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Abstract

The environmental Kuznets curve predicts an inverted U-shaped relationship between air pol-

lution and economic growth. Current analyses frequently employ models that restrict non-

linearities in the data to be explained by economic growth only. We propose a Global Trend

Augmented Cointegrating Polynomial Regression (GTACPR) to allow for nonlinearities in time

and economic growth. The theoretical properties of the GTACPR are established. Empirically,

a single global trend accurately captures all nonlinearities for all the countries studied, lead-

ing to a linear relationship between GDP and CO2. This suggests that the environmental

improvement of the last years is due to factors different from GDP.
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1 Introduction

On p. 370 of their seminal paper, Grossman and Krueger (1995) conclude:

“Contrary to the alarmist cries of some environmental groups, we find no evidence that

economic growth does unavoidable harm to the natural habitat. Instead, we find that

while increases in GDP may be associated with worsening environmental conditions in

very poor countries, air and water quality appear to benefit from economic growth once

some critical level of income has been reached.”

The quote above suggests an inverted U-shaped relationship between environmental degradation

and economic growth. This relationship is currently known as the Environmental Kuznets Curve

(EKC) and it forms an active research area. Its relevance becomes clear if we look at some forecasts

of long-run economic growth. The projected GDP per capita growth of the world is about 2.1% per

year for the next decades (chapter 3 in Nordhaus 2013; Gillingham and Nordhaus 2018) and this

growth is partially powered by carbon-based energy resources, water usage, and material consump-

tion. In absence of an EKC, economic growth will place more and more stress on the environment.

Alternatively, if the EKC exists, then the inverted U-shape eventually implies a turning point after

which economic growth and environmental improvement go hand in hand. Due to such considera-

tions, there is now, some 25 years after its first conception, a rich literature that (1) reports on the

experimental evidence on the existence/nonexistence of the EKC, (2) provides the economic theory

to explain the EKC, and/or (3) refines the econometric tools that are used to analyse the EKC.1

Driven by contradictory empirical results as well as the variability in estimated turning points,

the EKC has been criticised on two main points. First, the income variable was initially treated

as a stationary variable whereas later research shows that the unit root hypothesis often cannot be

rejected (see Galeotti et al. 2009, p. 553; Stern 2017, p. 14–15). Nonstationarity has further impli-

cations because EKC regressions include higher integer powers of GDP as well. This combination

of nonstationarity and nonlinearity places the EKC in the nonlinear cointegration literature and

appropriate econometric techniques should be employed. Such techniques have been developed in

Wagner (2015) and Wagner and Hong (2016) under the name of Cointegrating Polynomial Regres-

sions (CPRs). CPRs contain deterministic variables, integrated processes, and their integer powers.

Multivariate extensions of CPRs, Seemingly Unrelated Cointegrating Polynomial Regressions, are

discussed in Wagner et al. (2020) and Lin and Reuvers (2022).

As a second point of critique, there is an ongoing debate on the model specification. Various

functional forms can describe the relationship between national income and the pollution variable.
1Further references to these specific areas of research can be found in the review articles by Dasgupta et al. (2002),

Stern (2004), and Carson (2009) among others.
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The quadratic specification is widespread but cubic relationships (Harbaugh et al., 2002; Wagner,

2015) and double-nonlinear transformation (Lin et al., 2020) are also in use. Various specification

tests are helpful while deciding on the right parametric specification (Hong and Phillips, 2010; Wang

and Phillips, 2012; Wang et al., 2018). Alternatively, one could resort to nonparametric estimation

procedures altogether (Wang and Phillips, 2009; Linton and Wang, 2016). Whereas such modelling

approaches do allow for a more flexible relationship, they also assume that nonlinear environmental

effects are solely attributable to economic growth. Relevant variables are thus potentially missing

from the model specification. Such omitted variables are a valid concern because advances in

green technology, pollution policy, and environmental awareness, may all influence pollution levels.

However, such data is typically available for short time spans only (and for that reason often excluded

from the model). Time effects can control for time-variation in unobserved effects (Vollebergh et al.,

2009).

Current developments on nonlinear cointegration emphasize the role of the nonstationary re-

gressor yet pay less attention to time effects. Time effects are important. The small simulation

exercise in Table 1 illustrates the point. Foreshadowing our proposed model, we consider a mul-

tivariate setting with a global nonlinear, smooth time trend. The global trend is omitted by the

researcher and a quadratic EKC specification is estimated: yi,t = τ1,i + τ2,it+ ϕ1,ixi,t + ϕ2,ix
2
i,t + ui,t

(i = 1, . . . , 3), where xi,t and yi,t are unit-specific variables measuring income and environmental

pollution, respectively. We test H0 : ϕ2,1 = ϕ2,2 = ϕ2,3 = 0 because a significantly negative coeffi-

cient in front of x2i,t is typically interpreted as evidence of an EKC.2 Panel (A) reveals exacerbated

rejection frequency as curvature caused by the global deterministic trend is mistakenly interpreted

as curvature caused by the income variable. In other words, negative and significant coefficients in

front of squared GDP are possibly caused by omitted nonlinear deterministic trends rather than

being indicative of an EKC. To be on the safe side, we recommend researchers include a nonlinear

trend component in their model specification. If unnecessary, then this is rather innocuous. Indeed,

Panel (B) of Table 1 shows that significant results for nonlinear economic growth effects continue

to be found with modest losses in statistical power.

Our contributions are fourfold. First, we propose the Global Trend Augmented Cointegrating

Polynomial Regression (GTACPR). This multivariate model features a global power law trend

to capture time effects. Power law trends have been employed to model non-constant growth

rates in technology indices (Duggal et al., 2007) and production functions (Klein et al., 2004).

Within the EKC context, this flexible trend can capture common time effects that are implicit in

omitted variables. Alternatively, as in Li and Linton (2020), the reader can view the global flexible
2For the moment, we focus on the curvature parameter. Clearly, for an inverted U-shaped relationship the

coefficient in front of the linear term should be positive.
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Table 1: The rejection rate (in %) when testing H0 : ϕ2,1 = ϕ2,2 = ϕ2,3 = 0. (A) Falsely inflated rejections
of H0 : ϕ2,1 = ϕ2,2 = ϕ2,3 = 0 when time effects are omitted. (B) Adding an additional global deterministic
trend to the model specification hardly influences the power of the test H0 : ϕ2,1 = ϕ2,2 = ϕ2,3 = 0. That
is, significant coefficients in front of x2i,t remain significant after adding a redundant flexible global trend.

Panel (A): Omitted Global Trend Panel (B): Redundant Global Trend

DGP yi,t = τgt
θ + τ1,i + τ2,it+ ϕ1,ixi,t + ui,t yi,t = τ1,i + τ2,it+ ϕ1,ixi,t + ϕ2x

2
i,t + ui,t

Model yi,t = τ1,i + τ2,it+ ϕ1,ixi,t + ϕ2,ix
2
i,t + ui,t Correct Specification yi,t = τgt

θ + τ1,i + τ2,it+ ϕ1,ixi,t + ϕ2,ix
2
i,t + ui,t

τg (×10−5) FM-SOLS FM-SUR ϕ2 SimNLS SimNLS

0 6.30 6.63 0 6.93 5.70
-0.5 13.27 12.77 -0.5 9.20 6.97
-1 30.07 27.50 -1 14.97 9.97

-1.5 46.23 41.57 -1.5 30.47 20.70
-2 56.60 50.30 -2 55.33 40.53

-2.5 64.50 56.00 -2.5 81.73 69.20
-3 68.60 57.57 -3 93.97 89.50

Note 1: For illustrative purpose, we consider a stylised example in this introduction. The exact parametrisation is available in Section of the Supplementary
Material. More elaborate simulation results based on the empirical application are reported as simulation DGP2 in Section 4.
Note 2: FM-SOLS and FM-SUR are documented in Wagner et al. (2020). The results in Panel (B) are based on simulation-based inference, see Section
3.2.

trend as an outside option (next to the income variable) to describe nonlinearities in the data.

Limiting distributions for estimators in models with purely deterministic power law trends have

been reported in Phillips (2007), Robinson (2012), and Gao et al. (2020). The presence of integrated

variables requires an alternative asymptotic framework. Moreover, due to endogeneity, approaches

assuming pre-determined integrated regressors (Park and Phillips, 1999, 2001; Chang et al., 2001)

are inappropriate and we instead opt for a proof along the lines of Chan and Wang (2015). Our

resulting limiting distribution is non-standard because (1) the scaling matrix with convergence rates

is non-diagonal and parameter-dependent, and (2) second-order bias terms are present. Second, we

propose a simulation-based approach to conduct inference. Monte Carlo simulations show clear

benefits of this simulation-based approach in terms of size control compared to existing methods.

Third, in the spirit of Choi and Saikkonen (2010), we report a multivariate KPSS-type test to verify

the stationarity of the error process thus enabling researchers to avoid spurious results or misspecified

cointegrating relations. Fourth and finally, in the empirical application, we investigate the EKC for

Austria, Belgium, Finland, the Netherlands, Switzerland, and the UK over the period 1870–2014.

Nonparametric estimates and tests confirm that the global trend captures all nonlinearities in the

data. Nonlinear effects in log per capita GDP (and thus also evidence for an EKC) are absent. We

recommend researchers check whether their EKC conclusions are robust to the inclusion of power

law trends.

Finally, some words on notation. The integer part of the number a ∈ R+ is denoted by [a]. For

a vector x ∈ Rn, its p-norm is denoted by ∥x∥p = (
∑n

i=1 |xi|p)1/p. For a matrix A, say of dimension

(n×m), the induced p-norm is defined as ∥A∥p = supx̸=0 ∥Ax∥p/∥x∥p. We will omit the subscripts

whenever p = 2. The (n × n) identity matrix is denoted In and ın signifies an n-dimensional
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column vector with all entries equal to 1. The block-diagonal matrix diag[A1, . . . ,An] stacks the

matrices A1, . . . ,An along its diagonal. We omit the integration bounds whenever the integration

interval is [0, 1]. The symbol “ d
=” stands for equality in distribution, and “−→p” and “−→d” denote

convergence in probability and in distribution. If convergence occurs conditionally on the sample,

then we add a superscript “*” to the standard notation. Finally, the generic constant C can change

from line to line.

2 The model and NLS estimation

Our model enriches the Seemingly Unrelated Cointegrating Polynomial Regressions (SUCPRs) from

Wagner et al. (2020) with a flexible deterministic trend. That is, each individual series in the system

is affected by specific deterministic variables and integrated regressors (and their integer powers)

while a global flexible trend describes nonlinear behaviour that is prevalent across all series. The

resulting Global Trend Augmented Cointegrating Polynomial Regression (GTACPR) is given by:

yi,t = τgt
θ + τ1,i + τ2,it+

pi∑

j=1

ϕj,ix
j
i,t + ui,t, i = 1, . . . , N, t = 1, . . . , T, (2.1)

where θ ∈ Θ(ε) with Θ(ε) = {θ ∈ [θL, θU ] : |θ| > ε, |θ − 1| > ε} and −1 < θL ≤ θU < ∞.3 Model

(2.1) has two important features: (1) the heterogeneity in the cross-sectional dimension reflects the

observed differences in EKC curves (see, e.g., Mazzanti and Musolesi 2013), and (2) a global trend to

separate the nonlinearities in economic growth from the nonlinearities in time. Regarding the latter,

it is the common parameter τg that drives this identification.4 Our choice for a power law global trend

is motivated by being flexible enough to have nonlinear behavior in the deterministic component yet

avoiding a too flexible specification in which the deterministic component can proxy stochastic trends

(Phillips, 1998). Alternatively, we write yi,t = τgt
θ+z′

i,tβi+ui,t, where zi,t =
[
1, t, xi,t, . . . , x

pi
i,t

]′ and

βi =
[
τ1,i, τ2,i, ϕ1,i, . . . , ϕpi,i

]′. Finally, we stack all N equations in (2.1) in matrix form to retrieve

yt = τgt
θıN +Z ′

tβ + ut, t = 1, . . . , T, (2.2)

with yt =
[
y1,t, . . . , yN,t

]′, Zt = diag
[
z1,t, . . . ,zN,t

]
, and the vector β =

[
β′
1, . . . ,β

′
N

]′ of length

p = 2N +
∑N

i=1 pi containing all local parameters.

We consider nonlinear least squares (NLS) estimators of the unknown parameters in (2.1). Define
3The parameter ε > 0 ensures that the global trend remains distinguishable from the unit-specific intercepts and

linear trends. We use ε = 0.05. Changing this value has little influence on the outcomes because the estimated θ is
generally different from both 0 and 1.

4The importance of distinguishing income- and time-effects is discussed in detail in Vollebergh et al. (2009).
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the objective function QT (θ, τg,β) =
1
2

∑T
t=1

∥∥yt − τgt
θıN −Z ′

tβ
∥∥2 and compute

(
θ̂T , τ̂g,T , β̂T

)
= arg min

(θ, τg ,β)∈Θ(ε)×R×Rp

QT (θ, τ,β). (2.3)

The optimization problem in (2.3) is easy to solve. Given θ, model (2.2) is linear-in-parameters.

The minimizer for (τg,β) has a closed-form expression


τg(θ)
β(θ)


 =

(
T∑

t=1

Zt(θ)Z
′
t(θ)

)−1( T∑

t=1

Zt(θ)yt

)
,

where Z ′
t(θ) =

[
tθıN Z ′

t

]
. We subsequently minimize the concentrated criterion function Q̃T (θ) =

QT

(
θ, τg(θ),β(θ)

)
to obtain θ̂T . At last, we plug in θ̂T and recover τ̂g,T and β̂T through a final OLS

estimation.

Remark 1

Keeping the powers of xi,t fixed allows us to test for their significance and thereby distinguish between

nonlinearities caused by deterministic and stochastic trends. This is important for our empirical

application on the EKC, see Section 5. Hu et al. (2021) study a model with a flexible power of the

integrated regressor. That is, these authors derive the limiting distribution of the NLS estimators

for β and γ when yt = β|xt|γ + ut with β ̸= 0.

Remark 2

The GTACPR of (2.1) can be extended in several directions. First, integer powers of deterministic

trends can be added as long as Θ(ε) is adjusted accordingly (to avoid collinearity). Second, multiple

explanatory variables can be included. Examples within the EKC literature are: trade openness (Jalil

and Feridun, 2011), energy prices (Al-Mulali and Ozturk, 2016), and educational level (Maranzano

et al., 2021). For nonstationary variables, conditions similar to those on {xi,t} should be fulfilled

(Assumption 2 below). Stationary variables should be strictly exogenous. To avoid elaborate nota-

tion, we focus on the baseline specification in (2.1).

3 Asymptotic theory

We subsequently study the asymptotic properties of the NLS estimators. We first collect all the

unknown parameters in γ =
[
θ, τg,β

′]′. This vector is assumed to be an element of the parameter

space Γ = Θ(ε)× R1+p. The true parameter vector is γ0 =
[
θ0, τg,0,β

′
0

]′.

Assumption 1
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The global trend is relevant, i.e., τg,0 ̸= 0.

Assumption 2

Let ζt = [η′t, ε
′
t]
′ be a sequence of i.i.d. random vectors with E(ζt) = 0, Σ = E

(
ζtζ

′
t) ≻ 0, and

E ∥ζt∥2q <∞ for some q > 2.

(a) ut =
∑∞

k=0 ψkηt−k with
∑∞

k=1 k|ψk| <∞.

(b) xt =
∑t

s=1 vs, where vt =
∑∞

k=0 Ψkεt−k,
∑∞

k=0 ∥Ψk∥ <∞, and det (
∑∞

k=0 Ψk) ̸= 0.

The first assumption is needed to avoid identification issues. That is, if τg,0 = 0, then θ is not

identified and the Davies problem arrises when testing H0 : τi = 0 (see Davies (1977, 1987)). Such

complications are not investigated here and this is further reflected in our model specification (2.1).

That is, we consider flexible powers of the deterministic trends but fixed powers of the stochastic

trends, hence allowing us to test zero restrictions on (elements of) β. This is of crucial importance in

the EKC application while determining whether nonlinear effects in the economic growth variables

(xi,t) remain significant after nonlinear time trends have been added to the model. Assumption

1 has been relaxed in the literature albeit for different models. Baek et al. (2015) and Cho and

Phillips (2018) study the asymptotic behaviour of a quasi-likelihood ratio test when Assumption 1

is violated and the conditional mean of the data contains strictly stationary regressors and a flexible

time trend. Whereas we do not study the consequences of violations of Assumption 1 theoretically,

we do provide some empirical robustness checks. First, Monte Carlo simulations indicate that

adding a redundant global trend has little impact. Second, we propose a heuristic verification of

Assumption 1 in our empirical application (see p. 21, Section 5).

Assumption 2 excludes cointegration among elements of xt and defines this vector as the partial

sum of a short memory process. This implies T−1/2
∑[rT ]

t=1 [
ut
vt ] −→d B(r) =

[
Bu(r)
Bv(r)

]
where B(r)

is an 2N -dimensional vector Brownian motion with covariance Ω =
[
Ωuu Ωuv
Ωvu Ωvv

]
. The one-sided

covariance matrix ∆ =
[
∆uu ∆uv
∆vu ∆vv

]
=
∑∞

h=0 E
([

utut+h utv′
t+h

vtut+h vtv
′
t+h

])
is partitioned similarly. Subscripts

refer to specific elements. For example, Bvi and ∆viuj
denote the ith and (i, j)th elements of Bv

and ∆vu, respectively.

Additional notation is:

(1) D(i),T = diag
[
1, T, T 1/2, T, . . . , T pi/2

]
to scale the deterministic and stochastic trends within

each equation. Define DZ,T = diag
[
D(1),T , . . . ,D(N),T

]
, Dθ0,T =

√
T

[
T θ0

T θ0

DZ,T

]
and Lτg,0,T =

[
1 −τg,0 lnT
0 1

Ip

]
for the full system of equation. Finally, set Gγ0,T = Dθ0,T

L′−1
τg,0,T

.
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(2) Define ji(r) =
[
1, r, Bvi(r), B

2
vi
(r), . . . , Bpi

vi
(r)
]′, JZ(r) = diag [j1(r), . . . , jN(r)]. Moreover, let

J(r;γ0) =
[
τg,0r

θ0 ln r ıN , r
θ0ıN ,J

′
Z(r)

]′
.

(3) Let bi =
[
01×2, 1, 2

∫
Bvi(r)dr, . . . , pi

∫
Bpi−1

vi
(r)dr

]′
and Bvu =

[
01×2, b

′
1∆v1u1 , . . . , b

′
N∆vNuN

]′

for the second-order bias terms.

Theorem 1

Under Assumptions 1-2, as T → ∞ (for a fixed N), we have

Gγ0,T

(
γ̂T − γ0

)
−→d

(∫
J(r;γ0)J

′(r;γ0) dr

)−1(∫
J(r;γ0) dBu(r) +Bvu

)
=: J (γ0).

The proof of Theorem 1 is closely related to the work by Chan and Wang (2015). These authors

provide the asymptotic distribution of NLS estimators under a set of general conditions in univariate,

nonstationary time series models (see their theorem 3.1). The results in Chan and Wang (2015)

and Wang et al. (2018) suggest that Assumption 2 can be replaced by a long memory specification

for ∆xt. However, long memory parameters enter the limiting distribution and inference will be

complicated further. We illustrate Theorem 1 with two examples.

Example 1

We consider yt = τtθ+ut with innovations satisfying Assumption 2. The limiting distribution of the

parameter estimators depends solely on the mean square Riemann-Stieltjes integrals
∫
τ0r

θ0 ln(r)dBu

and
∫
rθ0dBu, and is therefore normally distributed (e.g., section 2.3 in Tanaka 2017). We have


 T θ0+

1
2 0

T θ0+
1
2 τ0 ln(T ) T θ0+

1
2




 θ̂T − θ0

τ̂T − τ0


 −→d N


0,Ωuu(2θ0 + 1)3


 2τ 20 −τ0(2θ0 + 1)

−τ0(2θ0 + 1) (2θ0 + 1)2



−1
 .

