteit Amsterdam  



 
 
 
 
 
 
 
Tinbergen Institute is the graduate school and research institute in economics of 
Erasmus University Rotterdam, the University of Amsterdam and Vrije Universiteit 
Amsterdam. 
 
Contact: discussionpapers@tinbergen.nl  
 
More TI discussion papers can be downloaded at https://www.tinbergen.nl  
 
Tinbergen Institute has two locations: 
 
Tinbergen Institute Amsterdam 
Gustav Mahlerplein 117 
1082 MS Amsterdam 
The Netherlands 
Tel.: +31(0)20 598 4580 
 
Tinbergen Institute Rotterdam 
Burg. Oudlaan 50 
3062 PA Rotterdam 
The Netherlands 
Tel.: +31(0)10 408 8900 
 

mailto:discussionpapers@tinbergen.nl
https://www.tinbergen.nl/


Extremum Monte Carlo Filters:
Real-Time Signal Extraction via Simulation and Regression

Francisco Blasques, Siem Jan Koopman,∗ Karim Moussa

Vrije Universiteit Amsterdam and Tinbergen Institute, the Netherlands

First version: November 18, 2021
This version: December 20, 2023

Abstract

This paper introduces a novel simulation-based filtering method for general state
space models. It can be used to compute time-varying conditional means, modes,
and quantiles, and for predicting latent variables. The method consists of gen-
erating artificial data sets from the model and estimating quantities of interest
via extremum estimation. We call this procedure extremum Monte Carlo. The
approach is conceptually simple and easy to implement. It can be applied to any
model from which samples of data can be simulated. Given that most of the compu-
tations can be performed in advance, the method is particularly suited for real-time
applications. The filter is stable over time under mild assumptions, which remains
valid under model misspecification. Conditions are provided for convergence to
an optimal filter as the number of draws diverges. The linear version of the filter
converges to the Kalman filter. Various other features of the filter are illustrated
via examples related to nonlinearity, missing data, and intractable densities. An
empirical application to exchange rates demonstrates that, despite a setting of lim-
ited tractability, the method is able to efficiently extract the time-varying volatility.
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1 Introduction

State space models (SSMs) decompose observed time series into two unobserved parts: the
states (or signal) which are the true objects of interest, and the noise which complicates
the extraction of the signal from the data. The state space modeling approach has become
pervasive in both the scientific and industry domains, with applications in fields varying
from financial econometrics and forecasting to robotics. Let xt ∈ RNx denote the state
vector at time t and let yt ∈ RNy be the corresponding vector of measurements (i.e., the
observed variables) for some Nx, Ny ∈ N, with the related noise vectors denoted by εxt
and εyt . We can then represent the SSM by

yt = mt(xt, ε
y
t ), (εxt , ε

y
t ) ∼ p(εxt , ε

y
t ),

xt+1 = st(xt, ε
x
t ), x1 ∼ p(x1),

(1)

for t = 1, . . . , T , where T ∈ N is the length of the time series, mt(·) and st(·) are the
(possibly non-linear) measurement and state transition functions, respectively, and we
use p(·) to denote the probability density of the corresponding variables, which may be
non-Gaussian. We shall assume that the SSM can be used to simulate paths of the
states, x1:T = {x1, . . . , xT}, and observations, y1:T , which holds when it is possible to
draw from p(x1) and p(εxt , ε

y
t ). The functions in (1) may depend on exogenous variables,

lags of the states and observations, and on a vector of static parameters θ (also called the
hyperparameters); these dependencies are suppressed in the notation for conciseness.

Once the static parameters θ have been provided or estimated, the interest is often
shifted towards signal extraction, which may be performed via the conditional expectation
of the states,

E [xt|Yt] , (2)

for t = 1, . . . , T , where Yt denotes the conditioning set. Common choices are Yt = y1:t for
filtering, Yt = y1:t−k for k-period forecasting, and Yt = y1:t+k for smoothing, with k ∈ N.
If the SSM is linear and Gaussian, that is, mt and st are linear functions, and all densities
p are Gaussian, the conditional expectations in (2) can be computed recursively by the
well-known Kalman filter (Kalman, 1960). A simple example is the following univariate
Gaussian local level model,

yt = xt + εyt , εyt ∼ N(0, σ2
y),

xt+1 = xt + εxt , εxt ∼ N(0, σ2
x),

(3)

with x1 ∼ N(µ1, σ
2
1) for some µ1 ∈ R and σ1, σx, σy > 0, and the scalar noise terms εxt

and εyt are assumed to be mutually and serially independent, as well as independent from
x1. The local level model is a special case of the SSM in (1) with mt(xt, ε

y
t ) = xt + εyt and

st(xt, ε
x
t ) = xt + εxt , normal density p(εxt , ε

y
t ) = pN(εxt )pN(εyt ), and θ = (µ1, σ1, σx, σy)

′.
Figure 1 provides an illustration by applying the local level model to measurements

of the annual flow volume of the Nile river taken at Aswan from 1871 to 1970 (Durbin &
Koopman, 2012, Ch.2). After setting the static parameters to the maximum likelihood
estimates σx = 38.329 and σy = 122.877, with µ1 = 0 and σ2

1 = 107 for approximate
diffuse initialization, the expectations E[xt|y1:t] for t = 1, . . . , T can be obtained by the
Kalman filter.
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Figure 1: Analysis of the annual flow volume measurements yt of the Nile river (discharge at
Aswan in 108m3) from 1871 to 1970 based on the local level model in (3): signals extracted
via E[xt|y1:t] by the Kalman filter (KF) and linear extremum Monte Carlo filter (XMC) with
N = 5 · 104 paths and steady state reached at t = 19. The data are due to Cobb (1978).

In practice, however, the convenient linear Gaussian assumption appears to hold by
exception, rather than the rule, so that the generalities of nonlinearity and non-Gaussian
noise are often needed; see Creal (2012) and Durbin and Koopman (2012) for multiple
examples in economics and finance. For many nonlinear and non-Gaussian SSMs, the
computation of the conditional expectation in (2) is a challenging task and is often tackled
by particle filtering methods (e.g., Gordon, Salmond, and Smith 1993; Pitt and Shephard
1999; Creal 2012). However, filtering remains challenging in cases where, for example,
the SSM is charactarized by limited tractability, or when it is required to evaluate the
expectation sequentially in real time.

In this study, we propose a novel simulation-based filtering method that relies on
generating artificial samples of data from the SSM in (1) and estimating the conditional
expectations in (2) via extremum estimation (e.g., Amemiya, 1985; Hayashi, 2000). We
call this procedure extremum Monte Carlo (XMC) and use it to define a corresponding
class of filters for signal extraction. The XMC method is mainly a filtering technique
for SSMs and is therefore related to the Kalman filter and its nonlinear/non-Gaussian
extensions. It is also related to the least squares Monte Carlo method (LSMC; Longstaff
& Schwartz, 2001), which was developed for the valuation of American options in financial
trading. A crucial step in the LSMC algorithm is the approximation of the conditional
expectation function E[X|Y ] by simulation of the random variables X and Y ,

X(i), Y (i), i = 1, . . . , N.

The variates are then used as data in the following least squares regression,

f̂N ∈ arg min
f∈FN

1

N

N∑
i=1

L
(
X(i) − f

(
Y (i)

))
,

with L(u) = u2 the squared error loss, f(·) a prediction function, and FN a suitable
function space. Finally, the function estimate is used to predict X for any Y value of
interest by

f̂N(y) ≈ E[X|Y = y].

This general approach allows for estimating latent variables X based on observed data y.
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The LSMC method is widely adopted for the valuation of derivatives with early-
exercise features, as well as credit valuation adjustments (Green, 2015), and it has found
many other applications. Examples range from solving backwards stochastic differential
equations (Gobet, Lemor, and Warin 2005; Bender and Steiner 2012), to the estimation
of complex unconditional moments for various dynamic volatility models (Engle, 2002).
In addition, the method is increasingly being used in portfolio optimization (e.g., Denault
& Simonato, 2017; R. Zhang et al., 2019), where it is called “simulation-and-regression.”

In its simplest form, the XMC method consists of applying the above procedure
repeatedly to perform signal extraction, by setting X = xt and Y = Ỹt ⊆ Yt for times
t = 1, . . . , T , where the covariates Ỹt are an appropriate subset of the conditioning set.
In essence, we first use the SSM in (1) to simulate paths of the states and observations,
after which we regress the former onto subsets of the latter. The estimated regression
functions are then evaluated at the observed data to predict the unobserved states. By
allowing for loss functions L(u) other than the squared error loss, the XMC method can
be used to estimate various aspects of the conditional distributions of interest. Important
examples are the tilted absolute error loss, Lτ (u) = u(τ − 1{u<0}), with prediction error
u = X−f(Y ) to estimate the conditional τ -quantile for τ ∈ (0, 1), and the all-or-nothing
loss, Lδ(u) = 1{|u|≥δ}, with tolerance level δ > 0 to approximate the conditional mode,
which corresponds to the limit δ → 0. Each choice of function estimator and loss function
yields a different filter, hence the method defines a class of extremum Monte Carlo filters.

While the above approach may appear computationally “naive” at first, it offers many
opportunities for substantial computational savings. For example, in most cases it will
not be necessary to estimate a separate regression function for each time t, so that the
function estimates can simply be re-used. For illustration, consider again the local level
model example. Since the Kalman filter is linear in the observations (Harvey, 1990, Ch.3),
we can attempt to mimic this filter by applying the XMC method with linear regression
to minimize the squared error loss for a sample of N simulated paths. Figure 1 shows the
filtered states based on the resulting linear XMC filter with N = 5 · 104, which are seen
to coincide with the Kalman filter. The function estimate at time t = 19 was re-used to
filter the states for all subsequent times, hereby circumventing 81% of the regressions.

The proposed filtering method is conceptually simple and easy to implement. The
combination of simulation and regression allows for a wide range of conditioning sets,
including data sets with missing entries, unequal spacing, and measurements observed
with mixed frequencies. The method can be applied to any model from which data can
be simulated. In this way, it fills a gap in the simulation-based estimation literature by
enabling signal extraction in complex models where static parameters are estimated by
the method of simulated moments (McFadden, 1989) or indirect inference (Gourieroux,
Monfort, & Renault, 1993). Furthermore, since most of the computations (simulation and
estimation) can be performed in advance, the method is particularly suited for real-time
applications, such as recommender systems in e-commerce (Schafer, Konstan, & Riedl,
1999) and algorithmic trading in finance (Kolm & Maclin, 2010).

