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Abstract

This paper investigates the optimal design of incentives when agents
distort probabilities. We show that the type of probability distortion
displayed by the agent and its degree determine whether an incentive-
compatible contract can be implemented, the strength of the incentives
included in the optimal contract, and the location of incentives on
the output space. Our framework demonstrates that incorporating
descriptively-valid theories of risk in a principal-agent setting leads
to incentive contracts that are typically observed in practice such as
salaries, lump-sum bonuses, and high-performance commissions.
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1 Introduction

The theory of incentives is one of the basic building blocks of economics.1 It
shows how a principal can set up a contract to incentivize an agent whose
actions are unobservable. Over decades this theory has been refined and
applied to many fields of economics. The contracts it predicts, however, often
do not match those observed in practice (Lazear and Oyer, 2007; Prendergast,
1999; Salanié, 2003). Notably, the bulk of the literature captures risk attitudes
with expected utility. Expected utility, while theoretically appealing, is not
an accurate description of choice under risk (Starmer, 2000).2

In our paper, we investigate whether relaxing the assumption of expected
utility maximization changes the type of contract predicted by the theory.
In particular, we consider agents who distort probabilities as documented
by abundant evidence from decision theory (Abdellaoui et al., 2011, 2007;
Bruhin et al., 2010; Fehr-Duda and Epper, 2011; Kahneman and Tversky,
1979; l’Haridon and Vieider, 2019; Tversky and Kahneman, 1992).3 4 This
assumption underlies the most prominent alternative models of decision
under risk, such as rank-dependent utility (Quiggin, 1982) and cumulative
prospect theory (Tversky and Kahneman, 1992). We take these models and
incorporate them to the theory of incentives, thus bridging the gap between
the two literatures.

The adopted models of risky decision-making are not only descriptively
valid, but they also satisfy a number of desirable normative properties such as
first-order stochastic dominance and transitivity. Our approach thus differs
from earlier research in the theory of incentives (De La Rosa, 2011; Santos-
Pinto, 2008; Spinnewijn, 2013) that relied on simple cognitive biases, such as
general overconfidence. There, agents would, for example, violate first-order

1See Mirrlees (1976) and Holmstrom (1979) for seminal contributions, and Laffont and
Martimort (2002) and Bolton and Dewatripont (2005) for reviews.

2See also the references on probability weighting and reference dependence throughout
this paper.

3See also Wakker (2010, p. 204) for an extensive list of papers documenting this pattern.
4This pattern of choice is not only restricted to behavior in laboratory experiments, but

is a regularity observed in settings with sizeable stakes Bombardini and Trebbi (2012), and
everyday situations such as insurance purchase (Barseghyan et al., 2013) and gambling
(Jullien and Salanié, 2000; Snowberg and Wolfers, 2010).
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stochastic dominance.
Our main contribution is to show how the principal can take advantage of

an agent who distorts probabilities. We consider different types of probability
distortion. With these we find that optimal contracts mimic those observed
in real-life, such as salaries, high-performance commissions, and option-like
contracts.

We first look at agents who display optimism or pessimism. These prob-
ability distortions reflect an irrational belief that either best performance
levels, in the case of optimism, or worst performance levels, in the case of
pessimism, are more likely to realize. The principal reacts to these probability
distortions by offering a contract that concentrates incentives at performance
levels that the agent perceives to be more likely. For example, when facing
an overly optimistic agent, the principal offers a contract that provides large
payments only if the highest performance levels realize—in other words, a
high-performance commission or long-shot.

We further show that, when optimism is moderate or pessimism is severe,
incentive-compatible contracts in the standard sense are either not needed or
cannot be implemented. Under moderate optimism, the first-best contract
suffices to induce high effort; the agent’s confidence that high performance
levels realize is on its own sufficient to generate strong incentives. By con-
trast, the incentive-compatible contract under severe pessimism concentrates
incentives at lowest performance levels. To avoid perverse incentives, such as
agents wanting to destroy output, the principal needs to provide a high and
fixed payment for all other performance realizations; a property that makes
this contract excessively costly. The principal gives up incentive compatibility
and ends up offering a contract with a constant payment for all performance
levels—a salary.

Second, we go beyond optimism and pessimism and consider also proba-
bility distortions stemming from the agents’ cognitive limitations to perceive
probabilities. These probability distortions are referred as likelihood in-
sensitivity (Tversky and Wakker, 1995; Wakker, 2001). Agents who are
likelihood-insensitive assign too much weight to highest and lowest perfor-
mance levels, but perceive performance levels in the middle to be similar.
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When facing these agents, the principal concentrates incentives at high or
low performance levels while offering flat incentives in-between. The optimal
contract resembles an incentive scheme with two bonuses, one at low perfor-
mance levels— an entry bonus— and one at high performance levels—a high
performance bonus.

Using our framework, we consider a number of extensions. For example, we
look at agents who also evaluate outcomes relative to a reference point. These
agents not only suffer from probability distortion but also from loss aversion
and diminishing sensitivity. Again, there is ample evidence for these biases
(see Abdellaoui et al., 2007; Baillon et al., 2020a; Kahneman and Tversky,
1979; Kahneman et al., 1991; Tversky and Kahneman, 1992).5 Depending on
the circumstances, reference dependence gives rise to richer contracts, such
as an incentive scheme featuring multiple bonuses ; or simpler contracts, such
as a fixed wage with a lump-sum bonus.

We also discuss how our model can be adapted to incorporate ambiguity
attitudes. Accounting thus for another well-documented deviation from
expected utility (Ellsberg, 1961; Halevy, 2007). Our framework not only
captures ambiguity-averse attitudes, but also ambiguity-seeking attitudes
and overweighting of rare events. As such, it provides a more general and
descriptive characterization of attitudes toward ambiguity (Trautmann and
Van De Kuilen, 2015). This feature enables us to generate novel findings as
well as to reconcile results in the literature that seemed hitherto scattered.

Broadly speaking our paper contributes to the behavioral contract theory
literature. This literature incorporates biases into contract theory such as loss
aversion, present bias, other-regarding preferences, and incorrect beliefs (see
Koszegi, 2014, for a review). We focus on incorporating probability distortions.
To our knowledge we are the first to do so. This feature puts us closer to Spalt
(2013), who shows that when contracting with agents with cumulative prospect
theory preferences it is first-best optimal to use stock options. We find a
similar result in which the first-best contract given to likelihood-insensitive
agents exhibits an option-like shape. But importantly, we go beyond since

5The reader interested in literature concerned with reference-dependent preferences
outside of the laboratory is referred to footnote 1 in Baillon et al. (2020a).
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we also look at what happens when effort is not contractible, for different
possible shapes of probability weighting, do not commit to functional forms of
utility, and do not restrict our analyses to one type of compensation scheme.
Additionally, Baillon et al. (2020b) demonstrates that probability distortion
can lead to lower motivation. That paper is however silent about the optimal
design of incentives. We show how the principal must design a contract to
optimally motivate the agent while accounting for probability distortions and
other irrationalities.

We also contribute to the contract theory literature. We speak to a
well-known paradox put forward by Salanié (2003) stating that the complex
solutions predicted by contract theory do not match the simplicity of contracts
observed in practice. We show that when individuals are overly pessimistic,
the emerging contract is a salary; and, if they are also loss averse, the optimal
contract consists of a salary and a lump-sum bonus given for reaching high
performance levels. These two contracts are among the most popular compen-
sation practices. Generally speaking, we show that introducing descriptively
valid theories of risk in the principal-agent problem leads to contracts that
are often observed in practice.

2 Setup and probability weighting functions

Consider an agent (he) hired by the principal (she) to work on a task. The
agent’s action consists of exerting an effort on the task e ∈ {

¯
e, ē}. Exerting

the high effort, ē, generates more disutility than exerting the low effort,
¯
e.

For simplicity, we assume that the agent faces the following cost function:

c(e) =

c if e = ē,

0 if e =
¯
e.

where c > 0. In Section 5, we relax this assumption of binary effort and
constant effort costs and show that our results hold in a more general setting
in which effort is assumed to be a continuous variable.

To incentivize the agent to exert high effort, the principal offers a take-
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it-or-leave-it contract specifying a transfer t(q). If the contract is accepted,
the agent proceeds to work on the task and chooses the amount of effort. We
assume that the transfer included in the contract t(q) enters the agent’s utility
through the function u, about which we make the following assumptions.

Assumption 1. The basic utility function u : R+ → R+ is C2, and exhibits
u(0) = 0, u′ > 0, u′′ < 0, and −u′′

u′
< B for |B| < +∞.

The basic utility, also known as von Neumann-Morgenstern utility function,
exhibits the standard property of diminishing returns, i.e. u′ > 0 and
u′′ < 0. A property that generates risk-averse attitudes in an expected utility
framework.

The agent’s action, e, cannot be directly observed by the principal. Fur-
thermore, output on the task q, throughout also referred as performance, is a
random variable that takes values in the compact interval [

¯
q, q̄]. Hence, by

observing a realization of output, the principal cannot determine the agent’s
action with certainty. However, both parties know that q is distributed accord-
ing to the conditional distribution function F (q|e) that admits a probability
density function f(q|e). Furthermore, we assume that the relationship between
output and effort is governed by the monotone likelihood ratio property

Assumption 2. The monotone likelihood ratio property (MLRP) states that
d
dq

(
f(q|

¯
e)

f(q|ē)

)
≤ 0.

The MLRP establishes how informative the realizations of q are about the
agent’s action. Specifically, it implies that high output realizations are more
likely to be drawn from a distribution of output conditional on high effort.
Thus, the agent can influence the likelihood of obtaining higher performance
levels on the task.

Throughout, we assume that principal is risk-neutral and has the objective
function:

Π(t, e) =
q̄∫

¯
q

(
S(q)− t(q)

)
f(q|e) dq,

where S : R+ → R+ exhibits S ′ > 0, S ′′ ≤ 0 for all q, and S(
¯
q) = 0.

This objective function together with Assumption 2 imply that the principal
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is interested in implementing high effort. It generates output levels that
dominate those generated by low effort—in the sense of first-order stochastic
dominance—, which, in turn, boosts profits.

Moreover, under the aforementioned assumptions, the preferences of the
agent can be written as

E
(
U(t, e)

)
=

q̄∫
¯
q

u
(
t(q)

)
f(q|e) dq − c(e). (1)

To relate to standard notation in the literature, we use decumulative
probabilities. That is, we refer to a probability, p, as the likelihood that a
realization better than an output level Q ∈ [

¯
q, q̄] for a given e takes place.

Formally, let p := 1 − F (Q|e). This representation has no impact on the
solution to the incentive design problem. To see why, note that the agent’s
preference in equation (1) is equivalent to the following representation in
terms of ranks:6

E(U(t, e)) =
¯
q∫
q̄

u
(
t(q)

)
d
(
1− F (q|e)

)
− c(e). (2)

When the agent perceives probabilities accurately, expected utility (EUT),
in equations (1) and (2), captures his preferences. We relax this assumption by
letting the agent exhibit probability distortions, which affect his risk attitudes.
We model this feature by means of a probability weighting function, w, that
transforms probabilities. The following assumptions are imposed on w:

Assumption 3. Let p := 1 − F (q|e) for any q ∈ [
¯
q, q̄]. The probability

weighting function w : [0, 1]→ [0, 1] is C2 and exhibits:
• w(0) = 0 and w(1) = 1;
• w′(p) > 0 ∀p ∈ (0, 1);
6For further clarification, let q1, q2 ∈ [

¯
q, q̄] with q2 > q1. Notice that,∫ q2

q1

f(q|e)dq = F (q2|e)− F (q1|e) = 1− F (q1|e)− (1− F (q2|e)) =
∫ q1

q2

d (1− F (q|e)) .
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Figure 1: Examples of probability weighting functions

p

w(p)

(a) Pessimism

p

w(p)

(b) Optimism

p

w(p)

(c) Likelihood insensitiv-
ity

Note: Dashed lines represent accurate perception of probability.

• For some p̃ ∈ [0, 1], w′′(p) < 0 if p < p̃ and w′′(p) > 0 if p > p̃;
• If p̃ = 1, limp→0w

′(p) = +∞ and limp→1w
′(p) = 0;

• If p̃ = 0, limp→0w
′(p) = 0 and limp→1w

′(p) = +∞;
• If p̃ ∈ (0, 1), limp→0w

′(p) = +∞ and limp→1w
′(p) = +∞

In words, the probability weighting function is an strictly increasing and
continuous function that maps the unitary interval into itself. The function
exhibits at least two fixed points, one at impossibility p = 0 and one at
certainty p = 1.

The function w can take three different shapes depending on the location
of the inflection point p̃. When p̃ = 0, the function is convex everywhere and
probabilities associated to worst performance levels are given a larger weight
than that given to probabilities associated to best performance levels. Fig-
ure 1a presents an example of a convex weighting function. In contrast, when
p̃ = 1 the function is concave everywhere and probabilities associated to best
performance levels receive large weight while probabilities associated to worst
performance levels receive small weight (Figure 1b). Finally, when p̃ ∈ (0, 1),
the probability weighting function exhibits an inverse-S shape (Figure 1c).
In this case, the agent assigns large weights to extreme performance levels
while assigning similar weights to intermediate output levels. An implication
of this latter shape is the existence of an interior fixed-point, p̂ ∈ (0, 1) such
that w(p̂) = p̂.
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The seemingly drastic assumptions of extreme sensitivity to rare and
almost-certain events, i.e. limp→1w

′(p) = ∞ and limp→0w
′(p) = ∞, are

incorporated in the most prominent proposals of probability weighting func-
tions. For instance, in the parametric form proposed by Prelec (1998). There,
the behavioral foundation of compound invariance implies that “the slope
tends to infinity at zero” and that “the picture at the other endpoint, is
almost the same [...], the slope dw

dp
, tends again to infinity” (Prelec (1998,

p. 505)). Moreover, Dierkes and Sejdiu (2019) show that these assumptions
are also implied by the parametric forms of Tversky and Kahneman (1992)
and Goldstein and Einhorn (1987).7

Furthermore, these assumptions have relevant implications that are for-
mally presented next. We relegate all formal proofs to Appendix A.

Lemma 1. If limp→0w
′(p) = +∞, then limp→0w

′′(p) = −∞ and limp→0
w′′(p)
w′(p) =

−∞.