The scaling matrix in the LHS depends on θ0 and is non-diagonal. The dependence on θ0 is un-

avoidable but asymptotic results for the case of a diagonal scaling matrix are obtainable. Noting that[
T θ0+

1
2 0

0 T θ0+
1
2 / ln(T )

]
=
[

1 0
−τ0 1/ ln(T )

] [
T θ0+

1
2 0

T θ0+
1
2 τ0 ln(T ) T θ0+

1
2

]
and

[
1 0

−τ0 1/ ln(T )

] T→∞→ [ 1 0
−τ0 0 ], we have


T

θ0+
1
2 0

0 T θ0+
1
2/ ln(T )




θ̂T − θ0

τ̂T − τ0


 −→d


1/τ0
−1


N

(
0,Ωuu(2θ0 + 1)3

)
.

This limiting distribution coincides with the result in theorem 6.3 of Phillips (2007).

Example 2
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If yt = τtθ + ϕxt + ut, then
[

T θ0+
1
2

T θ0+
1
2 τ0 ln(T ) T θ0+

1
2

T

] [
θ̂T−θ0
τ̂T−τ0
ϕ̂T−ϕ0

]
converges to




∫ (
τ0r

θ0 ln(r)
)2
dr

∫
τ0r

2θ0 ln(r)dr
∫
τ0r

θ0 ln(r)Bvdr
∫
τ0r

2θ0 ln(r)dr
∫
r2θ0dr

∫
rθ0Bvdr

∫
τ0r

θ0 ln(r)Bvdr
∫
rθ0Bvdr

∫
B2

vdr




−1





∫
τ0r

θ0 ln(r)dBu

∫
rθ0dBu

∫
BvdBu


+




0

0

∆vu





 .

This distribution exhibits second-order bias when ∆vu ̸= 0, or when Bu and Bv are correlated.

Two features of the limiting distribution of Gγ0,T

(
γ̂T − γ0

)
deserve further comments. First,

as emphasised in Examples 1–2, the scaling matrix Gγ0,T features two uncommon properties: (1)

this matrix depends on the true parameters τg,0 and θ0, and (2) Gγ0,T is not diagonal. These

peculiarities are caused by the nonlinearity and nonstationarity of the model. More specifically,

these features can be traced back to the presence of the global trend. Limiting distributions with a

similar mathematical structure can be found in the structural breaks literature, cf. model setting

II.b of Perron and Zhu (2005) and its detailed analysis in Beutner et al. (2022).

Second, the nonstationary regressor xi,t enters the model (2.1) through a polynomial transforma-

tion of the form g(xi,t,ϕi) = ϕi,1xi,t+ . . .+ϕi,pix
pi
i,t (i = 1, 2, . . . , N). In the terminology of Park and

Phillips (2001), this part of the regression function is a linear combination of H0-regular functions.

It is well-documented in the literature, e.g., Chang et al. (2001) and Chan and Wang (2015), that

this leads to second-order bias terms and hence nonstandard inference (except for the special case

of strictly exogenous nonstationary regressors).

3.1 Consistent long-run covariance matrix estimation

Correcting for second-order bias terms typically involves estimating long-run variance (LRV) ma-

trices. This subsection establishes that the NLS residuals can be used to construct consistent

kernel estimators for the LRV matrices ∆ and Ω. Defining Vt(γ) =
[
ut(γ)

′,∆x′
t]
′ with ut(γ) =

yt − τgt
θιN −Z ′

tβ, these LRV estimators are defined as

∆̂T =
1

T

T∑

t=1

t∑

s=1

k

( |t− s|
bT

)
Vt( γ̂T )Vt( γ̂T )

′, Ω̂T =
1

T

T∑

t=1

T∑

s=1

k

( |t− s|
bT

)
Vt( γ̂T )Vt( γ̂T )

′,

(3.1)

for some kernel k(·) and bandwidth bT . The first N elements of Vt( γ̂T ) are the elements of the

residual vector ût = yt − τ̂g,T t
θ̂T ıN −Z ′

tβ̂T . The remaining elements are ∆xt = vt.

Assumption 3
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(a) k(0) = 1, k(·) is continuous at zero, and supx≥0 |k(x)| <∞.

(b)
∫∞
0
k̄(x)dx <∞, where k̄(x) = supy≥x |k(y)|.

(c) The bandwidth satisfies {bT} ⊆ (0,∞) and limT→∞
(
b−1
T + T−1/2bT lnT

)
= 0.

The conditions on the kernel function k(·), Assumptions 3(a)–(b), are identical to those in

Jansson (2002). Jansson (2002) remarks that these assumptions “would appear to be satisfied by any

kernel in actual use”. Commonly used kernels such as the Bartlett, Parzen, and Quadratic Spectral

kernels indeed satisfy all these assumptions. Assumption 3(c) differs from the usual requirement,

limT→∞
(
b−1
T + T−1/2bT

)
= 0, by a factor lnT . The difference is caused by the estimation error in

θ̂T . This error causes the residuals {ût} to be less close to the innovations {ut} and we balance this

by including autocovariance matrices of higher lags at a slower pace.

Theorem 2

Under Assumptions 1-3, we have ∆̂T −→p ∆ and Ω̂T −→p Ω as T → ∞.

3.2 Simulation-based inference

The limiting distribution in Theorem 1 is nonpivotal and thus not directly suited for inference. Some

popular solutions for linear-in-parameters cointegration models are: Saikkonen’s (1992) dynamic

least squares, the integrated modified OLS and fixed-b approaches by Vogelsang and Wagner (2014),

and the fully modified approach, e.g., Phillips and Hansen (1990). For a nonlinear-in-parameter

model as in (2.1), a preliminary Monte Carlo (MC) exercise5 shows poor performance for fully

modified inference but promising results for a simulation-based approach. We pursue the latter

method for the remainder of this paper.

The main idea behind the simulation-based approach is to replace nuisance parameters with

consistent estimates and to rely on MC simulations to approximate the limiting distribution. The

empirical quantiles of these MC draws allow us to conduct inference. Wang et al. (2018) shows that

the simulation approach is asymptotically justified in several model specifications. We adapt their

algorithm to the current setting and prove its asymptotic validity.

Algorithm 1 (simulation-based inference)

Step1: Estimate γ̂T and use the residuals {ût} to compute the estimators ∆̂T and Ω̂T from (3.1).

Step2: Repeat for j = 1, . . . , J ,
5The details are available in Section S8 of the Supplementary Material. The analytical results in that appendix

also suggest that the convergence speed of θ̂T to θ0 is too slow to recover the standard zero-mean Gaussian limiting
distribution.
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(a) Draw random variables {et}MT
t=1 i.i.d. from N (0, I2N).

(b) Compute
[
µ̂t

v̂t

]
= Ω̂

1/2
T et and the partial sum χ̂t =

[
χ̂1,t, . . . , χ̂N,t

]′
=
∑t

s=1 υ̂s.

(c) Let Ĵ
(
t; γ̂T

)
=
[
τ̂g,T t

θ̂T ln t ıN , t
θ̂T ıN , Ẑ ′

t

]′
, where Ẑt = diag

[
ẑ1,t, . . . , ẑN,t

]
, ẑi,t =

[
1, t, χ̂i,t, . . . , χ̂

pi
i,t

]′
,

i = 1, . . . , N . For given MT , construct the jth simulated draw as

Ĵ (j)
(
γ̂T , Ω̂T , ∆̂

−
vu

)
=

{
G′−1

γ̂T ,MT

[
MT∑

t=1

Ĵ
(
t; γ̂T

)
Ĵ
(
t; γ̂T

)′
]
G−1

γ̂T ,MT

}−1

×
{
G′−1

γ̂T ,MT

[
MT∑

t=1

Ĵ
(
t; γ̂T

)
µ̂t

]
+ B̂−

vu

}
,

where ∆̂−
vu is a consistent estimator of the lower-left subblock of ∆− =

[
∆−

uu ∆−
uv

∆−
vu ∆−

vv

]
= Σ −∆′,

B̂−
vu =

[
01×2, b̂

′
1∆̂

−
v1u1

, . . . , b̂′N∆̂
−
vNuN

]′
, b̂i =

[
01×2, 1, 2

1
MT

∑MT

t=1

(
χ̂i,t√
MT

)
, . . . , pi

1
MT

∑MT

t=1

(
χ̂i,t√
MT

)pi−1]′

is an approximation of bias terms.

Step3: Use the empirical quantiles of elements of
{Ĵ (1)

, . . . , Ĵ (J)}
for inference.

Algorithm 1 uses a discretisation in MT steps to approximate the limiting distribution of the

parameters. In practice, and in accordance with Theorem 3, we can take MT = T . Remark 3 details

how simulation-based inference can be used to conduct hypothesis testing. Discussions on size and

power are also presented there.

Theorem 3

Suppose Assumptions 1-3 hold. Let {MT} ⊆ (0,∞) with limT→∞MT/T ≤ κ, κ <∞, then

{
G′−1

γ̂T ,T

[
MT∑

t=1

Ĵ
(
t; γ̂T

)
Ĵ
(
t; γ̂T

)′
]
G−1

γ̂T ,T

}−1{
G′−1

γ̂T ,T

[
MT∑

t=1

Ĵ
(
t; γ̂T

)
µ̂t

]
+ B̂−

vu

}

−→d∗

(∫
J(r;γ0)J(r;γ0)

′ dr

)−1(∫
J(r;γ0) dBu(r) +Bvu

)
, (3.2)

in probability, as T → ∞ (for a fixed N).

Theorem 3 establishes the asymptotic validity of the simulation approach. That is, for a large

enough J , the empirical quantiles of the simulated distribution will coincide with the asymptotic

distribution. Two remarks are important. First, even though the simulation algorithm is adapted

from Wang et al. (2018), the proof of Theorem 3 is not. In particular, the method of proof is similar

to Theorem 1 and continues to allow for the endogeneity of the regressors. Second, the simulation

approach mimics the stochastic integrals in the limiting distribution directly. It, therefore, suffices
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to draw normally distributed random variables in Step 2(a) and use consistent long-run covariance

estimates to replicate the covariance structure of the underlying Brownian motions. Compared

to a bootstrap procedure, this simulation approach has the advantage of avoiding tedious NLS

re-estimation on bootstrap samples but forsakes possible asymptotic refinements.

Remark 3

Step 3 in Algorithm 1 has been kept general for notational convenience. An illustrative example is

as follows. Assume we are interested in H0 : ϕ2,1 = 0 (irrelevance of the regressor x21,t) when

yi,t = τgt
θ + τ1,i + τ2t,it+ ϕ1,ixi,t + ϕ2,ix

2
i,t + ui,t, i = 1, . . . , N, t = 1, . . . , T.

Under H0, we have T 3/2ϕ̂2,1 = e′
6Gγ0,T

(
γ̂T −γ0

)
−→d e

′
6J (γ0) with ek being the kth basis vector in

R2+p. Denoting the empirical ζ-quantiles of
{
e′
6Ĵ

(1)
, . . . , e′

6Ĵ
(J)}

by cζ, a test of size α will reject

for T 3/2ϕ̂2,1 < cα/2 or T 3/2ϕ̂2,1 > c1−α/2. Under the alternative ϕ2,1 ̸= 0, we rewrite the test statistic

as T 3/2ϕ̂2,1 = T 3/2
(
ϕ̂2,1 − ϕ2,1

)
+ T 3/2ϕ2,1. Statistical power is guaranteed because the simulation

approach mimics the asymptotic distribution and is thus bounded, whereas the second term diverges.

3.3 Test for the null of cointegration

The correct specification of the nonlinear cointegrating relation will result in a stationary error

process {ut}t∈Z. We consider a KPSS-type test statistic for the null of stationarity. The candidate

statistic is K̃+
T = T−2

∑T
t=1

∥∥∥Ω̂−1/2
u.v

∑t
i=ℓ û

+
i

∥∥∥
2

, where û+
t = yt−Ω̂uvΩ̂

−1
vv ∆xt−τ̂g,T tθ̂T ıN−Z ′

tβ̂T and

Ω̂u.v is a consistent estimator of Ωu.v = Ωuu−ΩuvΩ
−1
vv Ωvu. This statistic is stochastically bounded

under the null hypothesis but diverges under the alternative. Rejections of the null hypothesis

are an indication of a spurious relationship and/or an incorrect functional form of the nonlinear

cointegrating relationship. For some settings the asymptotic null distribution of K+
T is known, e.g.,

Kwiatkowski et al. (1992) and Wagner and Hong (2016).

The estimation of θ contaminates the limiting distribution of K̃+
T with nuisance parameters.6

Choi and Saikkonen (2010), Wagner and Hong (2016), and Lin and Reuvers (2022), have shown

that subsampling can resolve this issue. We will follow their approach and use subsamples of size

qT to compute the test statistics.

Theorem 4

Under Assumptions 1-3 and if limT→∞
(
q−1
T + (lnT )

(
qT
T

)θL+ 1
2

)
= 0, then for any ℓ ∈ {1, . . . , T −

6Proposition 5 in Wagner and Hong (2016) shows that the limiting distribution of K̃+
T is free of nuisance parameters

if θ0 is known and only a single integrated regressor occurs with integer powers greater than one. This result does
not carry over to the current setting because of the estimation error in θ̂T .

12



qT + 1}, we have

K+
qT ,ℓ =

1

qT

ℓ+qT−1∑

t=ℓ

∥∥∥∥∥
1√
qT

Ω̂−1/2
u.v

t∑

i=ℓ

û+
i

∥∥∥∥∥

2

−→d

∫
∥W (r)∥2 dr, (3.3)

as T → ∞ (for a fixed N), where W (·) denotes an N-dimensional standard Brownian motion.

Theorem 4 does not provide any guidance on the choices for the starting value ℓ and the sub-

sample size qT . First, for a given qT , Choi and Saikkonen (2010) argue that the use of a single

subsample (instead of all T observations) implies a significant loss of power. We follow their exam-

ple and combine all M = [T/qT ] subresidual series of length qT using a Bonferroni procedure. That

is, we create subresiduals series by selecting adjacent blocks of qT residuals while alternating be-

tween the start and end of the sample. We calculate the KPSS-type test statistic for each subseries,

say K1, . . . , KM , and reject the null of stationarity at significance α whenever max{K1, . . . , KM}
exceeds cα/M which is defined by P

(∫ ∥∥W (r)
∥∥2dr ≥ cα/M

)
= α/M . Finally, we select the block

size qT using Romano and Wolf’s (2001) minimum volatility rule. The approach is now completely

data-driven.

4 Simulations

This section lists various Monte Carlo simulations showing that the asymptotic approximations

from Section 3 provide useful guidance in finite samples. Further details on the implementation

are as follows. The long-run covariance matrices in (3.1) are computed using the Barlett kernel,

k(x) = 1 − |x| for |x| ≤ 1 (and zero otherwise), and the bandwidth selection method described

in Andrews (1991). Simulated limiting distributions are based on J = 299 replicates and we set

MT = T (Algorithm 1). We test at 5% significance and report results based on 3, 000 Monte Carlo

replications.

DGP1: Empirical size and power of the coefficient tests

This DGP follows Wagner et al. (2020). It augments their quadratic seemingly unrelated cointe-

grating polynomial regression model with a global flexible trend. That is, we consider

yi,t = τgt
θ + τ1,i + τ2,it+ ϕ1,ixi,t + ϕ2,ix

2
i,t + ui,t, i = 1, . . . , N, t = 1, . . . , T, (4.1)

and compute ui,t and ∆xi,t = vi,t recursively as

ui,t = ρ1ui,t−1 + εi,t + ρ2ei,t, vi,t = ei,t + 0.5ei,t−1.
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All recursions are initialized from zero, i.e., xi,0 = ui,0 = ei,0 = 0, i = 1, . . . , N . The innovations

εt = [ε1,t, . . . , εN,t]
′ and et = [e1,t, . . . , eN,t]

′ are drawn independently as εt
i.i.d.∼ N (0,Σεε) and

et
i.i.d.∼ N (0,Σee), where

Σεε =




1 ρ3 · · · ρ3

ρ3 1 · · · ρ3
...

... . . . ...

ρ3 ρ3 · · · 1



, and Σee =




1 ρ4 · · · ρ4

ρ4 1 · · · ρ4
...

... . . . ...

ρ4 ρ4 · · · 1



.

Regarding the global trend in (4.1), we set τg = −0.2 and consider θ ∈ {0.8, 1.3, 1.8}. All other

coefficient values are inspired by Wagner et al. (2020). That is, τ1,i = 1, τ2,i = 1 and ϕ1,i = 5 are

identical across equations.7 Also, we let ρ1 = ρ2 = ρ3 = ρ4 and redefine these four parameters

as ρ. We vary ρ ∈ {0, 0.3, 0.6, 0.8}, N ∈ {3, 5, 10}, and T ∈ {150, 300, 600}. In line with the

typical EKC application, we test for the significance of x2i,t. We set ϕ2,i = 0 for i = 1, . . . , N

and report the empirical size of the single equation test for H0 : ϕ2,1 = 0 and the joint test for

H0 : ϕ2,1 = . . . = ϕ2,N = 0.

For θ0 = 1.3, the empirical size of various tests are displayed in Table 2.8 These tests are based

on four estimators: (1) the NLS estimator with simulated critical values as in Section 3.2 (SimNLS);

(2) the NLS estimator with simulated critical values and the true value for θ0 = 1.3 (SimNLS(θ0));

(3) the FM-SOLS estimator based on θ0 = 1.3 (FM-SOLS(θ0)); and (4) the FM-SUR estimator

based on θ0 = 1.3 (FM-SUR(θ0)). The main findings are as follows:

(a) The simulation-based approaches SimNLS and SimNLS(θ0) offer better size control. The size

improvements are particularly pronounced when T = 150 and ρ = 0.8. The differences in the

empirical size of SimNLS and SimNLS(θ0) are small.

(b) Size distortions are more severe when N increases and/or a joint test is performed. The same

observation was made in Wagner et al. (2020). The behaviour of the simulation-based and

fully modified tests is the opposite in these cases. SimNLS and SimNLS(θ0) tend to become

conservative whereas FM-SOLS and FM-SUR are oversized.

We subsequently simulate power curves.9 The specification of the single equation test and the

joint test is as before but we now vary ϕ2,1 = . . . = ϕ2,N over the set [−0.008,−0.007, . . . , 0]. We
7This homogenous parametrisation is particularly convenient to study the impact of the cross-sectional dimension.

That is, we can vary N without having to provide additional parameter values. DGP2 is directly inspired by the
empirical application and thus more realistic.

8The results for θ = 0.8 and θ = 1.8 are qualitatively the same. For brevity, we do not include these results in
the main paper. The interested reader can find such simulation results in Section S6 of the Supplementary Material.

9Power curves are computationally more intensive. We economize computational time by (1) reducing the number
of MC replicates to 1,000 and (2) investigating a subset of all possible parameter configurations.
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Table 2: The empirical size (in %) of the tests H0 : ϕ2,1 = 0 and the joint test for H0 : ϕ2,1 = . . . = ϕ2,N = 0
with ϕ2,i denoting the coefficient in front of x2i,t. Results are based on: simulated inference with θ estimated
by NLS (SimNLS), simulated inference with known θ = 1.3 (SimNLS(θ0)), and two FM estimators for
systems as in Wagner et al. (2020) with known θ = 1.3 (FM-SOLS(θ0) and FM-SUR(θ0)).