The remainder of this paper is structured as follows. Section 2 presents the XMC
method. Section 3 provides a stability and convergence analysis. Section 4 presents some
illustrations to highlight and discuss the key properties of the method. Section 5 considers
an empirical application to a daily time series of exchange rates. Section 6 concludes.
The appendices contain proofs and other supplementary material.
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2 The extremum Monte Carlo method

2.1 The basic filtering algorithm

Algorithm 1 presents the basic version of the XMC method, which consists of three
fundamental steps: simulation, fitting, and prediction. For conciseness we assume that
the state xt is univariate; the vector case is handled by performing the last two steps
separately for each element of xt. The simulation step ensures that N paths are available
for the states and observations. The generated data are then split in two parts. The
training sample is directly used in the regressions, while the validation sample is used to
regularize the tuning parameters of the chosen regression method.1 After all regressions
have been performed, the states are predicted by evaluating the estimated regression
functions at the observed data. Of course, in many cases it will not be necessary to
estimate a separate regression function for each time t. Substantial computational savings
may therefore be obtained by re-using function estimates; see Section 2.2.

The regularization is performed by selecting the minimizer of the validation loss from

Algorithm 1 Extremum Monte Carlo filtering method.

1. Simulate: Use the SSM in (1) to simulate N paths of the states and observations,

x
(i)
1:T , y

(i)
1:T , i = 1, . . . , N.

2. Fit:

(a) Split data: Set cval ∈ (0, 1) and split the data into training and validation samples
with sizes

Ntr = N −Nval and Nval = [cvalN ].

(b) Regularization: For a set of candidate tuning parameters, perform the following
regression at time t = t∗:

f̂Nt ∈ arg min
f∈FN

1

Ntr

Ntr∑
i=1

L
(
x
(i)
t − f

(
Ỹ

(i)
t

))
, (4)

with function space FN and covariates Ỹ
(i)
t ⊆ Y

(i)
t . Select the tuning parameters

that minimize the corresponding loss for the validation sample.

(c) Regression: Use the regularized tuning parameters to perform the regression in (4)
at all times t = 1, . . . , T to obtain the function estimates {f̂Nt }Tt=1.

3. Predict: Evaluate the estimated regression functions at the observed data Ỹt for t =
1, . . . , T to predict the states:

x̂t = f̂Nt (Ỹt).

1Given that the data can be generated at will, there is little benefit to optimizing the validation
sample fraction cval in Algorithm 1. It can therefore simply be set to a reasonable value, say, cval = 0.1.
The validation sample also remains useful after the regularization step because it can be used to monitor
convergence, for example, by comparing the average losses incurred in the training and validation samples.
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several candidate tuning parameters generated by a Bayesian optimization procedure
(Bergstra, Yamins, & Cox, 2013). While this could be done for each time separately,
in practice it is usually sufficient to determine the tuning parameters at some suitable
time-point t = t∗. We consider the window size W ∈ {1, . . . , T} as a tuning parameter

and define the covariate set Ỹt to consist of the W observations from the conditioning set
that are nearest to time t. For example, the conditioning set for filtering is Yt = y1:t, so
we define the covariate set by

Ỹt = yt˜:t, with t˜= max {t−W + 1, 1}. (5)

The autoregressive structure for the states in SSM (1) implies that these observations are
generally the most informative on xt. For the covariate set defined above, t∗ = T is a
natural choice to prevent underestimation of the window size, since the validation loss is
then computed where most observations are available.

By specifying the loss function and regression method, Algorithm 1 defines a corre-
sponding XMC filter. In addition to the assumptions that are specific to the regression
method (see Section 3), it is required for the loss function to have a bounded first moment.
The latter is satisfied in most regression applications, and we note that the objective func-
tion in (4) can be generalized to include weights, so that one can always define a trimmed
analogue of the loss function for which bounded moments are guaranteed. The XMC
method further requires that the SSM in (1) can be used to simulate paths of the states
and observations, which holds when it is possible to draw the initial states, x1 ∼ p(x1),
and the noise terms, (εxt , ε

y
t ) ∼ p(εxt , ε

y
t ).

Remark 1. The SSM is allowed to be non-stationary, a simple example of which is the
local level model in (3). This non-stationarity does not pose a problem to the XMC filter

because all regressions are cross-sectional, with the data (x
(i)
t:T , y

(i)
t:T ) being IID in the index

i = 1, . . . , N . Figure 1 provides an illustration of this filter property.

The optimal regression method will generally vary with the signal extraction problem.
For the local level model example in the introduction, a linear regression was preferable,
while in other cases a nonlinear function estimator may be more appropriate. We there-
fore consider several nonlinear regression methods: the tree-based gradient boosting (GB;
Friedman, 2001) and the random forest (RF; Breiman, 2001) for estimating conditional
means, and the generalized random forest (GRF; Athey, Tibshirani, & Wager, 2019) for
estimating conditional quantiles. See also the corresponding chapters in Hastie, Tib-
shirani, and Friedman (2009) for a discussion of the GB and RF methods. The above
methods have been chosen for their general applicability and wide use in practice, but we
stress that the XMC method is not bound to any specific regression method. In principle,
any function estimator can be used in Algorithm 1, from classic polynomial regression
and generalized additive model regression (Hastie & Tibshirani, 1987) to deep neural
network methods (LeCun, Bengio, & Hinton, 2015).

To analyze the computational complexity of the XMC method, we focus on the re-
gression step in Algorithm 1 as it is generally the dominant runtime factor. For both the
number of states Nx and the time series length T , the complexity is linear because each
regression is performed separately. This separability also implies that the total runtime
can be made to approximate that of the longest among the regressions by increasing the
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Table 1: Computational complexity of the regression step for several XMC filters. The estimate
for linear regression is based on the least squares method via the QR decomposition. For
gradient boosting (GB), the estimate is based on the complexity of O

(
CN log (N)

)
for a single

regression tree with C = WNy covariates. The estimates for the random forest (RF) and
generalized random forest (GRF) is based on the common choice of

√
C split variables for RFs

(Hastie et al., 2009).

XMC filter Linear GB RF and GRF

Complexity O (NxTNC
2) O

(
NxTCN log (N)

)
O
(
NxT
√
CN log (N)

)
number of physical cores. On the other hand, the scaling in the number of paths N
and covariates C := WNy depends on the chosen regression method and corresponding
implementation. Table 1 shows current estimates of the computational complexity for
several XMC filters.

2.2 Steady state filtering

A modification of Algorithm 1 is to re-use regression function estimates for prediction at
other time points. We refer to this as the steady state (SS) XMC filter (by analogy to the
Kalman filter; Harvey 1990, Ch.3.3.3). The computational savings can be substantial for
long time series, which are common in financial econometrics and with data on natural
phenomena (e.g., astronomical and meteorological data).

The idea behind the SS approach is to stop performing regressions after some time tss
and use the function estimate f̂Ntss for prediction at the remaining times t > tss. A minimal
requirement for such approach to be sensible is that the covariate sets are translations
with respect to the time index. More precisely, we require the existence of a time index
tW ∈ N such that

Ỹt+1 =
{
yj+1

∣∣∣yj ∈ Ỹt} ∀ t ≥ tW , (6)

which means that the covariate set at time t+1 is the result of applying the lead operator
to every observation in Ỹt. For filtering with covariate sets defined by (5), the above
condition is satisfied with tW = W , so that any time t ≥ tW is a feasible choice for tss. We
emphasize that for an SSM with time-varying locations and scales, the SS approach can
still be adopted because they can be handled by standardizing the data (both simulated
and observed) before performing Algorithm 1.

To determine whether the impact of the SS approach is acceptable, we propose an
intuitive estimate of the largest increase in the loss. Given that the function estimates are
expected to differ more from each other when they are further apart in time, we compare
the estimates at times t ≥ tW with the estimate at time T . For this purpose, we check
for t = tW , . . . , T − 1 whether the condition

Nval∑
i=1

L
(
x
〈i〉
T − f̂

N
t

(
Ỹ
〈i〉
T

))
≤ (1 + css)

Nval∑
i=1

L
(
x
〈i〉
T − f̂

N
T

(
Ỹ
〈i〉
T

))
, (7)

is satisfied, with chosen tolerance level css ≥ 0 and superscript 〈i〉 indicating a case from

the validation sample (x
〈i〉
1:T , y

〈i〉
1:T ), i = 1, . . . , Nval. If the condition in (7) is satisfied, the
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validation procedure is terminated, and we conclude that an SS has been reached. We
then set tss := t and use the estimate f̂Ntss to circumvent the remaining regressions.

The above SS approach was used to compute the filtered states shown in Figure 1. The
condition in (7) was satisfied at time tss = 19 for css = 0, after which the corresponding

function estimate f̂N19 was re-used to predict the states at all subsequent times, hereby
circumventing 81% of the regressions. The filtered states are seen to coincide with the
Kalman filter. In Section 4.4 the impact of the SS approach on the accuracy of the XMC
filter will be investigated via a simulation study.

2.3 Further extensions

The XMC method can be generalized in a number of ways. For example, it can in-
clude the prediction of functions of the states and the forecasting of observations. Both
of these are established simply by changing the dependent variable in the regressions.
In addition, the XMC method can be adjusted to allow for other conditioning sets.
For example, with k-period forecasting, one can use the covariate set Ỹt = yt˜:t−k with

t˜ = max {t− k −W + 1, 1}, while t∗ = T is still a natural choice for performing the
regularization. The method can also be extended to accommodate the various types of
smoothing (Harvey, 1990, Ch.3.6); this extension will be addressed in a follow-up study.

Besides the computation of point estimates such as E[xt|y1:t], one may consider us-
ing the simulated data to estimate conditional distributions. The XMC method could
accommodate this by letting the loss function have the more general form L(xt, Ỹt, f),

where f(xt|Ỹt) is a conditional density or probability mass function. This approach is
related to the reprojection method of Gallant and Tauchen (1998), in which a long sim-
ulated path of the observations is used to perform maximum likelihood via estimates of
the observation transition density, and the Bayesian amortized inference approach (e.g.,
Stuhlmüller, Taylor, and Goodman 2013; Cranmer, Brehmer, and Louppe 2020), in which
draws from the prior are used to train a neural network approximation to the posterior
density. Of course, it is also possible to extract point estimates from an estimated density,
but it is generally more efficient—both statistically and computationally—to estimate the
function of interest directly.

Lastly, we note that the common issue of missing data is handled naturally in the
XMC method. This is done by omitting the corresponding covariates from the regressions,
such that the XMC filter is fitted to the conditioning sets characterized by missing data.
The same approach can be used to handle data with unequal spacing in time, or vector
measurements of which the elements are observed with mixed frequencies.