Lemma 2. If limp→1w
′(p) = +∞, then limp→1w

′′(p) = +∞ and limp→1
w′′(p)
w′(p) =

+∞.

In words, the second derivative of the weighting function and the analog
of the Arrow-Pratt measure in probabilities, w

′′(p)
w′(p) , can be unbounded at small

and large probabilities. These implications are not only useful for proving
our main results, but also formalize and generalize the findings of Dierkes
and Sejdiu (2019). In Appendix A, we also present similar results for the
cases of insensitivity to extreme events, relevant to optimistic agents, and
insensitivity to almost-certain events, relevant to pessimistic agents.

All in all, the preferences of the agent who exhibits probability distortions
are characterized by rank-dependent utility (RDU):

RDU(t, e) =
¯
q∫
q̄

u
(
t(q)

)
dw
(
1− F (q|e)

)
− c(e). (3)

7Notably, non-continuous proposals of probability weighting functions, e.g. Neo-additive
(Chateauneuf et al., 2007) or Kahneman and Tversky (1979), include discontinuities at
extreme probabilities to account for regularities in behavior that go in line with extreme
sensitivity to rare and almost-certain probability events.
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We also refer to agents with RDU preferences as non-EUT agents since
their perception of probabilities prevents them from using mathematical
expectations to evaluate possible outcomes.8 We assume that the principal
can contract with either EUT or non-EUT agents and, as is standard in the
literature, that she is fully informed about the agent’s risk preferences. In
Section 5, we relax this assumption by considering a framework in which
the principal screens agents according to their risk preference before solving
the moral hazard problem. That extension shows that optimal contracts
resulting from the plain moral hazard framework are crucial to solve that
more complicated problem.

3 Optimistic and Pessimistic agents

We start by studying the optimal design of incentives when the principal
faces two specific types of non-EUT agents: optimists and pessimists. These
agents deviate from expected utility due to motivational factors reflecting a
proneness or a dislike for risk. Optimists like risk and assign large weights to
the best outcomes—they irrationally believe the best outcomes realize more
often. Optimism is captured with a concave probability weighting function:

Definition 1. Optimism is characterized by a probability weighting function
w(p), defined in Assumption 3, with the additional restriction p̃ = 1. Therefore,
limp→0w

′(p) = +∞ and limp→1w
′(p) = 0.

In contrast, pessimists dislike risk and assign large weights to the worst
outcomes. In other words, they believe that worst outcomes realize more
often. Pessimism is captured by a convex probability weighting function:

Definition 2. Pessimism is characterized by a probability weighting function
w(p), defined in Assumption 3, with the additional restriction p̃ = 0. Therefore,
limp→0w

′(p) = 0 and limp→1w
′(p) = +∞.

8It is relevant to emphasize that probability distortion is not the only departure from
expected utility that we consider. In Section 5 we also consider reference-dependence and
discuss ambiguity attitudes.
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3.1 First best

We first consider a situation in which effort is contractible. This is done to
build intuition about the role of probability weighting on contracting aside
from incentive compatibility. If effort is contractible, the principal only needs
to ensure participation. Formally:

max
t(q)

q̄∫
¯
q

(
S(q)− t(q)

)
f(q|ē) dq

s.t.
q̄∫

¯
q

u(t)w′(1− F (q|ē))f(q|ē) dq − c ≥ Ū.

The following proposition describes the optimal contract for each agent
type. Interestingly, the principal can, sometimes, take advantage of the
irrationalities exhibited by non-EUT agents with this first-best contract.

Proposition 1. Let Assumptions 1 and 3 hold. The first-best contract, tfb(q),
exhibits three possible shapes, all continuous:
(i) If the agent is EUT, the contract tfbEU is constant in q;
(ii) if the agent exhibits optimism, tfbO (q) is everywhere increasing in q;
(iii) if the agent exhibits pessimism, tfbP is constant in q and is equal to tfbEU .

The first part of Proposition 1 establishes the standard risk-sharing ar-
gument of Borch (1960). When the agent is EUT and exhibits risk aversion,
the principal fully insures him with a contract that transfers a fixed amount
regardless of the output realization. The magnitude of that constant transfer
ensures that the contract will be accepted by the agent.

When facing an optimist, the first-best contract increases in performance.
From the agent’s point-of-view, this risky contract offers full insurance; it
provides larger transfers for realizations that are perceived to be more likely
and lower transfers for realizations that are perceived to be less likely. However,
this contract is in fact taking advantage of his misperception of probabilities.
As compared to the actual full insurance contract, described in Proposition 1
(i), the principal is underpaying more likely events and overpaying unlikely
events.
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The principal would like to take advantage of a pessimistic agent in a
similar way. A strategy that would imply a contract that decreases in perfor-
mance, offering large payments in case of low performance and low payments
in case of high performance. This contract, however, would encourage the
agent to destroy output to attain the highest possible payment. To avoid
such sabotage and ensure participation, the principal instead offers a con-
stant transfer that yields utility equal to the agent’s outside option.9 This
solution is nonetheless far from ideal; it renders impossible the exploitation of
the agent’s irrationality because it eliminates risk. Hence, under pessimism,
participation and monotonicity requirements come at the cost of efficiency.

To investigate how the aforementioned first-best contracts change as
pessimism/optimism become stronger, we will also talk about agents who
are more optimistic or more pessimistic than others. We use the following
definition from Yaari (1987):

Definition 3. Agent i is more pessimistic (optimistic) than agent j if wi =
θ ◦ wj, where wi and wj are the probability weighting functions corresponding
to agent i and j, respectively, and θ : [0, 1] → [0, 1] is continuous, strictly
increasing, and convex (concave).

A probability weighting function that is more concave than another gen-
erates more optimism because it makes the agent assign larger probability
weights to high performance levels and smaller weights to low performance
levels. The reasoning is mirrored for convex probability weighting functions.

The following corollary shows that when contracting with a more optimistic
agent, it can be first-best optimal to offer a contract with stronger incentives.
By concentrating larger transfers at highest performance levels, the principal
takes advantage of the agent’s stronger confidence that high output levels
realize. This result is nevertheless conditional on the agent’s coefficient of
absolute risk aversion not becoming larger with the contract’s change.10

9This solution also avoids the excessive expenditures that would result from offering
the pessimistic agent a contract that increases in performance. There, the principal would
need to provide extremely large payments to cover for the implied exposure to risk.

10In a straightforward extension of Corollary 1, it can be shown that a necessary and
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Corollary 1. Assume −u′′(tfb
O,i(q))

u′(tfb
O,i(q))

< −u′′(tfb
O,j(q))

u′(tfb
O,j(q))

. If agents i and j are opti-
mistic and agent i is more optimistic than agent j, then the first-best contract
offered to agent i exhibits dtfb

O,i(q)
dq >

dtfb
O,j(q)
dq .

Furthermore, the efficiency loss borne by the principal from not being able
to exploit pessimism (Proposition 1 (iii)) becomes more pronounced as the
agent becomes more pessimistic. Recall that this efficiency loss emerges from
the impossibility of offering contracts that decrease in performance.

Corollary 2. Under the first-best contract, the Principal cannot exploit
pessimism, she offers tfbEU to all pessimistic agents regardless of their degree
of pessimism. The efficiency loss of offering tfbEU instead of a schedule that
decreases in q increases with pessimism.

3.2 Second best

We now consider the more interesting setting in which the agent’s action is
not contractible. The principal now seeks to maximize her objective function
by choosing a transfer that is accepted by the agent and also elicits high
effort. Therefore, the maximization problem of the principal is:

max
t(q)

q̄∫
¯
q

(
S(q)− t(q)

)
f(q|ē) dq

s.t.
q̄∫

¯
q

u(t)w′(1− F (q|ē))f(q|ē) dq − c ≥
q̄∫

¯
q

u(t)w′(1− F (q|
¯
e))f(q|

¯
e) dq,

q̄∫
¯
q

u(t)w′(1− F (q|ē))f(q|ē) dq − c ≥ Ū.

In the absence of probability distortions, w(p) = p, the standard solution
of Holmstrom (1979) applies: the second-best contract specifies transfers that
strictly increase everywhere in performance.

sufficient condition for dtfb
O,i

(q)
dq >

dtfb
O,j

(q)
dq is that θ, the transformation of the probability

weighting function from Definition 3, is sufficiently concave.
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We present this solution in the next Proposition.

Proposition 2. Under Assumptions 1, 2, and w(p) = p, the optimal incentive
scheme, tsbEU(q), is continuous and everywhere increasing in q.

Before presenting the second-best contract for non-EUT agents, we in-
troduce an assumption that is crucial to our analysis. We strengthen the
MLRP (Assumption 2) to ensure that, from the agent’s point-of-view, output
realizations are sufficiently informative about his chosen action.

Assumption 4 (W-MLRP). The modified monotone likelihood ratio property
(W-MLRP) is

d
dq

w′
(
1− F (q|

¯
e)
)
f(q|

¯
e)

w′
(
1− F (q|ē)

)
f(q|ē)

 < 0.

The W-MLRP implies that the principal is sophisticated. She anticipates
how the agent’s probability distortions affect his perception about the infor-
mativeness of a chosen action and implements incentives accordingly. The
agent, on the other hand, is naive and does not evaluate the informativeness of
output realizations using mathematical expectations, which would be equiva-
lent to anticipating the way in which the principal evaluates those realizations.
Consequently, solutions under Assumption 4 constitute exploitative contracts:
they are designed to take advantage of that naïveté.

The following Lemmas are not only important to prove our main propo-
sitions but also provide an intuition about the strength of the W-MLRP
vis-à-vis the MLRP.

Lemma 3. The W-MLRP implies:
(i) w

(
1− F (q|ē)

)
≥ w

(
1− F (q|

¯
e)
)
;

(ii) the MLRP.

Lemma 4. If the MLRP holds and

w′′
(
1− F (q|ē)

)
w′
(
1− F (q|ē)

) f(q|ē)−
w′′
(
1− F (q|

¯
e)
)

w′
(
1− F (q|

¯
e)
) f(q|

¯
e) ≤ 0,

then the W-MLRP holds.
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The W-MLRP is more stringent than the standard MLRP (Lemma 3).
Moreover, the merit of Lemma 4 is to show that under pessimism and optimism,
the W-MLRP can be attributed to the MLRP along with reasonable properties
of the probability weighting function.11 Throughout, we will assume the W-
MLRP holds; note, however, that thanks to this Lemma that the results
presented below can be obtained under more standard assumptions along
with restrictions on the concavity or convexity of the weighting function.

The next proposition describes the properties of the second-best contract
that solves the principal’s program when she faces an optimist.

Proposition 3. Let Assumptions 1, 3, 4 hold. Under optimism, there exists
a threshold cost level ĉO, such that the second-best contract, tsbO (q), is:
(i) Identical to the first-best contract, tfbO (q), in Proposition 1 if c < ĉO;
(ii) strictly increasing in q everywhere and introducing rewards and punish-

ments with respect to tfbO (q) if c ≥ ĉO.

For an optimistic agent, the first-best contract from Proposition 1 might
suffice to incentivize high effort. Recall that such contract specifies transfers
that increase in performance. Since the optimist erroneously believes that
high performance levels are more likely to realize, the higher transfers specified
by the first-best contract at those performance levels convince him that high
effort is profitable. Therefore, optimism can make the incentive compatibility
constraint slack at the optimum.

When the cost of exerting high effort is pronounced, the optimistic agent
requires a contract with higher-powered incentives as compared to the first-
best. That is, a contract that specifies lower transfers at low output levels,
generating punishments with respect to the first-best, and larger transfers at
the high-end of the output space, generating rewards. This contract motivates
the agent because the combination of high transfers at high performance
levels and optimism inflates the agent’s perceived benefit of exerting high
effort. An example of these contracts is presented in Figure 2a.

11Specifically, if w(p) exhibits more convexity at probabilities generated by low effort,

¯
e, than at probabilities generated by high effort, ē, and the MLRP is assumed, then the
W-MRLP holds.
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Figure 2: Illustration of Proposition 1 and Proposition 3.
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(a) Optimal contracts under optimism
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(b) Optimal contracts under pessimism
Note: Red dotted lines represent first-best contracts. Blue solid lines represent second-best

contracts.

We use Definition 3 to provide a comparative static that demonstrates
how the contracts in Proposition 3 are chosen according to the agent’s degree
of optimism.

Corollary 3. Let q∗ ∈ (
¯
q, q̄) be such that w′

(
1 − F (q∗|ē)

)
= 1. Stronger

optimism in the sense of Definition 3
(i) Shortens the set c ∈ (0, ĉO] in which tsbO (q) = tfbO (q) if q < q∗;
(ii) enlarges the set q < q∗.

Stronger optimism makes it less likely that the first-best contract, tfbO (q),
incentivizes high effort in a moral hazard setting. The agent’s greater confi-
dence that high output levels realize leads him to the erroneous belief that
such outcomes can be achieved with low effort. That conviction makes the
implementation of more powerful incentives crucial; they enhance the per-
ceived benefits from choosing high effort. Put differently, the agent needs to
be incentivized not to “rest on his laurels.”

In a related paper, De La Rosa (2011) also finds that the first-best contract
increases in performance and that the incentive compatibility constraint might
slack. His approach differs from ours because the agent is assumed to be
EUT while exhibiting overconfident beliefs. Our results can be understood

15



as complementary since they require less stringent assumptions.12 Moreover,
our results generalize those of De La Rosa (2011). We consider a rich output
space, which enables us to fully characterize the shape of optimal contracts.
Also, we show that these findings are not an artifact of violations of first-
order stochastic dominance; a normative condition that does not hold in his
setting.13

We turn to study the optimal contract given to pessimistic agents. The
following proposition characterizes the solution.

Proposition 4. Let Assumptions 1, 3, 4 hold. Under pessimism, the second-
best contract, tsbP (q), is:
(i) Smoothly increasing in q up to some threshold qI ∈ (

¯
q, q̄) after which

pay is constant in q;
(ii) constant in q everywhere.