θ0 = 1.3 N = 3 N = 5 N = 10

ρ SimNLS SimNLS(θ0) FM-SOLS(θ0) FM-SUR(θ0) SimNLS SimNLS(θ0) FM-SOLS(θ0) FM-SUR(θ0) SimNLS SimNLS(θ0) FM-SOLS(θ0) FM-SUR(θ0)

Panel A: Single-equation test

T = 150

0 4.77 4.63 9.53 10.77 4.43 4.90 10.03 12.80 4.37 4.47 9.70 16.63
0.3 4.80 4.77 10.47 11.97 4.53 4.63 10.00 13.00 4.23 4.27 11.60 19.00
0.6 4.83 4.53 11.90 12.93 3.93 4.17 11.87 16.50 5.13 4.90 14.23 31.70
0.8 4.50 4.67 14.00 19.10 4.90 4.60 15.23 26.53 5.27 4.43 16.83 56.47

T = 300

0 4.43 4.10 8.03 8.63 4.43 4.20 7.33 8.33 4.50 4.67 8.60 11.73
0.3 4.20 4.60 8.13 9.20 4.37 4.77 8.97 9.80 4.43 4.23 8.67 12.83
0.6 5.80 5.70 10.23 11.80 4.97 4.97 10.17 12.73 4.40 4.30 10.83 18.77
0.8 4.97 4.43 11.17 13.40 4.60 4.53 12.07 19.37 4.03 3.53 13.67 36.53

T = 600

0 4.67 4.67 7.00 7.20 4.77 4.73 6.57 7.53 4.27 4.23 7.37 9.20
0.3 4.77 4.37 7.67 7.77 4.43 4.73 7.37 7.40 4.80 4.67 7.90 9.57
0.6 5.60 5.07 9.43 9.50 5.43 5.43 8.77 10.30 5.30 4.83 9.57 14.10
0.8 4.70 4.50 8.73 9.20 5.10 5.23 9.27 13.87 5.80 5.20 11.47 24.63

Panel B: Joint test

T = 150

0 4.23 4.03 12.70 15.10 4.10 4.07 14.50 21.57 3.63 3.47 25.67 51.23
0.3 4.80 4.57 14.37 17.33 3.80 3.70 19.50 26.90 3.70 3.77 31.63 59.73
0.6 4.27 4.03 18.03 22.07 3.80 3.57 23.67 37.77 3.13 3.03 40.27 82.17
0.8 3.13 2.93 23.37 30.47 3.33 2.73 31.60 57.20 2.00 1.50 49.73 82.60

T = 300

0 4.80 4.73 10.07 10.87 4.30 4.37 10.63 14.83 3.77 3.80 18.17 31.80
0.3 4.77 4.97 11.60 12.93 4.67 4.67 14.03 17.70 3.40 3.47 19.13 36.53
0.6 4.93 4.40 14.33 14.87 3.77 3.90 17.50 25.63 3.10 3.10 29.20 59.97
0.8 3.87 3.40 17.40 20.97 3.33 2.77 22.97 38.80 2.60 2.13 37.87 86.33

T = 600

0 4.27 4.53 7.37 8.03 4.33 4.13 8.50 10.83 3.97 4.07 12.90 19.23
0.3 4.93 5.17 9.23 10.00 4.80 4.53 10.57 12.30 4.60 4.50 14.87 24.03
0.6 4.07 3.80 11.63 12.43 4.57 4.73 12.30 16.97 4.30 4.23 21.73 38.80
0.8 5.00 4.53 12.77 14.37 3.57 3.80 15.67 25.33 3.60 3.57 26.43 66.63

15



take ρ = 0.3, θ = 1.3, and N = 3 as the baseline scenario and subsequently vary these quantities

one by one. Figures 1–2 in the supplement show the results. As expected, power increases with

increasing sample size, and as ϕ2,i moves away from zero.

DGP2: Illustrative simulations in line with the empirical application

Our second set of simulations is tailored toward the EKC application. That is, we employ parametriza-

tions that mimic the data. Generally speaking, we first estimate the baseline model specification

on the data and subsequently fit a VAR(1) specification on the stacked vector of residuals and

first-differenced explanatory variables.10 In line with the empirical application, these simulations

use N = 6 and T = 145. All results are displayed in Figure 3. Below, we motivate the simulation

settings in view of the EKC application and draw conclusions.

(a) Correctly specified model : The specification yi,t = τgt
θ + τ1,i + τ2,it+ ϕ1,ixi,t + ϕ2,ix

2
i,t + ui,t with

ϕ2,i = 0 is estimated on the data. We subsequently move ϕ2,1 = . . . = ϕ2,6 away from zero in

the DGP and check whether we can detect the resulting curvature caused by the integrated

variable. Power curves for the individual and joint test for the coefficients in front of x2i,t are

found in Figures 3(a) and 3(b) in the supplement, respectively. Clearly, nonlinear effects due to

x2i,t are detectable. The statistical power varies across units because (contrary to DGP1) time

series properties are now heterogeneous across equations.

(b) Redundant global trend : Assumption 1 requires the global trend to be relevant. This simulation

DGP investigates how violations of this assumption affect the typical EKC coefficient test. We

obtain parameter values by fitting the model yi,t = τ1,i + τ2,it + ϕ1,ixi,t + ϕ2,ix
2
i,t + ui,t with

ϕ2,i = 0. As in (a), we vary ϕ2,1 = . . . = ϕ2,6 and test for the significance of these parameters.

The solid lines in Figures 3(c) and 3(d) in the supplement are power curves obtained using the

correctly specified DGP whereas markers indicate the power when a redundant global trend is

estimated as well. The redundant trend has virtually no influence on the statistical power of

the coefficient tests of the first five series. There is a power loss for i = 6. An inspection of

the coefficients offers an explanation. The estimated coefficients in front of the global trend are

mostly small (10−10 to 10−9) and thus irrelevant. However, in a fraction of cases the flexible

trend mimics the curvature in the sixth series causing the quadratic stochastic trend to become

insignificant. As reported in the introduction, the power of the joint test does not suffer from

the inclusion of a redundant trend.

(c) KPSS test : Nonstationary residuals are an indication of model misspecification. That is, either

the regression is spurious or the functional form of the cointegrating relation is misspecified.
10All details on the simulation designs for DGP2(a)–(c) are available in Section S5 of the Supplementary Material.
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We look at the latter situation. The simulation DGP is the quadratic GTACPR as in DGP2(a)

but the quadratic component is missing in the fitted model. The empirical rejection frequency

of the KPSS test (Figure 3(e) in the supplement) is signalling that there are specification issues.

However, a comparison with Figures 3(a) - 3(d) also reveals that if the source of misspecification

is known, then a dedicated coefficient test leads to a higher power.

5 Empirical application

We examine the evidence for an EKC for a collection of 18 countries over the period 1870–2014

(T = 145). Economic growth is measured by GDP and we use carbon dioxide (CO2) emissions as

a proxy for air pollution. The origin of these data is as follows. We use population and GDP data

from the Maddison Project (see https://www.rug.nl/ggdc/historicaldevelopment/maddison/). Our

carbon dioxide observations are fossil-fuel CO2 emissions as made available by the Carbon Dioxide

Information Analysis Center (CDIAC, see https://cdiac.ess-dive.lbl.gov). The CDIAC database

ceased operation in 2017 causing these time series to be available until 2014. Both GDP and

CO2 emissions are expressed per capita and subsequently log-transformed. In accordance with the

notation of this paper, we will denote them by xi,t and yi,t, respectively. The same data (or subsets

thereof) have also been studied by Wagner (2015), Chan and Wang (2015), Wang et al. (2018),

Wagner et al. (2020), and Lin and Reuvers (2022).11 This conveniently allows us to compare results.

All user choices (kernel specification, bandwidth selection, etc.) are kept the same as during the

simulation study (see page 13).

5.1 An illustration using Belgian data

Prior to the analysis of a multivariate specification, we will first discuss several features of the indi-

vidual time series (hence omitting subscripts “i”). The example throughout this narrative is Belgium

(Figure 1).12 An inverted U-shaped relationship between GDP and CO2 (both in log per capita)

is clearly visible in Figure 1(a) and behavior like this has triggered research on the Environmental

Kuznets Curve. However, the time heat map also shows that time is almost monotonically in-

creasing along the curve. Time effects – e.g., increasing global environmental awareness, worldwide

advances in sustainable technologies – can be valid alternative explanations for these nonlinearities

and their omission can falsely exaggerate the influence of GDP. It is for this reason that we develop
11The stationarity properties of the series have been discussed in these papers already. We will not repeat this

analysis but refer the interested reader to Section S7 of the Supplement.
12The data for Austria, Belgium, and Finland are mentioned in both Wagner (2015) and Wagner et al. (2020) to

behave in line with the EKC. We discuss Belgium in the main text but the interested reader can find the same figures
for Austria and Finland in Section S7.3. Qualitatively, the findings for these other two countries are the same.
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(a) (b) (c)

(d) (e) (f)

Figure 1: Overview graphs for Belgium over 1870-2014. (a) log(GDP) versus log(CO2) (both per capita).
(b) The same series as in subfigure (a), but now using detrended variables. (c) The log per capita CO2
emissions time series for Belgium over time. (d) The residual sum of squares (RSS) for the nonlinear model
specification yt = τ1 + τ2t + ϕ1xt + ϕ2x

θ
t + ut for various values of θ. (e) The RSS as a function of θ for

the flexible nonlinear trend specification yt = τ1 + τ2t + τ3t
θ + ϕxt + ut. (f) The relation between xt and

yt after partialling out the constant, linear trend, and flexible deterministic trend.

and analyse the GTACPR. More evidence for the importance of time effects is available in Figure

1(b). This figure depicts the same per capita series after detrending.13 The inverted U-shape is now

(visually) less pronounced or even absent.

Finally, let us depart from a traditional linear cointegration specification: yt = τ1+τ2t+ϕ1xt+ut.

This model cannot incorporate any nonlinear behaviour over time and is, therefore, ill-suited to fit

the data displayed in Figure 1(c). Cointegrating polynomial regressions use integer powers of xt

to describe the curvature over time. More generally, as in Hu et al. (2021), we can allow for an

integrated regressor with a flexible power and estimate yt = τ1+ τ2t+ϕ1xt+ϕ2x
θ
t +ut. The residual

sum of squares (RSS) of the NLS estimator for this specification is shown in Figure 1(d). The

absence of a minimum at θ = 2 casts doubt on the commonly used quadratic specification in xt.

Additionally, the lack of any minimum might be interpreted as a sign that log per capita GDP is not

the source of nonlinearity. This finding is not specific for Belgium. There are no minima in the RSS

for 15 out of 18 countries (see Section S7.4). For the remaining three countries – Denmark, France

and the Netherlands – minima are found at θ̂DK = 1.46, θ̂FR = 3.61 and θ̂NL = 1.28, respectively.

Alternatively, we can describe the nonlinearity in the data using a flexible deterministic trend as in
13The Perron and Yabu (2009) test allows us to test for the presence of a deterministic trend irrespectively of the

series being trend-stationary or having a unit root. The results of this test (see supplement) indicate that log per
capita GDP is likely to have a deterministic trend component. It is thus recommended to have a deterministic trend
in the model for log per capita CO2 emissions and the visual inspection of the relationship between GDP and CO2

emissions (in log per capita) should take place after partialling out this deterministic trend.
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yt = τ1 + τ2t + τ3t
θ + ϕ1xt + ut. The RSS in Figure 1(e) now exhibits a clear minimum. Further

empirical analysis on individual countries (see Section S7.5 of the Supplement) suggests that: (1)

the inclusion of a flexible time trend renders all quadratic effects in squared log per capita GDP

insignificant, and (2) models remain well-specified after removing quadratic income effects from the

model. These results suggest – albeit in a univariate setting – that flexible time trends give a more

satisfactory (or at least competing) description of the nonlinearities in the data.

5.2 Seemingly unrelated regression

The interpretation of a country-specific flexible deterministic trend is complicated because of its

high collinearity with GDP per capita. The multivariate analysis of this section allows us to sep-

arate country-specific environmental improvements caused by national income growth from global

environmental improvements. We study the following six countries (N = 6): Austria, Belgium, Fin-

land, the Netherlands, Switzerland, and the UK. The motivation behind this choice is as follows.

First, based on data series to ours, Piaggio and Padilla (2012), Mazzanti and Musolesi (2013), and

Wagner et al. (2020) report considerable evidence of parameter heterogeneity across countries.14

The evidence in Mazzanti and Musolesi (2013) is anecdotal in the sense that these authors consider

groups of similar countries and find different results for different groups. The lack of overlap among

confidence intervals of country-specific parameters has also been interpreted as a sign of heterogene-

ity (section 4.2 in Piaggio and Padilla (2012)). Wagner et al. (2020) explicitly test for various forms

of poolability and conclude that pooling is (at most) appropriate for small subgroups of countries.

This lack of parameter homogeneity justifies a multivariate approach with a small N rather than

a panel setting. Admittedly, in the current time-series setting, studying “large N ” is also infeasible

since consistent estimators for (2N × 2N) long-run covariance matrices are required. Second, prior

studies already refute the existence of a carbon dioxide EKC for several countries, and little seems

lost by excluding these countries from the outset.15 That is, we consider the same countries as in

Wagner et al. (2020), who decide on these countries because their prior cointegration analysis “ leads

to evidence for a quadratic cointegrating EKC including a constant and linear trend ”.

Having decided on the set of countries, we subsequently study the effect of the global flexible
14Parameter heterogeneity is also reported for other data, e.g., List and Gallet (1999), Dijkgraaf and Vollebergh

(2005).
15Most parameters in the GCPR are country-specific. The estimation accuracy of these parameters should dete-

riorate little when focusing on a subset of countries. Losses will occur in the precision of the estimators for τg and
θ. There is thus a trade-off between accurate global trend estimation (improving with large N) and accurate LRV
estimation (deteriorating with large N). To strike a balance and to connect to the recent literature, we continue the
analysis of Wagner et al. (2020) and take N = 6.
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Table 3: Parameter estimates and test results for Models (M1)–(M3). The joint p-value refers to the test
with null hypothesis H0 : ϕ2,1 = . . . = ϕ2,6 = 0 and is thus inapplicable for Model (M3).

Omitted Global Trend Global Trend

Model (M1) (M2) (M3)

FM-SOLS FM-SUR SimNLS SimNLS SimNLS

ϕ1,i ϕ2,i ϕ1,i ϕ2,i ϕ1,i ϕ2,i ϕ1,i ϕ2,i ϕ1,i

Austria 9.37∗∗∗ −0.43∗∗∗ 3.96∗ −0.16 6.42∗∗∗ −0.28 3.08∗∗∗ −0.09 1.73∗∗∗

Belgium 11.78∗∗∗ −0.59∗∗∗ 9.92∗∗∗ −0.50∗∗∗ 12.36∗∗∗ −0.62∗∗ 7.68∗∗∗ −0.36 1.01∗∗∗

Finland 16.00∗∗∗ −0.72∗∗∗ 15.07∗∗∗ −0.68∗∗∗ 17.18∗∗∗ −0.78∗ 15.19∗∗∗ −0.65 2.22∗∗∗

Netherlands 10.68∗∗∗ −0.51∗∗∗ 9.58∗∗∗ −0.46∗∗∗ 9.27∗∗∗ −0.44∗ 4.97∗∗∗ −0.20 1.33∗∗∗

Switzerland 8.17∗∗∗ −0.27∗∗∗ 7.29∗∗∗ −0.23∗∗∗ 8.11∗∗∗ −0.28 0.58∗ 0.10 2.55∗∗∗

UK 9.28∗∗∗ −0.47∗∗∗ 7.93∗∗∗ −0.40∗∗∗ 9.16∗∗∗ −0.46∗ 4.93∗∗∗ −0.21 1.33∗∗∗

Joint p-value 0.00 0.00 0.16 0.39 —
KPSS-statistic 3.45 5.10 3.46 3.48 3.78

τ̂ tθ̂ −0.012 t1.263 −1.374 · 10−5t2.450

Note: Asterisks denote rejection of the null hypothesis at the ∗∗∗1%, ∗∗5%, and ∗10% significance level. Depending on the specific table entry,
the null hypothesis refers to coefficient(s) being zero or a well-specified cointegrating relation.

trend on EKC evidence. Table 3 shows the estimation results of the quadratic EKC specification

yi,t = τ1,i + τ2,it+ ϕ1,ixi,t + ϕ2,ix
2
i,t + ui,t. (M1)

This setting (possibly with the additional constraint τ2,i = 0) has been explored in numerous papers,

for example, Selden and Song (1994), Piaggio and Padilla (2012), Chan and Wang (2015), Wagner

(2015), Wang et al. (2018), and Wagner et al. (2020). For Model (M1), an inverted-U relationship

results when ϕ1,i > 0 and ϕ2,i < 0 and empirical evidence hereof is traditionally interpreted as the

existence of an EKC. If these coefficients have the correct signs, then the country’s turning point

– the level of economic growth at which environmental improvement starts – can be computed

as exp (−ϕ1,i/2ϕ2,i). We assess the parameter values and their significance using FM-SOLS and

FM-SUR (repeating the analysis of Wagner et al. (2020) for ease of comparison) and the simulated

approach of Section 3.2. Regardless of the estimation method and country, all coefficient signs are

in agreement with the EKC hypothesis. The parameters ϕ1,i are generally significantly different

from zero but the significance of ϕ2,i does vary across estimation methods. FM-SOLS and FM-SUR

typically (strongly) reject H0 : ϕ2,i = 0 (i = 1, . . . , 6) whereas evidence against these null hypotheses

is less pronounced for the simulation-based approach. The same behaviour emerges when testing

ϕ2,1 = . . . = ϕ2,6 = 0 jointly. This pattern reminds us of the simulation results in Table 2 where the

cross-sectional dimensions N = 5 and N = 10 cause over-sized tests for FM-SOLS and FM-SUR

and conservative tests for simulation-based inference. The KPSS test does not indicate any signs

of misspecification. Overall, Model (M1) leads to considerable evidence in favour of a quadratic

cointegrating EKC.

The reported evidence in favour of the EKC should not come as surprise. First, the set of
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Figure 2: The magnitude of the Wald test for fixed values of θ when testing H0 : τg = 0 under Model
(M2). Dash lines display the 95% quantile of a chi-squared distributed random variable with 1 degree of
freedom (red) and the NLS estimate θ̂ = 1.263 for specification (M2).

countries was selected based on these criteria. Second, the visualisations of the data clearly suggest

nonlinear effects (recall Figures 1(a) and 1(c) for the case of Belgium). With Model (M1) being

restrictive in the sense that nonlinearities over time are solely incorporable through x2i,t, we expect

this variable to be important. In line with our proposed GTACPR framework, we subsequently add

a global flexible trend and estimate

yi,t = τgt
θ + τ1,i + τ2,it+ ϕ1,ixi,t + ϕ2,ix

2
i,t + ui,t. (M2)

From a statistical perspective, the term τgt
θ opens a different channel through which nonlinearities

can be described. We refer back to the introduction for further elaboration on this point. From an

economic perspective, τgtθ captures changes in CO2 emissions that are common across series and

thus unrelated to changes in national GDPs. Parameter inference for Model (M2) is also reported

in Table 3. The contributions of x2i,t are insignificant for both individual countries and all countries

jointly. How about the significance of the global trend? The standard Wald test for τg = 0 is invalid

because θ is unidentified under the null hypothesis (see Assumption 1 and the related discussion).

As a heuristic alternative, we vary θ over the interval [0, 2.5] and compute Wald statistics while

assuming θ to be fixed. Comparing these Wald statistics to the 95% quantile of a χ2(1)-distributed

random variable (critical value: 3.842), the range of θ-values from about 0.5 to 1.75 implies a

significant global trend (Figure 2). Having estimated θ̂ = 1.263, our analysis suggests that the

global trend and not GDP per capita is the source of nonlinearity. Before interpreting this result,

we first verify whether the model with ϕ2,1 = . . . = ϕ2,6 = 0 shows signs of misspecification.

Omitting insignificant parameters from the previous model specification, we arrive at

yi,t = τgt
θ + τ1,i + τ2,it+ ϕ1,ixi,t + ui,t. (M3)

21



Model (M3) is linear in log per capita GDP. The positive parameter estimates for ϕ1,i imply that

at a given point in time increases in economic growth imply increases in CO2 emissions. However,

as τ̂g = −1.374 × 10−5 and θ̂ = 2.45, there will be common emission reductions over time. Also,

the omission of the quadratic terms in log per capita GDP does not seem to result in a misspecified

model. First, the KPSS test does not reject the null of cointegration. Second, there is no (visual)

evidence that the linear functional form of (M3) is inappropriate. To arrive at this last conclusion,

we compute ỹi,t = yi,t− τ̂gt
θ̂− τ̂1,i− τ̂2,it and employ the nonparametric kernel estimator from Wang

and Phillips (2009) to estimate ỹi,t = f(xi,t) + ũi,t for each individual country. Figure 3 shows

the nonparametric estimate in blue and the fit of Model (M3) in red. After the removal of the

global trend, there are some temporary departures from linearity but there is little curvature overall

and certainly no visual turning point. We further conduct a formal statistical test for the null of

linearity using the model specification test as outlined in section 3 of Wang and Phillips (2016). The

results are reported in Table S7 in the supplement. Based on the full sample, linearity is rejected

for Austria only. A comparison with the 95% confidence intervals of the kernel estimate (Figure 3)

suggests that this rejection is caused by the sharp decline in CO2 emissions during World War II.

We subsequently repeat the analysis using the T = 69 observations after 1945. Linearity is never

rejected.16 All this aligns well with our earlier findings of a relevant global trend and irrelevant

quadratic effects in log GDP per capita.