3 Stability and convergence

This section considers the stability of the XMC method over time, as well as its conver-
gence as the number of Monte Carlo draws N diverges to infinity. Our analysis takes as
a given the instance of the SSM in (1), the loss function L, and the composition of the
conditioning sets Yt for t = 1, . . . , T . The only restriction imposed on the conditioning
set is that Yt ⊆ y1:T , so that in addition to filtering (Yt = y1:t), the results also apply to
other sequential prediction problems (e.g., forecasting, smoothing). Exogenous regressors
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may also be included in Yt but will be omitted for conciseness. In addition, we assume
xt to be univariate, unless stated otherwise. This is without loss of generality due to the
filter’s separate treatment of the state elements.

We shall investigate the relationship between the XMC filter and an optimal filter,
where the latter is made precise below. Historically, optimal filters have often been
defined as the minimum mean square estimator of the states (e.g., Anderson and Moore
1979, Ch.2; Harvey 1990, Ch.3). The following definition generalizes this notion to other
loss functions.

Definition 1 (Optimal filter). For a given SSM and loss function L, an optimal filter
{f ∗t (Yt)}Tt=1 is a set of functions such that

f ∗t (Yt) ∈ arg min
c∈R

E
[
L (xt − c)

∣∣Yt] (8)

holds for t = 1, . . . , T and all paths y1:T such that p(y1:T ) > 0.

An optimal filter is thus defined as a set of prediction functions f ∗t (Yt) that are pointwise
minimizers of the expected loss, where the “points” are the conditioning sets Yt. By
the law of total expectations, the optimal filter also minimizes the unconditional mean
loss. As the above definition indicates, we focus on those paths that are realizable in the
sense that p(y1:T ) > 0 (Frühwirth-Schnatter, 1994). In the following, we use the concise
notation

x∗t := f ∗t (Yt)

to denote the filtered estimates.

Example (Optimal filter). For a filtering problem with the squared error loss, the objec-
tive function in (8) becomes

E
[
L (xt − c)

∣∣Yt] = E[(xt − c)2|y1:t].
If the objective function exists, it is well known that the corresponding minimizer x∗t
is unique and given by the conditional expectation E[xt|y1:t]. These expectations can be
computed by the Kalman filter if the SSM is linear and Gaussian (Anderson & Moore,
1979). The model is then of the form

yt = Htxt + εyt , εyt ∼ N(0, Rt),

xt+1 = Ftxt +Gtε
x
t , εxt ∼ N(0, Qt),

(9)

for t = 1, . . . , T , with initial state x1 ∼ N(0,Σ1) that is independent of {εxt } and {εyt }, the
noise terms are serially and mutually independent, and with possibly time-varying system
matrices Ft, Gt, Ht, Rt, and Qt of appropriate dimensions. The above model reduces to
the local level model in (3) for Ft = Gt = Ht = 1, Σ1 = σ2

1, Rt = σ2
y and Qt = σ2

x. The
Kalman recursions (Harvey, 1990, Ch.3) for t = 1, . . . , T are

E[xt|y1:t] = x∗t|t−1 + Σt|t−1H
′
t(HtΣt|t−1H

′
t +Rt)

−1(yt −Htx
∗
t|t−1),

Var [xt|y1:t] = Σt|t−1 − Σt|t−1H
′
t(HtΣt|t−1H

′
t +Rt)

−1HtΣt|t−1,

Kt = FtΣt|t−1H
′
t(HtΣt|t−1H

′
t +Rt)

−1,

x∗t+1|t := E[xt+1|y1:t] = (Ft −KtHt)x
∗
t|t−1 +Ktyt,

Σt+1|t := Var [xt+1|y1:t] = Ft

(
Σt|t−1 − Σt|t−1H

′
t(HtΣt|t−1H

′
t +Rt)

−1HtΣt|t−1

)
F ′t

+GtQtG
′
t,

(10)
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with initialization
x∗1|0 := E[x1], Σ1|0 := Σ1.

By analogy to the optimal filter, the XMC filter is a set of function estimators that
are used for prediction, which can be represented by{

f̂Nt (Ỹt)
}T
t=1
, Ỹt ⊆ Yt, (11)

where the covariate set Ỹt is a subset of the conditioning set at time t, and we use a
similar shorthand notation as before for the filtered estimates,

x̂Nt := f̂Nt (Ỹt).

The power set P(Yt) is the collection of all feasible covariate sets. The number of covari-
ates used in the regressions represents a trade-off between the bias and variance of the
filter, where the optimal number generally depends on the number of draws; see Appendix
D.2 for an illustration.

Example (Linear XMC filter). Consider the XMC filter defined by using a linear regres-
sion function with parameters estimated by the least squares method,

f̂Nt
(
Ỹt) =

∑
yj∈Ỹt

β̂j,tyj. (12)

for t = 1, . . . , T , where we omit the intercept term for conciseness. Each feasible covariate
set Ỹt ∈ P(Yt) defines a different function estimator f̂Nt

(
Ỹt). For instance, filtering at

time t = 2 with 1 = 1 has as conditioning set Yt = {y1, y2}, which yields the following
three possible estimators,

f̂N2 ({y1}) = β̂1
1,2y1, f̂N2 ({y2}) = β̂2

2,2y2, f̂N2 ({y1, y2}) = β̂3
1,2y1 + β̂3

2,2y2,

in addition to the trivial estimator f̂N2 (∅) = 0, each of which could be used to predict the
state x2.

For any filtering method to be useful in real-time applications, it is required that
both the statistical errors and the computational costs for any time t remain bounded
as t increases. For simulation-based methods, this essentially means that the errors
must remain bounded while the number of Monte Carlo draws N remains fixed. This
important property is often difficult to establish for recursive methods, which pertains
to the majority of filters used in practice. For example, the standard assumptions for
particle filters to obtain stability require compactness of the state space, which is usually
not met in practice; see Chopin and Papaspiliopoulos (2020, Ch.11) for a discussion.
However, the non-recursive nature of the XMC method makes it straightforward to derive
this stability property under mild assumptions. The result below considers the general
setting in which {(xt, yt)} is generated by a strictly stationary process. Moreover, we
emphasize that the result remains valid under model misspecification, in which case the
SSM does not correspond to the process that has generated the data. In the following,
‖·‖p = (E | · |p)1/p denotes the Lp-norm, where the expectation is with respect to the
Monte Carlo draws and the actual observations.

9



Theorem 1 (Filter stability). Suppose that {(xt, yt)}t∈N is strictly stationary, and let the
loss function be of the form L(u) = |u|p for some p ≥ 1 such that ‖x1‖p < ∞. Assume
there exists an optimal filter {x∗t} such that the x∗t = f ∗t (Yt) are measurable functions
of the conditioning sets Yt = y1:t. For some N,W ∈ N, consider an XMC filter {x̂Nt }
defined via Algorithm 1 such that

∥∥x̂Nt ∥∥p < ∞ for t ≤ W , and the x̂Nt = f̂Nt (Ỹt) are

measurable functions of the covariate sets Ỹt given by (5). Then, the filter approximation
errors remain bounded in Lp-norm:

sup
t∈N

∥∥x∗t − x̂Nt ∥∥p <∞.
Proof. See Appendix A.1.

Theorem 1 establishes mild conditions that ensure stability of the XMC filter. The loss
being of absolute power form means that the result applies to the popular squared and
absolute error loss functions. The strict stationarity assumption on {(xt, yt)} implies
that the initial states are drawn from their long-run distribution, but this is only used
to simplify the proof; similar results can be obtained by allowing for other initializations
of the SSM. Notably, the SSM is allowed to be misspecified—as is typically the case
in practice, in which case we require the assumed SSM to be strictly stationary. The
assumption that the covariate sets are defined via (5) can be replaced by the more general
requirement that they satisfy the translation condition in (6), which means that the result
also applies to k-period forecasting and fixed-lag smoothing. The assumption that the
conditioning sets are of the filtering type can be relaxed by the requirement that they
are non-decreasing in time, Yt ⊆ Yt+1, t ∈ N, which accommodates the other types of
signal extraction mentioned above. Lastly, we note that the result also applies to the SS
approach from Section 2.2, which plays an important role in real-time filtering with the
XMC method.

The property of Lp-bounded errors is reassuring, but as a consequence of the mild
assumptions, the above result does not tell us whether and at which rate the XMC filter
converges to an optimal filter as the number of draws N diverges. To this end, we consider
the pointwise convergence

x̂Nt
P→x∗t as N →∞,

for t = 1, . . . , T and all realizable paths y1:T .2 It will be assumed that the time series
length T ∈ N is finite, though it can be arbitrarily large. The case in which both the time
series length and the number of draws diverge simultaneously is explored in Appendix B.
Contrary to Theorem 1, we will now allow for non-stationary processes (see Remark 1).

The filtered estimates x̂Nt are obtained by evaluating the XMC filter at suitably chosen
covariate sets. To cover the out-of-sample optimization procedure from Section 2, we allow
the covariate sets to depend on the number of draws N , which is made explicit by the
notation Ỹ N

t . We make the following assumption for these regularized covariate sets.

2The pointwise mode of convergence corresponds to the assumption that the actual observations y1:T
are fixed, which is standard in particle filter convergence analyses (e.g., Crisan & Doucet, 2002, Sec. 4).
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Assumption 1 (Convergence of regularized covariate sets). For t = 1, . . . , T the regu-
larized covariate set converges in probability to the conditioning set,

lim
N→∞

P (Ỹ N
t = Yt) = 1,

where the convergence is with respect to the Monte Carlo draws.

Apart from the above assumption, the way in which the regularized covariate sets depend
on N will be left open. This allows for many other common methods of regularization,
such as the use of a fixed growth rate for the window size, or adding a penalty term for
the latter to the objective function. Sufficient conditions to guarantee that Assumption
1 holds for some common regularization methods are given in Appendix C.

The following result provides sufficient conditions under which the linear XMC filter
converges to the Kalman filter in the important special case of linear Gaussian SSMs.

Theorem 2 (Convergence to Kalman filter). Let Assumption 1 hold, and suppose the
following holds:

A2.1 The SSM is linear and Gaussian as in (9), the initial variance Σ1 of the states is
bounded, and the observations in y1:T are linearly independent.

A2.2 L is the squared error loss.

A2.3 The XMC filter is linear as in (12).

Then, the XMC filter converges in probability to the Kalman filter {x∗t} at rate
√
N , such

that for all realizable paths y1:T we have

sup
t

√
N
∣∣x∗t − x̂Nt ∣∣ = OP (1).

Proof. See Appendix A.2.

In Theorem 2, the assumption that Σ1 is bounded ensures that the variance of the states
and observations is bounded, which is needed for obtaining the

√
N convergence rate.