When the agent is pessimistic, the optimal contract can take two possible
shapes. First, the principal concentrates incentives at low performance levels;
this amounts to a contract that specifies larger transfers in exchange of
higher performance levels at the lower-end of the output interval while being
performance-insensitive everywhere else. These incentives along with the
agent’s irrational perception that low performance levels realize more often
motivate high effort.14 An example of this contract shape is presented in
Figure 2b. Second, the principal cannot implement incentives, for reasons
that will be explained below, and has no other option than to offer a constant
transfer. i.e. a salary.

The following comparative static is useful to understand the circumstances
under which the principal chooses one of the contract-shapes in Proposition 4

12Specifically, the assumption of disagreement in beliefs, justified in his setting through
different priors or lack of revision, is not necessary. Misperceptions of probabilities occur
in situations in which agents are given the same priors or objective probabilities.

13Additionally, our characterization of optimism has an axiomatic foundation. This
property allows us to trace back our results to violations of axioms of choice. In our case,
the independence axiom.

14It would be inefficient to, say, implement a schedule that is increasing everywhere in
performance since the pessimistic agent perceives high output realizations to be unlikely.
To motivate the agent with such a contract shape, the principal would need to incur in
excessively large transfers, yielding wasteful expenditures.
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over the other.

Corollary 4. Assume that incentives can be implemented. Stronger pessimism
implies a larger segment q ∈ [qI , q̄] for which tsbP (q) (Proposition 4) is flat.

Stronger pessimism leads the principal to concentrate incentives at lower
performance levels. A property that makes incentive schemes increasingly
performance-insensitive.

Corollary 4 implies that to motivate an agent with acute pessimism,
rewards and punishments must be concentrated in a thin output subset in the
neighborhood of

¯
y. However, by doing so, the principal incurs in inefficient

expenditures. That is because a flat amount equal to the largest reward is
paid in the remainder of the output space; considerable transfers that do
not generate incentives and make the contract overly expensive. As a result,
incentive compatibility is given up and participation is ensured with a salary
(Proposition 4 (ii)). For more moderate pessimism, the implementation of
incentives is affordable. In that case incentives are concentrated at low, but
not at the lowest, output levels rendering incentive compatibility affordable
(Proposition 4 (i)).

Proposition 4 and Corollary 4 justify the prevalence of performance-
insensitive contracts in organizations (Lazear and Oyer, 2007; Salanié, 2003)
by virtue of pessimism. In fact, excessive pessimism about performance
explains the widespread usage of salaries.15 Our framework also rationalizes
“put contracts.” A financial instrument in which the contract-writer commits
to buy a commodity at a fixed price during a specified time period. The
profits of this contract exhibit the shape described in Proposition 4 (ii). Hence,
they can be thought as emerging from the contract-writer having moderate
pessimism about the prize of the commodity.

To conclude this section, we compare the transfers of the second-best
contract presented in Proposition 2 with those of the contracts presented in
Propositions 3 (ii) and 4 (i). We thus focus on the contracts that emerge
when the incentive compatibility constraint binds and when incentives can be

15In Section 5, we discuss how this result can be further reinforced by ambiguity aversion,
a form of pessimism toward ambiguity.
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implemented. The following corollary formalizes these comparisons.

Corollary 5. Assume that the incentive compatibility constraint binds,
(i) tsbO (q) (Proposition 3) offers lower transfers in q ∈ [

¯
q, q∗) and higher

transfers for some q ∈ (q∗, q̄] as compared to tsbEU (Proposition 2).
(ii) tsbP (q) (Proposition 4) offers higher transfers in q ∈ [

¯
q, q∗) and lower

transfers for some q ∈ (q∗, q̄] as compared to tsbEU(q) (Proposition 2).

As compared to the contract given to the EUT agent, the contract targeting
the optimist offers lower transfers at low performance levels and higher
transfers at high performance levels. This result shows, once again, how the
principal exploits optimism. She offers modest transfers at output levels that
the biased agent does not consider to be likely, but that, under accurate
perception of probabilities, require larger transfers. Furthermore, the principal
is overpaying high and thus unlikely realizations of output. This latter feature
of the contract motivates the optimist.

In contrast, the pessimist receives a contract that specifies larger transfers
at low performance levels and lower transfers at high performance levels. The
principal underpays high output realizations, which under accurate perception
of probabilities require larger transfers, and overpays low output realizations.
Incentives are thus concentrated where it matters to this agent.

4 Likelihood insensitivity and inverse
S-shaped probability weighting functions

So far, we have studied the optimal design of incentives when the principal
contracts with agents who deviate from EUT due to optimism or pessimism.
Optimism and pessimism, however, cannot account for the common finding
that individuals, when making risky decisions, exhibit an inverse S-shaped
probability weighting function (see Wakker, 2010, p.204, and Fehr-Duda and
Epper, 2011, for extensive lists of references documenting this pattern).

This pattern is best understood as a consequence of likelihood insensitivity
(Tversky and Wakker, 1995; Wakker, 2001), the cognitive limitations that
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prevent individuals from discriminating probabilities accurately. A likelihood-
insensitive individual assigns excessively large probability weights to very small
or very large probabilities—associated to near-certain and near-impossible
events—and assigns probability weights that are similar to intermediate
probabilities, thus yielding an inverse S-shaped probability weighting function.

Definition 4. Likelihood insensitivity is characterized by a probability weight-
ing function w(p), defined in Assumption 3 with the additional restriction
p̃ = p̂ = 0.5. Therefore, limp→0w

′(p) = +∞ and limp→1w
′(p) = +∞.

Recall that p̂ is the interior fixed-point that results from p̃ ∈ (0, 1).

4.1 First best

As in the previous section, we first characterize the optimal contract when
effort is contractible. The following proposition shows that when agents
are likelihood insensitive, the optimal first-best contract is an “option-like”
incentive scheme.16

Proposition 5. Let Assumptions 1,3, 4 hold. Under likelihood insensitivity,
the first-best contract, tfbL (q), is constant up to threshold qI ∈ (

¯
q, q̄) after which

pay strictly increases in q.

A consequence of low probabilities being overweighted is that the likelihood-
insensitive agent exhibits risk-seeking attitudes for unlikely events. The
increasing segment of the first-best contract in Proposition 5 is designed to
match this proneness to risk. From the agent’s point-of-view this feature of
the contract delivers full insurance: it awards larger transfers for events that
are given higher probability weight. Similarly, the flat part of the contract
reflects underweighting of large probabilities. The agent’s tendency to give
too much weight to worse events realizing generates risk aversion. Therefore,

16We refer to a contract as being option-like when it exhibits a performance-insensitive
segment at low output levels but increases in performance at high performance levels. A
shape that resembles a “call option.” In doing so we follow the convention in the literature
(See Proposition 1 in de Meza and Webb (2007)). To avoid confusion with put options we
have referred to those instruments as “put contracts.”
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insurance requires that the agent is fully protected from risk at those output
levels with a fixed transfer.

Proposition 5 echoes the result of Spalt (2013); an option-like contract is
first-best optimal under likelihood insensitivity. Our result however emerges
in a setting that is free of assumptions on the contract structure and that does
not impose parametric forms of utility and probability weighting functions.
Furthermore, we go beyond and investigate whether this results holds in a
more general moral hazard setting.

To investigate how the first-best contract changes as likelihood insensitivity
becomes stronger, we will talk about agents who are more likelihood insensitive
than others. To that end, we introduce Tversky and Wakker (1995)’s definition
of subadditivity:

Definition 5. A function φ : [0, 1] → [0, 1] is subadditive if φ(0) = 0,
φ(1) = 1, φ is C2 with φ′ > 0, and there exist constants ε, ε′ such that

φ(q) ≥ φ(r + q)− φ(r)

whenever 0 < q < r < 1 and r + q ≤ 1− ε, and

1− φ(1− q) ≥ φ(r + q)− φ(r)

whenever 0 < q < r < 1 and r ≥ ε′.

We are now in a position to provide the more-likelihood-insensitive-than
relation also due to Tversky and Wakker (1995).

Definition 6. Agent i is more likelihood insensitive than agent j if wi = φ◦wj
where wi and wj are their respective probability weighting functions and
φ : [0, 1]→ [0, 1] is subadditive.

An agent is more likelihood insensitive than another when he assigns more
probability weight to extreme probability events– highest and lowest perfor-
mances realizing— while assigning less weight to intermediate probabilities.
In other words, his weighting function exhibits a more pronounced inverse-S
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shape. The following corollary shows how the contract of Proposition 5
changes as likelihood insensitivity becomes more severe.

Corollary 6. If agents i and j are likelihood insensitive and agent i is more
likelihood insensitive than j, the first-best contract offered to agent i exhibits
a larger segment [

¯
q, qI) in which pay is constant.

Stronger likelihood insensitivity must be matched by the principal with a
contract that exhibits a larger performance-insensitive segment. This contract
property acknowledges the agent’s stronger risk aversion; a consequence of
assigning larger probability weights to worst events. Moreover, a flatter
contract also responds to the agent’s increasing insensitivity to probabili-
ties. The increasing part of the first-best contract becomes less effective in
insuring an agent who becomes worse at distinguishing (small) probabilities.
Consequently, the principal can save in costs by making the contract flatter.

4.2 Second best

Likelihood insensitivity makes the moral hazard problem more restrictive
because the W-MLRP cannot be attributed to properties of the probability
weighting function, as it was the case for optimists and pessimists (Lemma 4).
Recall that around p̃ probabilities are almost indistinguishable to the likelihood
insensitive agent. Therefore, the requirement of Lemma 4—that w(p) must
be more convex at the probability weight implied by high effort as compared
to that implied by low effort— cannot hold in the neighborhood of p̃. The
W-MLRP must be now explicitly assumed.

The next proposition presents the second-best contract given to the
likelihood-insensitive agent.

Proposition 6. Let Assumptions 1, 3, 4, and likelihood insensitivity hold.
There exists a threshold cost level ĉL > 0, such that the second-best contract,
tsbO (q):
(i) is identical to the first-best contract, tfbL (q) from Proposition 5 if c < ĉL;
(ii) is strictly increasing in q everywhere and exhibits steep payment incre-

ments at extreme performance levels if c ≥ ĉL;
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Figure 3: Illustration of Proposition 5 and Proposition 6.
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(a) Optimal contracts under moderate
likelihood insensitivity
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(b) Optimal contracts under strong like-
lihood insensitivity

Note: Red dotted lines represent first-best contracts. Blue solid lines represent second-best
contracts.

(iii) pays a constant amount for some finite, fixed, compact interval, but
above and/or below this interval pay steeply increases in q if c ≥ ĉL.

The first part of the proposition shows that the incentive compatibility
constraint might not bind at the optimum. The rationale for this result
is analogous to that given for Proposition 3 (i). The agent’s inaccurate
perception that high output levels are more likely to realize, than they
actually are, combined with the first-best contract offering higher transfers
for those output levels convince him that choosing high effort is profitable.

When the cost of high effort is sufficiently pronounced, i.e. c ≥ ĉL,
the principal must implement a contract with higher-powered incentives as
compared to those included in the first-best. These incentives have to be
concentrated at extreme output levels, i.e. those output realizations that
are assigned the largest probability weights. The resulting contract can be
either everywhere increasing, as the contract described by Proposition 6
(ii) and exemplified in Figure 4a, or performance-insensitive at intermediate
performance levels, as the contract described by Proposition 6 (iii) and
exemplified in Figure 4b. Whether one of these contracts is chosen over the
other depends on the agent’s degree of likelihood insensitivity, as it will be
explained below.
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Next, we study the consequences of stronger degrees of likelihood insensi-
tivity on optimal contracting. We focus on the case in which the incentivie
compatibility constraint holds.

Corollary 7. Assume that the incentive compatibility constraint binds. If
agents i and j are likelihood insensitive and i is more likelihood insensitive
than j, the second-best contract, tsbL (Proposition 6), given to i exhibits a larger
segment in which pay is performance insensitive.

The principal responds to a poorer capacity to discriminate intermediate
probabilities by increasingly concentrating incentives at extreme output levels.
An adjustment that generates contracts that are performance-insensitive to a
greater extent. Consequently, an agent with acute likelihood insensitivity, who
barely discriminates intermediate probabilities, renders the implementation
of incentives for middle-ranged outcomes wasteful. Making the contract in
Proposition 6 (iii) ideal for him.

Furthermore, Corollary 7 entails that the performance-insensitive segment
of the second-best contract must shrink as the agent becomes less likelihood
insensitive. Thus, at the limit, for an agent with slight to modest likelihood
insensitivity, an incentive scheme that is everywhere increasing is effective;
his slight distortion of probabilities does not impede him from responding to
effectives over the entire output space. Consequently, he obtains the contract
described by Proposition 6 (ii).

To conclude this section, we compare the transfers included in the optimal
contracts of Proposition 6 (ii) and (iii) to those included in the contract given
to the EUT agent.

Corollary 8. Assume that the incentive compatibility constraint binds. Let
q∗, q∗∗, q̃ ∈ (

¯
q, q̄) satisfy w′′

(
1 − F (q̃|e)

)
= 0, w′

(
1 − F (q∗|ē)

)
= w′

(
1 −

F (q∗∗|ē)
)

= 1, w′′
(
1−F (q∗|ē)

)
> 0, and w′′

(
1−F (q∗∗|ē)

)
< 0. As compared

to tsbEU (Proposition 2), contract tsbL (q) (Proposition 6) offers lower transfers
in q ∈ [q̃, q∗∗) and higher transfers in q ∈ [

¯
q, q∗), at the lowest output levels in

q ∈ [q∗, q̃), and at the highest output levels in q ∈ [q∗∗, q̄].

Corollary 8 shows how the agent’s irrationality is exploited. As compared
to the contract given to the EUT agent, the contract offered to the likelihood-
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insensitive agent underpays events with intermediate likelihood and ovepays
extreme events, i.e. high and low performance levels. Again, incentives are
concentrated where it matters to this biased agent.

Proposition 6 and Corollary 8 provide another justification for the ex-
tensive usage of performance-insensitive contracts. Namely, the incapacity
of individuals to accurately discriminate probabilities which renders strong
incentives ineffective. We note that likelihood insensitivity and pessimism
are prevalent in decision-making under risk (Wakker, 2010).17 Therefore, our
model yields the sharp prediction that insensitivities in incentive schemes
arise due to combination of these factors.

