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Abstract

We introduce a novel simulation-based method for signal extraction in a general
class of state space models. It can be used to estimate time-varying conditional
means, modes, and quantiles, and to predict latent variables or forecast observations.
The method consists of generating artificial data sets from the model and estimating
the quantities of interest via extremum estimation. The approach is broadly applicable
and its implementation is straightforward. The method is suited for signal extraction
in cases of long time series, missing data, or high-dimensionality. Furthermore, we
demonstrate its use in real-time filtering, where most of the computations can be
performed in advance, and in fixed-interval smoothing. Conditions for the stability
and convergence of the filtering method are discussed, and its key properties are
illustrated by various applications, including nonlinear and high-dimensional models.

Keywords: Fixed-interval smoothing, Latent variables, Least squares Monte Carlo,
Multivariate stochastic volatility, Real-time filtering, State space models.

∗Corresponding author. E-mail: s.j.koopman@vu.nl.



1 Introduction

State space models (SSMs) decompose observed time series into two unobserved parts: the

states (or signal), which are the true objects of interest, and the noise, which complicates

the extraction of the signal from the data. The state space modeling approach has become

pervasive in both the scientific and industry domains, with applications in fields varying

from financial econometrics and forecasting to robotics (Doucet, De Freitas, and Gordon

2001; Durbin and Koopman 2012; Chopin and Papaspiliopoulos 2020).

Central to many of these applications is the task of signal extraction, which involves

estimating the unobserved signals based on noisy measurements. This is widely recognized

as a challenging problem, for which numerous approaches have been developed. Early

influential work focused on linear prediction, where Kolmogorov (1941) and Wiener (1949)

considered its application to stationary processes. The seminal work of Kalman (1960)

enabled the treatment of non-stationarity within the framework of linear SSMs.

Real-world applications often involve nonlinearity and non-Gaussian distributions, in

which case linear prediction methods are typically inadequate. As a result, much subsequent

work has focused on nonlinear signal extraction. Notable examples include the extended

Kalman filter (e.g., Anderson & Moore, 1979, Ch.8.2), the unscented Kalman filter (Julier

& Uhlmann, 1997), Gaussian-sum filters (Sorenson & Alspach, 1971), and methods based

on numerical integration (e.g., Kitagawa, 1987). In addition, many modern approaches

to signal extraction rely on simulation, taking advantage of recent increases in computing

power. These include Markov chain Monte Carlo methods (Andrieu, Doucet, & Holenstein,

2010), importance sampling (Durbin & Koopman, 2012, Ch.11), and particle filtering (e.g.,

Gordon, Salmond, and Smith 1993; Pitt and Shephard 1999; Creal 2012).

This paper proposes a novel simulation-based signal extraction method for a general

class of SSMs. The method involves generating artificial samples of data from the model and

estimating the signals via extremum estimation (e.g., Amemiya, 1985), which includes least

squares and maximum likelihood estimation as special cases. Hence, we refer to this proce-
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dure as extremum Monte Carlo (XMC). We use it to define a corresponding class of filtering

and smoothing methods that can be used generally, with the minimum requirement of being

able to simulate from the model. The implementation of XMC is straightforward, providing

an accessible approach to signal extraction for nonlinear and non-Gaussian models. Given

that most of the computations can be performed in advance, the filtering method is well-

suited for real-time applications, such as recommender systems in e-commerce (Schafer,

Konstan, & Riedl, 1999) and algorithmic trading in finance (Kolm & Maclin, 2010). In

addition, the method can be employed for forecasting and fixed-interval smoothing.

The remainder of this paper is structured as follows. Section 2 introduces the SSM

and provides the motivation for this work. Section 3 presents the XMC method and its

extensions. Section 4 provides a stability and convergence analysis. Section 5 illustrates the

key properties of the method through various applications. Section 6 provides discussion

and Section 7 concludes. The appendix contains proofs and other supplementary material.

2 State Space Model and Motivation

2.1 State Space Model

Let xt ∈ RNx denote the state vector at time t, and let yt ∈ RNy be the corresponding

vector of measurements (or observations) for some Nx, Ny ∈ N, with the related noise

vectors denoted by εxt and εyt , respectively. We consider the SSM as given by

yt = mt(xt, ε
y
t ), (εxt , ε

y
t ) ∼ p(εxt , ε

y
t ),

xt+1 = st(xt, ε
x
t ), x1 ∼ p(x1),

(1)

for t = 1, . . . , T , where T ∈ N is the length of the time series, mt and st are the measurement

and state transition functions, respectively, and p(·) denotes the probability density of the

corresponding variable, which may be non-Gaussian. We assume that the SSM allows for

simulating paths of the states, x1:T = (x1, . . . , xT ), and the observations, y1:T . The functions
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mt and st in (1) can be nonlinear, and they may depend on exogenous variables, lags of

the states and observations, and on a vector of static parameters, θ, which is assumed to

be fixed and given. The probability density functions p may also depend on θ.

Signal extraction is typically performed using the conditional expectation of the states,

E [xt|Ft] , (2)

for t = 1, . . . , T , where Ft represents the information available for predicting the state at

time t. Common choices for the information set include Ft = y1:t for filtering, Ft = y1:t−k

with k ∈ N for k-period forecasting, and Ft = y1:T for fixed-interval smoothing.

For linear Gaussian SSMs, the conditional expectations in (2) can be computed recur-

sively by the Kalman filter. A simple example is the univariate local level model given by

yt = xt + εyt , εyt ∼ N(0, σ2
y),

xt+1 = xt + εxt , εxt ∼ N(0, σ2
x),

(3)

with x1 ∼ N(µ1, σ
2
1) for some µ1 ∈ R and σ1, σx, σy > 0, and the scalar noise terms εxt

and εyt are assumed to be normally distributed, mutually and serially independent, and

independent from x1. The local level model is a special case of the SSM in (1) with

mt(xt, ε
y
t ) = xt+εyt and st(xt, ε

x
t ) = xt+εxt , joint density pG(εxt , ε

y
t ) = pG(εxt ) ·pG(εyt ), where

pG denotes a Gaussian density, and θ = (µ1, σ1, σx, σy)
′.

We consider an application of the local level model to annual flow volume measurements

of the Nile River, ranging from 1871 to 1970 (Durbin & Koopman, 2012, Ch.2). We set

the static parameters σx and σy to their maximum likelihood estimates, σx = 38.329 and

σy = 122.877, and set µ1 = 0 and σ2
1 = 107 for approximate diffuse initialization. The

filtering means E[xt|y1:t] are computed exactly using the Kalman filter for t = 1, . . . , T .

The filtered states presented in Figure 1 (a) provide an estimate of the underlying trend

based on the noisy measurements.
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Figure 1: Analysis of the annual flow volume measurements yt of the Nile river (discharge at
Aswan in 108m3) from 1871 to 1970 based on the local level model in (3): (a) signals extracted
via E[xt|y1:t] by the Kalman filter (KF) and the linear extremum Monte Carlo (XMC) filter with
N = 5 · 104 paths and steady state reached at t = 19; (b) smoothing quantiles corresponding to
p(xt|y1:T ) for cumulative probabilities 10%, 50%, and 90% by the Kalman smoother (KS) and the
linear XMC smoother. The data are taken from Cobb (1978).

In practice, the linear Gaussian assumption is often violated; see Creal (2012) and

Durbin and Koopman (2012) for multiple examples in economics and finance. For nonlinear

and non-Gaussian SSMs, estimating the conditional expectation in (2) is a challenging task.

This is typically addressed using simulation-based methods, such as particle filters, which

have been successfully applied in a wide range of applications (e.g., Doucet et al., 2001).

However, signal extraction remains difficult in scenarios where, for example, the model

is high-dimensional or non-Markovian, the measurement or state transition densities are

unavailable, or the conditional expectations must be evaluated sequentially in real time.

2.2 Extremum Monte Carlo: Background and Motivation

The XMC method finds its origins in the least squares Monte Carlo method of Longstaff

and Schwartz (2001). This method was developed for pricing American options in financial

trading. A crucial step in this pricing algorithm involves approximating a conditional

expectation function, E[X|Y ], using draws of the random variables X and Y ,

X(i), Y (i), i = 1, . . . , N.
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The variates are then used as data in the following least squares regression,

f̂N ∈ arg min
f∈FN

1

N

N∑
i=1

L
(
X(i) − f

(
Y (i)

))
,

with L(u) = u2 the squared error loss, f(·) a prediction function, and FN a suitable function

space. Finally, the function estimate is used to predict X for any Y value of interest via

f̂N(y) ≈ E[X|Y = y].

In its simplest form, the XMC method involves repeatedly applying the above technique

to perform signal extraction. Specifically, we set X = xt and Y = Ct ⊆ Ft for t = 1, . . . , T ,

where the covariates Ct are an appropriate subset of the information set at time t. In

essence, we first use the SSM in (1) to simulate paths of the states and observations, and

then regress the states onto subsets of the observations. The estimated regression functions

are then evaluated with the actual data to predict the unobserved states.

The approach can be extended in various ways. For example, substantial computational

savings can be achieved by reusing the function estimates for prediction at other time

points. For an illustration, we return to the local level model example. Since the Kalman

filter is linear in the observations, we can attempt to mimic this filter by applying the

XMC method with linear regression to minimize the squared error loss for a sample of N

simulated paths. Figure 1 (a) shows the filtered states based on the resulting linear XMC

filter with N = 5 · 104. The function estimate at t = 19 (the year 1889) was reused to filter

the subsequent states. The filtered states visually match those of the Kalman filter.