Strictly speaking, this assumption rules out diffuse initialization, but the latter can be
approximated arbitrarily well by a sufficiently large but finite initial variance, as is often
done in practice. The assumption that the observations are linearly independent holds for
most SSMs of practical interest, with a sufficient condition being that the measurement
noise is non-degenerate.

Theorem 2 can be generalized in a number of ways. First, the loss function may
be chosen different from the squared error loss. For example, Assumption A2.2 can be
relaxed to allow for the absolute error loss via Theorem 2 of Pollard (1991). Second,
the SSM can be nonlinear and/or non-Gaussian, which is often needed in practice. And
third, the XMC filter can rely on nonlinear regression methods, which are often needed
once the linear Gaussian assumption is relaxed.

As a natural generalization, one could consider a parametric nonlinear XMC filter.
Although this approach is legitimate, parametric estimators are most suitable when there
are strong indications on the functional form of the optimal filter, and this knowledge
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is typically unavailable with nonlinear non-Gaussian SSMs. In such settings, nonpara-
metric estimators may offer a suitable solution, as this class contains a large number of
alternatives that guarantee convergence under mild assumptions, with many results on
convergence rates available in the literature. For example, T. Zhang and Yu (2005) discuss
convergence rates for general boosting procedures with early stopping, Peng, Coleman,
and Mentch (2022) provide results for the RF method, while overviews of convergence
rates for (semi-)nonparametric methods are given by van de Geer (2000) and Chen (2007).
In particular, the latter reference discusses several common variants of neural networks.

As it is beyond the scope of this paper to provide a separate analysis for all the
alternatives mentioned above, we instead provide a general auxiliary result which sub-
stantially simplifies proving convergence for any specific regression method. The result
has also been used to establish Theorem 2. In particular, where the latter result has
demonstrated that the usual

√
N convergence rate of the least squares estimator is pre-

served by the linear XMC filter, the following result shows that this property is neither
specific to the rate rN =

√
N , nor to the linear version of the XMC filter.

Lemma 1 (General filter convergence). Suppose that for the given SSM and loss function,
there exists an optimal filter {x∗t} in accordance with Definition 1. Let Assumption 1

hold, and let rN
∣∣x∗t − f̂Nt (Yt)

∣∣ = OP (1) for t = 1, . . . , T with rate rN > 0 that diverges as
N → ∞. Then, the XMC filter converges in probability to the optimal filter at rate rN ,
such that for all realizable paths y1:T we have

sup
t
rN
∣∣x∗t − x̂Nt ∣∣ = OP (1).

Proof. See Appendix A.3.

The above result establishes that under Assumption 1, neither the consistency property
nor the convergence rate of the function estimators is impacted by the use of a regularized
covariate set instead of the conditioning set. It follows that the regularized covariate set
can be ignored in convergence analyses, hence we can conclude that, asymptotically, the
XMC filter is as good as the regression method it uses.

4 Filter properties: illustrations and discussion

This section presents several illustrations to highlight and discuss the key properties of
the XMC method. We focus on filtering via the conditional means of the states E[xt|y1:t]
for t = 1, . . . , T ; additional illustrations can be found in Appendix D. In all applications
we set the validation sample fraction to cval = 0.1, and the noise terms εxt and εyt are
assumed to be mutually and serially independent, as well as independent of the initial
state x1.

4.1 Nonlinear filtering

Consider the following nonlinear model for a univariate time series yt as given by

yt =
x2t
20

+ εyt , εyt ∼ N(0, σ2
y),

xt+1 =
1

2
xt +

25xt
1 + x2t

+ 8 cos
(
1.2(t+ 1)

)
+ εxt , εxt ∼ N(0, σ2

x),
(13)
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with x1 ∼ N(0, 1), and the static parameters are set to σ2
x = 0.1 and σ2

y = 1 as in
Kitagawa (1996). This model is a special case of the SSM in (1) and is often used for
illustrating the performance of nonlinear filters. We use it first to simulate a single path
of the states x1:T and observations y1:T of length T = 100. The simulated states are then
predicted using the corresponding observations by means of several XMC filters based
on the above model with N = 105. The simulated observations are shown in Figure 2
(a), while Part (b) shows the simulated states and their estimates based on the GB-XMC
filter. The estimates are typically very close to the true states.

For comparison purposes, we adopt the bootstrap filter (Gordon et al., 1993), which
is a standard version of the particle filter. This method requires an importance sampler
to draw N values of the states x

(i)
t , i = 1, . . . , N , which are called the particles. In

the bootstrap filter, these are drawn as x
(i)
1 ∼ p(x1) and x

(i)
t+1 = st

(
x
(i)
t , z

(i)
)
, where z(i)

is a draw of εxt . The particles are then weighted to form a discrete approximation to

the density p(xt|y1:t), which yields E [xt|y1:t] ≈
∑N

i=1 ω
(i)
t x

(i)
t , with convex weights ω

(i)
t ∝

ω
(i)
t−1p(yt|x

(i)
t ) and ω

(i)
0 = 1/N . To prevent the weights from degenerating, the particles are

resampled when the “effective sample size,” defined as ESSt = 1/
∑N

i=1

(
ω
(i)
t

)2 ∈ [1, N ],
drops below N/2 (Doucet, De Freitas, & Gordon, 2001, p.333). We set the number of
particles to N = 107 to ensure a highly accurate approximation to the filtering means.
The resulting filtered states are shown in Figure 2 (b), while Part (c) shows the difference
from the bootstrap filter for several XMC filters. By comparing the scales of Figures 2
(b) and (c) we find that the GB- and RF-XMC filters are generally adequate, while the
linear filter (Lin-XMC) is not. The latter remains unchanged when the number of draws
is increased, which indicates that the means E [xt|y1:t] are inherently nonlinear in the
observations. This example demonstrates the need for general regression methods such
as GB and RF in the XMC method.

4.2 Real-time speed and accuracy

This section discusses the relation between real-time speed and accuracy of the XMC
method. In real-time applications, the observations y1:t are not known in advance, which
means that the estimated regression functions must be accurate on most of their domain.
It is therefore expected that a larger number of draws N is needed to achieve the same
accuracy as other simulation-based methods that provide direct point estimates (e.g.,
particle filters). However, an important property of the XMC method is that most of
the computations take place in the simulation and fitting steps, which can be performed
off-line. The on-line (or real-time) phase then only consists of the prediction step, which
is computationally light. Furthermore, it is expected that the impact of increasing N on
computing the predictions is small, so that the desired level of accuracy may be achieved
without compromising the real-time speed.

To illustrate this last point, we performed a simulation study using the nonlinear
model in (13). The root mean squared error (RMSE) and runtimes of the GB-XMC filter
are compared with those of the bootstrap filter for various values of N . Table 2 shows
the results from the simulation study, in which the path length was set to T = 100, and
Ntest = 104 simulated test paths were used to estimate the performance. As expected,
the bootstrap filter is more accurate than the XMC filter for an equal number of draws.
However, the time spent in the on-line phase by the XMC filter is several orders of
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Figure 2: Analysis of a simulated path from the nonlinear model in (13): (a) observations; (b)
true and filtered states by the bootstrap filter (BF) and gradient boosting (GB) XMC filter; (c)
differences with BF for the GB, random forest (RF), and linear (Lin) XMC filters. The BF is
based on 107 particles; the XMC filters are based on 105 simulated paths.

magnitude smaller. These times are impacted by the number of draws only indirectly—
via the estimated regression functions, with runtimes that are not necessarily increasing
in N . In this case, the runtime is larger for N = 103 than for N = 104 because the GB
method has a tendency to overfit the training data for small samples, which results in
function estimates that are more complex and, therefore, more expensive to evaluate. By
contrast, the bootstrap filter incurs all its computing costs in real time, and the runtimes
are directly impacted by the number of draws. The results illustrate that particle filters
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Table 2: Results from simulation study based on the nonlinear model in (13): overall root
mean squared error (RMSE) and runtimes (computer execution time in seconds) based on
Ntest = 104 test paths for the bootstrap filter (BF) and gradient boosting XMC filter methods
with various number of draws N . The results are generated by a computer with an Intel i5
quad-core processor having 3.3 GHz clock frequency. The software is written in Python and is
optimized by calling various functions from pre-compiled C/C++ code.

log10(N) 3 4 5
Method BF XMC BF XMC BF XMC
RMSE 1.688 1.858 1.664 1.709 1.662 1.674
Runtime off-line - 72.1 - 437.2 - 4240.6
Runtime on-line 361.3 3.0 1295.7 2.4 13723.2 3.4

have an inherent trade-off between real-time speed and accuracy, whereas XMC filters
do not. The computational “bottleneck” in Algorithm 1 can be executed off-line, which
makes the XMC method particularly suited for real-time applications.

4.3 Missing data

In practice it often occurs that some of the data are missing. The XMC method handles
this issue naturally by omitting the corresponding covariates from the regressions. As
illustration, we consider the LL model example from the introduction and treat the Nile
measurements at times t = 21, . . . , 40 and t = 61, . . . , 80 as missing (Durbin & Koopman,
2012, Ch.2). The resulting data set is shown in Figure 3. To deal with these longer
sequences of missing data, the window size was set to 40. Figure 3 shows the filtered
states from the linear XMC filter with N = 105 paths. The predictions are seen to
coincide with those of the Kalman filter, which has an exact treatment of missing data
(Durbin & Koopman, 2012, Ch.4.10).

Figure 3: Filtering analysis based on the local level model in (3) and the partial Nile data
set, in which the observations at time points 21, . . . , 40 and 61, . . . , 80 are treated as missing:
filtered states from the Kalman filter (KF) and linear XMC filter with N = 105.
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4.4 Intractable model densities

The stochastic volatility (SV) model is often used for the modeling of time series of daily
financial returns. We consider the SV model with stable measurement noise (e.g., Vankov,
Guindani, & Ensor, 2019) given by

yt = exp(xt/2)εyt , εyt ∼ S(α, β),

xt+1 = µ+ φ(xt − µ) + σxε
x
t , εxt ∼ N(0, 1),

(14)

where xt represents the unobserved log volatility, with x1 ∼ N
(
µ, σ2

x/(1 − φ2)
)

and
static parameters µ ∈ R, |φ| < 1, and σx > 0. Furthermore, S(α, β) denotes the first
parametrization of the standard univariate stable distribution as in Nolan (2009), with
tail index parameter α ∈ (0, 2] and asymmetry parameter β ∈ [−1, 1]. Except for a few
specific choices of the parameters, the density is not available in closed form, so that in
general, the characteristic function is used to describe the distribution:

E{exp(iuεyt )} =


exp

(
− |u|

(
1 + iβ 2

π
(sgnu) log |u|

) )
if α = 1,

exp
(
− |u|α

(
1− iβ tan(πα

2
) sgnu

) )
otherwise.