5 Extensions

In this section, we briefly discuss some extensions and emphasize how they
can be derived from our previous analyses.

5.1 Preferences

5.1.1 Loss Aversion and Diminishing Sensitivity

We enrich the agent’s risk preferences by considering Cumulative Prospect
Theory (CPT from here onward, Tversky and Kahneman, 1992). Agents with
these preferences not only distort probabilities but also evaluate potential
transfers relative to a reference point r > 0. Transfers below the reference
point count as losses, while transfers above it count as gains. The main
departure of CPT with respect to RDU and EUT is that the agent can exhibit
different risk preferences for gains and losses. A consequence of loss aversion
and diminishing sensitivity.

We ask ourselves whether including these richer risk preferences lead to
considerably different solutions. In the interest of space, we present the
results of our analyses in Appendix B. It turns out that the solutions to
the principal’s problem crucially incorporate the properties of the contracts

17Their conjunction generates inverse-S probability weighting functions with an interior
fixed-point at low probabilities.
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presented in Sections 3 and 4. Furthermore, loss aversion and diminishing
sensitivity augment the segments in which the optimal contract is performance
insensitive. A feature that generates more realistic contracts. For example,
when the agent is loss averse and pessimistic, the optimal contract consists of
a bonus and a wage.

5.1.2 Ambiguity

Our framework can also capture deviations from EUT due to attitudes toward
ambiguity. It turns our that the model can incorporate a wide variety of
ambiguity attitudes, namely ambiguity aversion, ambiguity seeking, and rare-
event overweighting. Thus, it generates novel findings and reconciles results
in the literature that seemed unrelated.

Consider a setting in which agent and principal does not know F (q|e), i.e.
the probability associated to obtaining some output level Q ∈ [

¯
q, q̄]. Moreover,

assume that the principal exhibits subjective expected utility (Savage, 1954).
So, she quantifies the uncertainties associated to obtaining any output level
in [

¯
q, q̄] using subjective probabilities, and evaluates the desirability of the

event-contingent wage schedule t(q) using mathematical expectations.
On the other hand, the agent is non-EUT. He exhibits probabilistic

sophistication, i.e. is also able to quantify uncertainties using probabilities,
but evaluates the resulting probabilities using RDU. Formally, there exists a
probability measure µ on [

¯
q, q̄] such that t(q) is evaluated by the agent using

the following objective function

RDU(t, e) =
¯
q∫
q̄

u
(
t(q)

)
dWs

(
1− µ(q|e)

)
− c(e). (4)

Probabilistic sophistication for non-EUT preferences and when probabili-
ties are conditional has been defined by Machina and Schmeidler (1992).

We compare the considered situation of ambiguity, i.e. when F (q|e) is not
known, to the standard situation of risk that was studied in the main body of
the paper, i.e. when F (q|e) is known. We say, that in each situation the agent
is facing a different source of uncertainty. In our framework, this amounts
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to the worker facing different types of tasks; a monotone and repetitive task
that enables the calculation of frequencies, leading to decision-making under
risk, and a task that involves many more irregularities and external factors,
rendering probability estimations difficult.

Suppose that probabilistic sophistication holds within sources of uncer-
tainty, but not necessarily between sources of uncertainty (Chew and Sagi,
2006, 2008). Accordingly, probability weighting depends on the considered
source. Denote by Ws the weighting function under ambiguity and assume
that it adopts the properties of Assumption 3. Moreover, let w, as it has been
done through the paper, be the probability weighting function under risk.

When Ws is convex and it is so to a greater extent than w, the agent is
ambiguity averse. This ambiguity attitude is consistent with robust empirical
phenomena such as the “home bias” or the “Ellsberg paradox” (Ellsberg,
1961; French and Poterba, 1991). In that case, Proposition 4 captures the
optimal contract. A result that echoes the finding in Lang (2017) that a
constant wage can be optimal. However, we further show that a strong degree
of pessimism toward ambiguity is required for this result to emerge.

When the non-sabotage constraint is ignored (See the following sections),
the optimal contract given to an ambiguity averse agent is non-monotonic,
i.e. first-increasing and then decreasing in performance, capturing the result
in Kellner (2017). We go beyond by showing that non-monotonicities also
emerge under likelihood insensitivity. Therefore, they are not uniquely due to
ambiguity aversion but appear when large weights are given to worse events.
Moreover, Corollary 4, demonstrates that stronger degrees of ambiguity
aversion, i.e. as Ws becomes more convex while keeping the convexity of w
fixed, leads to flatter contracts. Thus accommodating Ghirardato (1994)’s
result that under stronger ambiguity aversion an action can be implemented
for a “uniformly lower incentive scheme.”

Recent research shows that ambiguity aversion is not universal. In fact,
individuals tend to overweight the likelihood of rare events (Abdellaoui et al.,
2011; Baillon and Emirmahmutoglu, 2018; Baillon et al., 2018; Trautmann
and Van De Kuilen, 2015). This can be captured by Ws(p) being subadditive
in the sense of Definition 6. Under those ambiguity attitudes, the contract in
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Proposition 6 applies. When subadditivity of Ws is stronger than that of w,
the optimal contract under ambiguity compares to that under risk as explained
in Corollary 7. Therefore, our framework also accommodates the result in
Vierø (2014); indexing the performance measure to some ambiguous source of
information is desirable as it takes advantage of ambiguity-seeking attitudes.
In that case, the principal would benefit from the incentive compatibility
constraint slacking, or from paying less for likely events while paying more
for unlikely ones.18

5.2 Robustness

5.2.1 Continuous effort

In our model, the decision maker’s action was assumed to be binary. This
assumption is convenient inasmuch as it guarantees a solution to the principal’s
problem under relatively mild conditions. This tractability might be at the
cost of generalizability if our results fail to hold when richer action spaces are
considered.

In Appendix C, we solve the model in a setting in which effort is continuous.
We find that our results emerge under well-known regularity conditions that
guarantee a solution, i.e. the convexity of the density function (Mirrlees,
1999; Rogerson, 1985), plus some additional requirements on the cost function.
Therefore, our findings are not an artifact of action space assumed in the
model.

5.2.2 Adverse Selection

We considered a setting in which the principal perfectly knows the agent’s risk
attitude. While this assumption is typically made in moral hazard models, its
limitation becomes more prominent in our framework because risk attitudes
are richer. In Appendix D, we consider a model in which this assumption is
relaxed. Consequently, the principal’s goal is to first screen agents according

18Notice how this result emerges in our setting without requiring ambiguity seeking for
all events, amounting to Ws being everywhere concave.
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to their risk preference to then incentivize high effort. In other words, we
study a framework of adverse selection followed by moral hazard.

Our analyses demonstrate that the solutions presented in Sections 3 and 4
are crucial to solve this more involved problem. These contracts are included
in the optimal solution because they incentivize high effort provided that
screening is successful. Moreover, to ensure screening, these contracts are
enriched with information rents. An enhancement that ensures that the most
efficient types are disincentivized from engaging in a strategy of mimicking
the least efficient types. We note that these rents enter as lump-sums and do
not change incentives, i.e. shapes of optimal contracts are left unchanged.

5.2.3 General Performance Measure

Our model considered a setting in which higher realizations of performance
lead to higher profits. Consequently, pay schedules that weakly increase in
performance are in place. In this extension, we study a framework in which
the principal faces a general performance measure. This measure does not
have a specific link to output on the task, and thus might render unnecessary
the requirement that pay weakly increases in performance.

As in the standard model, we assume that the principal’s objective is to
minimize the agent’s compensation while implementing high effort. Moreover,
we focus on the interesting case in which the agent’s compensation does not
need to be monotonically increasing in output on the task. In the following
we characterize optimal contracts resulting from our analyses without that
restriction.

Under optimism, the contracts presented in Propositions 1 and Proposi-
tion 3 prevail as solutions to this modified problem. Even if monotonicity is
not directly imposed, this agent is best incentivized with contracts that offer
higher payments in exchange for higher performance.

A more interesting result emerges when the agent is pessimistic. The
following Corollary presents the optimal contracts given to that agent.

Corollary 9. Let Assumptions 1 and 3 hold. Under pessimism and for a
general measure of performance:

28



(i) The first-best, tfbo , is everywhere decreasing in q.
(ii) The second-best, tsbo , increases in q up to a threshold qh ∈ (

¯
q, q̄) after

which it decreases in q.

Pessimism is exploited with contracts that include transfers that can
decrease in performance. When effort is observable, the pessimist considers
to be fully insured with a contract that offers the highest transfers at low
realizations and the lowest payments at high realizations. Such an insurance
contract reflects the agent’s perception that worse outcomes are more likely to
realize. Moreover, in a situation of moral hazard, incentives are concentrated
at realizations that the pessimistic agent deems to be more likely. As a result,
transfers increase in performance at the low-end of the output space and
decrease in performance thereafter.

Next, we characterize the optimal contracts for a likelihood insensitive
agent.

Corollary 10. Let Assumptions 1 and 3 hold. Under likelihood insensitivity
and for a general measure of performance:
(i) The first-best, tfbL , decreases in q up to a threshold q̃ ∈ (

¯
q, q̄) after which

it increases in q.
(ii) The second-best, tsbL , decreases in q in the compact interval q∈(qM, qS)

where qM, qM ∈ (
¯
q, q̄) but after and before this interval it increases in q.

As in the main body of the paper, likelihood insensitivity is targeted with
a contract that implements incentives at both ends of the output space. At
these extremes, the contract transfers increase in performance. However, the
contract also decreases in performance for intermediate outcome levels. This
is due to a combination of incentives not working in that segment and the
principal wanting to save on compensation costs.

6 Conclusion

In this paper we show how the optimal implementation of incentives crucially
depends on the agent’s perception of probabilities. Motivational and cognitive

29



deviations from expected utility can lead to contracts that do not require
or cannot implement incentive compatibility. These solutions can resemble
payment schemes observed in practice. For example, performance-insensitive
salaries under strong pessimism, long-shot contracts under moderate optimism,
and option-like contracts under likelihood insensitivity. We thus provide a
foundation for simple contracts based on preference.
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Appendix A: Proofs

Lemma 1

Proof. Suppose limp→0w
′(p) = +∞ but, to set up the contradiction, that

limp→0w
′′(p) 6= −∞. Hence, there exists p̄ ∈ (0, 1) such that, for p ∈ [0, p̄]

and B > 0, w′′(p) > −B. Integrating both sides of this inequality over
[p0, p1] ⊆ [0, p̄] yields w′(p1) − w′(p0) > −(p1 − p0)B, and looking at the
limit as p0 goes to 0 gives limp0→0w

′(p0) < Bp1 + w′(p1), which contradicts
limp→0w

′(p) = +∞. Hence, it must be that limp→0w
′′(p) = −∞.

Similarly, suppose limp→0w
′(p) = +∞ but limp→0

w′′(p)
w′(p) 6= −∞. So for

p ∈ [0, p̄] and B > 0, w
′′(p)
w′(p) > −B. Integrating over [p0, p1] ⊆ [0, p̄] yields

lnw′(p1)− lnw′(p0) = ln w
′(p1)

w′(p0) > −B(p1 − p0)

⇔ w′(p0) < w′(p1)
exp

(
−B(p1 − p0)

)
and looking at the limit as p0 goes to 0 yields limp0→0w

′(p0) < w′(p1)
exp(−Bp1) .

Therefore, w′(p) must be bounded as well as p approaches 0, which contradicts
limp→0w

′(p) = +∞. So it must be that limp→0
w′′(p)
w′(p) = −∞. �

Lemma 2

Proof. Suppose limp→1w
′(p) = +∞ but limp→1w

′′(p) 6= +∞. So there exists

¯
p ∈ (0, 1) such that, for p ∈

[
¯
p, 1

]
and B > 0, w′′(p) < B. Integrating

both sides over [p0, p1] ⊆
[
¯
p, 1

]
and taking the limit as p1 goes to 1 yields

limp1→1w
′(p1) < w′(p0) + B − p0B, contradicting limp→1w

′(p) = +∞, so
limp→1w

′′(p) = +∞.
Next, suppose limp→1w

′(p) = +∞ but limp→1
w′′(p)
w′(p) 6= +∞. So for p ∈

[
¯
p, 1] and B > 0, w

′′(p)
w′(p) < B. Integrating over [p0, p1] and taking the limit as

p1 goes to 1 yields limp1→1w
′(p1) < exp

(
B(1 − p0)

)
· w′(p0), contradicting

limp→1w
′(p) = +∞, so limp→1

w′′(p)
w′(p) = +∞. �
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Lemma 5. If limp→1w
′(p) = 0, then limp→1w

′′(p) < 0 and limp→1
w′′(p)
w′(p) =

−∞.

Proof. Suppose limp→1w
′(p) = 0 but limp→1w

′′(p) ≥ 0. So, for p ∈ [
¯
p, 1] and

B ≥ 0, w′′(p) ≥ B. Integrating over [p0, p1] ⊆
[
¯
p, 1

]
and taking the limit

as p1 goes to 1 yields limp1→1w
′(p1) > w′(p0) + B − p0B > 0, contradicting

limp→1w
′(p) = 0. Therefore, limp→1w

′′(p) < 0.
Next, suppose limp→1w

′(p) = 0 but limp→1
w′′(p)
w′(p) 6= −∞. So for p ∈

[
¯
p, 1

]
,

w′′(p)
w′(p) > −B. Integrating over [p0, p1] ⊆

[
¯
p, 1

]
and taking the limit as p1 goes

to 1 yields limp1→1w
′(p1) > exp

(
−B(1− p0)

)
· w′(p0) > 0. This contradicts

limp→1w
′(p) = 0, so limp→1

w′′(p)
w′(p) = −∞. �

Lemma 6. If limp→0w
′(p) = 0, then limp→0w

′′(p) > 0 and limp→0
w′′(p)
w′(p) =

+∞.

Proof. Suppose limp→0w
′(p) = 0 but limp→0w

′′(p) ≤ 0. So, for p ∈
[
0, p̄

]
and B ≥ 0, w′′(p) ≤ −B. Integrating over [p0, p1] ⊆ [0, p̄] and taking the
limit as p0 goes to 0 yields limp0→0w

′(p0) ≥ w′(p1) + p1B > 0, contradicting
limp→0w

′(p) = 0. Hence, limp→0w
′′(p) > 0.