By changing the loss function, the XMC method can be used to estimate other aspects

of p(xt|Ft). Notable examples include the tilted absolute error loss, Lτ (u) = u(τ − 1{u<0}),

with prediction error u = X−f(Y ), to estimate the conditional τ -quantile for τ ∈ (0, 1), and

the all-or-nothing loss, Lδ(u) = 1{|u|≥δ}, with tolerance level δ > 0, for approximating the

conditional mode as δ → 0. To illustrate this, Figure 1 (b) shows the smoothing quantiles
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corresponding to p(xt|y1:T ) for cumulative probabilities 10%, 50%, and 90% based on the

linear XMC smoother for quantile regression. The estimates match the exact quantiles

obtained using the Kalman smoother (Durbin & Koopman, 2012, Ch.4.4).

The key requirement for the XMC method is that the SSM in (1) can be used to simulate

paths of the states and the observations, a condition that is satisfied in most applications.

By employing suitable regression methods, the approach can be used for signal extraction

with nonlinear and non-Gaussian SSMs.

3 The Extremum Monte Carlo Method

3.1 The Filtering Algorithm

Algorithm 1 presents the XMC filtering method, which consists of three fundamental steps:

simulation, fitting, and prediction. For conciseness, we assume that the state xt is univari-

ate; the multivariate case is discussed in Section 3.2. The simulation step ensures that N

paths are available for the states and observations. The generated data are then split into

two parts: a training sample, used as data in the regressions, and a validation sample, used

for regularization of the regression method. When all regressions are completed, the states

are predicted by evaluating the estimated regression functions with the actual observations.

We now consider the regularization step in more detail. Most regression methods involve

tuning parameters, for which appropriate values must be chosen. This is accomplished by

generating several candidate tuning parameters using a Bayesian optimization procedure

(Bergstra, Yamins, & Cox, 2013) and selecting the best candidate based on the average

loss for the validation sample. In practice it is usually sufficient to determine the tuning

parameters at a single time point, t∗, for which suitable choices are discussed below.

We define the covariate set Ct to consist of the W ∈ {1, . . . , T} observations from the

information set that are closest to time t, where the window size W is treated as a tuning
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Algorithm 1 Extremum Monte Carlo method for signal extraction.

1. Simulate: Use the SSM in (1) to simulate N paths of the states and observations,

x
(i)
1:T , y

(i)
1:T , i = 1, . . . , N.

2. Fit:

(a) Split data: Set cval ∈ (0, 1) and split the data into training and validation samples
with sizes

Ntr = N −Nval and Nval = [cvalN ].

(b) Regularization: For a set of candidate tuning parameters, perform the following re-
gression at time t = t∗:

f̂Nt ∈ arg min
f∈FN

1

Ntr

Ntr∑
i=1

L
(
x
(i)
t − f

(
C(i)t
))

, (4)

with covariates C(i)t ⊆ F
(i)
t , loss function L, and function space FN . Select the tuning

parameters that minimize the corresponding average loss for the validation sample.

(c) Regression: Use the selected tuning parameters to perform the regression in (4) at all
times t = 1, . . . , T to obtain the function estimates {f̂Nt }Tt=1.

3. Predict: Evaluate the estimated regression functions with covariates based on the actual
data, Ct, to predict the states for t = 1, . . . , T :

x̂Nt = f̂Nt

(
Ct
)
.

parameter. For filtering, the information set is Ft = y1:t, and the covariate set is given by

Ct = ys:t, with s = s(t,W ) = max {t−W + 1, 1}, (5)

so that Ct ⊆ Ft. For k-period forecasting, the covariate set is Ct = ys:t−k with start index

s = max {t− k −W + 1, 1}, where Ct = ∅ when t− k < s. For these prediction problems,

t∗ = T is a natural choice in the regularization step, as it helps prevent underestimation of

the window size because the validation loss is then computed where the maximum number

of observations are available.

By specifying both the loss function and the regression method, Algorithm 1 defines a

corresponding XMC filter. The loss function is required to have a bounded first moment,

but otherwise, it can be chosen according to preference. The optimal regression method gen-

erally depends on the signal extraction problem. For the local level model, linear regression
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is suitable, while for other models, a nonlinear function estimator may be required. Selected

regression methods that will be used for illustration include tree-based gradient boosting

(GB; Friedman, 2001) and the random forest (RF; Breiman, 2001), where the latter can

also be used for estimating conditional quantiles (Meinshausen, 2006). These methods were

chosen for their general applicability and widespread use in practice. Furthermore, they

remain applicable with discrete variables. However, Algorithm 1 can also be applied with

other machine learning methods, such as neural networks. In the following, we discuss

various features and extensions of XMC, which are illustrated numerically in Section 5.

3.2 Multivariate Filtering

A multivariate state xt = (x1,t, . . . , xNx,t)
′ is handled by performing the fitting and predic-

tion steps of Algorithm 1 separately for each element. This univariate treatment enables

parallel computation across states, and it suggests that increasing the number of states

Nx may have limited impact on the accuracy. To address large observation vectors yt,

tree-based regression methods (such as GB and RF) can be employed. These methods

rely on selecting a subset of the most informative covariates, making them applicable in

high-dimensional regression settings.

3.3 Steady State Filtering

A natural extension of Algorithm 1 is to reuse function estimates for prediction at other

time points. We refer to this as the steady state XMC filter, by analogy to the Kalman

filter (Durbin & Koopman, 2012, Ch.4.3.4). The computational savings can be substantial

for long time series, which are common in financial econometrics and the physical sciences.

The steady state approach allows us to stop performing regressions after some time

tss and use the function estimate f̂Ntss for prediction at subsequent time indices t > tss. A

minimal requirement for the steady state approach to be sensible is that the covariate sets
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correspond to rolling windows, such that after some time index tW ∈ N, we have

Ct+1 =
{
yj+1

∣∣∣yj ∈ Ct} ∀ t ≥ tW . (6)

This condition means that the covariate set at time t+ 1 is obtained by applying the lead

operator to every observation in Ct. For filtering with covariate sets defined by (5), the above

condition is satisfied with tW = W . Any time t ≥ tW is a feasible candidate for tss. Notably,

if the steady state is invoked a priori at or before a specific time point τ (i.e., tss ≤ τ),

it is only necessary to simulate paths of length τ . This allows the simulated data to be a

fraction of the full sample size T in long time series, resulting in large computational gains.

Alternatively, a method for determining tss using the validation sample is as follows. For

prudence, we rely on a conservative estimate of the predictive performance at subsequent

time points, by evaluating a candidate regression function at time t based on prediction at

time T , the most distant time point exceeding t. Let css ≥ 0 be a chosen tolerance level, and

let the superscript 〈i〉 denote a case from the validation sample (x
〈i〉
1:T , y

〈i〉
1:T ), i = 1, . . . , Nval.

Then, we verify for t = tW , . . . , T − 1 whether

Nval∑
i=1

L
(
x
〈i〉
T − f̂

N
t

(
C〈i〉T
))
≤ (1 + css)

Nval∑
i=1

L
(
x
〈i〉
T − f̂

N
T

(
C〈i〉T
))

(7)

is satisfied. When this condition is met, the iterative checking of (7) terminates, and we

conclude that a steady state has been reached. We then set tss := t and use the estimate

f̂Ntss to circumvent the remaining regressions. This approach was applied with css = 0 to

compute the filtered states shown in Figure 1 (a). The condition in (7) was satisfied at

time tss = 19, which allowed for circumventing 81% of the regressions.

3.4 Fixed-Interval Smoothing

In fixed-interval smoothing (“smoothing” hereafter), the information set is y1:T , so that each

state is estimated using all available data. The regularization step in Algorithm 1 is there-
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fore performed at the middle time index t∗ = dT/2e, where the most nearby observations

are available. Given a sufficient number of observations on both sides, the covariate set Ct

corresponds to a centered window around time t. Otherwise, the window is asymmetric.

An approach for constructing these covariate sets is described in Appendix A.

3.5 Missing Observations and Other Data Modifications

Several generalizations of the XMC method can be obtained by modifying the regression

data. For example, the method can be extended to predict functions of the states, such as

g(xt) or g(x1:t), and to forecast future observations. This is done by adjusting the dependent

variable accordingly in the regressions. Furthermore, missing observations can be handled

by excluding the corresponding covariates from the regressions. This same approach can

also be applied to handle data with unequal time spacing or vector measurements, where

the elements are observed at varying frequencies.

3.6 Computational Complexity

To analyze the computational complexity of the XMC method, we focus on the regression

step in Algorithm 1, which is generally the dominant runtime factor. The complexity is

linear with respect to the number of states Nx and the time series length T , since separate

regressions are performed for different states and times. When the steady state approach is

used, the factor T is replaced by tss. The scaling in the number of paths N and covariates

C = WNy depends on the selected regression method and its implementation. Table 1

presents current estimates of the computational complexity for several XMC filters.