The preceding analysis suggests that the global flexible trend captures omitted determinants

of CO2 emission levels that have been decreasing over time. In their analysis, Grossman and

Krueger (1995) already included a global deterministic trend in their model because they “did not

want to attribute to national income growth any improvements in local environmental quality that

might actually be due to global advances in the technology for environmental preservation or to an

increased global awareness of the severity of environmental problems”. Indeed, since reliable data on

green technology adaptation17 and global awareness is scarcely available (certainly for time horizons

allowing for a cointegration analysis), these variables are likely missing and thus requiring a proxy.

Similar remarks are applicable to variables such as pollution control policies18. In reduced-form

models, an EKC finding is typically explained by national income being the proxy for these omitted
16The properties of nonparametric kernel estimators in nonlinear cointegration models have been studied by Wang

and Phillips (2009) and Wang and Phillips (2016), among others. The latter reference is particularly relevant because
it establishes that kernel estimators remain consistent and asymptotically (mixed) normal under serially correlated
errors and endogeneity. These papers do not include deterministic trends in the DGP. However, we conjecture that
detrending does not affect the asymptotic properties of the kernel estimator due to the high convergence rates of the
trend parameters in comparison to the slow convergence rates of the nonparametric estimator. We take a bandwidth
h = T−1/3 in implementation. Matlab functions for nonparametric kernel regression and specification tests are
available at https://github.com/HannoReuvers.

17Nordhaus (2014) discusses the link between climate change and technological changes.
18A policy variable, ‘Repudiation of Contracts by Government’, was included by Panayotou (1997) to proxy the

quality of environmental policies and institutions.
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Figure 3: The 95% confidence intervals of the non-parametric kernel estimate for the relationship between
GDP and CO2 emissions (blue) after removal of the country-specific and joint flexible deterministic trends.
The red line is the linear fit from Model (M3). As the sample covers the years 1870–2014 there are several
observations during World War I and World War II. The affected ranges of GDP are indicated in grey.

variables. That is, at higher levels of national income, countries have access to cleaner technologies

and their citizens show greater appreciation for the environment and pollution legislation. The

current analysis contradicts these income effects and points towards improvements being captured

by a global trend.

Our final model specification (M3) is linear in log GDP per capita. Moreover, for a given year,

the coefficient estimates suggest that increasing national income by 1% implies an increase in CO2

emissions of about 1%–2.5% (depending on the country). This result seems plausible for non-

carbon-neutral economies. However, CO2 emissions in Austria, Belgium, Finland, the Netherlands,

Switzerland, and the UK are jointly reducing at the end of the sample. What causes these global

emission reductions? Mazzanti and Musolesi (2013) suggest that conglomerates of countries antici-

pate and respond to international climate agreements such as the Rio Convention (1992) and Kyoto

Protocol (adopted in 1997; operational since 2005). Interestingly, the latter agreement contains

emission reduction targets to be reached in 2020, and such “working-towards-a-common-reduction-

deadline” does point towards a time effect.19 Alternatively, given our sample of European countries,
19According to the Doha amendment of the Kyoto Protocol, the reduction commitments were

92% (over the period 2008–2012) and 80% (over the period 2013–2020) of 1990 emission levels
for Austria, Belgium, Finland, the Netherlands, and the UK. For Switzerland, the reduction tar-
get was also 92% (over the period 2008–2012) but 84.2% (over the period 2013–2020). (source:
https://unfccc.int/files/kyoto_protocol/application/pdf/kp_doha_amendment_english.pdf).
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EU-coordinated emission reduction efforts like the EU Emissions Trading System can be a driving

force behind these common emission decreases.
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Appendix A: Proofs for main theorems

We collect the proofs of the main theorems in this section. Further information is available in the

Supplement.

Proof of Theorem 1: In view of the identity ∥a+ b∥2 = ∥a∥2 + ∥b∥2 + 2a′b, we have

QT (γ) =
1

2

T∑

t=1

∥yt −Z ′
tβ∥2 − τg

T∑

t=1

tθ (yt −Z ′
tβ)

′
ıN +

1

2
Nτ 2g

T∑

t=1

t2θ.

The proof proceeds along the lines of Lemma 1 of Andrews and Sun (2004) and Theorem 3.1 of

Chan and Wang (2015). The proofs separate into two parts. The first part uses a Taylor expansion

of QT (γ) around QT (γ0) to recover a quadratic approximation for QT (γ) on the set Γδ,kT ⊆ Γ . In

the second part, we obtain the limiting distribution from this quadratic approximation.

Part 1 : Let {kT , T ≥ 1} denote a deterministic sequence such that kT → ∞ as T → ∞. Define

Γδ,kT = {γ ∈ Γ : ∥Gγ0,T (γ − γ0)∥ ≤ kT , ∥γ − γ0∥ ≤ δ} and select a δ > 0 such that QT (·) is twice

differentiable on {γ ∈ Rp+2 : ∥γ − γ0∥ ≤ δ} ⊂ Γ . For any γ ∈ Γδ,kT , the Taylor expansion of QT (γ)

around γ0 reads

QT (γ)−QT (γ0) = Q̇′
T (γ0)(γ − γ0) +

1

2
(γ − γ0)

′Q̈T (γ̄)(γ − γ0)

= Q̇′
T (γ0)(γ − γ0) +

1

2
(γ − γ0)

′
[
Q̈T (γ̄)− Q̈T (γ0)− Q̈T,2(γ0) + Q̈T,1(γ0)

]
(γ − γ0),

(A.1)

where γ̄ is a point on the line segment connecting γ and γ0, and the various derivatives of QT are

Q̇T (γ0) = −
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2θ0(ln t)2 Nτg0t

2θ0 ln t τg0t
θ0 ln t ı′NZ ′

t

Nτg0t
2θ0 ln t Nt2θ0 tθ0ı′NZ ′

t

τg0t
θ0 ln tZtıN tθ0ZtıN ZtZ

′
t


−

T∑

t=1

tθ0 ln t




τg0 ln t 1

1 0

O


u′

tıN

=: Q̈T,1(γ0)− Q̈T,2(γ0).

For simplicity, letRT (γ̄,γ0) =
1
2
(γ−γ0)

′ [Q̈T (γ̄)− Q̈T (γ0)− Q̈T,2(γ0)
]
(γ−γ0), AT := G′−1

γ0,T
Q̈T,1(γ0)G

−1
γ0,T

,
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and bT := −G′−1
γ0,T

Q̇T (γ0). We finally arrive at

QT (γ)−QT (γ0) = −b′T
[
Gγ0,T (γ − γ0)

]
+

1

2

[
Gγ0,T (γ − γ0)

]′
AT

[
Gγ0,T (γ − γ0)

]
+RT (γ̄,γ0)

=
1

2

[
Gγ0,T (γ − γ0)−A−1

T bT
]′
AT

[
Gγ0,T (γ − γ0)−A−1

T bT
]
− 1

2
b′TA

−1
T bT +RT (γ̄,γ0).

(A.2)

Part 2 : For any ε > 0, let ΓT (ε) =
{
γ ∈ Γ :

∥∥Gγ0,T (γ − γ0)−A−1
T bT

∥∥ ≤ ε
}
. We shall show that

the minimum of QT (·) over γ ∈ ΓT (ε) is attained in the interior of ΓT (ε). The next two statements

are proven later:

(a) supγ∈Γδ,kT

∥∥∥G′−1
γ0,T

[
Q̈T (γ)− Q̈T (γ0)

]
G−1

γ0,T

∥∥∥ = op(1);

(b) A−1
T bT = Op(1), where AT

T→∞−→d A∞ with P (A∞ > 0) = 1.

Given claim (b), for any ε > 0, we have P (ΓT (ε) ⊂ Γδ,kT ) → 1 as T → ∞ because ∥G−1
γ0,T

∥ →
0. Define γ∗

T = γ0 + G−1
γ0,T

A−1
T bT . Clearly, γ∗

T is an interior point of ΓT (ε) as long as ε > 0.

Subsequently select a γε ∈ ∂ΓT (ε), i.e., γε is a boundary point of ΓT (ε). From (A.2), we have

QT (γε)−QT (γ
∗
T ) = [QT (γε)−QT (γ0)]− [QT (γ

∗
T )−QT (γ0)]

=

[
1

2
µ′

TATµT − 1

2
b′TA

−1
T bT +RT (γ̄ε,γ0)

]
−
[
−1

2
b′TA

−1
T bT +RT (γ̄

∗
T ,γ0)

]

=
1

2
µ′

TATµT +RT (γ̄ε,γ0)−RT (γ̄
∗
T ,γ0) =

1

2
µ′

TATµT + op(1),

where µT a random vector with ∥µT∥ = ε, and γ̄ε is a point on the line segment connecting γε and

γ0. The point γ̄∗
T is defined similarly. Moreover, the final equality follows from

RT (γ̄,γ0) ≤
1

2
∥Gγ0,T (γ − γ0)∥2

{
sup

γ∈Γδ,kT

∥∥∥G′−1
γ0,T

[
Q̈T (γ)− Q̈T (γ0)

]
G−1

γ0,T

∥∥∥+
∥∥∥G′−1

γ0,T
Q̈T,2(γ0)G

−1
γ0,T

∥∥∥
}
,

claim (a), and
∥∥G′−1

γ0,T
Q̈T,2(γ0)G

−1
γ0,T

∥∥ ≤ op(1)
∣∣T−1

∑T
t=1

(
t
T

)θ0+1/2 ∣∣ = op(1). The second part of

claim (b), P (A∞ > 0) = 1, implies that P
(
1
2
µ′

TATµT > 0
)
→ 1 as T → ∞. Therefore, P

(
QT (γε) >

QT (γ
∗
T )
)
→ 1 for any boundary point γε and the minimum of QT must be attained at an interior

point of ΓT (ε), say γ̂T (ε). As in Andrews and Sun (2004), we can now construct a sequence

{γ̂T} such that γ̂T = γ̂T (J
−1
T ) ∈ ΓT (J

−1
T ), where JT → ∞, satisfying the first-order conditions

P
(
Q̇T

(
γ̂T

)
= 0
)
→ 1 as T → ∞. As a result, we obtain

Gγ0,T (γ̂T − γ0) = A−1
T bT + op(1). (A.3)

It remains to verify claims (a) and (b). We consider the sequence Γδ,kT for kT = κ̃ lnT and
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κ̃ > 0. There exists T ∗ > 0 such that whenever T > T ∗,

Γδ,kT ⊂ {γ ∈ Γ : ∥Gγ0,T (γ − γ0)∥ ≤ κ̃ lnT} ⊂ Nκ,T (γ0),

where Nκ,T (γ0) is given in (S.22), and κ = Cκ̃ with some constant C > 0. Claim (a) thus

holds if supγ∈Nκ,T (γ0)

∥∥∥G′−1
γ0,T

[
Q̈T (γ)− Q̈T (γ0)

]
G−1

γ0,T

∥∥∥ = op(1). Since N is fixed, we can bound

G′−1
γ0,T

[
Q̈T (γ) − Q̈T (γ0)

]
G−1

γ0,T
element-wise. Using the identity (yt −Z ′

tβ)
′ ıN = Nτg0t

θ0 −
(
β −

β0

)′
ZtıN + u′

tıN and Lemma S.3.3, it is easily shown that the supremum of each element is in-

deed op(1). Claim (b) follows directly from the weak convergence results in Lemma S.3.2. That is,

AT −→d

∫
J(r;γ0)J(r;γ0)

′ dr and bT −→d

∫
J(r;γ0) dBu(r) + Bvu as T → ∞. Theorem 1 now

follows from (A.3). ■

Proof of Theorem 2 The proof is to a large extent an application of theorem 2 in Jansson (2002).

We provide the details in the Supplement. ■

Proof of Theorem 3 We abbreviate M =MT . By simple rearrangements, we obtain

{
G′−1

γ̂T ,M

[
M∑

m=1

Ĵ
(
m; γ̂T

)
Ĵ
(
m; γ̂T

)′
]
G−1

γ̂T ,M

}−1{
G′−1

γ̂T ,M

[
M∑

m=1

Ĵ
(
m; γ̂T

)
µ̂m

]
+ B̂−

vu

}

= S−1
M

{
G′−1

γ0,M

[
M∑

m=1

Ĵ
(
m;γ0

)
Ĵ
(
m;γ0

)′
]
G−1

γ0,M
+R1,M

}−1

×
{
G′−1

γ0,M

[
M∑

m=1

Ĵ
(
m;γ0

)
µ̂m

]
+ S′−1

M B̂−
vu +R2,M

}
, (A.4)

while having defined Ĵ
(
m;γ0

)
=
[
τg0m

θ0 lnm ıN ,m
θ0ıN , Ẑ ′

m

]′
and the quantities

(a) SM := Gγ0,M
G−1

γ̂T ,M =

[
Mθ0−θ̂T 0 0

(τg0−τ̂g,T )Mθ0−θ̂T lnM Mθ0−θ̂T 01×p

0p×1 0p×1 Ip

]
,

(b) R1,M = G′−1
γ0,M

∑M
m=1

[
Ĵ
(
m; γ̂T

)
Ĵ
(
m; γ̂T

)′ − Ĵ
(
m;γ0

)
Ĵ
(
m;γ0

)′]
G−1

γ0,M
,

(c) R2,M = G′−1
γ0,M

∑M
m=1

[
Ĵ
(
m; γ̂T

)
− Ĵ

(
m;γ0

)]
µ̂m.

(a) We have SM −→p Ip+2. To see this, note that M |θ̂T−θ0| = exp
(
( lnM
T θ0+1/2Op(1)

)
−→p 1 and

∣∣ τ̂g,T − τg0
∣∣ lnM =

∣∣T θ0+1/2

lnT

(
τ̂g,T − τg0

)∣∣ lnT lnM
T θ0+1/2 = op(1).

(b) Looking at the elements of R1,M , we conclude that R1,M = o∗p(1) if results similar to those

in Lemma S.3.3(i)-(iii) continue to hold. Two conditions need to be verified:

(b1) P (γ̂T ∈ Nκ,M(γ0)) → 1 with Nκ,M(γ0) similarly defined to (S.22),

(b2) the stochastic order of terms remains the same when replacing Zm by Ẑm, conditional on the

sample (x1,y1), . . . , (xT ,yT ).
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For condition (b1), using set inclusions similar to those below (A.3), it suffices to show γ̂T ∈
{
γ ∈ Γ : ∥Gγ0,M (γ − γ0) ∥ ≤ κ̃ lnM

}
with large probability for some κ̃ > 0. This is trivial

by
∥∥Gγ0,M

(
γ̂T − γ0

)∥∥ ≤
∥∥Gγ0,M

G−1
γ0,T

∥∥∥∥Gγ0,T

(
γ̂T − γ0

)∥∥ = Op(1), where Gγ0,M
G−1

γ0,T
= O(1).

Continuing with (b2), by independence between {em} and
{
Ω̂T , ∆̂

−
vu

}
, the consistency of Ω̂T , and

a FCLT for an i.i.d. sequence, we may have

1√
M

[rM ]∑

m=1


µ̂m

υ̂m


 = Ω̂

1/2
T

1√
M

[rM ]∑

m=1

en −→d∗ B(r), (A.5)

in probability, c.f. Section 2 of Park (2002). Since
{
Ẑm

}
contains partial sum processes of {υ̂m},

its integer powers and deterministic terms, (b2) is satisfied.

(c) We have
∥∥R2,M

∥∥ ≤ C
∑4

j=1

∣∣R2,M,j

∣∣ where

∣∣R2,M,1

∣∣ =M−1/2

∣∣∣∣∣
M∑

m=1

M−θ0
(
mθ̂T −mθ0

)
µ̂′

mıN

∣∣∣∣∣ = O∗
p

(
lnM

T θ0+1/2

)
= o∗p(1),

∣∣R2,M,2

∣∣ =M−1/2

∣∣∣∣∣
M∑

m=1

M−θ0
(
mθ̂T −mθ0

)
ln
m

M
µ̂′

mıN

∣∣∣∣∣ = T−(θ0+1/2)O∗
p(1) = o∗p(1),

(A.6)

∣∣R2,M,3

∣∣ = M−1/2 | τ̂g,T − τg0|
∣∣∣
∑M

m=1M
−θ0

(
mθ̂T −mθ0

)
lnm µ̂′

mıN

∣∣∣ = O∗
p

(
lnT (lnM)2

T 2θ0+1

)
= o∗p(1), and

∣∣R2,M,4

∣∣ =M−1/2 | τ̂g,T − τg0|
∣∣∣
∑M

m=1

(
m
M

)θ0 lnm µ̂′
mıN

∣∣∣ = O∗
p

(
lnT lnM
T θ0+1/2

)
= o∗p(1). All these stochastic

orders are a consequence of (A.5) and a straightforward modification of Lemma S.3.2. Overall, we

have R2,M = o∗p(1).

It remains to look at the leading terms in (A.4). The elements of Ω̂ and ∆̂ are always multi-

plicative in the construction. From SM −→p Ip+2, (A.5), and Lemma S.3.2, we have

G′−1
γ0,M

[
M∑

m=1

Ĵ
(
m;γ0

)
µ̂m

]
+S′−1

M B̂−
vu −→d∗

∫ 1

0

J(r;γ0) dBu(r)+




02×1

Ωv1u1b1
...

ΩvNuN
bN



+




02×1

∆−
v1u1

b1
...

∆−
vNuN

bN



,

(A.7)

in probability. The last two terms in (A.7) equal Bvu, because Ω+∆− = (∆+∆′−Σ)+(Σ−∆′) =

∆. Similarly,

G′−1
γ0,M

[
M∑

m=1

Ĵ
(
m;γ0

)
Ĵ
(
m;γ0

)′
]
G−1

γ0,M
−→d∗

∫ 1

0
J(r;γ0)J(r;γ0)

′ dr, (A.8)

in probability. The theorem follows after combining the limiting distribution of these leading terms
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through (A.4). ■

Proof of Theorem 4 The proof follows from a functional central limit theorem for linear processes

and the continuous mapping theorem. See the Supplement for further details. ■
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Abstract

This document contains further details on our simulation study, mathematical proofs, and empirical

application.

(1) Section S1: the simulation DGP used in the section Introduction.

(2) Section S2: the derivation of limiting distribution in Example 3.1.

(3) Section S3: proofs for some auxiliary lemmas that are used to show the main theorems.

(4) Section S4: further details on Theorems 3.2 and 3.4.

(5) Section S5: details on the simulation DGPs 2(a)–2(c).

(6) Section S6: additional simulation results.

(7) Section S7: further empirical results including a detailed study on univariate models.

(8) Section S8: some discussion on the invalidity of fully modified OLS estimators.
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S1 Simulation DGP Used for Introduction

The simulation DGPs of the introduction are based on the data for Austria, Belgium and Finland. Parameter

values are (nonlinear) least squares estimates and innovations are mean-zero normally distributed random

variables with a covariance matrix estimated from the residuals and ∆xt. The specific parametrization for

the model with global trend is




y1,t

y2,t

y3,t


 = τgt

2.21ı3 −




8.89

4.16

16.39


+




0.0017

0.0122

0.0108


 t+




2.015x1,t

1.477x2,t

2.703x3,t


+ ut, (S.1)

where [u′
t ∆x′

t]
′ ∼ N(0, Σ̂) with

Σ̂ =




18.86 ∗ ∗ ∗ ∗ ∗
1.35 2.02 ∗ ∗ ∗ ∗
3.68 2.65 1.88 ∗ ∗ ∗
0.10 0.38 1.46 0.83 ∗ ∗
0.45 0.09 0.22 0.07 0.18 ∗
0.26 0.14 0.56 0.15 0.14 0.24




× 10−2.

The simulations investigating the influence of the redundant trend follow




y1,t

y2,t

y3,t


 =




−1.01

8.64

−5.15


+




−0.0111

0.0058

0.0163


 t+




1.103x1,t

−0.001x2,t

1.232x3,t


+ ϕ2




x21,t

x22,t

x23,t


+ ut,

where [u′
t ∆x′

t]
′ ∼ N(0, Σ̂) with

Σ̂ =




18.57 ∗ ∗ ∗ ∗ ∗
4.03 4.02 ∗ ∗ ∗ ∗
11.82 9.90 35.88 ∗ ∗ ∗
0.56 0.64 1.79 0.83 ∗ ∗
0.47 0.20 0.45 0.07 0.18 ∗
0.43 0.35 0.91 0.15 0.14 0.24




× 10−2.