Next, suppose limp→0w
′(p) = 0 but limp→0

w′′(p)
w′(p) 6= +∞. So, for p ∈

[
0, p̄

]
and B > 0, w′′(p)

w′(p) ≤ B. Again integrating over [p0, p1] ⊆ [0, p̄] and taking
the limit as p0 goes to 0 yields limp0→0w

′(p0) > w′(p1)
exp(Bp1)>0 . This contradicts

limp→0w
′(p) = 0, so limp→0

w′′(p)
w′(p) = +∞. �

Proposition 1

Proof. Denoting the Lagrange multiplier of the agent’s participation constraint
by ν, the Lagrangian of the principal’s problem writes as:

L(q, t) =
(
S(q)− t(q)

)
f(q|ē)

+ ν

[
u(t(q))w′

(
1− F (q|ē)

)
f(q|ē)− Ū − c

]
.

Pointwise optimization with respect to t(q) yields

−f(q|ē) + νu′
(
tfb(q)

)
w′
(
1− F (q|ē)

)
f(q|ē) = 0 (5)
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and, after re-arranging, we get

1
u′
(
tfb(q)

)
w′
(
1− F (q|ē)

) = ν. (6)

By assumption, u′(t) > 0 and w′(p) > 0, so ν > 0. The participation
constraint binds at the optimum.

To investigate the shape of tfb(q) we differentiate (5) with respect to q,
giving us

tfb
′(q) =

u′
(
tfb(q)

)
u′′
(
tfb(q)

)w′′
(
1− F (q|ē)

)
w′
(
1− F (q|ē)

) f(q|ē). (7)

Expected utility. Under expected utility, w(p) = p, w′(p) = 1 and w′′(p) =
0, so the right-hand side of (7) is 0. Hence, the first-best contract given to
the EU agent, tfbEU(q), is everywhere constant and satisfies

1
u′
(
tfbEU(q)

) = ν.

Optimism. If the agent exhibits optimism, we have w′(p) > 0 and w′′(p) < 0
(Assumption 3 and Definition 1). Under these conditions the right-hand side
of (7) is positive, implying that the first-best contract given to the optimist,
tfbO (q), is everywhere increasing in q.

To better understand the shape of tfbO (q) we look at its behavior at
extremes. From Definition 1 and Lemma 1 we know that limp→0

w′′(p)
w′(p) = −∞.

Since u′′ < 0, it follows from (7) that limq→q̄ t
fb
O

′(q) = +∞. Moreover,
from Definition 1 and Lemma 5 we have limp→1

w′′(p)
w′(p) = −∞, implying

limq→
¯
q t
fb
O

′(q) = +∞.

Pessimism. If instead the agent exhibits pessimism, we have w′(p) > 0
and w′′(p) > 0 (Assumption 3 and Definition 2). Now, the right-hand side
of (7) is strictly negative, implying that the first-best contract given to the
pessimist, tfbP (q), is strictly decreasing in q.

A contract decreasing in output is undesirable. It leads to sabotage; the
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agent wanting to destroy effort. We apply Myerson (1981)’s ironing. Since
tfbP (q) is decreasing everywhere, the modified solution is the ironed solution
for all q:

t̃fbP (q) =

q̄∫
¯
q

tfbP (q) dq

q̄ −
¯
q

,

which means that t̃fbP (q) is everywhere constant.
Next, we show that t̃fbP (q) < tfbEU (q). Using integration by parts, we obtain

q̄∫
¯
q

u
(
tfbP (q)

)
w′
(
1− F (q|ē)

)
f(q|ē) dq = u

(
tfbP (

¯
q)
)

+
q̄∫

¯
q

u′
(
tfbP (q)

)
tfbP
′(q)w

(
1− F (q|ē)

)
dq. (8)

If w(p) = p⇔ w′(p) = 1, (8) becomes

q̄∫
¯
q

u
(
tfbP (q)

)
f(q|ē) dq = u

(
tfbP (

¯
q)
)

+
q̄∫

¯
q

u′
(
tfbP (q)

)
tfbP
′(q)

(
1− F (q|ē)

)
dq. (9)

Subtracting (9) from (8) gives

q̄∫
¯
q

u′
(
tfbP (q)

)
tfbP
′(q)

(
w
(
1− F (q|ē)

)
−
(
1− F (q|ē)

))
dq. (10)

Because tfbP
′(q) < 0 and under pessimism w

(
1− F (q|ē)

)
−
(
1− F (q|ē)

)
< 0,

(10) is positive, so

q̄∫
¯
q

u
(
tfbP (q)

)
w′
(
1− F (q|ē)

)
f(q|ē) dq >

q̄∫
¯
q

u
(
tfbP (q)

)
f(q|ē) dq. (11)

34



Moreover, the first-best contract tfbP must satisfy the participation constraint:

q̄∫
¯
q

u
(
tfbP (q)

)
w′
(
1− F (q|ē)

)
f(q|ē) dq = Ū

so from (11) we get

q̄∫
¯
q

u
(
tfbP (q)

)
f(q|ē) dq < Ū.

Since the first-best contract offered to the expected-utility agent, tfbEU , for
whom w(p) = p, also satisfies the participation constraint:

q̄∫
¯
q

u
(
tfbEU(q)

)
f(q|ē) dq = Ū,

Hence,
q̄∫

¯
q

u
(
tfbP (q)

)
f(q|ē) dq <

q̄∫
¯
q

u
(
tfbEU(q)

)
f(q|ē) dq,

which is implied by tfbP (q) < tfbEU (q). Because tfbEU is also everywhere constant
in output, it must be that t̃fbP (q) < tfbEU(q).

Therefore, offering t̃fbP (q) which is, by construction, constant in perfor-
mance yields utility lower than Ū , the utility generated by the constant
contract tfbEU(q). Consequently, contract t̃fbP (q) would be rejected. To ensure
participation with a constant contract, the principal must offer the pessimist
the contract tfbEU(q). �

Lemma 7. If agent i is more optimistic than agent j, then:
1. −w′′i (p)

w′i(p)
> −w′′j (p)

w′j(p) ∀p ∈ (0, 1);
2. wi(p) > wj(p) ∀p ∈ (0, 1);
3. There exists a unique pk ∈ (0, 1) such that w′i(pk) = w′j(pk), this point

becomes smaller the more optimistic i is with respect to j.
If agent i is more pessimistic that agent j, the inequalities in 1. and 2. are
reversed, and the unique point in 3. becomes larger.
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Proof. Part 1. If agent i is more optimistic than agent j, wi(p) = θ
(
wj(p)

)
.

Note that
w′′i (p)
w′i(p)

=
θ′′
(
wj(p)

)
θ′
(
wj(p)

)w′j(p) +
w′′j (p)
w′j(p)

. (12)

Because θ′′ < 0, it must be that

−w
′′
i (p)
w′i(p)

> −
w′′j (p)
w′j(p)

. (13)

If instead i is more pessimistic than j, similar steps lead to w′′i (p)
w′i(p)

>
w′′j (p)
w′j(p) .

Part 2. Let p0, p1 ∈ [0, 1] such that p1 > p0. Integrate the equation in
(13) over [p0, p1] to get

p1∫
p0

−w
′′
i (s)
w′i(s)

ds >
p1∫
p0

−
w′′j (s)
w′j(s)

ds

⇔ − lnw′i(p1) + lnw′i(p0) > − lnw′j(p1) + lnw′j(p0)

⇔ ln
(
w′j(p1)
w′j(p0)

)
> ln

(
w′i(p1)
w′i(p0)

)

⇔
w′j(p1)
w′j(p0) >

w′i(p1)
w′i(p0) .

Integrating the resulting expression over the range of p0 gives

w′i(p1)
p1∫
0

w′j(s) ds < w′j(p1)
p1∫
0

w′i(s) ds

⇔ w′i(p1)wj(p1) < w′j(p1)wi(p1)

⇔
w′j(p1)
wj(p1) >

w′i(p1)
wi(p1) .
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Integrating again but now over the range of p1 gives

1∫
p0

w′j(s)
wj(s)

ds >
1∫

p0

w′i(s)
wi(s)

ds

⇔ lnwi(1)− lnwi(p0) < lnwj(1)− lnwj(p0)

⇔ wi(p) > wj(p)

since p0 can be any p ∈ [0, 1). Similar steps lead to wi(p) < wj(p) when i is
more pessimistic than j.

Part 3. Suppose that w′i(p) < w′j(p) for all p ∈ (0, 1). From Assumption
3, wi(0) = wj(0) and wi(1) = wj(1). Hence,

∫ 1
0 w

′
j(p)dp = wj(1) − wj(0) =

1 >
∫ 1

0 w
′
j(p)dp. Contradicting the assumption that wi(1) = 1. A similar

rationale disregards w′i(p) > w′j(p) for all p ∈ (0, 1). Hence, if w′i(p) ≤ wj(p)
holds, it must do so for some segment in p ∈ (0, 1).

Let wJ(p) := η
(
wj(p)

)
where η is a concave, increasing, and contin-

uous probability weighting function. Lemma 1 and Lemma 5 show that
limp→0w

′(p) = +∞ and limp→1w
′(p) = 0 for generic weighting function

w. The first part of this Lemma implies that −w′′J (p)
w′J (p) > −

w′′j (p)
w′j(p) ∀p ∈ (0, 1).

Therefore, w′J(p) tends to infinity faster than w′j(p) as p→ 0+.
Assumption 3 states that, under optimism, w′(p) is decreasing and con-

tinuous. These properties together with −w′′J (p)
w′J (p) > −

w′′j (p)
w′j(p) ∀p ∈ (0, 1), that

w′J(p) tends to infinity faster than wj(p) as p → 0+, and the fact that
limp→1w

′(p) = 0, imply that there exists a unique point pk ∈ (0, 1) such that
w′J(pk) = w′j(pk). For p < pk then w′J(p) > w′j(p) but instead w′J(p) < w′j(p)
if p > pk.

Next, let wi := θ
(
wJ(p)

)
where θ is a concave, increasing, and continuous

function. Thus −w′′i (p)
w′i(p)

> −w′′J (p)
w′J (p) ∀p ∈ (0, 1) and, using the reasoning given

above, w′i(p) tends to infinity faster than w′J(p) as p→ 0+. Hence, the point
pl ∈ (0, 1) such that w′i(pl) = w′J(pl) is such that pl < pk. �
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Corollary 1

Proof. Using p̄ := 1 − F (q|ē), agent i receives a higher-powered first-best
contract when

dtfbO,i(q)
dq >

dtfbO,j(q)
dq

⇔
u′
(
tfbO,i(q)

)
u′′
(
tfbO,i(q)

)w′′i (p̄)
w′i(p̄)

f(q|ē) >
u′
(
tfbO,j(q)

)
u′′
(
tfbO,j(q)

)w′′j (p̄)
w′j(p̄)

f(q|ē).

After cancelling out the f(q|ē) on both sides and using (12), the inequality
given above becomes

u′
(
tfbO,i(q)

)
u′′
(
tfbO,i(q)

)
θ
′′
(
wj(p̄)

)
θ′
(
wj(p̄)

)w′j(p̄) +
w′′j (p̄)
w′j(p̄)

 >
u′
(
tfbO,j(q)

)
u′′
(
tfbO,j(q)

)w′′j (p̄)
w′j(p̄)

⇔
w′′j (p̄)
w′j(p̄)

 u
′
(
tfbO,i(q)

)
u′′
(
tfbO,i(q)

) − u′
(
tfbO,j(q)

)
u′′
(
tfbO,j(q)

)


+
u′
(
tfbO,i(q)

)
u′′
(
tfbO,i(q)

) θ′′
(
wj(p̄)

)
θ′
(
wj(p̄)

)w′j(p̄) > 0, (14)

which in turn can be rewritten as

−
θ′′
(
wj(p̄)

)
θ′
(
wj(p̄)

)w′j(p̄) > w′′j (p̄)
w′j(p̄)

1−

u′′(tfb
O,i(q))

u′(tfb
O,i(q))

u′′(tfb
O,j(q))

u′(tfb
O,j(q))

 . (15)

We know that u′′ < 0. Further, if agent j is optimistic, w′′j < 0, and if
agent i is more optimistic than agent j, θ′′ < 0 from Definition 3. Therefore,
(15) holds if

−
u′′(tfbO,j(q))
u′(tfbO,j(q))

> −
u′′(tfbO,i(q))
u′(tfbO,i(q))

. (16)

Furthermore, (15) shows that under −u′′(tfb
O,j(q))

u′(tfb
O,j(q))

< −u′′(tfb
O,i(q))

u′(tfb
O,i(q))

the concavity
of θ needs to be sufficiently large to guarantee that inequality. �
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Corollary 2

Proof. Denote by wi and wj the probability weighting functions of agents i
and j. Assume that i is more pessimistic than j. We follow similar steps at
for the proof of Proposition 1 in the case of pessimism.

Using integration by parts, we have for j

q̄∫
¯
q

u
(
tfbP,j(q)

)
w′j
(
1− F (q|ē)

)
f(q|ē) dq = u

(
tfbP,j(¯

q)
)

+
q̄∫

¯
q

u′
(
tfbP,j(q)

)
tfbP,j
′(q)wj

(
1− F (q|ē)

)
dq. (17)

If i were to get the same contract, he would derive utility

q̄∫
¯
q

u
(
tfbP,j(q)

)
w′i
(
1− F (q|ē)

)
f(q|ē) dq = u

(
tfbP,j(¯

q)
)

+
q̄∫

¯
q

u′
(
tfbP,j(q)

)
tfbP,j
′(q)wi

(
1− F (q|ē)

)
dq. (18)

Subtracting the right-hand side of (17) from that of (18) gives

q̄∫
¯
q

u′
(
tfbP,j(q)

)
tfbP,j
′(q)

(
wi
(
1− F (q|ē)

)
− wj

(
1− F (q|ē)

))
f(q|e) dq. (19)

Because tfbP,j
′(q) < 0 (Proposition 1) and wi(p) < wj(p) (Lemma 7), the

expression in (19) is positive, so

q̄∫
¯
q

u
(
tfbP,j(q)

)
w′i
(
1− F (q|ē)

)
f(q|ē) dq >

q̄∫
¯
q

u
(
tfbP,j(q)

)
w′j
(
1− F (q|ē)

)
f(q|ē) dq.