Table 1: Computational complexity of the regression step for several XMC methods. The
complexity for linear regression is based on ordinary least squares via the QR decomposition.
For gradient boosting (GB), the estimate follows from the O

(
CN log (N)

)
complexity of a single

regression tree with C = WNy covariates, while for the random forest (RF) it is based on the
standard choice of

√
C split variables (Hastie et al., 2009).

XMC Method Linear GB RF

Complexity O (NxTC
2N) O

(
NxTCN log (N)

)
O
(
NxT
√
CN log (N)

)
10



4 Filter Stability and Convergence

This section discusses various theoretical properties of the XMC method. For ease of

presentation, xt is assumed to be univariate, which is without loss of generality due to the

filter’s separate treatment of the state elements. To avoid repetition, we focus on filtering,

though most of the results also extend to forecasting and smoothing.

For the purpose of analysis, the XMC filter is viewed as a sequence of function estimators

used for prediction, {
f̂Nt (Ct)

}T
t=1
, Ct ⊆ Ft, (8)

where the covariate set Ct is a subset of the information set Ft at each time t, and we use

the following shorthand notation for the predictions:

x̂Nt = f̂Nt (Ct).

The power set P(Ft) represents the collection of all feasible covariate sets. Since the filter

is fitted using a finite number of simulated paths N , the choice of covariate set (or window

size) used in the regressions reflects a trade-off between the bias and variance of the filter.

Before proceeding, we present the following example to settle ideas.

Example (Linear XMC filter). Consider the XMC filter defined by using a linear regression

function with parameters estimated by the least squares method,

f̂Nt
(
Ct) =

∑
yj∈Ct

β̂j,tyj, (9)

for t = 1, . . . , T , where we omit the intercept term for conciseness. Each feasible covariate

set Ct ∈ P(Ft) defines a different function estimator f̂Nt
(
Ct). For instance, filtering at time

t = 2 has information set Ft = {y1, y2}, which gives three possible estimators:

f̂N2 ({y1}) = β̂1
1,2y1, f̂N2 ({y2}) = β̂2

2,2y2, f̂N2 ({y1, y2}) = β̂3
1,2y1 + β̂3

2,2y2,
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in addition to the trivial estimator f̂N2 (∅) = 0. Any of these estimators could be used to

predict the state x2.

4.1 Stability

As time progresses, the XMC method updates its predictions based on a moving window of

observations. This contrasts with most filtering methods, where the predictions are defined

recursively. Below we discuss several key properties of this approach.

The actual data, which serve as input for the predictions, are often characterized by

extreme values or corrupted by errors. An important property implied by the use of moving

windows is that the impact of any observation disappears once it drops from the window.

Let η ∈ R denote a data error. The following result considers the case in which the

measurement at some time k ∈ N is replaced by the corrupted measurement

yηk = yk + η. (10)

Corollary 1 (Finite window impact). Suppose the measurement at time k ∈ N is corrupted

by a data error η ∈ R as in (10). Let x̂Nt (η) be the resulting prediction of the XMC filter

at time t, with covariate sets defined by (5) and window size W ∈ N. Then

x̂Nt (η) = x̂Nt (0) ∀ t ≥ k +W.

A related issue often encountered with recursive filters, such as the Kalman filter and

its extensions, is that errors in the data or predictions can accumulate, causing the pre-

diction error to grow over time. A filter which ensures that the error remains bounded

over time, according to a suitable measure of distance, is said to possess the property of

stability (e.g., Chopin & Papaspiliopoulos, 2020, Ch.11.4). The following result provides

sufficient conditions for the mean absolute error, E |xt− x̂Nt |, to remain bounded over time,

ensuring that the filter keeps track of the true state. It will be assumed that the states and
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measurements, (xt, yt), follow a strictly stationary process. This may differ from the SSM

used in the simulation step of Algorithm 1, provided the process generating the simulated

data is strictly stationary.

Theorem 1 (Filter stability). Let the process {(xt, yt)}t∈N be strictly stationary, with

E |x1| < ∞. For some fixed N,W ∈ N, consider an XMC filter {x̂Nt } defined through

Algorithm 1, with covariate sets given by (5), and assume that E |x̂Nt | < ∞ for t ≤ W .

Then, the mean absolute error remains bounded over time,

sup
t∈N

E |xt − x̂Nt | <∞, (11)

where the expectation is with respect to the Monte Carlo draws and the actual data.

The above result remains applicable when the steady state approach from Section 3.3 is

used and can be extended in several ways. The assumption that the covariate sets are

defined via (5) can be replaced by the more general requirement that they satisfy the

rolling window condition in (6), which also applies to k-period forecasting. Furthermore,

the mean absolute error in (11) can be generalized to express the distance using the Lp-norm

‖u‖p = (E |u|p)1/p for p ≥ 1, with error u = xt − x̂Nt . The bounded moment requirements

for the states and filter then pertain to the corresponding p-th moments.

4.2 Convergence

This section examines the convergence of the XMC filter to an optimal filter as the number

of simulated paths N goes to infinity. The time series length T ∈ N is assumed to be finite,

though it can be arbitrarily large. An optimal filter is characterized as follows.

Definition 1 (Optimal filter). For a given SSM and loss function L, an optimal filter

{f ∗t }Tt=1 is a sequence of prediction functions satisfying

f ∗t ∈ arg min
f

E
[
L
{
xt − f(Ft)

}]
, t = 1, . . . , T. (12)

13



For conciseness, the corresponding optimal filtered estimates will be denoted by

x∗t = f ∗t (Ft).

We will then say that the XMC filter converges in probability to an optimal filter when

Ey |x∗t − x̂Nt |
P→ 0 as N →∞, (13)

where Ey denotes the expectation with respect to the actual data, and the convergence in

probability is with respect to the Monte Carlo draws. Similar results can be derived under

under alternative modes of convergence, including pointwise convergence for the possible

paths of the actual observations.

An important consideration in this context is that, while in the limit of N → ∞ it is

optimal to use the maximum number of covariates (Ct = Ft), in practice, this can lead

to poor filtering performance due to high estimator variance, as only a finite amount of

simulated data is available. In general, the optimal number of covariates in the regressions

depends on N ; see Appendix D.3 for an illustration. Therefore, it is important to choose

it carefully. The XMC method addresses this by selecting the window size through min-

imization of the validation loss, which reflects the filter’s predictive performance for the

specific value of N used. To account for this essential aspect of Algorithm 1, the covariate

set is allowed to depend on the simulated data, resulting in a regularized covariate set CNt .

Definition 2 (Regularized covariate set). Let SN =
{

(x
(i)
1:T , y

(i)
1:T )Ni=1

}
denote the set of all

possible simulated samples of size N . A regularized covariate set CNt is a mapping that

assigns each simulated sample (x
(i)
1:T , y

(i)
1:T )Ni=1 to a corresponding feasible covariate set:

CNt : SN → P(Ft).

In addition to the out-of-sample procedure in Section 3, the above definition accommodates
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other regularization methods, such as defining the window size as a deterministic function

of N or incorporating a penalty term for the window size into the loss function.

Since the optimal filter generally relies on all available observations from the information

set Ft, a necessary requirement for establishing the convergence of the XMC filter is that

the regularized covariate set converges to the information set when N → ∞, as specified

in the following assumption. Sufficient conditions to ensure its validity for several common

regularization methods are discussed in Appendix C.

Assumption 1 (Convergence of regularized covariate sets). For t = 1, . . . , T the regularized

covariate set converges in probability to the corresponding information set,

lim
N→∞

P
(
CNt = Ft

)
= 1,

where the convergence is with respect to the Monte Carlo draws.

The following result provides sufficient conditions for convergence of the linear XMC

filter to the Kalman filter in the important special case of linear Gaussian SSMs.

Theorem 2 (Convergence to Kalman filter). Let Assumption 1 hold, and suppose the

following holds:

A2.1 The SSM in (1) is linear and Gaussian, where the initial state x1 ∼ N(0,Σ1) has

bounded variance and is independent of the noise terms {εxt } and {εyt }, which are

mutually and serially independent. The observations in y1:T are linearly independent.

A2.2 L is the squared error loss.

A2.3 The XMC filter is linear as in (9).

Then, the XMC filter converges in probability to the Kalman filter {x∗t} at rate
√
N ,

sup
t

√
N Ey

∣∣x∗t − x̂Nt ∣∣ = OP (1).
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In Theorem 2, the assumption that the observations are linearly independent holds for

most SSMs of practical interest, with a sufficient condition being that the measurement

noise is non-degenerate. Assumption A2.2 can be relaxed, for instance, to accommodate

the absolute error loss via Theorem 2 of Pollard (1991). Moreover, the XMC filter can rely

on nonlinear regression methods.

The latter is particularly relevant for nonlinear and non-Gaussian SSMs, where the

functional form of the optimal filter is usually unknown. In such settings, nonparametric

estimators may offer a solution, as this class contains a large number of alternatives that

guarantee convergence under mild assumptions. For example, Zhang and Yu (2005) present

convergence rates for general boosting procedures with early stopping, Peng, Coleman,

and Mentch (2022) provide results for the RF method, and van de Geer (2000) and Chen

(2007) give overviews of convergence rates for (semi-)nonparametric methods, with the

latter discussing several common variants of neural networks.