Simulation from the stable distribution can be performed using the method of Chambers,
Mallows, and Stuck (1976).

An important property of the XMC method is that it circumvents most issues related
to limited tractability because, in principle, the only required model-specific knowledge
is a sample of draws of the states and observations. To illustrate this, we performed a
simulation study using the SV model in (14) with the parameter choice from Vankov et
al. (2019), that is, µ = −0.2, φ = 0.95, σx = 0.2, α = 1.75 and β = 0.1. The path
length is set to T = 100 and the number of simulated test paths for evaluating the filter
performance to Ntest = 105, as is the number of draws N for the XMC method.

As a simple benchmark, we consider the quasi-maximum likelihood (QML) filter of
Harvey, Ruiz, and Shephard (1994), which remains valid without a tractable observation
density. The method is based on transforming the observations by ỹt = log y2t to cast the
SV model into the linear state space form given by

ỹt = xt + 2ε̃ yt ,

xt+1 = (1− φ)µ+ φxt + σxε
x
t ,

(15)

with ε̃ yt = log |εyt |. Although ε̃ yt is not normally distributed, one can assume it is, so
that the Kalman filter can be used to act as an approximate filter for xt. This normal
approximation matches the first two moments of ε̃ yt , which are given in Lemma 3.19 of
Nolan (2009).

Figure 4 shows the RMSE at different time points for the QML filter (brown) and the

basic (blue, dashed) and SS (red, dotted) XMC filter. The SS estimate f̂Ntss corresponds
to tss = 25 (css = 0;W = 21), such that only a small part of the regressions had to be
performed. The SS approach is seen to have no material impact on the accuracy of the
XMC filter. This result is not surprising, since the process in (14) is strictly stationary,

so that the limit estimators limN→∞ f̂
N
t for covariate sets satisfying the condition in (6)
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Figure 4: Results from simulation study based on the SV model in (14): the RMSEs over time
for the quasi-maximum likelihood (QML) filter and the gradient boosting XMC filter (N = 105),
which is applied with and without the steady state (SS) modification of Section 2.2.

are the same for all t ≥ tW . Shortly after t = 20, the RMSE stops decreasing for all
filters, which suggests a relatively small contribution from further lags. The XMC filter
is seen to outperform the QML filter at all time points.

Comparison with recent approximate filtering methods

In a simulation study based on the same static parameters and T = 350, Vankov et al.
(2019, Fig. 2, p.38) report that the minimum RMSE out of a 100 runs of their approx-
imate Bayesian computation (ABC) filter with 5 · 103 particles exceeds 0.82, while that
attained by the ABC filter of Jasra, Singh, Martin, and McCoy (2012) exceeds 0.92. The
benchmark QML filter outperforms the ABC filters with an overall RMSE of 0.524, and
although the accuracy of the ABC filters could be improved by increasing the number
of particles, the difference with the benchmark is of such a magnitude that further con-
sideration does not seem worthwhile. The overall RMSE for both versions of the XMC
filter is 0.492, which corresponds to a substantial improvement in accuracy. The above
illustrates that the XMC filter provides an accurate alternative to ABC filters in settings
characterized by limited tractability.

5 Empirical application

As empirical application, we provide an analysis of the log returns of the British Pound
against the Deutsche Mark from January 1, 1987 to December 31, 1995, which is shown
in Figure 5 (a). The time series consists of T = 2347 observations, which means that
substantial computational savings may be obtained via the SS approach from Section 2.2.
The data set is characterized by volatility clustering and contains several extreme obser-
vations. The largest negative return corresponds to the speculative attack on September
16, 1992, which led the British monetary authorities to abandon their shadowing policy
of the Deutsche Mark. This data set is considered by Lombardi and Calzolari (2009),
who have used the indirect inference method (Gourieroux et al., 1993) to estimate the
static parameters of several stable SV models, including a symmetric version of (14). The
indirect inference estimator can be applied to complex models, but it does not allow for
the estimation of latent variables. In the application of Lombardi and Calzolari (2009),
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Figure 5: Filtering analysis of the daily log returns of the British Pound against the Deutsche
Mark from January 1, 1987 to December 31, 1995: (a) log returns times 100; (b) state means,
E[xt|y1:t], by the quasi-maximum likelihood (QML) and gradient boosting (GB) XMC filters;
(c) 10%, 50%, and 90% quantiles of the states by the generalized random forest (GRF) XMC
filter; (d) volatility estimates, E[exp(xt/2)|y1:t], by the GB-XMC filter. The XMC estimates
were obtained using the steady state approach (css = 0, N = 105). Data source: https://
fxtop.com/.

https://fxtop.com/
https://fxtop.com/


the estimation of the states xt or the volatility exp(xt/2) is omitted; this estimation forms
an important part of the analysis below.

To analyze the time-varying volatility of the exchange rate, we filter the states and
volatility with the XMC method based on the stable SV model in (14). We set the static
parameters to their estimates from Lombardi and Calzolari (2009): φ = 0.994, σx =
0.094, α = 1.796, β = 0, and with µ = −3.069 the method of moments estimate based
on the QML transformation in (15).

Figure 5 (b) shows the filtered states based on their estimated means, E[xt|y1:t], by
the QML and GB-XMC filters for N = 105. The estimates from both filters are similar
and a comparison with Figure 5 (a) shows that higher estimates correspond to periods
with larger movements of the exchange rates, as expected. The largest estimate of the
state coincides with the crash on September 16, 1992. Part (c) shows the 10%, 50%, and
90% quantiles of the filtering density, p(xt|y1:t), by the GRF-XMC filter. The quantiles
show similar movements as the mean estimates, but the median is typically somewhat
lower, which indicates that the filtering density is at times skewed to the right. In Part
(d), the absolute values of the log returns are shown, as well as the GB-XMC filtered
volatility based on E[exp(xt/2)|y1:t]. The estimated volatility is higher in periods with
larger movements of the exchange rates, as was the case for the filtered states.

For the above applications, the SS based on css = 0 is reached either immediately or
almost immediately, at t = 89 (W = 89, Part b), t = 50 (W = 42, Part c), and t = 75
(W = 75, Part d). Less than 4% of the T = 2347 maximum possible regressions are
performed in each case, which illustrates the computational efficiency of the SS approach.

6 Conclusion

This paper introduces a novel simulation-based filtering method for general state space
models. It can be used to compute time-varying conditional means, modes, and quantiles,
and for predicting latent variables. The XMC method consists of generating artificial
samples of data from the model and estimating quantities of interest via an extremum
estimation method. The approach is conceptually simple and easy to implement. It can
be applied to any model from which data can be simulated. Since most computations
can be performed in advance, the method is particularly suited for real-time applications.
The XMC filter is shown to be stable over time under mild assumptions, a result that
remains valid under model misspecification. Conditions are provided for convergence to
an optimal filter as the number of draws diverges. In particular, the linear version of the
XMC filter converges to the Kalman filter in the linear Gaussian setting. Illustrations
are presented for problems characterized by nonlinearity, missing data, and intractable
density functions. The empirical application to a long time series of exchange rates
demonstrates that, despite a setting of limited tractability, the method is able to efficiently
extract the time-varying volatility.
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Appendix A Proofs

A.1 Proof of Theorem 1

By the triangle inequality,

sup
t∈N

∥∥x∗t − x̂Nt ∥∥p ≤ sup
t∈N
‖x∗t − xt‖p + sup

t∈N

∥∥xt − x̂Nt ∥∥p , (16)

so that boundedness of the left-hand side can be established by considering the two
terms on the right-hand side separately. We start with the second term. Since {yt}t∈N
is assumed to be strictly stationary, the same holds for Ỹt for t ≥ W because for these
indices the covariate sets satisfy the translation condition in (6). As the Monte Carlo
draws are based on a strictly stationary process, it follows that for t ≥ W the regression
functions f̂Nt (·) are identically distributed (ID) with respect to the time index t. In

addition, since they are assumed to be measurable functions of Ỹt, the filtered estimates
x̂Nt = f̂Nt (Ỹt) are ID over time (i.e., {x̂Nt }∞t=W ). By norm subadditivity,

sup
t≥W

∥∥xt − x̂Nt ∥∥p ≤ sup
t≥W

(‖xt‖p +
∥∥x̂Nt ∥∥p) = ‖xW‖p +

∥∥x̂NW∥∥p <∞,
where the equality holds by the fact that the filtered and true states are ID over time
as {xt}t∈N is assumed to be strictly stationary, which implies that ‖xW‖p = ‖x1‖p <∞,

while the boundedness of
∥∥x̂NW∥∥p holds by assumption. By similar reasoning,

sup
1≤t≤W−1

∥∥xt − x̂Nt ∥∥p ≤ sup
1≤t≤W−1

(‖xt‖p +
∥∥x̂Nt ∥∥p) = ‖x1‖p + sup

1≤t≤W−1

∥∥x̂Nt ∥∥p <∞,
which establishes that

sup
t∈N

∥∥xt − x̂Nt ∥∥p <∞.
We now consider the first term on the right-hand side of (16). By the choice of

loss function, it follows that for Yt = y1:t the optimal filter component, x∗t = f ∗t (y1:t),
minimizes the Lp-norm of the error over all functions of y1:t,

f ∗t (y1:t) ∈ arg min
f
‖f(y1:t)− xt‖p .