(20)
For j, the candidate solution from the first-order approach, tfbP,j(q), ensures
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that the participation constraint binds

q̄∫
¯
q

u
(
tfbP,j(q)

)
w′j
(
1− F (q|ē)

)
f(q|ē) dq = Ū,

so from (20)
q̄∫

¯
q

u
(
tfbP,j(q)

)
w′i
(
1− F (q|ē)

)
f(q|ē) dq > Ū.

Similarly, for i, the candidate solution form he first-order approach makes
the participation constraint binds:

q̄∫
¯
q

u
(
tfbP,i(q)

)
w′i
(
1− F (q|ē)

)
f(q|ē) dq = Ū.

Therefore,

q̄∫
¯
q

u
(
tfbP,j(q)

)
w′i
(
1− F (q|ē)

)
f(q|ē) dq >

q̄∫
¯
q

u
(
tfbP,i(q)

)
w′i
(
1− F (q|ē)

)
f(q|ē) dq.

which is implied by tfbP,j(q) > tfbP,i(q). Thus, the ironed solutions exhibit,
t̃fbP,j > t̃fbP,i. Proposition 1 shows that to ensure participation tfbEU is given
to both i and j. Since tfbEU > t̃fbP,j > t̃fbP,i the cost borne by the principal of
not being able to implement t̃fbP,j nor t̃

fb
P,i is higher for i, the more pessimistic

agent. �

Proposition 2

Proof. This standard result comes from Holmstrom (1979). �
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Lemma 3

Proof. Part 1. From the definition of the W-MLRP, for all q0, q1 ∈ [
¯
q, q̄]

such that q1 ≥ q0, we have

w′
(
1− F (q1|¯

e)
)
f(q1|¯

e)
w′
(
1− F (q1|ē)

)
f(q1|ē)

≤
w′
(
1− F (q0|¯

e)
)
f(q0|¯

e)
w′
(
1− F (q0|ē)

)
f(q0|ē)

⇔ w′
(
1− F (q1|¯

e)
)
f(q1|¯

e)w′
(
1− F (q0|ē)

)
f(q0|ē) ≤

w′
(
1− F (q0|¯

e)
)
f(q0|¯

e)w′
(
1− F (q1|ē)

)
f(q1|ē).
(21)

Integrating both sides of the inequality with respect to q0 from
¯
q to q1 gives

w′
(
1− F (q1|¯

e)
)
f(q1|¯

e)
q1∫

¯
q

w′
(
1− F (q0|ē)

)
f(q0|ē) dq0 ≤

w′
(
1− F (q1|ē)

)
f(q1|ē)

q1∫
¯
q

w′
(
1− F (q0|¯

e)
)
f(q0|¯

e) dq0

and, after rearranging and using
∫ q1

¯
q w′

(
1− F (q0|e)

)
f(q0|e) dq0 = 1− w

(
1−

F (q1|e)
)
,

w′
(
1− F (q1|¯

e)
)
f(q1|¯

e)
w′
(
1− F (q1|ē)

)
f(q1|ē)

≤
1− w

(
1− F (q1|¯

e)
)

1− w
(
1− F (q1|ē)

) . (22)

Integrating (21) again, but now with respect to q1 from q0 to q̄, gives

w
(
1− F (q0|¯

e)
)

w
(
1− F (q0|ē)

) ≤ w′
(
1− F (q0|¯

e)
)
f(q0|¯

e)
w′
(
1− F (q0|ē)

)
f(q0|ē)

. (23)

Letting q0 = q1 = q and combining (22) and (23) gives

w
(
1− F (q|

¯
e)
)

w
(
1− F (q|ē)

) ≤ 1− w
(
1− F (q|

¯
e)
)

1− w
(
1− F (q|ē)

)
⇔ w

(
1− F (q|ē)

)
≥ w

(
1− F (q|

¯
e)
)
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which proves the first part of the Lemma.
Part 2. Let w(p) = p⇔ w′(p) = 1. The W-MLRP becomes

d
dq
f(q|

¯
e)

f(q|ē) ≤ 0,

which is the MLRP. �

Lemma 4

Proof. We have

d
dq

w′
(
1− F (q|

¯
e)
)
f(q|

¯
e)

w′
(
1− F (q|ē)

)
f(q|ē)

 = d
dq

w′
(
1− F (q|

¯
e)
)

w′
(
1− F (q|ē)

)
f(q|

¯
e)

f(q|ē)

+
w′
(
1− F (q|

¯
e)
)

w′
(
1− F (q|ē)

) d
dq

f(q|
¯
e)

f(q|ē)


=
w′
(
1− F (q|

¯
e)

w′
(
1− F (q|ē)

w′′
(
1− F (q|ē)

)
w′
(
1− F (q|ē)

) f(q|ē)

−
w′′
(
1− F (q|

¯
e)
)

w′
(
1− F (q|

¯
e)
) f(q|

¯
e)
f(q|

¯
e)

f(q|ē)

+ d
dq
f(q|

¯
e)

f(q|ē)

.
(24)

Notice that d
dq

f(q|
¯
e)

f(q|ē) ≤ 0 due to the MLRP. So, according to (24) the WMLRP
holds if

w′′
(
1− F (q|ē)

)
w′
(
1− F (q|ē)

) f(q|ē)−
w′′
(
1− F (q|

¯
e)
)

w′
(
1− F (q|

¯
e)
) f(q|

¯
e) ≤ 0 (25)

The Lemma follows immediately. �

Lemma 8. the W-MLRP holds if and only if
w′′

(
1− F (q|ē)

)
w′
(
1− F (q|ē)

) f(q|ē)−
w′′
(
1− F (q|

¯
e)
)

w′
(
1− F (q|

¯
e)
) f(q|

¯
e)
 f(q|

¯
e)

f(q|ē) ≤ −
d
dq
f(q|

¯
e)

f(q|ē) .
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Proof. The Lemma follows from the last equality in equation (24). �

Proposition 3 & Proposition 4

Proof. Denote by ν the Lagrange multiplier of the agent’s participation
constraint, and µ, of the incentive compatibility constraint. The Lagrangian
of the principal’s maximization problem writes as

L(q, t) =
(
S(q)− t(q)

)
f(q|ē)

+ µ

[
u(t(q))

(
w′
(
1− F (q|ē)

)
f(q|ē)− w′

(
1− F (q|

¯
e)
)
f(q|

¯
e)
)
− c

]

+ ν

[
u(t(q))w′

(
1− F (q|ē)

)
f(q|ē)− Ū − c

]
.

Pointwise optimization with respect to t(q) yields

−f(q|ē) + µ
[
u′(tsb(q))(w′(1− F (q|ē))f(q|ē)− w′(1− F (q|

¯
e))f(q|

¯
e))
]

+ νu′(tsb(q))w′(1− F (q|ē))f(q|ē) = 0, (26)

and, after re-arranging,

1
u′
(
tsb(q)

)
w′
(
1− F (q|ē)

) = ν + µ

1−
w′
(
1− F (q|

¯
e)
)
f(q|

¯
e)

w′
(
1− F (q|ē)

)
f(q|ē)

 . (27)

Incentive constraint is binding We first show that µ > 0 might not
always hold the optimum. Suppose that µ = 0. Then tsb(q) = tfb(q), where
tfb(q) is the first-best contract presented in Proposition 1.
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Optimism Consider the case of an agent with optimism in the sense of
Definition 1. From the complementary slackness condition from µ we get

q̄∫
¯
q

u
(
tfbO (q)

)
w′(1− F (q|ē))f(q|ē) dq − c

>

q̄∫
¯
q

u
(
tfbO (q)

)
w′(1− F (q|

¯
e))f(q|

¯
e) dq. (28)

Integration by parts of (3) yields

u(tfbO (
¯
q)) +

q̄∫
¯
q

u′
(
tfbO (q)

)
tfbO
′(q)w

(
1− F (q|e)

)
dq − c(e)

which we use to rewrite (28) as

q̄∫
¯
q

u′
(
tfbO (q)

)
tfbO
′(q)

(
w
(
1− F (q|ē)

)
− w

(
1− F (q|

¯
e)
))

dq > c. (29)

According to Lemma 3, Assumption 4 implies w (1− F (q|ē)) ≥ w (1− F (q|
¯
e))

which, together with tfbO
′(q) > 0 (Proposition 1) and u′(t) > 0 (Assumption 1),

imply that the left-hand side of (29) is weakly positive. Since w(p) and u(t)
are C2, and since c is a constant unbounded from above, there exists ĉO > 0
such that, for a given tfbO (q),

• if c ≤ ĉO, (29) holds: µ = 0 and tsbO (q) = tfbO (q); on the other hand,
• if c > ĉO, (29) does not hold: µ > 0 and tsbO (q) satisfies (27).

Pessimism Now consider the case of an agent with pessimism in the
sense of Definition 2. From the complementary slackness condition corre-
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sponding to µ = 0 we get

q̄∫
¯
q

u
(
tfbP (q)

)
w′(1− F (q|ē))f(q|ē) dq − c >

q̄∫
¯
q

u
(
tfbP (q)

)
w′(1− F (q|

¯
e))f(q|

¯
e) dq

⇔ u
(
tfbP (q)

)
− c > u

(
tfbP (q)

)
⇔ −c > 0.

The second inequality is due to tfbP being constant in q (Proposition 1). The
last inequality contradicts the assumption c > 0, so it must be that µ > 0 for
the pessimistic agent.

Shape of tsb(q) The second part of the proof analyzes the shape of tsb(q).
We assume throughout that µ > 0. Differentiate (26) with respect to q to
obtain:

tsb
′(q) = u′(tsb(q))w′′(1− F (q|ē))

u′′(tsb(q))w′ (1− F (q|ē))f(q|ē)

+ µ
w′ (1− F (q|ē))u′(tsb(q))2

u′′(tsb(q))
d
dq

w′
(
1− F (q|

¯
e)
)
f(q|

¯
e)

w′
(
1− F (q|ē)

)
f(q|ē)

. (30)

We know that d
dq

(
w′(1−F (q|

¯
e))f(q|

¯
e)

w′(1−F (q|ē))f(q|ē)

)
< 0 (Assumption 4), u′(tsb(q)) > 0,

u′′(tsb(q)) < 0 (Assumption 1), and w′(p) > 0 (Assumption 3), so the second
term on the right-hand side of (30) is always positive. The first term on the
right-hand side of (30) is identical to the right-hand side of (7) in Proposition 1,
which determined the shape of tfb(q).

Optimism When the agent exhibits optimism (Definition 1), w′′(p) < 0
for all p ∈ (0, 1), so the two terms on the right-hand side of (30) are positive.
Hence, tsbO

′(q) > 0 for all q.
We also study (30) at the extremes. From Definition 1 and Lemma 1

we know that limp→0
w′′(p)
w′(p) = −∞, so limq→q̄ t

sb
O
′(q) = +∞. Furthermore,

Definition 1 and Lemma 5 give us limp→1
w′′(p)
w′(p) = −∞, so limq→

¯
q t
sb
O
′(q) = +∞.

Contract tsbO is high-powered at extremes.
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Pessimism When the agent exhibits pessimism (Definition 2), w′′(p) > 0
for all p ∈ (0, 1), so the first term on the right-hand side of (30) is negative
while the second one is positive. Hence, the sign of tsbP

′(q) depends on which
of these terms dominates the other, which in turn depends on the size of
w′(1− F (q|ē)). When q decreases, w′(1− F (q|ē)) increases; the second term
becomes larger and tsbP

′(q) is more likely to be positive. The opposite happens
when q increases and w′(1− F (q|ē)) decreases.

To further formalize that contract shape, we study (30) at the extremes
and under pessimism. We start with q → q̄. From Definition 2 and Lemma 6,
we know that limp→0w

′(p) = 0 and limp→0
w′′(p)
w′(p) = +∞. Since u′′ < 0, as q

goes to q̄ the first term on the right-hand side of (30) goes to −∞ while the
second goes to 0. Therefore, limq→q̄ t

sb
P
′(q) = −∞.

We ask whether tsbP ever increases with output; that is, whether tsbP
′(q) > 0

for any segment in [
¯
q, q̄], or equivalently, using (30),

w′′
(
1− F (q|ē)

)
f(q|ē)

w′
(
1− F (q|ē)

) 1
µu′(tsb(q))w′

(
1− F (q|ē)

)
≤ − d

dq

w′
(
1− F (q|

¯
e)
)
f(q|

¯
e)

w′
(
1− F (q|ē)

)
f(q|ē)


for some q. We use

d
dq

w′
(
1− F (q|

¯
e)
)
f(q|

¯
e)

w′
(
1− F (q|ē)

)
f(q|ē)

 =
w′
(
1− F (q|

¯
e)

w′
(
1− F (q|ē)

w′′
(
1− F (q|ē)

)
w′
(
1− F (q|ē)

) f(q|ē)

−
w′′
(
1− F (q|

¯
e)
)

w′
(
1− F (q|

¯
e)
) f(q|

¯
e)
f(q|

¯
e)

f(q|ē)

+ d
dq
f(q|

¯
e)

f(q|ē)
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to rewrite the inequality above as

f(q|
¯
e)

f(q|ē)

w′′
(
1− F (q|ē)

)
w′
(
1− F (q|ē)

) f(q|ē)
 1
µu′(tsb(q))w′

(
1− F (q|

¯
e)
)
f(q|

¯
e)

f(q|ē)

+ 1


−
w′′
(
1− F (q|

¯
e)
)

w′
(
1− F (q|

¯
e)
) f(q|

¯
e)
 ≤ − d

dq
f(q|

¯
e)

f(q|ē) . (31)

From Assumption 3 we know that under pessimism limq→
¯
q w
′
(
1−F (q|

¯
e)
)

=
+∞. Further, the MLRP states that f(q|

¯
e)

f(q|ē) increases as q decreases. Therefore,
the quantity

1
µu′(tsb(q))w′

(
1− F (q|

¯
e)
)
f(q|

¯
e)

f(q|ē)

(32)

goes to 0 as q goes to
¯
q. All that is left is

w′′
(
1− F (q|ē)

)
w′
(
1− F (q|ē)

) f(q|ē)−
w′′
(
1− F (q|

¯
e)
)

w′
(
1− F (q|

¯
e)
) f(q|

¯
e)
 f(q|

¯
e)

f(q|ē) ≤ −
d
dq
f(q|

¯
e)

f(q|ē) ,

which we know to hold from Lemma 8. Therefore, there exists an output
level qh ∈ (

¯
q, q̄) such that tsbP

′(q) ≥ 0 if q < qh and tsbP
′(q) < 0 otherwise.