A separate analysis for the above alternatives is beyond the scope of this paper. Instead,

we provide a general auxiliary result to simplify the process of establishing convergence. The

result shows that if the chosen regression functions result in convergence to the optimal filter

when all possible covariates are used (Ct = Ft), Assumption 1 ensures that the consistency

and convergence rate of the estimators are unaffected by the use of a regularized covariate

set. Consequently, the regularized covariate set can be disregarded in convergence analyses.

Lemma 1 (General filter convergence). Suppose that for the given SSM and loss function,

there exists an optimal filter {x∗t} as specified in Definition 1. Let Assumption 1 hold, and

let rN Ey
∣∣x∗t − f̂Nt (Ft)

∣∣ = OP (1) for t = 1, . . . , T with rate rN > 0 that diverges as N →∞.

Then, the XMC filter converges in probability to the optimal filter at rate rN ,

sup
t
rN Ey

∣∣x∗t − x̂Nt ∣∣ = OP (1).

Lemma 1 shows that the XMC filter retains the asymptotic properties of the regression

method it uses. In this context, we note that the lack of tractability in nonlinear and
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non-Gaussian models makes it challenging to design parametric estimators that converge

to the optimal filter. The practical implication is that general regression methods (such as

GB and RF) play an important role in broadening the applicability of the XMC method.

5 Applications

This section presents various applications to illustrate the key properties of the XMC

method. We set the validation sample fraction to cval = 0.1. Additional applications can

be found in Appendix D.

5.1 Non-Markovian Models

Applications involving non-Markovian models are common, typically arising from higher-

order autoregressive state processes or serially dependent noise. For example, by modifying

the local level model in (3) to let the state noise follow a random walk, we obtain the

integrated random walk plus noise model (e.g., Durbin & Koopman, 2012, Ch.3),

yt = xt + εyt , εyt ∼ N(0, σ2
y),

xt+1 = xt + εxt ,

εxt+1 = εxt + ut, ut ∼ N(0, σ2
u),

(14)

for t = 1, . . . , T , where the noise sequences {ut} and {εyt } are mutually and serially inde-

pendent, and approximate diffuse initializations are used for x1 and εx1 . We can treat the

non-Markovian structure of the model in (14) using an augmented state vector, in this case

zt = (xt, ε
x
t )
′, to restore the Markov property. The resulting SSM is given by

yt =

(
1 0

)
zt + εyt ,

zt+1 =

1 1

0 1

 zt +

0

1

ut.

(15)
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Figure 2: Smoothed signals for the Nile data based on the integrated random walk plus noise
model in (14): signals extracted via E[xt|y1:T ] by the linear XMC smoother with N = 105, as well
as the Kalman smoother (KS) applied to the augmented state form of the model in (15).

An important property of the XMC method is its direct applicability to non-Markovian

models. To illustrate this feature, we consider the model in (14) for the Nile data. We

set the static parameters to the maximum likelihood estimates σu = 1.276 and σy =

137.741, with approximate diffuse initializations. Figure 2 shows the smoothing means

E[xt|y1:T ] computed via the Kalman smoother (Anderson & Moore, 1979, Ch.7) based on

the augmented SSM given by (15). The plot also shows the corresponding estimates by

the linear XMC method with N = 105, based on the original model in (14). The estimates

match the exact smoothing means.

The above example illustrates that the XMC method can be useful in the analysis

of non-Markovian models. The ability to treat such models directly could be especially

helpful in cases where large augmented state vectors are needed. For instance, software im-

plementations of the popular ARIMA(p, d, q) model typically adopt a companion form that

requires a state vector of size d+ max{p, q+ 1}; see Durbin and Koopman (2012, Ch.3.4).

Depending on the chosen specification, the augmented state vector may be considerably

larger than the Nx = 1 case handled by the XMC method. This convenient feature of XMC

can lead to substantial savings in both computation and storage.
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5.2 Nonlinear Signal Extraction

This section considers signal extraction for the univariate nonlinear model given by

yt =
x2t
20

+ εyt , εyt ∼ N(0, σ2
y),

xt+1 =
1

2
xt +

25xt
1 + x2t

+ 8 cos
(
1.2(t+ 1)

)
+ εxt , εxt ∼ N(0, σ2

x),

(16)

where x1 ∼ N(0, 1). This model is often used for testing the performance of nonlinear

filtering and smoothing methods (Gordon et al. 1993; Kitagawa 1996; Godsill, Doucet, and

West 2004). We set the static parameters to σ2
x = 0.1 and σ2

y = 1 as in Kitagawa (1996).

5.2.1 The Importance of General Regression Methods

Figures 3 (a) and (b) present a simulated path of the observations y1:T and states x1:T ,

respectively. Estimates of the corresponding smoothing means from the GB-XMC smoother

with N = 105 are shown in Figure 3 (b). For comparison, Figure 3 (b) also includes

estimates of the smoothing means based on particle smoothing, where the forward filter

backward smoothing (FFBS; Doucet, Godsill, & Andrieu, 2000) method was applied with

104 particles from the auxiliary particle filter (APF; Pitt & Shephard, 1999) to ensure high

accuracy of the estimates. The estimates from GB-XMC and FFBS are visually identical.

Figure 3 (c) presents the differences with the FFBS estimates for several XMC smoothers.

By comparing the scales of Figures 3 (b) and (c), we find that the nonlinear regression meth-

ods (GB and RF) lead to an adequate performance of the XMC smoother. In contrast, the

linear smoother (Lin-XMC) does not provide satisfactory performance, which is unchanged

when the number of draws increases. This implies that the smoothing means E [xt|y1:T ]

are inherently nonlinear in the observations, and it demonstrates the importance of general

regression methods for nonlinear signal extraction with the XMC method.
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Figure 3: Analysis of a simulated path from the nonlinear model in (16): (a) observations; (b)
true and smoothed states based on estimated smoothing means computed via the forward filter
backward smoothing (FFBS) method with 104 particles from the auxiliary particle filter, and the
gradient boosting (GB) XMC smoother with N = 105; (c) differences with FFBS for the GB,
random forest (RF), and linear (Lin) XMC smoothers.

5.2.2 Simulation Study

The XMC method can be applied with a loss function of choice, enabling the estimation

of time-varying conditional means, medians, and other quantities of interest. To illustrate

this feature, we conducted a simulation study based on the nonlinear model in (16), using

the absolute error loss to estimate the smoothing medians and the squared error loss for the
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Table 2: Results from smoothing simulation study based on 103 test paths of length T = 100
from the nonlinear model in (16): overall mean absolute error (MAE) based on the random
forest XMC smoother for quantile regression and root mean squared error (RMSE) based on the
gradient boosting XMC smoother for various values of N . The final row displays the excess loss as
a percentage relative to the FFBS method’s performance using M = 104 particles, which achieved
an MAE of 0.342 (for the medians) and an RMSE of 0.562 (for the means).

log10(N) 3 4 5
Error metric MAE RMSE MAE RMSE MAE RMSE
Performance 0.405 0.774 0.360 0.594 0.349 0.571
Relative (Excess %) 18.4 37.7 5.3 5.7 2.0 1.6

smoothing means. Specifically, the nonlinear model was used to simulate 103 test paths of

length T = 100, after which the states were predicted using the corresponding observations.

The smoothing medians were estimated using the RF-XMC method for quantile regression,

while the smoothing means were estimated using the GB-XMC method.

The first row (“Performance”) in Table 2 shows the overall mean absolute error (MAE)—

defined as the absolute error over over the times and paths—based on the estimated medians

for various values of N . In addition, the overall root mean squared error (RMSE) is pro-

vided for the estimated means, which is computed as the square root of the overall mean

squared error. The initial improvements from N = 103 to N = 104 are substantial, while

the increase to N = 105 results in smaller gains. This illustrates that general regression

methods like GB and RF tend to require more data to perform adequately. Notably, as

the XMC method uses simulated data, N is limited only by computational constraints.

As a proxy for the optimal smoother, we also estimated the smoothing means and

medians using the FFBS method with M = 104 particles from the APF. This resulted in

an MAE of 0.342 (for the medians) and an RMSE of 0.562 (for the means). The value of

M is substantial, given the computational complexity of O(TM2) for the FFBS method,

which is typical for particle smoothing methods (Chopin & Papaspiliopoulos, 2020, Ch.

12). The final row (“Relative”) presents the excess loss of the XMC smoothing methods

as a percentage relative to the FFBS method. The use of N = 105 yields adequate relative

performance, with excess losses of about 2% compared to the optimal smoother proxy.

A direct comparison between M and N is complicated. For several reasons, the simu-
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lated paths are less costly than particles, with the precise costs depending on the choice of

importance sampler and XMC smoother. On the other hand, fewer particles are needed to

achieve a given level of accuracy, as these draws are conditional on the actual data, whereas

the simulated paths are not. Regarding the computational complexity of the XMC smooth-

ing method, Table 1 shows that the linear version has complexity O(TN), while the GB

and RF-XMC smoothers have complexity O
(
TN log(N)

)
. It is worth noting that the latter

is O(TN1+δ) for any δ > 0, so depending on the type of regression, the method scales either

linearly or almost linearly with N . This allows large values of N to be used in practice,

enabling accurate smoothing estimates with the XMC method.