We will show that the error
‖f ∗t (y1:t)− xt‖p (17)

is non-increasing in t. Suppose by contradiction that for some t ∈ N

‖f ∗t (y1:t)− xt‖p <
∥∥f ∗t+1(y1:t+1)− xt+1

∥∥
p
. (18)

For any t ∈ N, the process {xt+k, y1+k:t+k}k∈N0
is strictly stationary. As the f ∗t are

measurable functions, the same therefore holds for the process {x̃k}k∈N0 defined via

x̃k = f ∗t (y1+k:t+k).
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It follows that

‖f ∗t (y2:t+1)− xt+1‖p = ‖x̃1 − xt+1‖p = ‖x̃0 − xt‖p = ‖f ∗t (y1:t)− xt‖p
<
∥∥f ∗t+1(y1:t+1)− xt+1

∥∥
p
,

where the second equality follows by the strict stationarity of {x̃k, xt+k}k∈N0 , and the
inequality follows from (18). Since f ∗t (y2:t+1) is also a function of y1:t+1, the above in-
equality contradicts the optimality of f ∗t+1(y1:t+1) as a predictor of xt+1, which shows that
(18) cannot hold. We thus have that the error in (17) is non-increasing in t, hence

sup
t∈N
‖x∗t − xt‖p = ‖x∗1 − x1‖p ≤ ‖x

∗
1‖p + ‖x1‖p <∞,

where the inequality follows from norm-subadditivity, ‖x∗1‖p = ‖f ∗1 (y1)‖p <∞ as f ∗1 min-
imizes of the corresponding norm over all functions of y1, and ‖x1‖p <∞ by assumption.
It then follows from the triangle inequality in (16) that

sup
t∈N

∥∥x∗t − x̂Nt ∥∥p <∞.
�

A.2 Proof of Theorem 2

By the triangle inequality,

|x∗t − x̂Nt | = |f ∗t (Yt)− f̂Nt (Ỹ N
t )| ≤ |f ∗t (Yt)− f̂Nt (Yt)|+ |f̂Nt (Yt)− f̂Nt (Ỹ N

t )|,

where, by Assumptions A2.1 and A2.2, the optimal filtered estimates x∗t = E[xt|Yt] cor-

respond to the Kalman filter. We focus on the first term, |f ∗t (Yt)− f̂Nt (Yt)|, in which the
conditioning set is used as covariate set. The linear regression model is correctly specified
since it follows from the joint normality of xt and Yt that

xt = E[xt|Yt] + vt =
∑
yj∈Yt

βj,tyj + vt, vt ∼ N(0,Var [xt|Yt]), (19)

for coefficients βj,t ∈ RNx×Ny (Anderson & Moore, 1979, Sec.3.1). The errors vt are inde-
pendent of Yt because they are jointly normal and uncorrelated, where uncorrelatedness
follows from the mean independence

E[vt|Yt] = E
[
xt − E[xt|Yt]

∣∣∣ Yt ] = 0 = E[vt].

Let zi denote the vector of vertically stacked observations y
(i)
j from the conditioning set, so

that z′i is the i-th row of the design matrix in the least squares regression. Then, since the
data used in the regressions are IID with respect to the index i = 1, . . . , N , all standard
assumptions for consistency and

√
N -convergence of the least squares estimator are satis-

fied if the matrix E[ziz
′
i] is non-singular (e.g., Hayashi, 2000, Proposition 2.1).3 If E[ziz

′
i]

3As the errors are independent of the covariates, the asymptotic variance matrix of the least squares
estimator reduces to Var [vt] · E[ziz

′
i]
−1.
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exists, then E[ziz
′
i] = Var [zi] given that E[zi] = 0, hence the required non-singularity

follows from the assumption that the observations in y1:T are linearly independent. To
establish the existence of E[ziz

′
i], we consider the diagonal and off-diagonal elements sep-

arately. Assumption A2.1 implies that the second moments of the observations yt (the
diagonal elements of E[ziz

′
i]) are finite for t = 1, . . . , T . For the off-diagonal elements of

E[ziz
′
i], assume without loss of generality that the observations yj are univariate. Then,

finiteness follows from Hölder’s inequality as E |yjyk| ≤
√

E |yj|2 ·
√
E |yk|2 for any j, k.

It follows that the least squares estimator is consistent for the true parameters βj,t, and
it is normal with convergence rate

√
N ,

sup
t

sup
j

∣∣∣βj,t − β̂j,t∣∣∣ = OP (N−1/2).

We therefore have that as N →∞,

sup
t

∣∣∣x∗t − f̂Nt (Yt)∣∣∣ = sup
t

∣∣∣ ∑
yj∈Yt

(
βj,tyj − β̂j,tyj

) ∣∣∣ ≤ sup
t

∑
yj∈Yt

∣∣∣βj,t − β̂j,t∣∣∣ |yj|
= OP (N−1/2) ·OP (1) = OP (N−1/2).

Since the above holds for t = 1, . . . , T , Lemma 1 can be applied with rate rN =
√
N to

establish the desired filter convergence.

�

A.3 Proof of Lemma 1

By the triangle inequality, it holds for t = 1, . . . , T that

|x∗t − x̂Nt | = |f ∗t (Yt)− f̂Nt (Ỹ N
t )| ≤ |f ∗t (Yt)− f̂Nt (Yt)|+ |f̂Nt (Yt)− f̂Nt (Ỹ N

t )|. (20)

The first term on the right-hand side represents the error based on an XMC filter that
uses the conditioning set as covariate set. By assumption, |f ∗t (Yt)− f̂Nt (Yt)| = OP (r−1N ).
For the second term, which represents the error from use of a covariate set instead of the
conditioning set, we will show that |f̂Nt (Yt)− f̂Nt (Ỹ N

t )| = oP (r−1N ). For t = 1, . . . , T ,∣∣∣f̂Nt (Yt)− f̂Nt (Ỹ N
t )
∣∣∣ ≤ sup

Ỹt∈P(Yt)

∣∣∣f̂Nt (Yt)− f̂Nt (Ỹt)
∣∣∣ · 1{Ỹ N

t 6=Yt}
.

Then, for any ε > 0

P
(
rN ·

∣∣∣f̂Nt (Yt)− f̂Nt (Ỹ N
t )
∣∣∣ > ε

)
≤P

(
rN · sup

Ỹt∈P(Yt)

∣∣∣f̂Nt (Yt)− f̂Nt (Ỹt)
∣∣∣ · 1{Ỹ N

t 6=Yt}
> ε

)

≤P

(
rN · sup

Ỹt∈P(Yt)

∣∣∣f̂Nt (Yt)− f̂Nt (Ỹt)
∣∣∣ · 1{Ỹ N

t 6=Yt}
> 0

)
≤P (Ỹ N

t 6= Yt)→ 0 as N →∞,

25



where the convergence step follows from Assumption 1. It follows that the second term
on the right-hand side of (20) is oP (r−1N ), so that by the triangle inequality,

|x∗t − x̂Nt | ≤ OP (r−1N ) + oP (r−1N ) = OP (r−1N )

for t = 1, . . . , T .

�

Appendix B Simultaneous convergence analysis

In this section we consider the case where the time series length and the number of
Monte Carlo draws N simultaneously diverge. This pertains to the practical scenario in
which an XMC filter based on some number of draws is applied in real time, while in
parallel, another XMC filter is being estimated based on a larger number of draws. Once
estimation of the latter is complete, it would replace the initial XMC filter, a process
that may be repeated multiple times. In this light, note that it is often possible to use a
function estimate as starting “value” in the optimization of a related estimation problem.

It will be assumed that the SSM is initialized at some time t0 in the infinite past,
t0 → −∞, where we focus on filtering with the infinite conditioning set Yt = yt0:t. In
this setting, Assumption 1 appears to be less reasonable, and the same therefore holds
for the application of Lemma 1. In order to obtain filter convergence, we shall employ a
notion similar to that of Lp-approximability (Pötscher & Prucha, 1997, Ch.6.2), which
generalizes the Lp-near epoch dependence concept from Andrews (1988). These concepts
are both particularly well suited to describe how the filtered estimates x∗t are related to

the near epoch of the observations yt0:t. In the following, Ỹt,m is used to denote a covariate
set containing the m ∈ N0 nearest lags of the observations yt,

Ỹt,m = {yt, yt−1, . . . , yt−m},

with corresponding minimizer of the expected loss

x∗t,m := f ∗t (Ỹt,m) ∈ arg min
c∈R

E[L(xt − c)|Ỹt,m]. (21)

Definition 2 (Filter Lp-approximability). The sequence {x∗t}t∈Z is Lp-approximable by
{x∗t,m}t∈Z if for some p ≥ 1 there exists a sequence of constants {vt,m} such that∥∥x∗t − x∗t,m∥∥p =

(
E
∣∣x∗t − x∗t,m∣∣p)1/p ≤ vt,m,

with supt vt,m → 0 as m→∞

The above definition is essentially a special case of Lp-approximability that is adapted
to filtering, where the observations yt are used as the basis process and the conditioning
is limited to contemporaneous and lagged values of yt (Pötscher & Prucha, 1997, Ch.
6.2). Similar to Lp-near epoch dependence (Andrews, 1988), we explicitly consider the
convergence rate vt,m because this will impact the convergence rate of the XMC filter. In
fact, Definition 2 reduces to Lp-near epoch dependence for p ≤ 2 when vt,m = vmdt, with
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{dt} a summable sequence of non-negative constants, and the squared error loss is used,

in which case x∗t,m = E[xt|Ỹt,m].

We let the XMC filter {x̂Nt } use Ỹt,m as covariate set and consider filter convergence
in Lp, so that

∥∥x∗t − x̂Nt ∥∥p → 0 as m and N diverge. The concept of Lp-approximability

allows us to split the problem of convergence into two parts via the triangle inequality∥∥x∗t − x̂Nt ∥∥p ≤ ∥∥x∗t − x∗t,m∥∥p +
∥∥x∗t,m − x̂Nt ∥∥p ,

where the first part represents the error from using a finite covariate set Ỹt,m to approxi-
mate the conditioning set, while the second part is an estimation error based on a finite
number of covariates.

Below we illustrate our approach by considering convergence of the linear XMC filter
to the asymptotic (or steady state) Kalman filter, which is essentially the limit of the
Kalman filter for t0 → −∞ or t→∞ (Anderson & Moore, 1979, Ch.4.4). This concept
applies to linear SSMs of the form (9) with time-invariant system matrices,

(Ft, Gt, Ht, Qt, Rt) = (F,G,H,Q,R) ∀ t.

If there exists a constant solution Σ̄ to the recursion for Σt+1|t in (10), it satisfies the
following Riccati equation (Anderson & Moore, 1979, Eq. (4.4), p.77),

Σ̄ = F [Σ̄− Σ̄H ′(HΣ̄H ′ +R)−1HΣ̄]F ′GQG′. (22)

In this case, the Kalman gain Kt = K is time-invariant and is given by

K = F Σ̄H ′(HΣ̄H ′ +R)−1. (23)

Substitution of the above expressions into (10) yields the asymptotic Kalman filter. We
have the following convergence result.