Compared to the empirical application (and thus also DGP2 in Section 4), the main differences are the

smaller N and the omission of serial correlation in both the innovations and the increments of the integrated

variables. These modifications allow us to showcase the influence of the omitted global trend while not

having to worry about the effects of long-run covariance estimation on statistical size.
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S2 Limiting Distribution for Example 3.1

Invoking Theorem 3.1, we have


 T θ0+

1
2

T θ0+
1
2 τ0 ln(T ) T θ0+

1
2




 θ̂T − θ0

τ̂T − τ0


 −→d



∫ (

τ0r
θ0 ln(r)

)2
dr

∫
τ0r

2θ0 ln(r)dr
∫
τ0r

2θ0 ln(r)dr
∫
r2θ0dr



−1 

∫
τ0r

θ0 ln(r)dBu
∫
rθ0dBu


 .

It remains to show that the quantity in the RHS is normally distributed with a mean and variance as in the

example. Consider an arbitrary vector c = [c1, c2]
′ and define

Ac = c′



∫
τ0r

θ0 ln(r)dBu
∫
rθ0dBu


 =

∫ [
c1τ0r

θ0 ln(r) + c2r
θ0
]
dBu

d
= Ω1/2

uu

∫ [
c1τ0r

θ0 ln(r) + c2r
θ0
]
dWu.

Gaussianity is preserved under mean square integration (see, e.g., section 4.6 in Soong (1973)) and we

proceed to the mean and variance of Ac. From (4.190) in the same reference, it is not hard to obtain

E(Ac) = Ω
1/2
uu

∫ [
c1τ0r

θ0 ln(r) + c2r
θ0
]
dE
(
Wu

)
= 0. Moreover, (2.16) in Tanaka (2017) yields

Var
(
Ac

)
= Ωuu

∫ [
c1τ0r

θ0 ln(r) + c2r
θ0
]2

dr = Ωuuc
′



∫ (

τ0r
θ0 ln(r)

)2
dr

∫
τ0r

2θ0 ln(r)dr
∫
τ0r

2θ0 ln(r)dr
∫
r2θ0dr


 c.

Our choice of c was arbitrary and thus
[ ∫

τ0rθ0 ln(r)dBu∫
rθ0dBu

]
∼ N

(
0,Ωuu

[ ∫ (
τ0rθ0 ln(r)

)2
dr

∫
τ0r2θ0 ln(r)dr∫

τ0r2θ0 ln(r)dr
∫
r2θ0dr

])
. Fi-

nally, use
∫ (

rθ0 ln(r)
)2
dr = 2

(2θ0+1)3
,
∫
r2θ0 ln(r)dr = − 1

(2θ0+1)2
, and basic linear algebra to recover the

result.

S3 Auxiliary Lemmas

Lemma S.3.1. (i) For aL > −1, we have supa≥aL

∣∣∣ 1T
∑T

t=1

(
t
T

)a∣∣∣ ≤ C.

(ii) Under Assumption 3.2, for any a ≥ aL > −1
2 , and any k ≥ 0, E

(
1√
T

∑T
t=1

(
t
T

)a
(ln t)kui,t

)2
≤

C(lnT )2k, i = 1, . . . , N.

(iii) Under Assumption 3.2, for some aL and aU such that −1
2 < aL < aU < ∞, and any k ≥ 0,

E
(
supa∈[aL,aU ]

∣∣∣ 1√
T

∑T
t=1

(
t
T

)a
(ln t)kui,t

∣∣∣
)
≤ C(lnT )k, i = 1, . . . , N.

(iv) If aL and aU satisfy −1 < aL < aU < ∞, and if k = 0, 1, 2, . . ., then

sup
a∈[aL,aU ]

∣∣∣∣∣
1

T

T∑

t=1

(
t

T

)a(
ln

t

T

)k

−
∫ 1

0
ra(ln r)kdr

∣∣∣∣∣ ≤ C
(lnT )k+1

T 1+min(aL,0)
.
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Proof (i) This is shown in lemma 4 of Robinson (2012). (ii) Note that

E

(
1√
T

T∑

t=1

(
t

T

)a

(ln t)kui,t

)2

=
1

T

T∑

t=1

T∑

s=1

(
t

T

)a ( s

T

)a
(ln t)k(ln s)k E(ui,tui,s)

≤ (lnT )2k

T

T∑

t=1

T∑

s=1

(
t

T

)a ( s

T

)a ∣∣E(ui,tui,s)
∣∣ ≤ 2

(lnT )2k

T

T∑

t=1

t−1∑

s=0

(
t

T

)a( t− s

T

)a ∣∣γi,s
∣∣,

(S.1)

where we define γi,s = E(ui,tui,t−s). For the given index ranges, we also have |t− s| ≤ t such that

E

(
1√
T

T∑

t=1

(
t

T

)a

(ln t)kui,t

)2

≤ 2(lnT )2k
1

T

T∑

t=1

(
t

T

)2a ∞∑

s=0

|γi,s|. (S.2)

The first summation in the RHS of (S.2) is bounded in view of Lemma S.3.1(i) and
∑∞

s=0 |γi,s| < ∞ due to As-

sumption 3.2(a) (cf. Appendix 3.A. in Hamilton (1994)). (iii) Using the equality t
T =

∑t−1
s=0

[(
s+1
T

)a −
(
s
T

)a]

and a change in the order of summation, we find

T∑

t=1

(
t

T

)a

(ln t)kui,t =

T∑

t=1

t−1∑

s=0

[(
s+ 1

T

)a

−
( s

T

)a]
(ln t)kui,t =

T−1∑

s=0

[(
s+ 1

T

)a

−
( s

T

)a] T∑

t=s+1

(ln t)kui,t

=

(
1

T

)a T∑

t=1

(ln t)kui,t +
T−1∑

s=1

[(
s+ 1

T

)a

−
( s

T

)a]
(

T∑

t=1

(ln t)kui,t −
s∑

t=1

(ln t)kui,t

)

=

(
1

T

)a T∑

t=1

(ln t)kui,t +
T∑

t=1

(ln t)kui,t −
(
1

T

)a T∑

t=1

(ln t)kui,t −
T−1∑

s=1

[(
s+ 1

T

)a

−
( s

T

)a] s∑

t=1

(ln t)kui,t,

and hence

E

(
sup

a∈[aL,aU ]

∣∣∣∣∣
1√
T

T∑

t=1

(
t

T

)a

(ln t)kui,t

∣∣∣∣∣

)
≤ E

∣∣∣∣∣
1√
T

T∑

t=1

(ln t)kui,t

∣∣∣∣∣

+ E

(
sup

a∈[aL,aU ]

∣∣∣∣∣
1√
T

T−1∑

s=1

[(
s+ 1

T

)a

−
( s

T

)a] s∑

t=1

(ln t)kui,t

∣∣∣∣∣

)
.

(S.3)

For the first term in the RHS of (S.3), we have E
∣∣∣ 1√

T

∑T
t=1(ln t)

kui,t

∣∣∣ ≤
(
E
(

1√
T

∑T
t=1(ln t)

kui,t

)2)1/2

≤
C(lnT )k by Lemma S.3.1(ii) with a = 0. For the second term, note that

∣∣∣∣∣
1√
T

T−1∑

s=1

[(
s+ 1

T

)a

−
( s

T

)a] s∑

t=1

(ln t)kui,t

∣∣∣∣∣ ≤
1√
T

T−1∑

s=1

( s

T

)a ∣∣∣∣
(
1 +

1

s

)a

− 1

∣∣∣∣

∣∣∣∣∣
s∑

t=1

(ln t)kui,t

∣∣∣∣∣ . (S.4)

To deal with the supremum of
∣∣(1 + 1

s

)a − 1
∣∣ over [aL, aU ], we define ga(x) = (1 + x)a − 1 for 0 ≤ x ≤ 1. If

−1
2 < a ≤ 1, then |ga(x)| ≤ |a|x by Bernoulli’s inequality. If a ≥ 1, then convexity of ga(x) implies

ga(x) ≤ (1− x)ga(0) + xga(1) ≤ (2a − 1)x.
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We conclude that |ga(x)| ≤ Cx for all aL ≤ a ≤ aU and x ∈ [0, 1]. Combining this result with (S.4), we have

E

(
sup

a∈[aL,aU ]

∣∣∣∣∣
1√
T

T−1∑

s=1

[(
s+ 1

T

)a

−
( s

T

)a] s∑

t=1

(ln t)kui,t

∣∣∣∣∣

)

≤ E

(
1√
T

T−1∑

s=1

( s

T

)aL
sup

a∈[aL,aU ]

∣∣∣∣
(
1 +

1

s

)a

− 1

∣∣∣∣

∣∣∣∣∣
s∑

t=1

(ln t)kui,t

∣∣∣∣∣

)
≤ C

1√
T

T−1∑

s=1

( s

T

)aL 1

s
E

∣∣∣∣∣
s∑

t=1

(ln t)kui,t

∣∣∣∣∣

≤ CT−(aL+1/2)
T−1∑

s=1

saL−1/2(ln s)k ≤ C(lnT )k

[
1

T

T∑

s=1

( s

T

)aL−1/2
]
≤ C(lnT )k,

where we used E
∣∣∑s

t=1(ln t)
kui,t

∣∣ ≤
(
E
(∑s

t=1(ln t)
kui,t

)2)1/2 ≤ Cs1/2(ln s)k (the steps in the proof of (ii)

require a small modification to establish this) to go to the last line, and (i) to obtain the final inequality.

The proof is complete since we have bounded both terms in the RHS of (S.3). (iv) If we divide the integral

into integration intervals of width 1
T , then we find

sup
a∈[aL,aU ]

∣∣∣∣∣
1

T

T∑

t=1

(
t

T

)a(
ln

t

T

)k

−
∫ 1

0
ra(ln r)kdr

∣∣∣∣∣

= sup
a∈[aL,aU ]

∣∣∣∣∣
T∑

t=1

∫ t/T

(t−1)/T

(
t

T

)a(
ln

t

T

)k

dr −
T∑

t=1

∫ t/T

(t−1)/T
ra(ln r)kdr

∣∣∣∣∣

= sup
a∈[aL,aU ]

∣∣∣∣∣
1

T

(
1

T

)a(
ln

1

T

)k

−
∫ 1/T

0
ra(ln r)kdr +

T∑

t=2

∫ t/T

(t−1)/T

[(
t

T

)a(
ln

t

T

)k

− ra(ln r)k

]
dr

∣∣∣∣∣

≤ sup
a∈[aL,aU ]

∣∣∣∣∣

(
1

T

)a+1(
ln

1

T

)k
∣∣∣∣∣+ sup

a∈[aL,aU ]

∣∣∣∣∣

∫ 1/T

0
ra(ln r)kdr

∣∣∣∣∣+ sup
a∈[aL,aU ]

T∑

t=2

∫ t/T

(t−1)/T

∣∣∣∣∣

(
t

T

)a(
ln

t

T

)k

− ra(ln r)k

∣∣∣∣∣ dr

=: Ia+ Ib+ Ic, (S.5)

using the triangle inequality. Clearly, Ia is bounded by T−(aL+1)(lnT )k. For Ib we can use the standard inte-

gral (cf. Adams and Essex (2016)), namely
∫ 1/T
0 ra(ln r)kdr = (−1)k

a+1

(
1
T

)a+1
(lnT )k − k

a+1

∫ 1/T
0 ra(ln r)k−1dr

for k ̸= −1, to obtain

∫ 1/T

0
ra(ln r)kdr = (−1)k

(
1

T

)a+1 k−1∑

j=0

k!

(k − j)!

1

(a+ 1)1+j
(lnT )k−j + (−1)k

k!

(a+ 1)k

∫ 1/T

0
radr

= (−1)k
(
1

T

)a+1 k∑

j=0

k!

(k − j)!

1

(a+ 1)1+j
(lnT )k−j .

We therefore conclude that

Ib ≤
k∑

j=1

k!

(k − j)!
sup

a∈[aL,aU ]

1

(a+ 1)1+j

(
1

T

)a+1

(lnT )k−j ≤
k∑

j=1

k!

(k − j)!

1

(aL + 1)1+j

(
1

T

)aL+1

(lnT )k−j

≤ CT−(aL+1)(lnT )k.
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It remains to bound the term Ic. Changing the integration variable to r = t
T − s yields

Ic = sup
a∈[aL,aU ]

T∑

t=2

∫ 1/T

0

∣∣∣∣∣

(
t

T

)a(
ln

t

T

)k

−
(

t

T
− s

)a [
ln

(
t

T
− s

)]k∣∣∣∣∣ ds. (S.6)

We subsequently derive an upper bound for the integrand using an approach which mimics the derivations

in (D.14) and (D.15) in Robinson (2012). For any 2
T ≤ ℓ ≤ 1 (such that 0 < s/ℓ ≤ 1

2), we have

∣∣∣ℓa(ln ℓ)k − (ℓ− s)a
(
ln(ℓ− s)

)k∣∣∣ =
∣∣∣
[
ℓa − (ℓ− s)a

]
(ln ℓ)k + (ℓ− s)a

[
(ln ℓ)k − (ln(ℓ− s))k

]∣∣∣

≤
∣∣∣
[
ℓa − (ℓ− s)a

]
(ln ℓ)k

∣∣∣+
∣∣∣(ℓ− s)a

[
(ln ℓ)k − (ln(ℓ− s))k

]∣∣∣

= ℓa
∣∣ ln ℓ

∣∣k∣∣1− (1− s/ℓ)a
∣∣+ ℓa(1− s/ℓ)a

∣∣∣(ln ℓ)k − (ln(ℓ− s))k
∣∣∣ =: IIa+ IIb,

(S.7)

by the triangle inequality and the fact that
∣∣(ℓ− s)a

∣∣ = (ℓ− s)a. For IIa similar arguments as those found

below (S.4) give
∣∣1− (1− x)a

∣∣ ≤ Cx, and hence

IIa ≤ CℓaL
∣∣ ln ℓ

∣∣k s
ℓ
≤ CℓaL−1

∣∣ ln ℓ
∣∣ks ≤ CℓaL−1

∣∣ ln ℓ
∣∣k 1
T

≤ CℓaL−1
∣∣ ln ℓ

∣∣k 1
T

≤ CℓaL−1
(
lnT

)k 1
T
, (S.8)

since | ln ℓ| ≤ | lnT | for all 2
T ≤ ℓ ≤ 1. For IIb we first note that 1

2 ≤ 1− s/ℓ < 1 and therefore (1− s/ℓ)a <

(1− s/ℓ)−1 ≤ 2. Moreover, we use the factorization pn − qn = (p− q)
∑n−1

j=0 p
n−1−jqj to obtain1

∣∣∣(ln ℓ)k − (ln(ℓ− s))k
∣∣∣ =

∣∣ ln ℓ− ln(ℓ− s)
∣∣
∣∣∣∣∣∣

k−1∑

j=0

(ln ℓ)k−1−j
(
ln(ℓ− s)

)j
∣∣∣∣∣∣

=
∣∣ ln(1− s/ℓ)

∣∣
∣∣∣∣∣∣

k−1∑

j=0

(ln ℓ)k−1−j
(
ln(ℓ− s)

)j
∣∣∣∣∣∣
≤
∣∣ ln(1− s/ℓ)

∣∣
k−1∑

j=0

|ln ℓ|k−1−j |ln(ℓ− s)|j

≤ k |ln(1− s/ℓ)| (lnT )k−1 ≤ 2k
s

ℓ

(
lnT

)k−1
,

(S.9)

because 1/T ≤ ℓ− s < 1 and thus | ln(ℓ− s)| ≤ lnT . Combining all previous results for IIb gives

IIb ≤ Cℓa
s

ℓ

(
lnT

)k−1 ≤ CℓaL−1
(
lnT

)k−1 1

T
.

Since 2
T ≤ ℓ ≤ 1, we use the bounds on IIa and IIb to bound the integrand of (S.6) as follows:

Ic ≤ C sup
a∈[aL,aU ]

T∑

t=2

∫ 1/T

0

(
t

T

)aL−1 1

T
(lnT )kds ≤ C

(lnT )k

T 2

T∑

t=1

(
t

T

)aL−1

.

The asymptotic order of
∑T

t=1

(
t
T

)aL−1 relies on the values of aL. We distinguish three cases: (1) if aL < 0,

then
∑T

t=1

(
t
T

)aL−1
= T 1−aL

∑T
t=1

1
t1−aL

= T 1−aLO(1), (2) if aL = 0, then
∑T

t=1

(
t
T

)aL−1
= T

∑T
t=1 t

−1 =

1For any x > −1, we have the inequality x
1+x

≤ ln(1+x) ≤ x. This implies that | ln(1− s/ℓ)| = − ln
(
1− s/ℓ

)
≤ s/ℓ

1−s/ℓ
≤ 2 s

ℓ
.
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TO(lnT ), and (3) if aL > 0,
∑T

t=1

(
t
T

)aL−1
= O(T ) by Lemma S.3.1(i). Overall, we have

Ic ≤ C
(lnT )k

T 2

T∑

t=1

(
t

T

)aL−1

= O

(
(lnT )k

T aL+1
1{aL<0} +

(lnT )k+1

T
1{aL=0} +

(lnT )k

T
1{aL>0}

)
. (S.10)

It is seen that Ia, Ib, and Ic converge to zero as T → ∞. The proof follows from (S.5). ■

Lemma S.3.2. Let Assumption 3.2 hold. For any a such that −1
2 < aL ≤ a ≤ aU < ∞, any j ∈

{1, 2, . . . , pi}, i ∈ {1, 2, . . . , N}, and k ∈ {0, 1, 2, . . .}, as T → ∞, we have:

(i) 1√
T

∑T
t=1

(
xi,t√
T

)j

ui,t −→d

∫ 1
0 Bj

vi(r)dBui(r) + j∆viui

∫ 1
0 Bj−1

vi (r)dr,

(ii) 1√
T

∑T
t=1

(
t
T

)a (
ln t

T

)k
ui,t −→d

∫ 1
0 ra(ln r)kdBui(r),

(iii) 1
T

∑T
t=1

(
t
T

)a (
ln t

T

)k
(

xi,t√
T

)j

−→d

∫ 1
0 ra(ln r)kBj

vi(r)dr.

Proof For r ∈ (0, 1], we define f(r) = ra(ln r)k. Two partial sum processes are defined as Si,T (r) =

1√
T

∑[rT ]
s=1 ui,s, and Xi,T (r) =

1√
T
xi,[rT ] =

1√
T

∑[rT ]
t=1 vi,t. Finally, set fT (r) =

(
[rT ]
T

)a (
ln [rT ]

T

)k
for r ∈

[
1
T , 1

]
.

(i) This result follows from lemma 1 of Hong and Phillips (2010). (ii) We have

1√
T

(
t

T

)a(
ln

t

T

)k

ui,t = fT

(
t

T

)
ui,t√
T

= fT

(
t

T

)[
Si,T

(
t

T

)
− Si,T

(
t− 1

T

)]

=

[
fT

(
t

T

)
Si,T

(
t

T

)
− fT

(
t− 1

T

)
Si,T

(
t− 1

T

)]
−
[
fT

(
t

T

)
− fT

(
t− 1

T

)]
Si,T

(
t− 1

T

) (S.11)

and hence

1√
T

T∑

t=1

(
t

T

)a(
ln

t

T

)k

ui,t =

(
1

T

)a(
ln

1

T

)k ui,1√
T

+
1√
T

T∑

t=2

(
t

T

)a(
ln

t

T

)k

ui,t

(S.11)
= fT

(
1

T

)
Si,T

(
1

T

)
+

[
fT (1)Si,T (1)− fT

(
1

T

)
Si,T

(
1

T

)]
−

T∑

t=2

[
fT

(
t

T

)
− fT

(
t− 1

T

)]
Si,T

(
t− 1

T

)

fT (1)=0
= −

T∑

t=2

∫ t/T

(t−1)/T
Si,T (r)dfT (r) (S.12)

where we used the fact that Si,T (·) is piecewise constant. In view of Assumption 3.2, we can extend suitably

extend the probability space and have the following uniformly strong approximation of the partial sum

process Si,T (see for example page 562 of Phillips (2007)):

sup
1≤t≤T

∣∣∣∣Si,T

(
t− 1

T

)
−Bui

(
t− 1

T

)∣∣∣∣ = oa.s.