5.3 Real-Time Filtering

For real-time filtering problems, an important property of the XMC method is that most

of the computations take place in the simulation and fitting steps, which can be performed

offline. To illustrate this, we performed a filtering simulation study based on the nonlinear

model in (16). The model was used to simulate 103 test paths of length T = 100, and for

each path the simulated states were predicted using the corresponding observations. The

GB-XMC filter was used to estimate the filtering means E[xt|y1:t]. Table 3 presents the

results of the simulation study. As with smoothing, the RMSE drops substantially when

N increases from 103 to 104, followed by a more moderate improvement for N = 105.

As a proxy for the optimal filter, we also applied the APF with 105 particles, which

achieved an RMSE of 1.645. This comparison indicates that the XMC filter performs

adequately starting at N = 104, where the excess RMSE relative to the APF is 3.2%. For

N = 105, the performance further improves, yielding an excess RMSE within one percent.

Table 3 also shows the total computation times in seconds, divided into offline and online

calculations. The offline times correspond to the regression step in Algorithm 1, while the

online times correspond to the prediction step. By increasing the number of simulated

paths N , the offline computation time increases. In contrast, the online computation
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Table 3: Results from filtering simulation study based on 103 test paths of length T = 100
from the nonlinear model in (16): overall root mean squared error (RMSE) and computation
times in seconds based on the gradient boosting XMC filter for various values of N . The second
row (“Excess RMSE”) displays the excess loss as a percentage relative to the performance of the
auxiliary particle filter using 105 particles, which achieved an RMSE of 1.645. Offline computation
times correspond to the regression step and online times to the prediction step in Algorithm 1,
based on a computer with AMD Ryzen 5-5500U processor.

log10(N) 3 4 5
RMSE 1.850 1.697 1.659
Excess RMSE (%) 12.5 3.2 0.9

Time (s)
Offline 11.9 139.9 1194.0
Online 0.6 0.6 0.7

times, which account for a small fraction of the total times, remain largely unaffected, as

the online phase consists of evaluating functions that have been pre-estimated. Given that

the computational bottleneck in Algorithm 1 can be handled offline, the XMC filtering

method could offer an accurate solution for real-time problems.

5.4 Multivariate Filtering: Linear Gaussian Model

For high-dimensional models, signal extraction faces challenges due to the need to evaluate

high-dimensional densities. In the case of particle filters, this leads to the well-known issue

of weight degeneracy (Snyder, Bengtsson, Bickel, and Anderson 2008; Snyder, Bengtsson,

and Morzfeld 2015; Chopin and Papaspiliopoulos 2020, Ch.19.1). To investigate the per-

formance of the XMC method in high-dimensional settings, we consider the linear Gaussian

model given by

yt = xt + εyt , εyt ∼ N(0, Id),

xt+1 = 0.9xt + εxt , εxt ∼ N(0, R),

(17)

with x1 ∼ N
(
0, (1−0.92)−1R

)
, where xt, yt, ε

x
t , ε

y
t are d×1 vectors for some d ∈ N and R is

a d×d variance matrix. This model has the well-known structure of a seemingly unrelated

time series equations model and serves as a convenient test case for two reasons. First,

it allows for investigating the performance of the XMC filtering method across different

model dimensions d. Second, the linear Gaussian structure enables a comparison with the
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Table 4: Results from simulation study based on the multivariate linear Gaussian model in (17)
for different values of the model dimension d: overall root mean squared error (RMSE) from 104

test paths of length T = 50 for the gradient boosting XMC filter with various values of N . The
second row (“Excess RMSE”) displays the excess loss as a percentage relative to the performance
of the Kalman filter, which achieved an RMSE of 0.740 in each case.

d 25 50 100
log10(N) 3 4 5 3 4 5 3 4 5
RMSE 0.815 0.761 0.747 0.809 0.767 0.748 0.816 0.765 0.748
Excess RMSE (%) 10.1 2.8 0.9 9.3 3.6 1.1 10.3 3.4 1.1

exact filtering means, which can be computed using the Kalman filter.

The relationship between elements of the observations in (17) is governed by the state

noise variance matrix R. This matrix is chosen so that all states are equally difficult to

predict, facilitating comparison and aggregation of their prediction errors. To achieve this,

we use a circular distance function, D(i, j), which ensures that state index 1 is equidistant

from both index 2 and the final index Nx = d. Specifically, we define the elements of R as

Ri,j = 0.5D(i,j), D(i, j) = min{|i− j|, d− |i− j|}, (18)

for i, j = 1, . . . , d. Thus, R is a correlation matrix, and the signal-to-noise ratio equals one.

A simulation study is performed with the model in (17) for dimensions d ∈ {25, 50, 100}.

For 104 test paths of length T = 50, the GB-XMC filter is applied to estimate the filtering

means E[xt|y1:t] with various values of N . Table 4 presents the overall RMSE values. With

the model dimension d held fixed, the RMSE decreases substantially from N = 103 to

N = 104, and more gradually to N = 105, as in the previous simulation studies. When N

is held fixed, increasing the model dimension has little impact on the accuracy.

The final row (“Excess RMSE”) in Table 4 presents the excess loss of the XMC filter as

a percentage relative to the performance of the Kalman filter, which achieved an RMSE of

0.740 in each case. The XMC filter shows adequate relative performance for N = 104, with

an excess RMSE of at most 3.6% (for d = 50). The accuracy further improves for N = 105,

resulting in an excess RMSE of approximately one percent relative to the optimal filter.
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5.5 Multivariate Filtering: Stochastic Volatility Model

We consider the multivariate stochastic volatility (MSV) model from Harvey, Ruiz, and

Shephard (1994) given by

yt = exp(0.5xt)� εyt , εyt ∼ N(0, R),

xt+1 = µ+ Φ(xt − µ) + εxt , εxt ∼ N(0,Σ),

(19)

where xt, yt, ε
x
t , ε

y
t are all d× 1 vectors for some d ∈ N, the operator � denotes elementwise

multiplication, R is a d×d correlation matrix, µ is a d×1 vector, and Σ is a d×d variance

matrix. The vector yt represents the log returns of d financial assets, and xt contains

their corresponding log variances. The above model is standard in multivariate volatility

modeling and is often called the basic MSV model (Asai, McAleer, & Yu, 2006; Chib,

Omori, & Asai, 2009).

5.5.1 Simulation Study

We conducted a simulation study using the MSV in (19) for dimensions d ∈ {25, 50, 100},

with parameters Φ = 0.9Id, Σ = Id, µ = 0, and the correlation matrix R as defined in (18).

The initial state follows x1 ∼ N
(
0, (1− 0.92)−1Id

)
. For 104 test paths of length T = 50, the

GB-XMC method is used to estimate the filtering means E[xt|y1:t] and forecasting means

E[xt|y1:t−1] with various values of N . Table 5 presents the results of the simulation study.

For both filtering and forecasting at any fixed model dimension d, the RMSE shows a large

improvement from N = 103 to N = 104, and a smaller improvement for N = 105. Keeping

N fixed, the RMSE remains almost unchanged when the model dimension d increases.

In practice, the quasi-maximum likelihood (QML) method of Harvey et al. (1994) is

often used for estimating the states. This approach involves linearizing the model via the

transformation ỹi,t = log(y2i,t) for i = 1, . . . , d, and using the Kalman filter to estimate the

states, which results in the minimum variance linear unbiased estimator of xt based on the

transformed measurements. The XMC method also offers a straightforward approach for
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Table 5: Results from simulation study based on the MSV model in (19) for different values
of the model dimension d: overall root mean squared error (RMSE) for filtering and 1-period
forecasting applied to 104 test paths of the states with length T = 50. The results are presented
for the gradient boosting XMC filter using various values of N , and the quasi-maximum likelihood
(QML) method of Harvey et al. (1994).

d 25 50 100
log10(N) 3 4 5 3 4 5 3 4 5

RMSE (Filtering)
XMC 1.241 1.134 1.095 1.258 1.136 1.097 1.298 1.140 1.098
QML 1.253 1.253 1.253

RMSE (Forecasting)
XMC 1.564 1.467 1.433 1.571 1.470 1.433 1.590 1.470 1.435
QML 1.528 1.527 1.527

estimating the unobserved states, but it is based on the actual MSV model in (19), hence it

is of interest to compare the performance of these methods. Table 5 shows that, starting at

N = 104, the XMC method outperforms the QML method in both filtering and forecasting.

Further improvement is observed for N = 105, where the performance differences are

substantial. These findings are consistent across the different model dimensions.

5.5.2 Parameter estimation

In empirical applications, the XMC method can be paired with various approaches to

parameter estimation. For nonlinear and non-Gaussian models, it is often possible to derive

expressions for moments of (functions of) the data, which has led to the widespread use of

the generalized method of moments (Hansen, 1982) in econometrics. In the next section,

we estimate the parameters of the MSV model in (19) via the moment-based approach of

Ahsan and Dufour (2024). This approach applies the QML transformation to the data and

derives corresponding moments, which can be inverted analytically to obtain a closed-form

estimator. The estimator is consistent and asymptotically normal under suitable regularity

conditions and does not require the common assumptions of diagonal matrices for Φ,Σ,

and R, allowing us to estimate the full model.

When analytical expressions for the moments are unavailable, simulation-based esti-

mators can be employed (e.g., Gouriéroux & Monfort, 1996). A widely used example is

the method of simulated moments (McFadden, 1989), in which the moments are estimated

using simulated samples from the model. The indirect inference estimator (Gourieroux,
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Monfort, & Renault, 1993) generalizes this approach by minimizing the distance between

simulated and actual data, using an auxiliary model that is similar to, but easier to estimate

than, the model of interest. The XMC method integrates naturally with these estimators in

complex settings, with all three approaches relying on simulated samples from the model.