Theorem 3 (Convergence to asymptotic Kalman filter). Let the SSM be time-invariant
and linear Gaussian as in (9), and let L be the squared error loss. Suppose the states
xt are univariate with autoregressive coefficient F ∈ (−1, 1) and assume the SSM is
initialized in the infinite past (t0 → −∞) with Var [xt0 ] <∞. Then the following holds:

(a) The asymptotic Kalman filter is L2-approximable by {x∗t,m} with rate

vt,m = |Cx|
|A|m

1− |A|
‖Ky1‖2 , (24)

where A = F −KH ∈ (−1, 1) and Cx = 1− Σ̄H ′(HΣ̄H ′ +R)−1H are scalars with
Σ̄ and K given by (22) and (23), respectively,

(b) Suppose the XMC filter is linear as in (12). Then the XMC filter converges to the
asymptotic Kalman filter as m and N diverge such that m/

√
N → 0. Furthermore,

convergence occurs at rate min{
√
N/m, v−1t,m}, with vt,m given in (24), so that for

1 ≤ p ≤ 2,
sup
t

min{
√
N/m, v−1t,m}

∥∥x∗t − x̂Nt ∥∥p = O(1).
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Proof of Part (a). Substituting the expressions in (22) and (23) into (10) yields

x∗t+1|t = Ax∗t|t−1 +Kyt, A = (F −KH),

hence the asymptotic Kalman filter is given by

x∗t = Cxx
∗
t|t−1 + Cyyt,

with 1 × Ny row vector Cy = Σ̄H ′(HΣ̄H ′ + R)−1 and scalar Cx = 1 − CyH. Because
the autoregressive coefficient satisfies F ∈ (−1, 1) by Assumption A3.2, it follows that
A ∈ (−1, 1); see Anderson and Moore (1979, p.77). The filter therefore admits the
following representation,

x∗t = Cx

∞∑
j=0

AjKyt−1−j + Cyyt = Cx

∞∑
j=1

Aj−1Kyt−j + Cyyt. (25)

We have∥∥x∗t − x∗t,m∥∥2 =
∥∥∥x∗t − E[xt|Ỹt,m]

∥∥∥
2

=
∥∥∥x∗t − E

[
E[xt|Yt]

∣∣ Ỹt,m]∥∥∥
2

=
∥∥∥x∗t − E[x∗t |Ỹt,m]

∥∥∥
2
≤

∥∥∥∥∥x∗t −
(
Cx

m∑
j=1

Aj−1Kyt−j + Cyyt

)∥∥∥∥∥
2

≤

∥∥∥∥∥Cx
∞∑

j=m+1

Aj−1Kyt−j

∥∥∥∥∥
2

≤ |Cx| ·

∥∥∥∥∥
∞∑

j=m+1

Aj−1Kyt−j

∥∥∥∥∥
2

,

where the first equality holds by the assumption of the squared error loss, the second by
the tower property since Ỹt,m ⊂ Yt, the third by noting that the asymptotic Kalman filter
is optimal such that x∗t = E[xt|Yt], the subsequent inequality follows by optimality of the
conditional expectation as predictor in L2, the second inequality follows from (25), and
the third from absolute homogeneity of the norm. In addition,∥∥∥∥∥

∞∑
j=m+1

Aj−1Kyt−j

∥∥∥∥∥
2

2

= E

(
∞∑

j=m+1

Aj−1Kyt−j

)2

= E

∣∣∣∣∣
∞∑

j=m+1

Aj−1Kyt−j

∞∑
k=m+1

Ak−1Kyt−k

∣∣∣∣∣
≤ E

∞∑
j=m+1

|A|j−1
∞∑

k=m+1

|A|k−1|Kyt−jKyt−k|

=
∞∑

j=m+1

|A|j−1
∞∑

k=m+1

|A|k−1 E |Kyt−jKyt−k|

≤
∞∑

j=m+1

|A|j−1
∞∑

k=m+1

|A|k−1
√
E |Kyt−j|2 E |Kyt−k|2

=
∞∑

j=m+1

|A|j−1
∞∑

k=m+1

|A|k−1 E |Ky1|2

=

(
|A|m

1− |A|

)2

E |Ky1|2,
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where the first inequality follows by subadditivity of the absolute value, the subsequent
equality is established by Tonelli’s theorem, the second inequality follows by the Cauchy-
Schwarz inequality, the next equality holds by strict stationarity of {yt} (since |F | < 1),
and the final expression follows from the partial geometric series with |A| < 1. We
therefore have that ∥∥x∗t − x∗t,m∥∥2 ≤ |Cx| |A|m1− |A|

‖Ky1‖2 .

The above expression is finite because ‖Ky1‖2 <∞ by strict stationarity of {yt} combined
with the assumption that Var [xt0 ] <∞.

Proof of Part (b). By the triangle inequality and Part (a),∥∥x∗t − x̂Nt ∥∥2 ≤ ∥∥x∗t − x∗t,m∥∥2 +
∥∥x∗t,m − x̂Nt ∥∥2 ≤ vt,m +

∥∥x∗t,m − x̂Nt ∥∥2 , (26)

where we shall focus on the last term. Because xt and Ỹt,m are jointly normal, it fol-

lows that the conditional expectation E[xt|Ỹt,m] is linear so that x∗t,m = E[xt|Ỹt,m] =∑t
j=t−m βj,tyj for 1×Ny coefficient vectors βj,t. We therefore have that

∥∥x∗t,m − x̂Nt ∥∥2 =

∥∥∥∥ t∑
j=t−m

(βj,t − β̂j,t)yj
∥∥∥∥
2

. (27)

Letting uj,t = βj,t − β̂j,t ∈ R1×Ny , it follows that∥∥∥(βj,t − β̂j,t)yj
∥∥∥2
2

= ‖uj,tyj‖22 = E |uj,tyj|2 ≤ E
(
|uj,tu′j,t| · |y′jyj|

)
= E |uj,tu′j,t| · E |y′jyj|,

where the first inequality follows from the Cauchy-Schwarz inequality for the Euclidian
inner product, while the final equality follows because uj,t is independent from yj, since

β̂j,t is estimated using a training sample that is independent from the prediction data,
{yj}. Furthermore, letting uj,t = (u1,j,t, . . . , uNy ,j,t) and yj = (y1,j, . . . , yNy ,j)

′, it follows
that

E |uj,tu′j,t| · E |y′jyj| = E
Ny∑
k=1

u2k,j,t E
Ny∑
l=1

y2l,j =

Ny∑
k=1

Eu2k,j,t
Ny∑
l=1

E y2l,j =

Ny∑
k=1

Var [uk,j,t]

Ny∑
l=1

E y2l,j = Ny ·O(N−1) ·Ny ·O(1) = O(N−1),

(28)

where Eu2k,j,t = Var [uk,j,t] because E[uj,t] = 0 by unbiasedness of the least squares esti-
mator and the variance rate Var [uk,j,t] = O(N−1) is a standard result in least squares
estimation (e.g., Hayashi, 2000, Proposition 2.1). In addition, E y2l,j = O(1) because {yt}
is strictly stationary (since |F | < 1) with bounded variance (as Var [xt0 ] < ∞). Taking
the square root to reverse squaring of the norm therefore yields∥∥∥(βj,t − β̂j,t)yj

∥∥∥
2

= O
(
N−1/2

)
,
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so that (27) combined with norm-subadditvity yields

∥∥x∗t,m − x̂Nt (Yt)∥∥2 ≤ t∑
j=t−m

∥∥∥(βj,t − β̂j,t)yj
∥∥∥
2

= (m+ 1) ·O
(
N−1/2

)
= O

(
m/
√
N
)
.

Monotonicity of the Lp-norm for 1 ≤ p < ∞ ensures that the rate vt,m and the above
identity apply to all 1 ≤ p ≤ 2. Because the observations and the optimal filter are both
strictly stationary, the terms in the triangle inequality in (26) are the same for all t, hence

sup
t

∥∥x∗t − x̂Nt ∥∥p → 0

as m and N diverge such that m/
√
N → 0, and

sup
t

min{
√
N/m, v−1t,m}

∥∥x∗t − x̂Nt ∥∥p = O(1).

Remark 2. In Theorem 3 (b) it is necessary that N diverges faster than m to guaran-
tee that m/

√
N → 0. As the third equality in (28) shows, this requirement is because∥∥x∗t,m − x̂Nt ∥∥22 is bounded by a term proportional to the sum over the variances of the in-

dividual elements from the least squares estimator, and the number of elements increases
with m. Including more observations increases the number of coefficients to be estimated,
which increases the variance of the predictions x̂Nt . On the other hand, there is also an
offsetting effect: the variance of the least squares estimator is proportional to the error
variance which is given by Var[xt|Ỹt,m]; see (19) in which Yt is finite. It can be shown
that this variance is non-increasing in m (Anderson & Moore, 1979, p.261). However,
it follows from the Kalman recursion for Var [xt|Yt] in (10) that

lim
m→∞

Var[xt|Ỹt,m] = Var [xt|Yt] = Σ̄− Σ̄H ′(HΣ̄H ′ +R)−1HΣ̄,

which does not depend on m. The offsetting effect is thus limited and therefore does not
improve the convergence rate.

In Theorem 3, the assumption of univariate states is used because the Kalman filter does
not have a separate treatment of the states. However, the assumption can be dropped
by introducing additional assumptions on F and A. Moreover, the results remain valid
without the assumption of normality, in which case the asymptotic Kalman filter is no
longer optimal but is the best linear filter instead. This result requires the conditional
expectation x∗t,m = E[xt|Ỹt,m] to be replaced by the corresponding linear projection as an
L2-approximator. As with Theorem 2, the squared error loss assumption can be relaxed
to allow for the absolute error loss.

In contrast to Theorem 2, the convergence rate in the above result is impacted by
the use of covariate sets. In particular, the division by m in the rate

√
N/m reflects the

increased number of parameters that need to be estimated as m increases, which can now
become arbitrarily large. The requirement that m/

√
N → 0 shows that m and N should

be chosen by taking the convergence rate into account. The following result provides
guidelines.
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Proposition 1 (Optimal m-N relation). Suppose that the XMC filter converges at rate
min{

√
N/m, v−1t,m}, with v−1t,m = O(qm) for some q > 1. Then the optimal convergence

rate, v−1t,m, is obtained by letting
N = O(m2q2m),

or equivalently, by letting

m = O
(
W0

(
C
√
N
))

for any C > 0, where W0 denotes the principle branch of the Lambert W function.

Proof. The filter’s convergence rate implies the optimal relation
√
N/m ∝ v−1t,m, from

which the optimal growth rate
N = O(m2q2m)

is immediate. For the optimal growth rate of m in terms of N , use the above relationship
to define N by

√
N := kmqm, for some arbitrary constant k > 0. This gives

√
N = km exp

(
m log(q)

)
= kz exp(z)/ log(q),

with z = m log(q). Letting C = log(q)/k gives the equality

C
√
N = z exp(z),

which can be solved to give z = W0

(
C
√
N
)

, or equivalently,

m = W0

(
C
√
N
)
/ log(q),

where we note that because k > 0 was arbitary and q > 0, the constant C > 0 is also
arbitrary.

The above result applies, for example, when the assumptions of Theorem 3 are satisfied
to imply the rate vt,m in (24), so that q = |A|−1 > 1. Note that in this case, m/

√
N =

O(q−m), which goes to zero when m → ∞, as required. It follows that by choosing m
and N appropriately, the XMC filter attains the optimal convergence rate.