We implement ironing to avoid having tsbP
′(q) < 0 in q ∈ (qh, q̄]. To that

end, find qI that satisfies:

qh∫
qI

tsb(q) dq −
q̄∫

qh

tsb(q) dq = 0. (33)

There are two cases. If
∫ qh

¯
q tsbP (q) dq >

∫ q̄
qh
tsbP (q) dq, there exists qI ∈ [

¯
q, qh)

that ensures (33) In that case ironing can be implemented and the modified
solution is:

t̃sb(q) =

t
sb(q) if q ∈ [

¯
q, qI),

tsb(qI) if q ∈ [qI , q̄].

Instead, if
∫ qh

¯
q tsbP (q) dq ≤

∫ q̄
qh
tsbP (q) dq ironing cannot be implemented and

the contract is constant everywhere: the Principal cannot implement an
incentive-compatible scheme. We assume that in this case the principal is
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still interested in contracting and offers the first-best. �

Corollary 3

Proof. Part 1. Let agent i be more optimistic than agent j. Accordingly,
wi(p) = θ

(
wj(p)

)
for all p ∈ [0, 1] (Definition 3).

From Proposition 3 we know that there exists a critical cost level ĉO,j,
such that

ĉO,j :=
q̄∫

¯
q

u′
(
tfbO,j(q)

)
tfbO,j

′(q)
(
wj
(
1− F (q|ē)

)
− wj

(
1− F (q|

¯
e)
))

dq. (34)

If agent i were given the same contract as that given to j, his critical cost
level satisfies:

ĉO,i :=
q̄∫

¯
q

u′
(
tfbO,j(q)

)
tfbO,j

′(q)
(
wi
(
1− F (q|ē)

)
− wi

(
1− F (q|

¯
e)
))

dq. (35)

The existence of ĉO,i is guaranteed by the facts that wi
(
1 − F (q|ē)

)
>

wi
(
1− F (q|

¯
e)
)
(Lemma 3) and tfbO,j

′(q) > 0 (Proposition 1) which imply that
the right-hand side of (35) is positive. So there exists a set c ∈ (0, ĉO,i) in
which tfbO,j incentivizes agent i.

Consider q < q∗. For those output levels, optimism implies w′i
(
1 −

F (q|e)
)
< 1. Moreover, let w0 := wj

(
1− F (q|

¯
e)
)
and w1 := wj

(
1− F (q|ē)

)
.

Note that w0, w1 ∈ (0, 1) and that w1 > w0 (Lemma 3).
Since w′i

(
1− F (q|e)

)
= θ′

(
wj
(
1− F (q|e)

))
w′j
(
1− F (q|e)

)
, we integrate

the inequality w′i
(
1− F (q|e)

)
< 1 over [w0, w1] to obtain

∫ w1

w0
θ′(s)ds <

∫ w1

w0
ds⇔

wi
(
1− F (q|ē)

)
− wi

(
1− F (q|

¯
e)
)
<wj

(
1− F (q|ē)

)
− wj

(
1− F (q|

¯
e)
)
.
(36)

Equation (36) together with (34) and (35) imply that ĉO,i < ĉO,j. Under
stronger optimism the set c < ĉO becomes smaller.
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Part 2. The third part of Lemma 7 shows that the point pl ∈ (0, 1) such
that w′i(pl) = w′j(pl) becomes smaller the more optimistic i is with respect to
j. Let w′j = 1. Accordingly, the output level q∗ such that w′i

(
1−F (q∗|e)

)
= 1

takes place at a higher output level the more optimistic i is. Thus, increasing
the length of the interval satisfying q < q∗.

�

Corollary 4

Proof. Let agent i be more pessimistic than agent j. Accordingly, the third
part of Lemma 7 shows that the point pl ∈ (0, 1) at which w′i(pl) = w′j(pl)
becomes larger the more pessimistic i is. Thus, the segment p ∈ (pl, 1] for
which w′i(p) > w′j(p) becomes smaller.

As a consequence, the output level qε ∈ [
¯
q, q̄] such that w′i

(
1−F (qε|e)

)
= ε

for arbitrary small ε > 0 takes place at a lower output level the more
pessimistic i is. Making the segment q > qε for which w′i

(
1 − F (q|e)

)
< ε

larger.
Eq. (32) shows that this tendency of w′i(p) becoming smaller as i becomes

more pessimistic, makes more likely that dtsb
P (q)
dq < 0 for a larger segment of q.

Consequently, ironing, if still possible, requires a smaller value qI ; the ironed
segment becomes larger.

�

Corollary 5

Proof. We start by rewriting (27) as

1
u′(tsb(q))f(q|ē) = νw′

(
1− F (q|ē)

)
f(q|ē) + µw′

(
1− F (q|ē)

)
f(q|ē)

− µw′
(
1− F (q|

¯
e)
)
f(q|

¯
e).
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Integrating both sides with respect to q over [
¯
q, q̄], and noting that

q̄∫
¯
q

w′
(
1− F (q|e)

)
f(q|e) dq = 1,

gives us

ν =
q̄∫

¯
q

1
u′(tsb(q))f(q|ē) dq = Eē

(
1

u′(tsb(q))

)
(37)

where Eē is the expectation with respect to the probability distribution of q
induced by ē. Hence, ν > 0 and its value is the same for different agents with
different probability weighting functions w.

After plugging (37) into (27) and multiplying by u(tsb(q)), we obtain

µu(tsb(q))
[
w′
(
1− F (q|ē)

)
f(q|ē)− w′

(
1− F (q|

¯
e)
)
f(q|

¯
e)
]

= f(q|ē)u(tsb(q))
[

1
u′(tsb(q)) − Eē

(
1

u′(tsb(q))

)
w′
(
1− F (q|ē)

)]
. (38)

From the complementary slackness condition associated with µ we know

µ

 q̄∫
¯
q

u(tsb(q))w′
(
1− F (q|ē)

)
f(q|ē) dq

−
q̄∫

¯
q

u(tsb(q))w′
(
1− F (q|

¯
e)
)
f(q|

¯
e) dq − c

 = 0.
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We can thus rewrite (38), after integrating with respect to q over [
¯
q, q̄], as

µc =
q̄∫

¯
q

u(tsb(q))
[

1
u′(tsb(q)) − Eē

(
1

u′(tsb(q))

)
w′
(
1− F (q|ē)

)]
f(q|ē) dq

= Eē
(
u(tsb(q))
u′(tsb(q))

)
− Eē

(
1

u′(tsb(q))

) q̄∫
¯
q

u(tsb(q))w′
(
1− F (q|ē)

)
f(q|ē) dq

= Eē
(
u(tsb(q))
u′(tsb(q))

)
− Eē

(
1

u′(tsb(q))

)
Ẽē
(
u(tsb(q))

)
.

(39)

where Ẽē is the expectation as perceived by an agent who distorts probabilities.
Since Ẽē

(
u(tsb(q))

)
< Eē

(
u(tsb(q))

)
under pessimism, and the opposite under

optimism, (39) implies µP > µEU > µO ≥ 0.
We rewrite (27), the first-order condition, again, but this time as

1
u′(tsbnEU(q)) = νw′ (1− F (q|ē)) +

µnEUw
′ (1− F (q|ē))

(
1− w′ (1− F (q|e)) f(q|

¯
e)

w′ (1− F (q|ē)) f(q|ē)

)
, (40)

where tsbnEU ∈ {tsbO , tsbP } and µnB ∈ {µO, µP}. For the EU agent, for whom
w′ = 1, (40) simplifies to

1
u′(tsbEU(q)) = ν + µEU

(
1− f(q|

¯
e)

f(q|ē)

)
. (41)

Comparison of (40) and (41) shows that tsbnEU(q) < tsbEU(q) only if w′
(
1−

F (q|ē)
)
< 1, w′

(
1− F (q|ē)

)
< w′

(
1− F (q|

¯
e)
)
, and µEU > µnEU .

For the optimist, these conditions hold for q ∈ [
¯
q, q∗), where q∗ is the output

level such that w′
(
1−F (q∗|ē)

)
= 1. For q ∈ [q∗, q̄], however, w′(1−F (q|ē)) ≥ 1.

Since limq→q̄
f(q|

¯
e)

f(q|ē) = 0 and limq→q̄ w
′(1 − F (q|ē)) = +∞, we have tsbO (q̄) >

tsbEU (q̄) The inequality tsbO (q) > tsbEU (q) can also hold, under certain conditions,
for output levels lower than q̄. Let µO → µEU , which happens in case of
moderate optimism. In that case, tsbO (q) > tsbEU(q) holds for sufficiently small
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f(q|
¯
e)

f(q|ē) , or equivalently, high output levels. Note that moderate optimism is
consistent with the assumption µO > 0, that is, the incentive compatibility
constraint holds (Proposition 3).

Similarly, (40) and (41) show that tsbnEU(q) > tsbEU(q) only if w′
(
1 −

F (q|ē)
)
> 1, w′

(
1− F (q|ē)

)
> w′

(
1− F (q|

¯
e)
)
, and µnEU ≥ µEU .

For the pessimist, these conditions hold for q ∈ [
¯
q, q∗). For q ∈ [q∗, q̄],

however, w′ (1− F (q|ē)) ≤ 1. Since limq→q̄
f(q|

¯
e)

f(q|ē) = 0 and limq→q̄ w
′
(
1 −

F (q|ē)
)

= 0, we have tsbP (q̄) < tsbEU(q̄).
The inequality tsbP (q) < tsbEU (q) can also hold for lower output levels than q̄

under some conditions: for sufficiently large f(q|
¯
e)

f(q|ē) , that is, low enough output
levels so q → q∗; or for sufficiently small w′

(
1 − F (q|ē)

)
, that is, strong

pessimism. �

Proposition 4

Proof. The considered problem is similar to the one solved in Proposition 1,
the difference being that w(p) now exhibits likelihood insensitivity and is thus
inverse-S shaped. The maximization problem is otherwise unchanged, so the
contract satisfying (6) is the candidate solution from the first-order condition.
Denote that contract by tfbL (q). We have that ν > 0 since u′ > 0 and w′ > 0.
Moreover, (7) shows that, for q ∈ [

¯
q, q̃] where w′′(q) > 0, tfbL

′(q) < 0; and for
q ∈ [q̃, q̄] where w′′(p) < 0, tfbL

′(q) > 0.
We look at how tfbL (q) behaves at extremes. That is as q either ap-

proaches
¯
q or q̄. Lemma 1 implies limq→

¯
q
w′′(1−F (q|ē))
w′(1−F (q|ē)) = +∞, so from (7)

we get limq→
¯
q t
fb
L

′(q) = +∞. Lemma 2 implies limq→q̄
w′′(1−F (q|ē))
w′(1−F (q|ē)) = +∞,

so limq→q̄ t
fb
L

′(q) = +∞. Moreover, note that limq→q̃ w
′′
(
1 − F (q|ē)

)
= 0,

this is the inflection point from concavity to convexity, so it must be that
limq→q̄ t

fb
L

′(q) = 0.
That tfbL

′(q) < 0 for q ∈ [
¯
q, q̃] is undesirable, so we apply ironing. In this

case, it consists on finding qI ∈ (q̃, q̄) such that:

q̃∫
¯
q

tfbL (q) dq −
qI∫
q̃

tfbL (q) dq = 0 (42)
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Symmetry of w around p̂ = p̃ = 0.5 implies that tfbL (q) is symmetric around q̃,
the output level that generates probability p̃. Hence, there exists a qE ∈ (q̃, q̄)
such that

tfbL (qE) =

q̃∫
¯
q
tfbL (q) dq

q̃ −
¯
q

.

If we were to set qI = qE, we would be generating to non-monotonicities
in the payment scheme. As, by construction, limq→q̃+ tfbL (q) 6= tfbL (qE). To
fix that, note that continuity of [

¯
q, q̄] and tfbL (q), the latter in turn due to

continuity of u′, w′, and w′′, imply that for ε > 0 such that q̃ + ε ≤ q̄, there
exists a δ > 0 such that qE − δ ≥ q̃ and

tfbL (qE − δ) =

q̃+ε∫
¯
q
tfbL (q) dq

q̃ + ε−
¯
q
. (43)

The tuple (δ, ε) can be adjusted to obtain (δ̂, ε̂) such that both (43) holds and
qE− δ̂ = q̃+ ε̂. Letting qI := q̃+ ε̂, existence of qI ∈ (q̃, q̄) follows immediately.

The resulting ironed solution t̃fbL (q) is thus

t̃fbL (q) =

t
fb
L (qI) if q < qI ,

tfbL (q) if q ≥ qI .

For qI ∈ (
¯
q, q̄).

�

Lemma 9. A function φ that satisfies Assumption 4 and p̃ = 0.5 exhibits
subadditivity.

Proof. Concavity of φ in p < p̃ = 0.5 implies that

φ(r) + φ(q) ≥ φ(r + q)

for q < r, q < 0.5, and r + q < 0.5, which satisfies the first condition in
Definition 5.
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Convexity of φ in p > p̃ = 0.5 implies that

φ(r) + 1− φ(1− q) ≤ φ(r + q)

for q < r and q > 0.5, which satisfies the second condition in Definition 5. �

Lemma 10. If agent i is more likelihood insensitive than agent j then:
1. −w′′i (p)

w′i(p)
> −w′′j (p)

w′j(p) if p < p̃ and w′′i (p)
w′i(p)

>
w′′j (p)
w′j(p) if p > p̃;

2. wi(p) > wj(p) if p < p̃ and wi(p) < wj(p) if p > p̃;
3. There exists a unique pk ∈ (0, p̃) such that w′i(pk) = w′j(pk), this point

becomes smaller the more likelihood insensitive i is with respect to j.
4. There exists a unique pm ∈ (p̃, 1) such that w′i(pm) = w′j(pm), this point

becomes larger the more likelihood insensitive i is with respect to j.