5.5.3 Empirical Application: The FTSE 100 Index

This section applies the XMC filter to a high-dimensional stochastic volatility model, using

a daily time series of the constituents from the Financial Times Stock Exchange 100 (FTSE

100) Index. This index represents the 100 largest companies by market capitalization listed

on the London Stock Exchange and is widely regarded as a leading economic indicator. Our

analysis employs the MSV model in (19), where yt represents a 100 × 1 vector containing

the daily log returns of the index constituents, and with xt the corresponding log variances.

We estimate the parameters using the longest available sample for each stock, with data for

some constituents going back as far as December 2004. The combined sample ends on 19

December 2024. The data for this analysis were obtained using LSEG Workspace (London

Stock Exchange Group, 2025).

We focus on signal extraction for the recent period from July 19th, 2022 until December

19th 2024. The analysis is based on the MSV model of dimension 100, but the univariate

treatment allows for estimating only those states that are of interest to the analyst. As

illustration, Figure 4 shows the estimated filtering means of xt for AstraZeneca (ticker:

AZN) and HSBC (ticker: HSBA), two of the largest FTSE 100 constituents by market

capitalization. The estimates are obtained using the steady state GB-XMC filter with

N = 105. To save computations, the steady state time tss was set a priori to the earliest

feasible index implied by the condition in (6). This resulted in tss = 5 for AstraZeneca and

tss = 6 for HSBC, which enabled the circumvention of more than 99% of the regressions

in Algorithm 1.

To validate the filtered states relative to the data, we first apply the QML transformation

to the log returns, ỹt = log(y2t ) = xt + log(|εyt |2). Next, we adjust the mean of these
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(a)

(b)

Figure 4: Analysis of the log returns of FTSE 100 index constituents based on the MSV model
in (19): filtered states x̂t ≈ E[xt|y1:t] based on the gradient boosting XMC filter with N = 105

and state proxies x̃t as defined in (20) for AstraZeneca (a) and HSBC (b).

transformed data to obtain the state proxies: x̃t = ỹt − E
[

log(|εyt |2)
]
. It follows that

x̃t = xt + ξt, (20)

where ξt = log(|εyt |2) − E
[

log(|εyt |2)
]

is white noise. Figure 4 presents the state proxies

alongside the filtered states, showing that they are generally updated in the same direction.

However, the filter is much less sensitive to extreme observations. In this context, we note

that the use of GB (and other tree-based regression methods) ensures a bounded impact of

outliers due to flat extrapolation. Furthermore, Corollary 1 shows that the impact of any

observation vanishes once it falls outside the moving window used by the XMC filter.
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6 Discussion

This section discusses related work and extensions of the XMC method. First, we note that

the XMC treatment of non-Markovian models readily extends to smoothing in nonlinear

and non-Gaussian settings, where particle smoothing methods are often employed (Chopin

& Papaspiliopoulos, 2020, Ch.12). Most variants (e.g., FFBS) combine particles from a

forward filter with a backward pass, using the state transition density to weight particle

pairs at times t and t+ 1. However, in non-Markovian models—where an augmented state

vector zt is required—the transition density p
(
z
(j)
t+1|z

(i)
t

)
leads to degenerate weights when

combining particles from different paths (i 6= j), since part of zt+1 is fixed given its lag zt.

A detailed discussion of this matter is provided by Fearnhead, Wyncoll, and Tawn (2010).

In this setting, the XMC method offers a natural solution, as it can be applied directly to

non-Markovian models.

In our discussion of smoothing, we have focused on the fixed-interval variant, as it is the

most commonly used form in economics. However, the XMC method could be extended to

other forms of smoothing, such as fixed-lag and fixed-point smoothing (Anderson & Moore,

1979, Ch.7). This extension will be explored in a future study.

The XMC method could also be extended to accommodate the estimation of conditional

distributions by letting the loss function have the more general form L(xt, Ct, f), where

f = f(xt|Ct) is a conditional density or probability mass function. By using the observations

yt as dependent variable and covariates Ct ⊆ y1:t−1, this approach could be used to estimate

the likelihood via the prediction decomposition p(y1:T ; θ) = p(y1; θ)
∏T

t=2 p(yt|y1:t−1; θ),

where θ is a parameter vector. This idea is related to the reprojection method of Gal-

lant and Tauchen (1998), in which a long simulated path of the observations is used to

perform maximum likelihood via estimates of the observation transition density. It is also

connected to the Bayesian amortized inference approach (Stuhlmüller, Taylor, & Goodman,

2013), in which draws from the prior are used to train a neural network approximation to

the posterior density. The XMC method is also linked to amortized inference through the
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steady state approach described in Section 3.3, where the costs of estimation are amortized

by reusing the regression functions over time.

The above extension can be useful for model comparison, maximum likelihood esti-

mation, and hypothesis testing. It could also be used to extract point estimates from

the estimated distributions. However, a key advantage of the current approach is that

it is generally more efficient—statistically and computationally—to directly estimate the

prediction functions of interest. A related point is made by Raynal et al. (2019) in the

context of approximate Bayesian computation (ABC) for inference on static parameters θ.

They focus on estimating posterior moments to automate the use of summary statistics,

by performing regressions of the static parameters drawn from a prior distribution p(θ) on

a large number of summary statistics using the RF method. The RF method is considered

pivotal to their approach because its robustness to irrelevant predictors enables bypassing

the usual preliminary selection of the summary statistics (Raynal et al., 2019, p.1722).

The XMC method contrasts with their approach and other simulation-based methods

for estimating static parameters, such as indirect inference and the simulated method of

moments, as it is specifically designed for signal extraction in the context of general SSMs.

This introduces several distinctive elements that are outside the scope of the static setting,

such as the steady state approach, the construction of suitable covariate sets for different

information sets, the finite window impact of observations, and filter stability. Another key

distinction from the above and other ABC approaches is that the XMC method does not rely

on summary statistics. Instead, data reduction is achieved through the covariate sets, which

consist of the observations nearest in time to the signal of interest. As shown in Lemma 1,

this allows for establishing convergence by means of a sufficiently general regression method.

Furthermore, the XMC filtering algorithm is flexible with respect to the choice of regression

method. This enables the use of linear regression, (gradient) boosting, neural networks,

and other machine learning methods. Likewise, XMC can be paired with a loss function of

choice, offering flexibility for a wide range of prediction tasks in signal extraction.
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7 Conclusion

This paper introduces a novel simulation-based method for signal extraction in a general

class of SSMs. The XMC method can be used when the model allows for simulation and

its implementation is straightforward. In complex settings, it combines naturally with

the method of simulated moments and indirect inference for parameter estimation. For

applications where a Bayesian or maximum likelihood estimator is adopted, the XMC

method offers a fast solution for real-time filtering. In addition, the steady state approach

can provide an efficient means of signal extraction in applications with long time series.

Conditions for the stability and convergence of the filtering method are discussed, and

the key properties of the method are illustrated through various applications, including

nonlinear and high-dimensional models. The results indicate that state estimation in non-

linear and non-Gaussian models can be performed effectively using regression—a technique

well known to applied economists—with simulated data. In this way, the XMC method

presents an accessible approach to nonlinear signal extraction.
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Appendix

A Covariates for Fixed-Interval Smoothing

In the following we describe an approach to determine the covariates Ct = ys:n for fixed-

interval smoothing, consisting of the W observations closed to time t. A centered window

of size W can have at most h = bW/2c observations on either side of time t. However,

if t is near the endpoints of the time range, the window will be asymmetric. Hence, if

t + h > T , we maximize the number of observations on the right-hand side by setting

n = T . The lower index is then set as s = max{n −W + 1, 1} to establish a window of

size W . Conversely, if t+h ≤ T , the lower index s = max{t−h, 1} maximizes the number

of observations on the left side without exceeding h, with the corresponding upper index

set to n = min{s + W − 1, T}. The resulting covariate set consists of the W observations

nearest to time t.

B Proofs

B.1 Proof of Theorem 1

Since the process {yt}t∈N is assumed to be strictly stationary, the same holds for the

covariate sets Ct for t ≥ W , as they satisfy the rolling window condition in (6). Additionally,

since the Monte Carlo draws are based on a strictly stationary process, it follows that for

t ≥ W the regression functions f̂Nt (·) are identically distributed (ID) with respect to the

time index t. The above implies that the filtered estimates x̂Nt = f̂Nt (Ct) are also ID

over time for t ≥ W . Moreover, since the true states {xt}t∈N are assumed to be strictly

stationary and thus ID over time, we obtain the following inequality:

sup
t≥W

E |xt − x̂Nt | ≤ sup
t≥W

(E |xt|+ E |x̂Nt |) ≤ sup
t≥W

E |xt|+ sup
t≥W

E |x̂Nt | = E |xW |+ E |x̂NW | <∞,

(21)
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where the boundedness of the moments E |xW | = E |x1| < ∞ and E |x̂NW | < ∞ holds by

assumption. By similar reasoning, we have

sup
1≤t≤W−1

E |xt − x̂Nt | ≤ sup
1≤t≤W−1

(E |xt|+ E |x̂Nt |) = E |x1|+ sup
1≤t≤W−1

E |x̂Nt | <∞.