(
1

T (1/2)−(1/q)

)
, (S.13)
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for q > 2. Continuing from (S.12), this uniformly strong approximation gives

1√
T

T∑

t=1

(
t

T

)a(
ln

t

T

)k

ui,t = −
T∑

t=2

∫ t/T

(t−1)/T
Bui(r)dfT (r) + oa.s.

(
1

T (1/2)−(1/q)

)

= −
∫ 1

1/T
Bui(r)dfT (r) + oa.s.

(
1

T (1/2)−(1/q)

)

= Bui

(
1

T

)
fT

(
1

T

)
+

∫ 1

1/T
fT (r)dBui(r) + oa.s.

(
1

T (1/2)−(1/p)

)

=

∫ 1

0
f(r)dBui(r)−

∫ 1/T

0
f(r)dBui(r) +Bui

(
1

T

)
fT

(
1

T

)

+

∫ 1

1/T

[
fT (r)− f(r)

]
dBui(r) + oa.s.

(
1

T (1/2)−(1/p)

)
,

(S.14)

where the third line is obtained using integration by parts of the mean square Riemann-Stieltjes integral, c.f.

theorem 2.7 in Tanaka (2017). It remains to show that
∫ 1/T
0 f(r)dBui(r), Bui

(
1
T

)
fT
(
1
T

)
, and

∫ 1
1/T

[
fT (r)−

f(r)
]
dBui(r) are asymptotically negligible. These quantities are zero mean so it suffices to show that their

variances vanish as T → ∞. By the isometry property and steps similar to those above (S.6), we have

Var

(∫ 1/T

0
f(r)dBui(r)

)
= Ωuiui

∫ 1/T

0

[
f(r)

]2
dr ≤ CT−(2aL+1)(lnT )2k → 0, (S.15)

as T → ∞. Also, Var
(
Bui

(
1
T

)
fT
(
1
T

))
= 1

T Ωuiui

[
fT
(
1
T

)]2
= Ωuiui

(
1
T

)2aL+1 (
ln 1

T

)2k → 0. To control the

variance of
∫ 1
1/T

[
fT (r)− f(r)

]
dBui(r), we look at

∫ 1

1/T
|f(r)− fT (r)|2 dr =

T∑

t=2

∫ t/T

(t−1)/T

∣∣∣∣∣f(r)−
(
t− 1

T

)a(
ln

t− 1

T

)k
∣∣∣∣∣

2

dr

=
T−1∑

t=1

∫ (t+1)/T

t/T

∣∣∣∣∣r
a
(
ln r
)k −

(
t

T

)a(
ln

t

T

)k
∣∣∣∣∣

2

dr

=
T−1∑

t=1

∫ 1/T

0

∣∣∣∣∣

(
t

T
+ s

)a [
ln

(
t

T
+ s

)]k
−
(

t

T

)a(
ln

t

T

)k
∣∣∣∣∣

2

ds.

(S.16)

Now let ℓ ∈
{

1
T ,

2
T , . . . , 1

}
and recall that 0 ≤ s ≤ 1

T (hence also 0 ≤ s
ℓ ≤ 1). Using the triangle inequality,

the expression in absolute values can be bounded as

∣∣∣(ℓ+ s)a(ln(ℓ+ s))k − ℓa(ln ℓ)k
∣∣∣ =

∣∣∣[(ℓ+ s)a − ℓa] (ln(ℓ+ s))k + ℓa
[
(ln(ℓ+ s))k − (ln ℓ)k

]∣∣∣

≤
∣∣∣[(ℓ+ s)a − ℓa] (ln(ℓ+ s))k

∣∣∣+
∣∣∣ℓa
[
(ln(ℓ+ s))k − (ln ℓ)k

]∣∣∣

= ℓa
∣∣∣ (1 + s/ℓ)a − 1

∣∣∣ |ln(ℓ+ s)|k + ℓa
∣∣∣(ln(ℓ+ s))k − (ln ℓ)k

∣∣∣ = IIc+ IId.

(S.17)

By the inequality |ga(x)| ≤ Cx below (S.4) and the fact that |ln(ℓ+ s)| ≤ | ln ℓ| + | ln(1 + s/ℓ)| ≤ lnT +

s/ℓ, we obtain IIc ≤ CℓaL s
ℓ

∣∣lnT + s
ℓ

∣∣k ≤ CℓaL−1(lnT )k 1
T . Moreover, the factorisation pn − qn = (p −
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q)
∑n−1

j=0 p
n−1−jqj yields

IId = ℓa |ln (1 + s/ℓ)|

∣∣∣∣∣∣

k−1∑

j=0

(ln(ℓ+ s))k−1−j (ln ℓ)j

∣∣∣∣∣∣
≤ kℓaL

s

ℓ
|(lnT ) + 1|k−1 ≤ CℓaL−1(lnT )k−1 1

T
. (S.18)

By combination of the bounds on IIc and IId, we conclude that
∣∣(ℓ+ s)a(ln(ℓ+ s))k − ℓa(ln ℓ)k

∣∣ ≤ CℓaL−1(lnT )k 1
T

and arrive at the following upper bound on the RHS of (S.16):

∫ 1

1/T
|f(r)− fT (r)|2 dr ≤ C(lnT )2k

1

T 3

T∑

t=1

(
t

T

)2(aL−1)

= O

(
(lnT )2k

T 2(aL+
1
2
)
1{aL< 1

2} +
(lnT )2k+1

T 2
1{aL= 1

2} +
(lnT )2k

T 2
1{aL> 1

2}
)
.

(S.19)

The RHS of (S.19) will go to zero as T → ∞, thereby establishing that
∫ 1
1/T

[
fT (r) − f(r)

]
dBui(r) is also

asymptotically negligible. The proof of part (ii) is now complete. (iii) We have

1

T

T∑

t=1

(
t

T

)a(
ln

t

T

)k ( xi,t√
T

)j

=

T∑

t=2

∫ t/T

(t−1)/T
fT (r)X

j
i,T (r)dt

=

∫ 1

0
f(r)Xj

i,T (r)dr +

∫ 1

1/T
[fT (r)− f(r)]Xj

i,T (r)dr =: IIIa+ IIIb.

(S.20)

Given the CMT and Xi,T −→d Bvi , term IIIa will converge weakly to
∫ 1
0 f(r)Bj

vi(r)dr if we can show that

x 7→
∫ 1
0 f(r)xj(r)dr is a continuous functional. Let x, y ∈ D[0, 1]. Hölder’s inequality implies

∣∣∣∣
∫ 1

0
f(r)xj(r)dr −

∫ 1

0
f(r)yj(r)dr

∣∣∣∣ =
∣∣∣∣
∫ 1

0
f(r)

(
xj(r)− yj(r)

)
dr

∣∣∣∣

≤
∫ 1

0
|f(r)|dr sup

r∈[0,1]
|xj(r) − yj(r)| ≤ C sup

r∈[0,1]
|x(r) − y(r)| → 0, (S.21)

because
∫ 1
0 |f(r)|dr = k!

(1+a)k+1 is bounded. Continuity of the functional now follows from (S.21). If we apply

the Cauchy-Schwartz inequality to IIIb, then we find

IIIb ≤
[∫ 1

1/T
|f(r)− fT (r)|2 dr

]1/2 [∫ 1

1/T
X2j

i,T (r)dr

]1/2
.

Since
∫ 1
1/T |f(r)− fT (r)|2 = o(1) by (S.19) and

∫ 1
1/T X2j

i,T (r)dr =
∫
X2j

i,T (r)dr −→d

∫
B2j

vi (r)dr. We conclude

that IIIb = op(1). Now combine the limiting results for IIIa and IIIb to complete the argument. ■

Lemma S.3.3. For any κ > 0, define

Nκ,T (γ0) =
{
γ ∈ Γ : T θ0+1/2 |θ − θ0| ≤ κ lnT, T θ0+1/2|τg − τg0| ≤ κ(lnT )2, T 1/2

∥∥DZ,T

(
β − β0

)∥∥ ≤ κ lnT

}
. (S.22)

Assume N is fixed and T → ∞. Let k1, k2 be any nonnegative integers. Let Assumption 3.2 hold.

(i) supγ∈Nκ,T (γ0)(lnT )
k2T−1

∑T
t=1

∣∣∣T−θ0
(
τgt

θ − τg0t
θ0
)
(ln t)k1

∣∣∣ = o(1).
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(ii) supγ∈Nκ,T (γ0)N(lnT )k2T−1
∑T

t=1

∣∣∣T−2θ0
(
τgt

2θ − τg0t
2θ0
)
(ln t)k1

∣∣∣ = o(1).

(iii) supγ∈Nκ,T (γ0)(lnT )
k2T−1

∣∣∣
∑T

t=1 T
−θ0
(
tθ − tθ0

)
D−1

Z,TZtιN

∣∣∣ = op(1).

(iv) supγ∈Nκ,T (γ0) T
−1
∣∣∣
∑T

t=1 T
−θ0
[(
τgt

θ − τg0t
θ0
)
ln t− τg0

(
tθ − tθ0

)
lnT

]
D−1

Z,TZtιN

∣∣∣ = op(1).

(v) supγ∈Nκ,T (γ0)(lnT )
k2T−1

∣∣∣
∑T

t=1 T
−2θ0tθ (ln t)k1

(
β − β0

)′
ZtιN

∣∣∣ = op(1).

(vi) supγ∈Nκ,T (γ0)(lnT )
k2T−1

∣∣∣
∑T

t=1 T
−2θ0

(
τgt

θ − τg0t
θ0
)
(ln t)k1 u′

tιN

∣∣∣ = op(1).

Proof We only show (i), (iii), (v) and (vi). The proof of the remaining results is similar and thus omitted.

(i) For any γ ∈ Nκ,T (γ0), by the triangular inequality and the mean-value theorem (MVT),

∣∣∣T−θ0
(
τgt

θ − τg0t
θ0
)
(ln t)k1 (lnT )k2

∣∣∣ =
(

t

T

)θ0 ∣∣∣τg
(
tθ−θ0 − 1

)
+
(
τg − τg0

)∣∣∣ (ln t)k1 (lnT )k2

≤
(

t

T

)θ0 [∣∣τg
∣∣
∣∣∣ tθ̃(θ − θ0) ln t

∣∣∣+
∣∣τg − τg0

∣∣
]
(lnT )k1+k2

≤ C

(
t

T

)θ0 (lnT )k1+k2+2

T θ0+1/2
,

where t|θ̃| ≤ T |θ−θ0| = exp (|θ − θ0| lnT ) ≤ C whenever T is sufficiently large. We obtain the first result due

to Lemma S.3.1(i) and (lnT )k

T θ0+1/2 = o(1) for any k ≥ 0.

(iii) By Lemma S.3.1(i), Lemma S.3.2(iii), and the MVT,

(lnT )k2T−1

∣∣∣∣∣
T∑

t=1

T−θ0
(
tθ − tθ0

)
D−1

Z,TZtιN

∣∣∣∣∣ ≤
√
N O

(
(lnT )k2+2

T θ0+1/2

)∥∥∥∥∥T
−1

T∑

t=1

(
t

T

)θ0

D−1
Z,TZt

∥∥∥∥∥ = op(1),

where the term op(1) is uniform over γ ∈ Nκ,T (γ0).

(v) By Part (i) and Lemma S.3.2(iii),

(lnT )k2T−1

∣∣∣∣∣
T∑

t=1

T−2θ0tθ (ln t)k1
(
β − β0

)′
ZtιN

∣∣∣∣∣ ≤
√
N(lnT )k2T 1/2

∥∥DZ,T

(
β − β0

)∥∥

×
∥∥∥∥∥T

−(θ0+1/2)T−1
T∑

t=1

(
t

T

)θ0

(ln t)k1 D−1
Z,TZt + T−(θ0+1/2)op(1)

∥∥∥∥∥ = op(1)

(vi) Using the MVT and Lemma S.3.2(ii), we obtain

(lnT )k2T−1

∣∣∣∣∣
T∑

t=1

T−2θ0
(
τgt

θ − τg0t
θ0
)
(ln t)k1 u′

tιN

∣∣∣∣∣ ≤
√
N o

(
(lnT )k2

T θ0+1/2

)∥∥∥∥∥T
−1/2

T∑

t=1

(
t

T

)θ0

ut

∥∥∥∥∥ = op(1).

The proof is completed. ■
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S4 More Details on the Main Results

Proof of Theorem 3.2 We write ∆̂T ≡ ∆̂T (γ̂T , bT ) and Ω̂T ≡ Ω̂T (γ̂T , bT ) to make their dependence on the

parameter estimator γ̂T and bandwidth bT explicit. Changing the summation indices, we can express the

one-sided long-run covariance estimator as

∆̂T (γ̂T , bT ) =

T−1∑

i=0

k

(
i

bT

)[
1

T

T−i∑

t=1

Vt+i(γ̂T )Vt(γ̂T )
′
]
=: Σ̂T (γ̂T ) + Γ̂T (γ̂T , bT ),

where Σ̂T (γ̂T ) = T−1
∑T

t=1 Vt(γ̂T )Vt(γ̂T )
′ and Γ̂T (γ̂T , bT ) =

∑T−1
i=1 k

(
i
bT

) [
T−1

∑T−i
t=1 Vt+i(γ̂T )Vt(γ̂T )

′
]
.

Similarly, we have

Ω̂T (γ̂T , bT ) = Σ̂T (γ̂T ) + Γ̂T (γ̂T , bT ) + Γ̂T (γ̂T , bT )
′.

Clearly, it suffices to study the asymptotic behavior of Σ̂T (γ̂T ) and Γ̂T (γ̂T , bT ). As the lower right subblock

of Vt+i(γ)Vt(γ)
′ equals vt+iv

′
t (no parameter estimation uncertainty here), the consistency result for this

subblock follows from the properties of {vt} in Assumption 3.2, the kernel requirements in Assumption 3.3,

and an application in Theorem 2 of Jansson (2002).

We proceed to the upper left subblocks of Σ̂T (γ̂T ) and Γ̂T (γ̂T , bT ). If the residuals are close enough to

the true innovations, then the results from Theorem 2 of Jansson (2002) again applies. It suffices to show

T−1
T∑

t=1

[
ûtû

′
t − utu

′
t

]
−→p 0 and

T−1∑

i=1

k (i/bT )

(
T−1

T−i∑

t=1

[
ût+iû

′
t − ut+iu

′
t

]
)

−→p 0.

Using Lemmas S.3.1–S.3.2 and Theorem 3.1, the following key result follows immediately

ût = ut −
(
τ̂g,T tθ̂T − τg0 t

θ0
)
ıN −Z ′

t

(
β̂T − β0

)
= ut +Op

(
T−1/2 lnT

)( t

T

)θ0

+Op

(
T−1/2

)(
D−1

Z,TZt

)′
.

(S.1)

This implies T−1
∑T

t=1

[
ûtû

′
t − utu

′
t

]
= Op

(
T−1/2 lnT

)
and

∥∥∥∥∥
T−1∑

i=1

k (i/bT )T
−1

T−i∑

t=1

(
ût+iû

′
t − ut+iu

′
t

)
∥∥∥∥∥ ≤ Op

(
T−1/2 lnT

) T−1∑

i=1

|k (i/bT )| = Op

(
T−1/2bT lnT

)
, (S.2)

where the final step is due to lemma 1 of Jansson (2002). Clearly, both terms are asymptotically negligible

under the assumption T−1/2bT lnT → 0 as T → ∞. The limits of the two remaining subblocks of Σ̂T (γ̂T )

and Γ̂T (γ̂T , bT ) are derived similarly. ■

S11



Proof of Theorem 3.4 Without loss of generality, we set ℓ = 1. Note that

q
−1/2
T

[rqT ]∑

t=1

û+
t = q

−1/2
T

[rqT ]∑

t=1

(
ut −ΩuvΩ

−1
vv vt

)
−

3∑

j=1

R̃qT ,j , r ∈ [0, 1], (S.3)

where the stochastic order of the remainder terms R̃qT ,1–R̃qT ,3 follows from Lemma S.3.3 and Theorem 3.1:

(a) R̃qT ,1 =
(
Ω̂uvΩ̂

−1
vv −ΩuvΩ

−1
vv

)
q
−1/2
T

∑[rqT ]
t=1 vt = op(1),

(b) R̃qT ,2 = q
−1/2
T

∑[rqT ]
t=1

(
τ̂g,T tθ̂T − τg0 t

θ0
)
ıN = Op

(
lnT

(
qT
T

)θ0+1/2
)
,

(c) R̃qT ,3 = q
−1/2
T

∑[rqT ]
t=1 Z ′

t

(
β̂T − β0

)
= Op

((
qT
T

)1/2)
q−1
T

∑[rqT ]
t=1

(
D−1

Z,qT
Zt

)′
DZ,qT

D−1
Z,T = Op

((
qT
T

)1/2).

The theorem follows from (S.3), a functional central limit theorem for linear processes, the continuous

mapping theorem, and the rate requirements. ■

S5 Details on Simulation DGPs 2(a)–2(c)

The parameters of simulation DGPs have been selected according to the following general procedure.

Step 1: Load the data and estimate the model corresponding to the specification under H0. The resulting

coefficients γ̂T and residual series {ût} are stored.

Step 2: Estimate a VAR(1) on the residuals, ût = A(1)ût−1 + ξ
(1)
t , and compute ξ̂

(1)
t = ût − Â(1)ût−1 for

t = 2, . . . , T .

Step 3: Repeat Step 2 for ∆xt. Using obvious notation, the resulting filtered residuals are ξ̂
(2)
t = ∆xt −

Â(2)∆xt−1 for t = 3, . . . , T .

Step 4: Set ξ̂t = [ξ̂
(1)′
t , ξ̂

(2)′
t ]′ and compute the (2N × 2N) covariance matrix estimate Σ̂ = 1

T−2

∑T
t=3 ξ̂tξ̂

′
t.

Step 5: The simulated data is based on the parameters from Step 1 – Step 4. First, generate ξt =

[ξ
(1)′
t , ξ

(2)′
t ]′ i.i.d.∼ N(0, Σ̂). Subsequently, we use the results from the VAR(1) models:

(a) Set u0 = 0 and construct innovations according to ut = Â(1)ut−1 + ξ
(1)
t .

(b) Set ∆x0 = 0, construct the increments of the integrated explanatory variables through the

recursion ∆xt = Â(2)∆xt−1 + ξ
(2)
t , and compute the partial sums xt =

∑t
s=1∆xs.

Given the simulated innovations and simulated integrated regressors, it remains to use γ̂T to obtain

the simulated dependent variables.

Three remarks follow. First, we explicitly choose individual VAR(1) models for {ût} and {∆̂xt} rather

than a single 2N -dimensional VAR(1) for the joint vector. Otherwise, with N = 6 and T = 145 in the data,

the number of parameters in the autoregressive matrix would be 122 = 144 which is rather close to the length

of the data series. Similarly, the selection of the VAR(1) specification results from a trade-off between model

parsimony and a simulation DGP with serial correlation. Second, we follow the literature and rebuild the
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integrated explanatory variables as random walks without drift. Third, the specific values of all parameters

(rounded to 2 decimals) are reported in the next subsections.

S5.1 Parameter values for DGP2(a)

The estimated parameters of the model are

yt = −1.37× 10−5t2.45ı6 +




−6.39
−0.12
−12.66
−3.99

−1.67×101

−2.55


+




−4.9×10−3

7.6×10−3

1.05×10−3

1.09×10−3

−2.7×10−3

2.14×10−4


 t+




1.73x1,t

1.01x2,t

2.22x3,t

1.33x4,t

2.55x5,t

1.33x6,t


+ ût.