Appendix C Regularized covariate set convergence

In this section we provide sufficient conditions to guarantee that Assumption 1 holds when
determining the regularized covariate set via out-of-sample optimization or penalization
of the objective function. Throughout, we assume that T ∈ N, such that the time series
length is finite.

Consider the average validation loss

Mval
N (Ỹt) =

1

Nval

Nval∑
i=1

L
(
x
〈i〉
t − f̂Nt

(
Ỹ
〈i〉
t

))
, (29)
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where the superscript i = 1, . . . , Nval indicates cases from a separate validation sample,
and Nval = [cvalN ] for some cval ∈ (0, 1), say, cval = 0.1. The out-of-sample optimization
procedure is then defined by

Ỹ N
t ∈ arg min

Ỹt∈P(Yt)
Mval

N (Ỹt). (30)

For the penalized estimator, let M tr
N (Ỹt) denote the average training loss defined by

analogy to (29). Then the penalization procedure we consider is given by

Ỹ N
t ∈ arg min

Ỹt∈P(Yt)
M tr

N (Ỹt) + πN(|Ỹt|), (31)

with penalty term πN(·) that is increasing in the size of the covariate set, |Ỹt|,

πN(k + 1) ≥ πN(k) ≥ 0, k = 0, . . . , T − 1,

and vanishing with N ,
lim
N→∞

sup
k
πN(k) = 0.

Examples of such penalization functions are πN(|Ỹt|) = c|Ỹt|/
√
N for c > 0, as well as

the unregularized case πN = 0.
The regularized covariate sets defined by (30) and (31) are M-estimators, which means

that consistency can be established by showing that the average loss converges uniformly
over the feasible covariate sets to the deterministic limit function

M∞(Ỹt) = plimN→∞M
val
N (Ỹt) ∀ Ỹt ∈ P(Yt), (32)

and that Yt is “well separated” from the other feasible covariate sets (e.g., van der Vaart,
2000, Sec.5.2). For both conditions it is helpful to note that as the time series length
is assumed to be finite, the same holds for the number of feasible covariate sets. Well-
separatedness then reduces to the condition that the conditioning set Yt is the unique
minimizer of the limit objective function M∞. Moreover, it can be shown that pointwise
convergence of the average loss to M∞(Ỹt) over the covariate sets Ỹt ∈ P(Yt) implies the
required uniform convergence.

The above ideas are used to establish the following result on the convergence of the
regularized covariate sets. Below, Y = {y1:T | p(y1:T ) > 0} will denote the set of all
realizable paths (Frühwirth-Schnatter, 1994).

Proposition 2 (Convergence of regularized covariate set). Suppose the time series y1:T
is of finite length, and let Yt be the unique minimizer of the limit objective function M∞
defined in (32),

M∞(Yt) < M∞(Ỹt) ∀ Ỹt ∈ P(Yt) \ {Yt}. (33)

Then
plimN→∞ Ỹ

N
t = Yt (34)

is implied by either of the following conditions.
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(a) The regularized covariate set is defined by the out-of-sample optimization procedure
in (30) and it holds that as N →∞,

sup
y1:T∈Y

|Mval
N (Ỹt)−M∞(Ỹt)|

P→ 0 ∀ Ỹt ∈ P(Yt). (35)

(b) The regularized covariate set is defined by the penalization procedure in (31) and it
holds that as N →∞,

sup
y1:T∈Y

|M tr
N (Ỹt)−M∞(Ỹt)|

P→ 0 ∀ Ỹt ∈ P(Yt).

Proof. For Part (a) we note that since the time series is assumed to be finite, it also
holds that |P(Yt)| < ∞. Suppose then that there are K covariate sets in P(Yt), that is,

Ỹ
[k]
t , k = 1, . . . , K, and let dk = supy1:T∈Y |M

val
N (Ỹ

[k]
t )−M∞(Ỹ

[k]
t )|. Then by (35) it holds

that for any two ε, εP > 0, there exists Nk ∈ N such that

P (dk > ε) < εP ∀ N ≥ Nk.

It therefore holds for all N ≥ maxk{Nk} that

P

(
sup

Ỹt∈P(Yt)
sup
y1:T∈Y

|Mval
N (Ỹt)−M∞(Ỹt)| > ε

)
= P

(
sup
k
dk > ε

)
= P

(
K⋃
k=1

{dk > ε}

)

≤
K∑
k=1

P (dk > ε) < KεP ,

where the first inequality follows by σ-subadditivity of P . The above result shows that
Mval

N (Ỹt) converges uniformly in probability to M∞(Ỹt) over P(Yt), and the same holds

for the objective function in Part (b) because πN(|Ỹt|) was assumed to converge to zero
uniformly over P(Yt) as N → ∞. Since the minimizer Yt is well-separated because
|P(Yt)| <∞, Theorem 5.7 in van der Vaart (2000) applies, which guarantees the conver-
gence in (34) for the M-estimators defined by (30) and (31).

The assumption in (33) states essentially that none of the observations can be omitted
without negatively impacting the predictive performance as measured by the mean loss.
This will generally be the case when the states {xt} follow an autoregressive process,
which holds for many, if not most SSMs used in practice. With this in mind, the above
result implies that convergence of the regularized covariate sets can often be formally
shown by demonstrating that (35) holds for t = 1, . . . , T , that is, if the average loss for
specific covariate sets converges uniformly over the realizable paths to the mean loss. The
following corollary establishes this result for the linear XMC filter.

Corollary 1 (Regularized covariate sets convergence for linear XMC filter). Suppose the
assumptions from Theorem 2 apply (apart from Assumption 1) and that the least squares
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estimates β̂j,t from the linear XMC filter in (12) take values in a bounded parameter space
Ψt. Assume the condition in (33) holds for t = 1, . . . , T and the limit objective function

M∞(Ỹt) = E
(
xt −

∑
yj∈Ỹt

βj,tyj

)2
,

with minimizing coefficients βj,t = βj,t(Ỹt) ∈ Ψt. Then the convergence in (34) holds for

t = 1, . . . , T when Ỹ N
t is defined via (30) or (31).

Proof. The proof is immediate once we establish that (35) holds for t = 1, . . . , T . This

can be done by showing the summands of Mval
N (Ỹt) are continuous in the parameters

and bounded by an integrable function, which implies that they belong to the class of
Glivenko-Cantelli functions (e.g., van der Vaart, 2000, p.46). The summands are given
by

L
(
xt − f̂Nt

(
Ỹt
))

=
(
xt −

∑
yj∈Ỹt

β̂j,tyj

)2
= x2t − 2xt

∑
yj∈Ỹt

β̂j,tyj +
( ∑
yj∈Ỹt

β̂j,tyj

)2
≤ x2t + 2|xt|

∑
yj∈Ỹt

|β̂j,t| |yj|+
( ∑
yj∈Ỹt

|β̂j,t| |yj|
)2

≤ x2t + 2|xt|
∑
yj∈Ỹt

|β∗j,t| |yj|+
( ∑
yj∈Ỹt

|β∗j,t| |yj|
)2
,

where β∗j,t denotes the vector of elementwise maxima of the absolute values that βj,t can
take on in the bounded parameter space Ψt. Furthermore, it follows from Assumption A
2.1 that the final upper bound is integrable, which implies that (35) holds for t = 1, . . . , T ,

and the same argument applies to M tr
N (Ỹt).

In the out-of-sample optimization procedure from Section 2, the optimization in (30)
is in terms of a window size W , which determines the covariate sets (e.g., via (5) for
filtering). In addition, the optimization is performed only at a single time point, t∗, for
computational considerations. By choosing t∗ to be the index of the largest conditioning
set, the convergence in (34) at t = t∗ implies that this convergence holds for all times t =
1, . . . , T , which provides a justification for the choice t∗ = T for filtering and forecasting.

Appendix D Additional illustrations

This section contains several additional illustrations regarding covariate set regularization
and filter convergence. The illustrations are based on the Gaussian local level model
in (3) applied to measurements of the annual flow volume of the Nile river taken at
Aswan from 1871 to 1970. The static parameters were set to the maximum likelihood
estimates σx = 38.329 and σy = 122.877, with µ1 = 0 and σ2

1 = 107 to approximate
diffuse initialization. More information on this application can be found in Durbin and
Koopman (2012, Ch.2).
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Figure 6: Forecasting analysis of the Nile data based on the local level model in (3): 1-period
forecasts of the state from the Kalman filter (KF) and linear XMC filter with N = 104.

D.1 Filter convergence

The use of regression easily accommodates prediction based on other conditioning sets
than the one used for filtering. For example, Figure 6 shows the 1-period forecasts of the
linear XMC filter (N = 104), which coincide with the ones based on the Kalman filter.
At t = 1, the prediction is unconditional, resulting in the value µ1 = 0, while for t > 1
the forecasts equal the lagged predictions from filtering, E[xt−1|y1:t−1].

D.2 Covariate set regularization

To investigate how the filter’s performance is impacted by the window size, we performed
a simulation study using the local level model in (3) with T = 100. We focus on the
accuracy of the filtered state at the last time point, x̂T , as a function of the window
size, or equivalently, of the lower covariate set endpoint T˜ = T −W + 1 with Ỹt defined
by (5). In particular, the RMSE of x̂T was computed for the linear XMC filter with
N ∈ {103, 104} based on a test sample of 105 paths and ten repetitions of Algorithm 1
for different seeds.

Figure 7 shows the results of the simulation study. As expected, the RMSE decreases

Figure 7: RMSE of x̂T in the Gaussian local level model based on the predictions for Ntest =
105 simulated test paths. The results are shown for the Kalman filter (KF) and linear XMC
filter with N ∈ {103, 104} for various values of the lower covariate set endpoint, and the upper
endpoint set to T = 100.
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with N , and it is seen to be non-monotonic in the lower endpoint. Adding recent observa-
tions as covariates initially improves the performance, but after some point the increase
in variance from having to estimate more parameters outweighs the decrease in the bias
with respect to E[xT |y1:T ]. Regarding the bias, we note that there are clear diminishing
returns to adding covariates because the observations are dependent and decreasingly
informative the more remote they are from the state. The optimal covariate window is
seen to vary with N , which indicates that an increase in the complexity of the regression
method is warranted once more data are available. For comparison, the RMSE is also
shown for the Kalman filter, which computes E[xT |y1:T ] exactly using the recursion in
(10). For N = 104, the performance of the linear XMC filter with T˜ = 87 (W = 14) is
almost indistinguishable from that of the optimal filter. The RMSE increases if the lower
endpoint is altered, which underlines the importance of covariate set regularization.
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