Taken together, the above implies that

sup
t∈N

E |xt − x̂Nt | <∞,

which establishes the result.

�

B.2 Proof of Theorem 2

For conciseness, we assume (without loss of generality) that the linear Gaussian SSM has

no intercepts, as was done with the linear XMC filter in (9). By the triangle inequality,

Ey |x∗t − x̂Nt | = Ey
∣∣∣f ∗t (Ft)− f̂Nt

(
CNt
)∣∣∣ ≤ Ey

∣∣∣f ∗t (Ft)− f̂Nt (Ft)
∣∣∣+ Ey

∣∣∣f̂Nt (Ft)− f̂Nt
(
CNt
)∣∣∣ ,
(22)

where, by Assumptions A2.1 and A2.2, the optimal filtered estimates x∗t = E[xt|Ft] corre-

spond to the Kalman filter. We start by focusing on the first term, Ey |f ∗t (Ft) − f̂Nt (Ft)|,

in which the information set is used as covariate set.

By the joint normality of xt and Ft, the conditional expectation is linear:

E[xt|Ft] =
∑
yj∈Ft

βj,tyj,

with coefficients βj,t ∈ RNx×Ny (Anderson & Moore, 1979, Sec.3.1), and the corresponding
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prediction error vt satisfies

vt = xt − E[xt|Ft] ∼ N(0,Var [xt|Ft]).

The above implies that the linear regression model is correctly specified:

xt =
∑
yj∈Ft

βj,tyj + vt, vt ∼ N(0,Var [xt|Ft]). (23)

Additionally, the errors vt are independent of the covariates yj ∈ Ft because they are jointly

normal and uncorrelated, where uncorrelatedness follows from the mean independence

E[vt|Ft] = E
[
xt − E[xt|Ft]

∣∣∣ Ft ] = 0 = E[vt].

Let zi denote the vector that arises from vertically stacking the simulated observations

y
(i)
j from the information set, so that z′i is the i-th row of the design matrix in the least

squares regression. Then, since the data used in the regressions are independent and

identically distributed with respect to the index i = 1, . . . , N , all standard assumptions for

consistency and
√
N -convergence of the least squares estimator are satisfied if the matrix

E[ziz
′
i] is non-singular (e.g., Hayashi, 2000, Proposition 2.1). As the errors are independent

of the covariates, the asymptotic variance matrix of the least squares estimator reduces to

Var [vt] · E[ziz
′
i]
−1.

If E[ziz
′
i] exists, then E[ziz

′
i] = Var [zi] given that E[zi] = 0. Hence, the required non-

singularity of E[ziz
′
i] follows from the assumption that the observations in y1:T are linearly

independent. To establish the existence of E[ziz
′
i], we consider the diagonal and off-diagonal

elements separately. Assumption A2.1 implies that the second moments of the observations

yt (the diagonal elements of E[ziz
′
i]) are finite for t = 1, . . . , T . For the off-diagonal elements

of E[ziz
′
i], assume without loss of generality that the observations yj are univariate. Then,
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finiteness follows from Hölder’s inequality as E |yjyk| ≤
√
E |yj|2 ·

√
E |yk|2 for any j, k. It

follows that the least squares estimators β̂j,t in (9) are consistent for the true parameters

βj,t. Furthermore, they are normal with convergence rate
√
N :

sup
t

sup
j

∣∣∣βj,t − β̂j,t∣∣∣ = OP (N−1/2).

We therefore have that as N →∞,

sup
t

Ey
∣∣∣f ∗t (Ft)− f̂Nt (Ft)

∣∣∣ = sup
t

Ey
∣∣∣ ∑
yj∈Ft

(
βj,tyj − β̂j,tyj

) ∣∣∣ ≤ sup
t

Ey
∑
yj∈Ft

∣∣∣βj,t − β̂j,t∣∣∣ · |yj|
= sup

t

∑
yj∈Ft

∣∣∣βj,t − β̂j,t∣∣∣ · Ey |yj| = OP (N−1/2),

where the second equality follows because βj,t is constant, while β̂j,t depends only on the

simulated data. The final equality follows because Ey |yj| is a (bounded) constant.

The proof is complete once it is shown that the second term on the right-hand side of

(22) can be ignored, that is,

sup
t

√
N Ey

∣∣∣f̂Nt (Ft)− f̂Nt
(
CNt
)∣∣∣ P→ 0 as N →∞.

This follows from applying Lemma 1 with rate rN =
√
N , which is valid by Assumption 1.

�

B.3 Proof of Lemma 1

Our starting point is the triangle inequality in (22), which holds for t = 1, . . . , T . The

first term on the right-hand side represents the error based on an XMC filter that uses

the information set as covariate set. By assumption, Ey
∣∣∣f ∗t (Ft)− f̂Nt

(
Ft
)∣∣∣ = OP (r−1N ).

For the second term, which represents the error from use of a covariate set instead of the

information set, we will show that Ey
∣∣∣f̂Nt (Ft)− f̂Nt

(
CNt
)∣∣∣ = oP (r−1N ).
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For t = 1, . . . , T , the following inequality holds:

∣∣∣f̂Nt (Ft)− f̂Nt
(
CNt
)∣∣∣ ≤ sup

Ct∈P(Ft)

∣∣∣f̂Nt (Ft)− f̂Nt (Ct)
∣∣∣ · I{CNt 6= Ft}

where I
{
CNt 6= Ft

}
denotes the indicator function of the event

{
CNt 6= Ft

}
. Consequently,

for any ε > 0, we have the following:

P
(
rN Ey

∣∣∣f̂Nt (Ft)− f̂Nt
(
CNt
)∣∣∣ > ε

)
≤P

(
rN Ey

[
sup

Ct∈P(Ft)

∣∣∣f̂Nt (Ft)− f̂Nt
(
Ct
)∣∣∣ · I{CNt 6= Ft}

]
> ε

)

=P

(
rN Ey

[
sup

Ct∈P(Ft)

∣∣∣f̂Nt (Ft)− f̂Nt
(
Ct
)∣∣∣] · I{CNt 6= Ft} > ε

)

≤P

(
rN Ey

[
sup

Ct∈P(Ft)

∣∣∣f̂Nt (Ft)− f̂Nt
(
Ct
)∣∣∣] · I{CNt 6= Ft} > 0

)

≤P
(
CNt 6= Ft

)
→ 0 as N →∞.

The equality follows because the composition of the regularized covariate set, and hence the

occurrence of the event
{
CNt 6= Ft

}
, depends only on the simulated data. The convergence

step follows from Assumption 1.

It follows that the second term on the right-hand side of (22) is oP (r−1N ). Thus, by

applying the triangle inequality in (22), we obtain:

|x∗t − x̂Nt | ≤ OP (r−1N ) + oP (r−1N ) = OP (r−1N )

for t = 1, . . . , T , which establishes the result.

�
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C Regularized Covariate Set Convergence

In this section we provide sufficient conditions to guarantee that Assumption 1 holds when

determining the regularized covariate set via out-of-sample optimization or penalization of

the objective function. As in Section 4.2 the time series length T ∈ N is assumed to be

finite, though it can be arbitrarily large.

Consider the average validation loss

Mval
N (Ct) =

1

Nval

Nval∑
i=1

L
(
x
〈i〉
t − f̂Nt

(
C〈i〉t
))
, (24)

where the superscript i = 1, . . . , Nval indicates cases from a separate validation sample,

and Nval = [cvalN ] for some cval ∈ (0, 1), say, cval = 0.1. The out-of-sample optimization

procedure is then defined by

CNt ∈ arg min
Ct∈P(Ft)

Mval
N (Ct). (25)

For the penalized estimator, let M tr
N (Ct) denote the average training loss defined by

analogy to (24). Then the penalization procedure we consider is given by

CNt ∈ arg min
Ct∈P(Ft)

M tr
N (Ct) + πN(|Ct|), (26)

with penalty term πN(·) that is increasing in the size of the covariate set, |Ct|,

πN(k + 1) ≥ πN(k) ≥ 0, k = 0, . . . , T − 1,

and vanishing with N ,

lim
N→∞

sup
k
πN(k) = 0.

Examples of such penalization functions are πN(|Ct|) = c|Ct|/
√
N for c > 0, as well as the

unregularized case πN = 0.

The regularized covariate sets defined by (25) and (26) are M-estimators, which means
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that consistency can be established by showing that the average loss converges uniformly

over the feasible covariate sets to the deterministic limit function

M∞(Ct) = plimN→∞M
val
N (Ct) ∀ Ct ∈ P(Ft), (27)

and that Ft is “well separated” from the other feasible covariate sets (e.g., van der Vaart,

2000, Sec.5.2). For both conditions it is helpful to note that as the time series length is

finite, the same holds for the number of feasible covariate sets. Well-separatedness then

reduces to the information set Ft being the unique minimizer of the limit objective function

M∞. Moreover, it can be shown that pointwise convergence of the average loss to M∞(Ct)

over the covariate sets Ct ∈ P(Ft) implies the required uniform convergence.

The above ideas are used to establish the following result on the convergence of the

regularized covariate sets.