The results for the VAR(1) specifications follow

Â(1) =




0.74 −0.04 0.02 0.32 −0.34 0.41
0.05 0.68 0.01 −0.30 −0.05 −0.01
0.16 1.05 0.62 −0.54 −0.29 −0.55
0.04 0.12 0.03 0.41 0.00 −0.21
0.10 0.31 −0.08 −0.29 0.67 0.01
0.05 0.08 −0.03 −0.12 0.02 0.44


 , Â(2) =




−0.09 −0.32 0.21 0.96 −0.22 0.55
−0.04 0.02 0.39 0.10 −0.15 −0.00
−0.08 −0.10 0.38 0.15 −0.07 0.35
−0.37 0.38 −0.13 0.25 −0.00 0.26
−0.18 0.19 0.05 0.18 −0.07 0.41
0.03 0.18 −0.05 0.02 −0.06 0.47


 ,

and

Σ̂ =




6.13 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0.39 0.70 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0.22 1.00 7.19 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0.59 0.06 0.29 0.91 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0.57 0.15 0.68 0.38 0.01 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0.36 0.13 0.37 0.01 0.13 0.46 ∗ ∗ ∗ ∗ ∗ ∗
−0.29 −0.02 0.32 0.03 0.18 −0.02 0.43 ∗ ∗ ∗ ∗ ∗
0.13 0.07 0.22 0.04 −0.06 0.06 −0.00 0.14 ∗ ∗ ∗ ∗
0.21 0.11 0.21 0.09 −0.03 0.05 0.04 0.10 0.19 ∗ ∗ ∗
0.23 0.18 0.28 −0.07 0.01 0.04 0.03 0.11 0.10 0.33 ∗ ∗
0.10 0.07 0.25 −0.01 −0.34 0.07 0.01 0.06 0.05 0.05 0.20 ∗
0.02 0.02 −0.03 −0.00 0.03 0.02 0.05 −0.01 0.02 0.01 0.02 0.08



× 10−2.

S5.2 Parameter values for DGP2(b)

The estimated model specification is

yt =




−1.01
8.64
−5.15
3.78

−17.84
11.84


+




−1.11×10−2

5.78×10−3

1.63×10−2

7.69×10−3

−2.36×10−2

4.69×10−3


 t++




1.10x1,t

−1.44×10−3x2,t

1.23x3,t

4.42×10−1x4,t

2.73x5,t

−3.21×10−1x6,t


+ ût.

The VAR(1) dynamics in the innovations and increments are governed by

Â(1) =




0.78 0.01 0.15 −0.07 −0.39 −0.07
0.03 0.87 −0.01 0.02 −0.02 −0.07
0.06 1.29 0.60 −0.37 −0.01 −0.35
0.04 0.36 0.01 0.50 −0.05 0.06
0.03 0.38 −0.03 −0.07 0.60 −0.06
0.03 −0.05 0.01 0.08 0.02 0.59


 , Â(2) =




−0.09 −0.32 0.21 0.96 −0.22 0.55
−0.04 0.02 0.39 0.10 −0.15 −0.00
−0.08 −0.10 0.38 0.15 −0.07 0.35
−0.37 0.38 −0.13 0.25 −0.00 0.26
−0.18 0.19 0.05 0.18 −0.07 0.41
0.03 0.18 −0.05 0.02 −0.06 0.47


 ,

and

Σ̂ =




5.65 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0.68 1.13 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
1.29 1.79 8.56 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0.84 0.58 1.33 1.23 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0.67 0.30 1.16 0.71 2.32 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0.09 0.25 0.60 0.17 0.16 0.72 ∗ ∗ ∗ ∗ ∗ ∗
−0.09 −0.01 0.24 0.06 0.19 0.04 0.43 ∗ ∗ ∗ ∗ ∗
0.15 0.19 0.39 0.13 −0.04 0.01 −0.00 0.14 ∗ ∗ ∗ ∗
0.24 0.20 0.40 0.20 0.01 0.04 0.04 0.10 0.19 ∗ ∗ ∗
0.24 0.32 0.43 0.19 0.09 0.01 0.03 0.11 0.10 0.33 ∗ ∗
0.09 0.12 0.28 0.04 −0.34 0.08 0.01 0.06 0.05 0.05 0.20 ∗
0.00 0.01 −0.07 0.02 0.02 0.09 0.05 −0.01 0.02 0.01 0.02 0.08



× 10−2.
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S5.3 Parameter values for DGP2(c)

The simulation experiments regarding the performance of the KPSS test are based on the same specification

as DGP2(a).

S6 Additional Simulation Results

S6.1 Empirical size for DGP1 when θ = 0.8

Table S1: The empirical size (in %) of the single-equation t-tests H0 : β2,1 = 0 and the joint Wald tests for
H0 : β2,1 = . . . = β2,N = 0 with β2,i denoting the coefficient in front of x2

i,t. The Monte Carlo results are based on:
simulated inference with θ estimated by NLS (SimNLS), simulated inference with known θ = 0.8 (SimNLS(θ0)), and
two Fully Modified estimators for systems developed by Wagner et al. (2020) with known θ = 0.8 (FM-SOLS(θ0) and
FM-SUR(θ0)).

θ0 = 0.8 N = 3 N = 5 N = 10

ρ SimNLS SimNLS(θ0) FM-SOLS(θ0) FM-SUR(θ0) SimNLS SimNLS(θ0) FM-SOLS(θ0) FM-SUR(θ0) SimNLS SimNLS(θ0) FM-SOLS(θ0) FM-SUR(θ0)

T = 150

0 4.03 3.93 9.10 10.47 4.67 4.67 10.03 12.90 4.40 4.50 10.80 16.67
0.3 4.60 4.50 9.77 11.07 4.53 4.50 10.37 13.07 5.07 4.90 11.90 19.50
0.6 4.53 4.47 10.57 12.60 4.30 4.23 11.87 16.27 4.60 4.40 13.57 29.83
0.8 4.33 4.50 13.80 18.47 4.70 4.63 15.60 27.07 4.33 4.30 16.30 56.73

T = 300

0 4.20 4.23 7.87 8.67 4.87 4.87 7.87 9.40 4.37 4.40 8.27 10.97
0.3 5.27 5.23 8.47 9.50 4.47 4.50 9.23 10.83 4.47 4.50 8.87 12.93
0.6 4.50 4.63 9.47 11.00 5.10 4.83 10.10 12.90 4.27 4.47 10.63 18.57
0.8 4.60 4.40 12.07 14.47 4.43 4.30 12.17 18.13 5.47 5.23 14.00 35.00

T = 600

0 4.43 4.47 6.83 7.47 4.23 4.37 6.53 6.93 4.23 4.17 7.27 9.10
0.3 4.97 5.03 7.57 8.60 5.13 4.93 7.37 8.10 4.70 4.93 8.10 9.60
0.6 5.27 5.40 8.27 9.50 5.17 4.93 8.43 9.33 5.03 4.97 9.60 14.57
0.8 4.13 4.30 8.83 10.10 4.93 4.77 9.73 14.10 5.20 4.93 10.90 23.70

Panel B: Joint test

T = 150

0 3.57 3.63 12.03 15.23 4.00 4.23 14.30 21.57 4.03 3.93 26.03 50.13
0.3 4.07 3.90 13.83 16.43 3.77 3.47 19.47 26.93 3.23 3.40 29.67 60.20
0.6 3.73 3.70 17.03 21.43 3.60 3.67 23.60 38.07 2.33 2.03 39.73 83.70
0.8 3.20 2.80 23.43 31.03 2.87 2.87 32.13 58.27 1.53 1.37 50.30 82.73

T = 300

0 5.13 5.13 10.47 11.43 3.43 3.60 12.00 15.17 3.67 3.57 17.93 30.33
0.3 4.40 4.30 9.90 11.63 4.07 3.87 13.43 17.83 3.83 4.00 19.30 36.63
0.6 4.20 4.37 13.40 15.57 3.97 4.00 17.47 24.33 3.30 3.20 28.60 59.80
0.8 4.07 3.63 16.27 20.87 3.47 3.17 22.20 38.97 2.40 2.40 37.77 86.00

T = 600

0 3.50 3.53 7.03 7.97 4.43 4.63 8.83 11.07 3.90 4.10 12.63 18.93
0.3 4.57 4.53 8.90 9.53 4.17 4.13 10.70 12.67 4.53 4.53 15.07 23.83
0.6 5.37 4.87 10.40 12.23 4.73 4.33 13.30 16.97 4.03 4.07 21.47 39.70
0.8 3.70 3.83 11.63 14.30 3.50 3.70 15.20 24.83 3.60 3.60 26.37 66.77
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S6.2 Empirical size for DGP1 when θ = 1.8

Table S2: The empirical size (in %) of the single-equation t-tests H0 : β2,1 = 0 and the joint Wald tests for
H0 : β2,1 = . . . = β2,N = 0 with β2,i denoting the coefficient in front of x2

i,t. The Monte Carlo results are based on:
simulated inference with θ estimated by NLS (SimNLS), simulated inference with known θ = 1.8 (SimNLS(θ0)), and
two Fully Modified estimators for systems developed by Wagner et al. (2020) with known θ = 1.8 (FM-SOLS(θ0) and
FM-SUR(θ0)).

θ0 = 1.8 N = 3 N = 5 N = 10

ρ SimNLS SimNLS(θ0) FM-SOLS(θ0) FM-SUR(θ0) SimNLS SimNLS(θ0) FM-SOLS(θ0) FM-SUR(θ0) SimNLS SimNLS(θ0) FM-SOLS(θ0) FM-SUR(θ0)

T = 150

0 4.70 4.80 9.87 11.37 4.13 4.23 10.27 12.30 4.43 4.37 9.80 15.60
0.3 3.97 3.80 9.67 10.97 4.43 4.50 9.83 13.13 4.77 4.50 11.40 18.37
0.6 5.03 4.63 12.53 14.77 4.70 4.83 12.27 17.07 3.63 3.37 12.27 29.63
0.8 5.43 5.47 14.93 18.93 4.97 4.60 14.80 27.27 5.23 4.90 16.30 56.23

T = 300

0 4.53 4.80 7.23 8.10 4.40 4.43 7.80 9.63 4.47 4.73 8.53 11.77
0.3 4.27 4.50 8.10 9.37 5.07 5.00 9.23 9.97 4.37 4.20 8.90 12.80
0.6 6.23 5.87 10.17 12.23 4.73 4.77 10.03 13.63 4.77 4.30 10.50 18.83
0.8 4.50 4.43 11.00 13.80 4.57 4.43 11.97 18.70 4.10 3.73 13.70 36.73

T = 600

0 4.13 4.37 7.33 7.83 4.07 4.13 6.90 7.90 4.97 4.97 6.87 8.17
0.3 4.70 4.90 8.33 8.90 4.77 4.83 6.93 8.13 4.80 4.67 8.10 10.57
0.6 5.77 6.10 8.70 9.03 5.17 5.23 8.23 9.37 5.53 5.53 9.27 13.80
0.8 4.73 4.80 9.07 10.33 4.57 4.77 9.63 12.80 4.93 4.73 12.03 25.87

Panel B: Joint test

T = 150

0 4.23 4.03 12.13 15.07 3.53 3.50 16.50 23.07 3.40 3.33 25.57 50.30
0.3 4.13 3.80 14.50 16.00 3.63 3.77 19.90 27.00 3.77 3.63 30.80 58.17
0.6 3.23 2.83 17.13 22.07 3.93 3.73 24.67 38.53 2.13 2.43 40.87 82.83
0.8 3.57 3.03 23.77 30.83 2.93 2.30 32.43 57.57 2.37 1.77 49.77 83.23

T = 300

0 4.63 4.83 9.40 10.97 4.10 4.20 11.47 15.63 3.80 3.83 18.50 31.87
0.3 4.60 4.80 11.70 13.00 4.67 4.67 14.90 18.43 3.67 3.57 19.17 36.73
0.6 5.00 4.53 14.00 15.17 4.03 3.33 17.00 24.80 3.17 2.83 29.00 59.57
0.8 3.43 3.10 18.00 21.27 3.33 2.80 22.77 39.80 2.50 1.93 37.93 86.07

T = 600

0 4.23 4.47 7.97 8.63 3.20 3.43 9.10 11.43 3.87 3.83 10.47 17.40
0.3 4.20 4.37 9.37 10.80 4.53 4.60 10.37 12.17 3.87 3.77 15.47 23.80
0.6 5.43 5.33 11.90 12.30 4.80 4.70 12.27 17.03 5.00 4.57 19.63 39.03
0.8 3.73 3.63 11.67 14.40 3.97 3.77 16.37 24.77 3.30 3.07 27.87 68.27
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S6.3 Empirical power for DGP1

(a)

(b)

(c)

Figure 1: The power curves for the single equation test H0 : ϕ2,1 = 0. The reference model is DGP1 with ρ = 0.3,
θ = 1.3 and N = 3. We vary the parameters of this reference specification one-by-one while keeping the remaining two
parameters fixed at their baseline values. Specifically, we study changes in: (a) the serial correlation and endogeneity
parameter ρ, (b) the nonlinear deterministic time trend power, and (c) the cross-sectional dimension.
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(a)

(b)

(c)

Figure 2: The power curves for the joint test for H0 : ϕ2,1 = . . . = ϕ2,N = 0. The reference model is DGP1 with
ρ = 0.3, θ = 1.3 and N = 3. We vary the parameters of this reference specification one-by-one while keeping the
remaining two parameters fixed at their baseline values. Specifically, we study changes in: (a) the serial correlation
and endogeneity parameter ρ, (b) the nonlinear deterministic time trend power, and (c) the cross-sectional dimension.
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S6.4 Empirical power and KPSS test for DGP2

(a) (b)

(c) (d)

(e)

Figure 3: An overview of various power curves for DGP2. (a) Unit-specific power curves when testing H0 : ϕ2,i = 0
(i = 1, . . . , 6) for a correctly specified model. (b) The power curve when testing H0 : ϕ2,1 = . . . = ϕ2,6 = 0 for
a correctly specified model. (c) The empirical rejection frequencies for a correctly specified model (lines) and an
estimation with a redundant global time trend (dots). Individual coefficients are tested. (d) As in (c), but now for
the joint test H0 : ϕ2,1 = . . . = ϕ2,6 = 0. (e) The empirical power of the KPSS for a misspecified linear cointegrating
relation.
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S7 Further Empirical Results

The exact numbers may show (minor) differences from previously reported results due to differences in: (1)

the time span of the data, (2) the implemented long-run covariance estimator, and (3) the scaling of the

data. Related to scaling, we follow the official guidelines and multiply by 3.667 and 103 to convert thousand

of metric tons of carbon into units of carbon dioxide. Since the data will be expressed in logarithms, this

rescaling effectively amounts to a change of intercept.

S7.1 Unit root tests

Table S3: The t-statistics for the ADF and DF-GLS unit root tests. The columns with header ‘const’ and ‘const & trend’
refer to the inclusion of only an intercept or both intercept and linear trend. Rejection of the unit root hypothesis at a 10%
and 5% level are indicated with one and two stars, respectively.

ADF DF-GLS
const const & trend const const & trend

GDP CO2 GDP CO2 GDP CO2 GDP CO2

Australia 0.287 -2.549 -2.050 -1.986 2.046 1.379 -1.577 -0.732
Austria -0.055 -2.118 -1.943 -2.738 1.478 -1.143 -1.655 −2.718∗

Belgium 0.153 -2.336 -1.705 -2.818 2.041 -0.794 -1.287 -2.644
Canada -0.575 -1.133 -2.020 -1.120 1.117 0.874 -1.894 -0.387

Denmark -0.235 -2.446 -2.326 -0.136 1.393 0.410 -1.505 0.084
Finland -0.362 -1.327 -2.315 −3.248∗ 0.420 -0.076 -1.155 −3.217∗∗

France -0.557 -2.438 -1.823 -1.858 1.087 -0.267 -1.470 -1.212
Germany -0.374 −3.099∗∗ -2.767 −3.971∗∗ 1.195 -0.726 -2.474 -2.080

Italy -0.252 -1.546 -1.759 -1.987 1.213 0.354 -1.240 -1.860
Japan 0.010 -0.862 -1.733 -0.941 1.382 0.504 -1.272 -0.878

Netherlands -0.106 -1.629 -2.247 -3.106 1.378 0.213 -1.679 −2.818∗

Norway -0.680 -2.044 -2.064 -2.318 0.749 0.331 -1.017 -1.292
Portugal -1.432 -0.455 -1.697 -1.676 -0.708 0.593 -0.741 -1.923
Spain 0.402 -1.243 -1.354 -1.994 1.487 0.959 -1.077 -2.014

Sweden -0.789 -2.075 -2.289 -1.625 0.258 0.180 -1.513 -0.968
Switzerland -1.093 -1.963 -2.785 -1.989 2.272 0.368 -2.447 -1.237

UK -0.179 -0.721 -1.262 -0.402 2.446 -0.622 -0.608 -0.013
USA -0.349 -2.055 -2.871 -1.322 2.409 -0.101 −2.708∗ -0.812

Note: Asterisks denote rejection of the null hypothesis at the ∗∗∗1%, ∗∗5%, and ∗10% significance level.

S7.2 Perron and Yabu (2009) test for deterministic trend coefficient

The Perron and Yabu (2009) test is used to test for the presence of a deterministic trend function in the

log per capita GDP series, see Table S4. The test allows for integrated or stationary errors. The details of

the procedure can be found on page 61 of Perron and Yabu (2009). The asymptotic distribution of this test

statistic is standard normal (quantiles are z0.95 = 1.645, z0.975 = 1.96, and z0.995 = 2.58).
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Table S4: Perron and Yabu (2009) test statistic for each of the 18 countries.

P̂ Y

Australia 3.17
Austria 2.19
Belgium 3.52
Canada 3.33

Denmark 5.58
Finland 4.27

P̂ Y

France 2.41
Germany 1.91

Italy 2.11
Japan 2.93

Netherlands 2.27
Norway 5.85

P̂ Y

Portugal 2.16
Spain 2.31

Sweden 7.12
Switzerland 3.91

UK 3.60
USA 4.12
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S7.3 Overviews for Austria and Finland

(a) (b)

(c) (d)

(e) (f)

Figure 4: Overview graphs for Austria over 1870-2014. (a) log(GDP) versus log(CO2) (both per capita). (b) As
subfigure (a) but using detrended variables. (c) The log per capita CO2 emissions time series for Austria. (d) The
residual sum of squares (RSS) for the nonlinear model specification yt = τ1 + τ2t+ϕ1xt +ϕ2x

θ
t + ut for various values

of θ. (e) The RSS as a function of θ for the flexible nonlinear trend specification yt = τ1 + τ2t+ τ3t
θ + ϕxt + ut. (f)

The relation between xt and yt after partialling out the constant, linear trend, and flexible deterministic trend.
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(a) (b)

(c) (d)

(e) (f)

Figure 5: Overview graphs for Finland over 1870-2014. (a) log(GDP) versus log(CO2) (both per capita). (b) As
subfigure (a) but using detrended variables. (c) The log per capita CO2 emissions time series for Finland. (d) The
residual sum of squares (RSS) for the nonlinear model specification yt = τ1 + τ2t+ϕ1xt +ϕ2x

θ
t + ut for various values

of θ. (e) The RSS as a function of θ for the flexible nonlinear trend specification yt = τ1 + τ2t+ τ3t
θ + ϕxt + ut. (f)

The relation between xt and yt after partialling out the constant, linear trend, and flexible deterministic trend.
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S7.4 RSS(θ) for yt = τ1 + τ2t+ ϕ1xt + ϕ2x
θ
t + ut

(a) (b)

(c) (d)

(e) (f)

Figure 6: The residual sum of squares (RSS) for the nonlinear specification yt = τ1 + τ2t + ϕ1xt + ϕ2x
θ
t + ut for

various values of θ. This replicates Figure 1(d) of the main paper for all countries in the data set.
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(g) (h)

(i) (j)

(k) (l)

Continuation of Figure 6.
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(m) (n)

(o) (p)

(q) (r)

Continuation of Figure 6.
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S7.5 Additional results for univariate models

Results of a more in-depth univariate analysis are collected in this section. We look at models (M1*)–(M4*)

as listed in Table S5.

Table S5: An overview of the univariate models.

Model Specification

(M1*) yt = τ1 + τ2t+ ϕ1xt + ϕ2x
2
t + ut

(M2*) yt = τ1 + τ2t+ τ3t
2 + ϕ1xt + ϕ2x

2
t + ut

(M3*) yt = τ1 + τ2t+ τ3t
θ + ϕ1xt + ϕ2x

2
t + ut

(M4*) yt = τ1 + τ2t+ τ3t
θ + ϕ1xt + ut

All three models are of the form:

yt = τ1 + τ2t+ τ3t
θ + ϕ1xt + ϕ2x

2
t + ut. (S.1)

Model (M1*) is the specification above with τ3 = 0 and forces all nonlinearities to be captured through x2t .