Proposition 1 (Convergence of regularized covariate set). Suppose the time series y1:T

is of finite length, and let Ft be the unique minimizer of the limit objective function M∞

defined in (27):

M∞(Ft) < M∞(Ct) ∀ Ct ∈ P(Ft) \ {Ft}. (28)

Then

plimN→∞ CNt = Ft (29)

is implied by either of the following conditions:

(a) The regularized covariate set is defined by the out-of-sample optimization procedure

in (25) and it holds that as N →∞,

∣∣Mval
N

(
Ct
)
−M∞

(
Ct
)∣∣ P→ 0 ∀ Ct ∈ P(Ft). (30)

(b) The regularized covariate set is defined by the penalization procedure in (26) and it
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holds that as N →∞,

∣∣M tr
N

(
Ct
)
−M∞

(
Ct
)∣∣ P→ 0 ∀ Ct ∈ P(Ft).

Proof. For Part (a), we note that because the time series y1:T is of finite length, there are

also finitely many feasible covariate sets: |P(Ft)| < ∞. Let J ∈ N denote the number of

feasible covariate sets: C[j]t , j = 1, . . . , J , and let dj =
∣∣∣Mval

N

(
C[j]t
)
−M∞

(
C[j]t
)∣∣∣. By the

convergence in (30), it holds that for any two ε, εP > 0, there exists Nj ∈ N such that

P (dj > ε) < εP ∀ N ≥ Nj.

It therefore holds for all N ≥ supj Nj that

P

(
sup

Ct∈P(Ft)

|Mval
N (Ct)−M∞(Ct)| > ε

)
= P

(
sup
j
dj > ε

)
= P

(
J⋃
j=1

{dj > ε}

)

≤
J∑
j=1

P (dj > ε) < JεP ,

where the first inequality follows by σ-subadditivity of P . The above result shows that

Mval
N (Ct) converges uniformly in probability to M∞(Ct) over P(Ft), and the same holds

for the objective function in Part (b) because πN(|Ct|) was assumed to converge to zero

uniformly over P(Ft) as N →∞. Furthermore, the minimizer Ft is well-separated because

|P(Ft)| < ∞. Therefore, Theorem 5.7 in van der Vaart (2000) applies, which guarantees

the convergence in (29) for the M-estimators defined by (25) and (26).

The assumption in (28) means that none of the observations can be omitted without neg-

atively impacting the predictive performance, as expressed by the mean loss. This will

generally be the case when the states {xt} follow an autoregressive process, which holds

for many, if not most SSMs used in practice. With this in mind, the above result implies

43



that convergence of the regularized covariate sets can often be formally shown by demon-

strating that (30) holds for t = 1, . . . , T , that is, if the average loss for specific covariate

sets converges in probability to the mean loss. The following corollary provides sufficient

conditions for this to hold in the case of the linear XMC filter.

Corollary 2 (Regularized covariate sets convergence for linear XMC filter). Suppose the

assumptions from Theorem 2 apply (apart from Assumption 1) and the least squares esti-

mates β̂j,t from the linear XMC filter in (9) take values in a bounded parameter space Ψt.

Assume the condition in (28) holds for t = 1, . . . , T with limit objective function

M∞(Ct) = E
(
xt −

∑
yj∈Ct

βj,tyj

)2
,

where the βj,t = βj,t(Ct) ∈ Ψt denote the coefficients which minimize the mean squared error

criterion above. Then, the convergence in (29) holds for t = 1, . . . , T when CNt is defined

via (25) or (26).

Proof. The proof is immediate once we establish that (30) holds for t = 1, . . . , T . This

can be done by noting that the summands of Mval
N (Ct) are continuous in the parameters

and bounded by an integrable function, which implies that they belong to the class of

Glivenko-Cantelli functions (e.g., van der Vaart, 2000, p.46). The summands are given by

L
(
xt − f̂Nt

(
Ct
))

=
(
xt −

∑
yj∈Ct

β̂j,tyj

)2
= x2t − 2xt

∑
yj∈Ct

β̂j,tyj +
( ∑
yj∈Ct

β̂j,tyj

)2
≤ x2t + 2|xt|

∑
yj∈Ct

|β̂j,t| · |yj|+
( ∑
yj∈Ct

|β̂j,t| · |yj|
)2

≤ x2t + 2|xt|
∑
yj∈Ct

|β∗j,t| · |yj|+
( ∑
yj∈Ct

|β∗j,t| · |yj|
)2
,

where β∗j,t denotes the vector of elementwise maxima of the absolute values that βj,t can

take on in the bounded parameter space Ψt. Additionally, Assumption A 2.1 implies that
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the final upper bound is integrable, which implies that (30) holds for t = 1, . . . , T , and the

same argument applies to M tr
N (Ct).

In the out-of-sample optimization procedure from Section 3, the optimization in (25) is in

terms of a window size W , which determines the covariate sets (e.g., via (5) for filtering).

In addition, the optimization is performed only at a single time point t∗, for computational

considerations. By choosing t∗ as the index of the largest information set, the convergence

in (29) at t = t∗, combined with the use of a window size parameter, implies that the

convergence applies at all times t = 1, . . . , T . This supports the choice of t∗ = T for

filtering and forecasting.

D Additional Applications

This section presents several additional applications based on the local level model in (3)

and the Nile data. The static parameters are set to the maximum likelihood estimates σx =

38.329 and σy = 122.877, with µ1 = 0 and σ2
1 = 107 for approximate diffuse initialization.

For more information on this application, see Durbin and Koopman (2012, Ch.2).

D.1 Forecasting

The use of regression accommodates prediction based on other information sets than the

one used for filtering. For example, Figure 5 shows the 1-period forecasts of the linear

XMC filter (N = 104), which coincide with the ones based on the Kalman filter. At t = 1,

the prediction is unconditional, resulting in the value µ1 = 0, while for t > 1 the forecasts

equal the lagged predictions from filtering, E[xt−1|y1:t−1].
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Figure 5: Forecasting analysis of the Nile data based on the local level model in (3): 1-period
forecasts of the state from the Kalman filter (KF) and linear XMC filter with N = 104.

D.2 Missing Data

In practice it often occurs that some of the data are missing. The XMC method handles

this issue naturally by omitting the corresponding covariates from the regressions. As

illustration, we consider the local level model example from the introduction and treat

the Nile measurements at times t = 21, . . . , 40 and t = 61, . . . , 80 as missing (Durbin &

Koopman, 2012, Ch.2). The resulting data set is shown in Figure 6. To deal with these

longer sequences of missing data, the window size was set to 40. Figure 6 shows the filtered

states from the linear XMC filter with N = 105 paths. The predictions are seen to coincide

with those of the Kalman filter, which has an exact treatment of missing data (Durbin &

Koopman, 2012, Ch.4.10).

Figure 6: Filtering analysis based on the local level model in (3) and the partial Nile data set,
in which the observations at time points 21, . . . , 40 and 61, . . . , 80 are treated as missing: filtered
states from the Kalman filter (KF) and linear XMC filter with N = 105.
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D.3 Covariate Set Regularization

To investigate how the performance of the XMC filter is impacted by the window size, we

performed a simulation study using the local level model in (3) with T = 100. We focus

on the accuracy of the filtered state at the last time point as a function of the window size,

or equivalently, of the lower covariate set index s = T −W + 1, with the covariate set CT

defined via (5). In particular, the RMSE for predicting xT was computed for the linear

XMC filter with N ∈ {103, 104} based on a test sample of 105 paths and ten repetitions of

Algorithm 1 for different seeds.

Figure 7 shows the results of the simulation study. As expected, the RMSE decreases

with N . For fixed N , the RMSE is non-monotonic in the lower index. Adding more obser-

vations as covariates initially improves the performance, but after some point the increase

in variance from having to estimate more parameters outweighs the decrease in the bias

with respect to E[xT |y1:T ]. Regarding the bias, we note that there are clear diminishing

returns to adding covariates because the observations are dependent and decreasingly in-

formative the more remote they are from the state. The optimal window size increases with

N , indicating that an increase in the complexity of the regression method is warranted once

more data are available. For comparison, the RMSE is also shown for the Kalman filter,

which computes E[xT |y1:T ] exactly. For N = 104, the performance of the linear XMC filter

with s = 87 (W = 14) is almost indistinguishable from that of the optimal filter. The

Figure 7: Root mean squared error (RMSE) for predicting the final state xT from the local level
model in (3) based on the predictions for 105 simulated test paths. The results are shown for
the Kalman filter (KF) and linear XMC filter with N ∈ {103, 104} for various values of the lower
covariate set index s, and the upper index set to T = 100.
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RMSE increases if the lower index is altered, highlighting the importance of regularization

of the covariate sets.

E Bootstrap Approach for Incorporating Uncertainty

in the Static Parameters

In the XMC method, the static parameters are assumed to be given, consistent with a

more traditional approach to signal extraction (Chopin & Papaspiliopoulos, 2020, p.13).

In this approach, the uncertainty in these estimates is typically not considered. However,

this could be incorporated using a bootstrap approach as follows.

First, generate B bootstrap samples of the observations, and use each sample to estimate

the static parameters. Next, apply the XMC method to each sample for estimating the

unobserved states. This results in a bootstrap distribution of state estimates, which could

subsequently be used to estimate the bias, variance, and other statistical properties of the

combined estimation procedure.
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