Specifications (M2*) and (M3*) include deterministic nonlinear time trends. For model (M2*), we allow for

τ3 ̸= 0 but fix θ = 2. Model (S.1) without further restrictions is referred to as (M3*). In the latter model, the

NLS estimator for θ is computed by a grid search over the values Θ = [0.05, 0.95] ∪ [1.05, 10] and simulated

inference is used (see Section 3.2 of the main paper). Table S6 illustrates how increasingly flexible nonlinear

deterministic trends affect the parameter estimates for ϕ1 and ϕ2. Judging exclusively by the signs of ϕ̂1

and ϕ̂2, the EKC exists for 17 out of 18, 9 out of 18, and 8 out of 18 countries for (M1*), (M2*), and (M3*),

respectively. Moreover, the significance of squared log per capita GDP (read: ϕ2) reduces when nonlinear

deterministic time trends are included. For model (M3*), ϕ2 is never significantly different from zero at a

10% level and evidence in favour of EKC becomes rather meagre. The results of the univariate KPSS tests

for these models can be found in Table S6 under “Stationarity tests”. In general, the cointegrating relations

seem well-specified except maybe for Belgium, Denmark, and UK.

The insignificance of ϕ2 in model (M3*) suggests a final model specification, namely

yt = τ1 + τ2t+ τ3t
θ + ϕ1xt + ut. (M4*)

Model (M4*) specifies a linear cointegrating relation around a flexible time trend and does not incorporate

nonlinear effects in log per capita GDP.2 That is, the model specification does not allow for an EKC. As

before, we check parameter estimates and test for stationarity of the error terms (the columns labeled “(M4*)”

in Table S6). Some remarks concerning this final model specification are:

1. For Belgium, the fitted model reads

yt = −0.049 + 0.0063t− 6.131× 10−6 t2.603 + 1.006xt + ût. (S.2)
2Model specification (M4*) has the additional advantage of being invariant to the possible presence of a drift component in

log per capita GDP, also see footnote 12 of the main text.
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The flexible power on the linear trend is estimated to be θ̂ = 2.603 resulting in nonlinear behaviour

over time. Moreover, the negative coefficient in front of t2.603 provides a contribution that is sloping

down over time. If time effects are ignored, then a 1% increase in GDP will lead to an estimated

1.006% increase in fossil-fuel CO2 emissions.

2. The outcomes of the KPSS test do not point towards a misspecified cointegrating relation (Table

S6). The flexible deterministic trend is generally sufficient to describe the nonlinear behaviour of the

(univariate) log per capita CO2 emissions over time, that is, squared log per capita GDP is not needed

in the univerariate models. Visual proof is found in Figures 1(a), 1(b) and 1(f) where the incorporation

of increasingly flexible time effects is seen to remove any apparent nonlinear relationship between log

per capita GDP and CO2 emissions.

Visualisations of the model fits are available in Figures 9–13.
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S7.6 Nonparametric kernel estimator and linear fit

Figure 14: The 95% (point-wise) confidence intervals of the non-parametric kernel estimate for the relationship
between GDP and CO2 emissions (blue) after removal of the country-specific and joint flexible deterministic trends.
The red dotted line is the linear fit. Results are based on the full sample.

Figure 15: The 95% (point-wise) confidence intervals of the non-parametric kernel estimate for the relationship
between GDP and CO2 emissions (blue) after removal of the country-specific and joint flexible deterministic trends.
The red dotted line is the linear fit. Results are based on observations after World War II.

The high p-values in Table S7 are caused by visually small deviations from the linear trend, see graphs above.

Also, the relatively small sample size (for nonparametric settings) might adversely affect power.
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Table S7: Linearity test results. The linearity test is based on the model specification test documented in section 3
of Wang and Phillips (2016). The test is based on the integrated weighted squared deviations between the data and
the linear model fit. We report the integration range, the (standardized) test statistic, and the p-value. Under H0,
the relationship between (detrended) log CO2 emissions and log GDP per capita is linear.

Full Sample After World War II

range ϕ
τ0
√
nh

Tn p-value range ϕ
τ0
√
nh

Tn p-value

Austria [8.003,10.635] 8.987 0.000 [8.129,10.635] 0.162 0.871
Belgium [8.389,10.553] 0.299 0.765 [8.923,10.553] 0.076 0.939
Finland [7.494,10.602] 0.105 0.916 [8.693,10.602] 0.020 0.984

Netherlands [8.469,10.728] 0.046 0.964 [8.990,10.728] 0.022 0.982
Switzerland [8.708,10.993] 0.028 0.977 [9.925,10.993] 0.009 0.993

UK [8.641,10.510] 0.022 0.982 [9.242,10.510] 0.021 0.984

Note: The asymptotic properties of ϕTn/τ0
√
nh are established in Wang and Phillips (2016). Under

suitable conditions, ϕTn/τ0
√
nh → LW (1, 0) as n → ∞ with LW (1, 0) denoting the sojourning time of

a standard Brownian motion around zero during the time interval [0, 1]. The p-values are computed
using the cumulative distribution function of LW (1, 0), see (2.11) in Dong et al. (2017).

S8 Simulation and Calculations Related to FMOLS

S8.1 Preliminary simulations

We consider N = 1 and test H0 : ϕ2 = 0 versus Ha : ϕ2 ̸= 0 with FMOLS. Specifically, we generate the data

according to

yt = τ1 + τ2t+ τgt
θ + ϕ1xt + ϕ2x

2
t + ut, (S.1)

where xt =
∑t

s=1 vs. The chosen parameter values are θ = 2, τ = [τ1, τ2, τg]
′ = [7, 0.05,−5 × 10−4]′, and

ϕ = [ϕ1, ϕ2]
′ = [5, 0]′. These parameter values are representative. The disturbance vector [ut, vt]′ is generated

from the VAR(1) specification3


ut
vt


 = A


ut−1

vt−1


+


ηt
ϵt


 ,


ηt
ϵt


 i.i.d.∼ N

(
0,
[

1 0.5

0.5 1

])
. (S.2)

We construct the autoregressive matrix A along the following two steps: (1) generate a (2 × 2) random

matrix U from U[0, 1] to construct the orthogonal matrix H = U (U ′U)−1/2, and (2) compute A = HLH ′

with L = diag[0.9, 0.7].

As shown in Figure 16, for sample sizes as large as 15, 000, the empirical size of the feasible FMOLS

estimator seems to stabilisze at 11% whereas the infeasible estimator FMOLS(θ0) yields an empirical size

close to 5%. These results indicate poor finite sample performance of FMOLS or possible even a lack of

asymptotic validity.
3We start the VAR recursions from [ u0

v0 ] = 0 and use a presample of 50 observations to reduce the influence of these initial
values.
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Figure 16: The empirical size of feasible and infeasible FMOLS estimators for a large range of sample sizes.

S8.2 Asymptotic properties of FMOLS

We comment on the asymptotic properties of the FMOLS estimator when N = 1. To shorten notation, the

subscript ‘i’ in xi,t, yi,t and pi will be omitted. We analyse the asymptotic properties of D̃θ0,T

[
τ̂+g,T−τg,0

β̂+
T −β0

]
,

with D̃θ0,T =
√
T
[

T θ0 01×(p+2)

0(p+2)×1 D(1),T

]
and


τ̂

+
g,T

β̂+
T


 =

(
T∑

t=1

zt(θ̂T )zt(θ̂T )
′
)−1( T∑

t=1

zt(θ̂T )y
+
t −A∗

)
,

where zt(θ) = [tθ, 1, t, x1,t, . . . , x
p1
1,t]

′, and y+t and A∗ are second-order bias corrections. That is, y+t =

yt − Ω̂uvΩ̂
−1
vv ∆xt and A∗ = [0′3×1,A

∗′
1 ]

′ with A∗
1 = ∆̂+

vu

[
T, 2

∑T
t=1 xt, . . . , p

∑T
t=1 x

p−1
t

]′
and ∆̂+

vu equals

∆̂+
vu = ∆̂vu − ∆̂vvΩ̂

−1
vv Ω̂vu.

We now investigate how the estimation of θ affects the limiting distribution of the FMOLS estimator.

By straightforward linear algebra manipulations, we find

D̃θ0,T


τ̂

+
g,T − τg,0

β̂+
T − β0


 =

(
D̃−1

θ0,T

T∑

t=1

zt
(
θ̂T
)
zt
(
θ̂T
)′
D̃−1

θ0,T

)−1

D̃−1
θ0,T

[
T∑

t=1

zt
(
θ̂T
)
ũ+t −A∗

]
, (S.3)

where ũ+t =
(
zt
(
θ0
)
− zt

(
θ̂T
))′ [ τg,0

β0

]
+ ut − Ω̂uvΩ̂

−1
vv ∆xt. We will discuss D̃−1

θ0,T

∑T
t=1 zt

(
θ̂T
)
zt
(
θ̂T
)′
D̃−1

θ0,T

and D̃−1
θ0,T

[∑T
t=1 zt

(
θ̂T
)
ũ+t −A∗

]
separately after having enumerate several intermediate results.

Lemma S.8.4. Define j̃(r; θ0) =
[
rθ0 , 1, r, Bv(r), . . . , B

p
v(r)

]′ and Bu.v = Bu − ΩuvΩ
−1
vv Bv. Then, under

Assumptions 3.1-3.3, we have

(i) D̃−1
θ0,T

∑T
t=1 zt

(
θ̂T
)
zt
(
θ̂T
)′
D̃−1

θ0,T
−→d

∫
j̃(r; θ0)j̃(r; θ0)

′dr,

(ii) D̃−1
θ0,T

[∑T
t=1 zt

(
θ0
) (

ut − Ω̂uvΩ̂
−1
vv vt

)
−A∗

]
−→d

∫
j̃(r; θ0)dBu.v(r),

(iii) D̃−1
θ0,T

∑T
t=1 zt

(
θ0
) (

zt
(
θ̂T
)
− zt

(
θ0
))′ [ τg,0

ϕ0

]
= Op

(
lnT

)
,

(iv)
∑T

t=1 D̃
−1
θ0,bT

(
zt
(
θ̂T
)
− zt

(
θ0
))(

zt
(
θ̂T
)
− zt

(
θ0
))′ [ τg,0

ϕ0

]
= Op

(
(lnT )2T−(θL+

1
2
)
)

,
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(v) D̃−1
θ0,T

∑T
t=1

(
zt
(
θ̂T
)
− zt

(
θ0
))(

ut − Ω̂uvΩ̂
−1
vv vt

)
= op(1).

Proof (i) We can always add and subtract such that the LHS of (i) reads

D̃−1
θ0,T

T∑

t=1

zt
(
θ̂T
)
zt
(
θ̂T
)′
D̃θ0,T = D̃−1

θ0,T

T∑

t=1

zt
(
θ0
)
zt
(
θ0
)′
D̃−1

θ0,T

+

(
D̃−1

θ0,T

T∑

t=1

zt
(
θ̂T
)
zt
(
θ̂T
)′
D̃−1

θ0,T
− D̃−1

θ0,T

T∑

t=1

zt
(
θ0
)
zt
(
θ0
)′
D̃−1

θ0,T

)
.

(S.4)

Lemma S.3.2(iii) implies that the first term in the RHS of (S.4) converges to
∫
j̃(r; θ0)j̃(r; θ0)

′dr. It remains

to show that the term in parenthesis vanishes. By
∑

t ata
′
t −

∑
t btb

′
t =

∑
t(at − bt)(at − bt)

′ +
∑

t(at −
bt)b

′
t +
∑

t bt(at − bt)
′ and the Cauchy-Schwarz inequality, we have

∥∥∥∥∥D̃
−1
θ0,T

T∑

t=1

zt
(
θ̂T
)
zt
(
θ̂T
)′
D̃−1

θ0,T
− D̃−1

θ0,T

T∑

t=1

zt
(
θ0
)
zt
(
θ0
)′
D̃−1

θ0,T

∥∥∥∥∥

≤
T∑

t=1

∥∥∥D̃−1
θ0,T

(
zt
(
θ̂T
)
− zt

(
θ0
))∥∥∥

2
+ 2

T∑

t=1

∥∥∥D̃−1
θ0,T

zt
(
θ0
)∥∥∥
∥∥∥D̃−1

θ0,T

(
zt
(
θ̂T
)
− zt

(
θ0
))∥∥∥

≤
T∑

t=1

∥∥∥D̃−1
θ0,T

(
zt
(
θ̂T
)
− zt

(
θ0
))∥∥∥

2
+ 2

√√√√
T∑

t=1

∥∥∥D̃−1
θ0,T

zt
(
θ0
)∥∥∥

2

√√√√
T∑

t=1

∥∥∥D̃−1
θ0,T

(
zt
(
θ̂T
)
− zt

(
θ0
))∥∥∥

2
.

We have
∑T

t=1

∥∥D̃−1
θ0,T

zt
(
θ0
)∥∥2 = tr

(∑T
t=1 D̃

−1
θ0,T

zt
(
θ0
)
zt
(
θ0
)′
D̃−1

θ0,T

)
−→d tr

( ∫
j̃(r; θ0)j̃(r; θ0)

′dr
)
. Next

note that
∑T

t=1

∥∥D̃−1
θ0,T

(
zt
(
θ̂T
)
− zt

(
θ0
))∥∥2 = 1

T

∑T
t=1[T

−θ0(tθ̂T − tθ0)]2. We have

1

T

T∑

t=1

[
T−θ0

(
tθ̂T − tθ0

)]2 ≤ C
(
θ̂T − θ0

) 1

T

T∑

t=1

(
t

T

)2θ0

(ln t)2

≤ CT−2(θ0+
1
2
)(lnT )2

[
T θ0+

1
2

(
θ̂T − θ0

)]2
sup

θL≤θ≤θU

∣∣∣∣∣
1

T

T∑

t=1

(
t

T

)2θ
∣∣∣∣∣ = op(1),

(S.5)

where we used the mean-value theorem and Lemma S.3.1(i). The claim follows. (ii) Ω̂uv and Ω̂vv con-

sistently estimate Ωuv and Ωvv, respectively (Theorem 3.2). It therefore suffices to look at the quantities

D̃−1
θ0,T

∑T
t=1 zt

(
θ0
) (

ut −ΩuvΩ
−1
vv vt

)
and D̃−1

θ0,T
A∗. Lemma S.3.2(ii) with u+t = ut−ΩuvΩ

−1
vv vt instead of ut

gives the limiting result 1√
T

∑T
t=1

(
xt/

√
T
)j
u+t −→d

∫ 1
0 Bj

v(r)dBu.v(r) + j∆+
vu

∫ 1
0 Bj−1

v (r)dr, which implies

D̃−1
θ0,T

T∑

t=1

zt
(
θ0
) (

ut −ΩuvΩ
−1
vv vt

)
−→d

∫
j̃(r; θ0)dBu.v(r) + B̃+

vu, (S.6)

where B̃+

vu =
[
0′3×1, b

′∆+
vu

]′. The term −D̃−1
θ0,T

A∗ is constructed to asymptotically cancel out the term B̃+

vu

in the RHS of (S.6). (iii) Using zt(θ̂T )− zt(θ0) =
[
tθ̂T − tθ0 0′

]′
, we have

D̃−1
θ0,T

T∑

t=1

zt
(
θ0
) (

zt
(
θ̂T
)
− zt

(
θ0
))′ [ τg,0

β0

]
= D̃−1

θ0,T

T∑

t=1

zt
(
θ0
) (

tθ̂T − tθ0
)
τg,0.
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We note that the typical elements in the vector on the RHS are of the form 1√
T

∑T
t=1

(
t
T

)θ0 τg,0
(
tθ̂T − tθ0

)
or

1√
T

∑T
t=1

(
xit√
T

)j
τg,0
(
tθ̂T − tθ0

)
. We show that both contributions are Op (lnT ). By the mean-value theorem

and Lemma S.3.1(i),

∣∣∣∣∣
1√
T

T∑

t=1

(
t

T

)θ0

τg,0
(
tθ̂T − tθ0

)
∣∣∣∣∣ ≤

∣∣∣∣∣
1√
T
τg,0

T∑

t=1

(
t

T

)θ0

tθ0
(
tθ̂T−θ0 − 1

) ∣∣∣∣∣

≤ C|τg,0|
∣∣∣T θ0+

1
2 (θ̂T − θ0)

∣∣∣ 1
T

T∑

t=1

(
t

T

)2θ0

ln t

≤ C(lnT )|τg,0|
∣∣∣T θ0+

1
2 (θ̂T − θ0)

∣∣∣
[
1

T

T∑

t=1

(
t

T

)2θ0
]
= Op(lnT ).

(S.7)

Similarly, from the mean-value theorem and Cauchy-Schwartz inequality, we see that

∣∣∣∣∣
1√
T

T∑

t=1

(
xit√
T

)j

τg,0
(
tθ̂T − tθ0

)
∣∣∣∣∣ ≤

∣∣∣∣∣
1√
T
τg,0

T∑

t=1

(
xit√
T

)j

tθ0
(
tθ̂T−θ0 − 1

) ∣∣∣∣∣

≤ C|τ0k|
∣∣∣T θ0+

1
2 (θ̂T − θ0)

∣∣∣ 1

T

T∑

t=1

∣∣∣∣
xit√
T

∣∣∣∣
j ( t

T

)θ0

ln t

≤ C(lnT )|τg,0|
∣∣∣T θ0+

1
2 (θ̂T − θ0)

∣∣∣

√√√√ 1

T

T∑

t=1

(
xit√
T

)2j

√√√√ 1

T

T∑

t=1

(
t

T

)2θL

.

(S.8)

From (S.7) and (S.8) we conclude that D̃−1
θ0,T

∑T
t=1 zt

(
θ0
) (

zt
(
θ̂T
)
− zt

(
θ0
))′ [ τg,0

β0

]
= Op(lnT ). (iv) Use

zt(θ̂T )− zt(θ0) =
[
tθ̂T − tθ0 0′

]′
to obtain D̃−1

θ0,T

∑T
t=1

(
zt
(
θ̂T
)
− zt

(
θ0
))(

zt
(
θ̂T
)
− zt

(
θ0
))′ [ τg,0

β0

]

=

[
T−θ0 1√

T

∑T
t=1

(
tθ̂T −tθ0

)2
τg,0

0

]
. The absolute value of the nonzero element can be bounded as follows

∣∣∣∣∣τg,0
1

T θ0+1/2

T∑

t=1

(
tθ̂T − tθ0

)2
∣∣∣∣∣ ≤ |τg,0|

1

T θ0+1/2

T∑

t=1

t2θ0
∣∣∣tθ̂T−θ0 − 1

∣∣∣
∣∣∣tθ̂T−θ0 − 1

∣∣∣

≤ C|τg,0|
∣∣θ̂T − θ20

∣∣ 1

T θ0+1/2

T∑

t=1

t2θ0i(ln t)2

≤ C(lnT )2T−(θL+
1
2
)|τg,0|

∣∣T θ0+
1
2 (θ̂T − θ0)

∣∣2
[
1

T

T∑

t=1

(
t

T

)2θ0
]
= Op

(
(lnT )2

T θL+
1
2

)
.

(v) By similar steps as before, and invoking Theorem 3.2, it is easy to show that it suffices to bound

T−(θ0+
1
2
)∑T

t=1

(
tθ̂T − tθ0

)(
ut −ΩuvΩ

−1
vv vt

)
. Writing u+t = ut −ΩuvΩ

−1
vv vt, we have
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1
2
)

T∑

t=1

(
tθ̂T − tθ0

)
u+t =

1√
T

T∑

t=1

(
t

T

)θ0 (
tθ̂T−θ0 − 1

)
u+t =

(
θ̂T − θ0

) 1√
T

T∑

t=1

(ln t)

(
t

T

)θ0

u+t + op(1)

= T−(θ0+
1
2
)
[
T θ0+

1
2
(
θ̂T − θ0

)] 1√
T
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t=1

(
ln

t

T

)(
t

T

)θ0

u+t

+ T−(θ0+
1
2
)
[
T θ0+

1
2
(
θ̂T − θ0

)]
(lnT )

1√
T

T∑
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(
t

T

)θ0

u+t + op(1) =
1

T θ0+
1
2

Op(1) +
lnT

T θ0+
1
2

Op(1).
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This establishes (v). ■

The currents upper bounds in the lemma above suggest that the RHS of (S.3) does not converge to

a Gaussian mixture limiting distribution. The problematic expression is Lemma S.8.4(iii). That is, if θ is

estimated, then zt
(
θ̂T
)
−zt

(
θ0
)

does not convergence sufficiently fast to zero to obtain the standard stochastic

integral.
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