Proof. Part 1. Consider first p < p̃. Since wi(p) = φ
(
wj(p)

)
,

w′′i (p)
w′i(p)

=
φ′′
(
wj(p)

)
φ′
(
wj(p)

)w′j(p) +
w′′j (p)
w′j(p)

. (44)

Due to φ′′ < 0 in p < p̃ (Lemma 9), it must be that

−w
′′
i (p)
w′i(p)

> −
w′′j (p)
w′j(p)

.

A similar procedure gives that stronger likelihood insensitivity implies w′′i (p)
w′i(p)

>
w′′j (p)
w′j(p) in p > p̃.

Part 2. Let p0, p1 ∈ [0, 0.5] such that p1 > p0. Integrate −w′′i (p)
w′i(p)

> −w′′j (p)
w′j(p)

over [p0, p1] to obtain

∫ p1

p0

−w′′i (s)
w′i(s)

ds >
∫ p1

p0

−w′′j (s)
wj(s)

ds⇔ ln
(
w′j(p1)
w′j(p0)

)
> ln

(
w′i(p1)
w′i(p0)

)
.

Integrating over the range of p0, namely [0, p1], gives
∫ p1

0
w′j(p1)w′i(s)ds >

∫ p1

0
w′i(p1)w′j(s)ds⇔ w′j(p1)wi(p1) > w′i(p1)wj(p1).
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Integrating again, but this time over the range of p1 gives

∫ 0.5

p

w′j(s)
wj(s)

ds >
∫ 0.5

p

w′i(s)
wi(s)

ds⇔ wi(p) > wj(p).

A similar procedure gives that when i is more likelihood insensitive than
j in the sense of Definition 6, then wi(p) < wj(p) in p > p̂.

Part 3.
Suppose that w′i(p) > w′j(p) for all p < p̃. While

∫ p1
0 w′i(p)dp >

∫ p1
0 w′i(p)dp⇔

wi(p1) > wj(p1) for arbitrary p1 ∈ (0, p̃), corroborating the first part of the
Lemma. We also have that

∫ 0.5
p1

w′i(p)dp >
∫ 0.5
p1

w′i(p)dp ⇔ wi(p1) < wj(p1),
contradicting the first part of the Lemma. A similar rationale leads to a
contradiction when w′i(p) < w′j(p) for all p < p̃ is assumed. Hence, it must be
that w′i(p) > w′j(p) for some for some p < p̃.

Assumption 3 states that w′(p) is decreasing in p < p̃. Moreover, Lemma
1 shows that limp→0w

′(p) = +∞. Let wJ(p) := η
(
wj(p)

)
where η is a

subadditive function. Accordingly, −w′′J (p)
w′J (p) > −

w′′j (p)
w′j(p) in p < p̃ as shown in the

first part of this Lemma. The function w′J(p) tends to infinity faster than
w′j(p) as p→ 0+ as it exhibits a larger slope in p < p̃.

Due to the continuity of w′(p), w′(p) being decreasing in p in p < p̃,
−w′′J (p)
w′J (p) > −

w′′j (p)
w′j(p) , w

′
J(p) tending to infinity faster than w′j(p) as p→ 0+ and

the fact that limp→p̃w
′(p) = min{w′(p)} for generic w(p), there exists a unique

point pk ∈ (0, p̃) such that w′J(pk) = w′j(pk). For p < pk then w′J(p) > w′j(p)
but instead w′J(p) < w′j(p) if p̃ > p > pk.

Next, let wi := φ
(
wJ(p)

)
where φ is a subadditive function. Then, w′i(p)

is a decreasing function in p < p̃, exhibits −w′′i (p)
w′i(p)

> −w′′J (p)
w′J (p) for all p < p̃,

tends to infinity faster than w′J(p) as p→ 0+, and converges to min{w′(p)}
as p → p̃. Therefore, the point pl such that w′i(pl) = w′J(pl) is such that
pl < pk < p̃.

Part 4. Suppose that w′i(p) < w′j(p) for p > p̃. While
∫ 1
p1
w′i(p)dp <∫ 1

p̃ w
′
i(p)dp ⇔ wi(p1) < wj(p1) for arbitrary p1 ∈ (p̃, p̄), corroborating the

first part of the Lemma. We also have
∫ p1
p̃ w′i(p)dp >

∫ p1
p̃ w′i(p)dp⇔ wi(p1) <

wj(p1), contradicting it. A similar rationale leads to a contradiction when
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w′i(p) > w′j(p) is assumed. Hence, it must be that if w′i(p) < w′j(p) holds it
must do so for some p > p̃.

Assumption 3 states that w′(p) is increasing in p > p̃. Moreover, Lemma
2 shows that limp→1w

′(p) = +∞. Let wJ(p) := η
(
wj(p)

)
where η is a

subadditive function. Accordingly, w
′′
J (p)

w′J (p) >
w′′j (p)
w′j(p) in p > p̃ as shown in the first

part of this Lemma. Therefore, w′j(p) tends to infinity faster than wJ(p) as
p→ 1−.

Due to the continuity of w′(p), w′(p) being increasing in p in p > p̃,
w′′J (p)
w′J (p) >

w′′j (p)
w′j(p) in p > p̃, limp→p̃w

′(p) = min{w′(p)}, and the fact that w′j(p)
tends to infinity faster than wJ(p) as p → 1−, there exists a unique point
pm ∈ (0, 1) such that w′J(pm) = w′j(pm). For p < pm then w′J(p) < w′j(p) but
instead w′J(p) > w′j(p) if p > pm > p̃.

Next, Let wi := φ
(
wJ(p)

)
where φ is a subadditive function. Then, w′i

is an increasing function in p > p̃, exhibits w′′i (p)
w′i(p)

>
w′′J (p)
w′J (p) for all p > p̃, w′J(p)

tends to infinity faster than w′i(p) as p→ 1+, and converges to min{w′(p)}
as p → p̃. Hence, the point pn such that w′i(pn) = w′J(pn) is such that
pn > pm > p̃.

�

Corollary 6

Proof. Denote by wi and wj the probability weighting functions of agent i
and j, respectively. Using integration by parts, we express the utility of agent
j over q ∈ [

¯
q, q̃] as:

u
(
tfbL,j(¯

q)
)
−u

(
tfbL,j(q̃)

)
wj
(
1−F (q̃|ē)

)
+
∫ q̃

¯
q
u′(tfbL,j(q))

dtfbL (q)
dq wj

(
1−F (q|ē)

)
dq.

(45)
If agent i obtained tfbL,j(q), he would derive utility:

u
(
tfbL,j(¯

q)
)
−u

(
tfbL,j(q̃)

)
wi
(
1−F (q̃|ē)

)
+
∫ q̃

¯
q
u′(tfbL,j(q))

dtfbL (q)
dq wi

(
1−F (q|ē)

)
dq.

(46)
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Subtracting (45) from (46) gives:

−u
(
tfbL,j(q̃)

)(
wi
(
1− F (q|ē)

)
− wj

(
1− F (q|ē)

))
+

∫ q̃

¯
q
u′(tfbL,j(q))

dtfbL,j
dq

(
wi
(
1− F (q|ē)

)
− wj

(
1− F (q|ē)

))
dq.

(47)

Since dtfb
L,j

dq < 0 if q < q̃ and because stronger likelihood insensitivity
implies wj

(
1−F (q|ē)

)
> wi

(
1−F (q|ē)

)
in q < q̃ (Lemma 10), the expression

in (47) is positive.
Symmetry of tfbL,j around q̃, in turn generated by symmetry of w′(p) around

p̂ = 0.5, together with tfbL,j making the participation constraint bind at the
optimum for j entail

∫ q̃
¯
q u(tfbL,j(q))w′j

(
1− F (q|ē)

)
f(q|e)dq = Ū

2 .
Since (47) is positive, then

∫ q̃

¯
q
u(tfbL,j)w′i

(
1− F (q|ē)

)
f(q|e)dq > Ū

2 . (48)

Since tfbL,i makes the participation constraint bind at the optimum for i,
then

∫ q̃
¯
q u(tfbL,i(q))w′i

(
1− F (q|ē)

)
f(q|e)dq = Ū

2 . Therefore,

∫ q̃

¯
q
u(tfbL,j(q))w′i

(
1− F (q|ē)

)
f(q|e)dq >

∫ q̃

¯
q
u(tfbL,i(q))w′i

(
1− F (q|ē)

)
f(q|e)dq.

(49)
Consequently, tfbL,j > tfbL,i in q ∈ [

¯
q, q̃]. Ironing tfbL,j and tfbL,i in q ∈ [

¯
q, q̃]

gives t̃fbP,j > t̃fbP,i.
Consider now output levels q > q̃. The analog of Eq. (47) for that interval
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is

u(tfbL,j(q̃))
(
wi
(
1− F (q|ē)

)
− wj

(
1− F (q|ē)

))
+

∫ q̄

q̃
u′(tfbL,j(q))

dtfbL,j
dq

(
wi
(
1− F (q|ē)

)
− wj

(
1− F (q|ē)

))
dq.

(50)

Due to dtfb
L,j

dq > 0 if q > q̃ and because stronger likelihood insensitivity
implies wj

(
1−F (q|ē)

)
< wi

(
1−F (q|ē)

)
(Lemma 10) in q > q̃, The expression

in (50) is positive.
Because tfbL,j makes the participation constraint bind at the optimum for

j, then
∫ q̃
¯
q u(tfbL,j(q))w′j

(
1− F (q|ē)

)
f(q|e)dq = Ū

2 . Moreover, (50) implies

∫ q̄

q̃
u(tfbL,j)w′i

(
1− F (q|ē)

)
f(q|e)dq > Ū

2 , (51)

Given that tfbL,i(q) makes the participation constraint bind at the optimum,
then

∫ q̄
q̃ u(tfbL,i(q))w′i

(
1− F (q|ē)

)
f(q|e)dq = Ū

2 . Thus,

∫ q̄

q̃
u(tfbL,j(q))w′i

(
1− F (q|ē)

)
f(q|e)dq >

∫ q̄

q̃
u(tfbL,i(q))w′i

(
1− F (q|ē)

)
f(q|e)dq.

(52)
Thus it must be that, tfbL,j > tfbL,i in q ∈ [q̃, q̄].

Since ironing the first-order condition in q ∈ [
¯
q, q̃] generates t̃fbL,j > t̃fbL,i

and because tfbL,j > tfbL,i in q ∈ [q̃, q̄], the point qI , at which the ironed solution
meets the solution from the first-order condition, takes place at a larger
output value for i than for j. �

Proposition 5

Proof. The problem is similar to the one solved in Proposition 3 with the
difference that w(p) is now inverse-S shaped. Therefore, the first-order
condition (27) solves the maximization problem. Denote by tsbL (q) the contract
that satisfies that equation.
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Incentive constraint is binding. We first show that µ > 0 might not be
true at the optimum. Suppose that µ = 0. Then tsbL (q) = tfbL (q), tfbL (q) being
the first-best contract presented in Proposition 5.

From the complementary slackness condition of µ = 0 we get

q̄∫
¯
q

u
(
tfbL (q)

)
w′(1− F (q|ē))f(q|ē) dq − c

>

q̄∫
¯
q

u
(
tfbL (q)

)
w′(1− F (q|

¯
e))f(q|

¯
e) dq. (53)

Using integration by parts we rewrite (53) as

q̄∫
¯
q

u′
(
tfbL (q)

)dtfbL (q)
dq

[
w(1− F (q|ē))− w(1− F (q|

¯
e))
]
dq > c. (54)

Assumption 4 implies w (1− F (q|ē))−w (1− F (q|
¯
e)) ≥ 0 which, together

with dtfb
O (q)
dq > 0 in q > q̃ (Proposition 5) and u′(t) > 0 (Assumption 1), imply

that the left-hand side of (29) can be weakly positive. Because w(p) and u(t)
are C2, and since c is a constant unbounded from above, there exists ĉL > 0
such that, for a given tfbL (q),

• if c ≤ ĉL, (54) holds: µ = 0 and tsbL (q) = tfbL (q); on the other hand,
• if c > ĉL, (54) does not hold: µ > 0 and tsbL (q) satisfies (27).
In the remainder of the proof we assume that c > ĉL so µ > 0.

Shape of tsb(q) The second part of the proof analyzes the shape of tsb(q).
To that end use (30), which presents the derivative of tsb(q) with respect to q.
Denote by q̃ ∈ (

¯
q, q̄) the output level satisfying w

(
1− F (q̃|ē)

)
= 1− F (q̃|ē).

Under likelihood insensitivity (Definition 4), w′′ < 0 for all q ∈ (q̃, q̄]. Hence,
the two terms on the right-hand side of (30) are positive and dtsb

L (q)
dq > 0.

To further understand the shape of tsbO (q) in q ∈ (q̃, q̄] we study its behavior
as q approaches the extremes of that set. From Definition 4 and Lemma 1 we

know that limq→q̄
w′′
(

1−F (q|ē)
)

w′
(

1−F (q|ē)
) = −∞, so, according to (30), limq→q̄

dtsb
L (q)
dq =
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+∞. Moreover, since w′′
(
1 − F (q̃|ē)

)
= 0 then limq→q̃+

dtsb
L (q)
dq > 0 due to

Assumption 4.
Under likelihood insensitivity (Definition 4), w′′ > 0 for all q ∈ [

¯
q, q̃].

Hence, the first term on the right-hand side of (30) is negative while the
second term there is positive. The sign of dtsb

L (q)
dq depends on which of these

terms dominates the other, which in turn depends on the magnitude of
w′(1 − F (q|ē)). When q decreases in the considered set, w′(1 − F (q|ē))
increases, which in turn makes the second term in (30) larger, and dtsb

P (q)
dq is

more likely to be positive. The opposite happens when q increases in [
¯
q, q̃].

Again, we study (30) at the extremes of the considered set q ∈ (q̃, q̄].
Given that w′′

(
1− F (q̃|ē)

)
= 0 then limq→q̃−

dtsb
L (q)
dq > 0 due to Assumption

4. It remains to be shown whether tsb ever decreases with output; that is
whether dtsb

L (q)
dq < 0 in [

¯
q, q̃].

Lemma 10 shows that for agent i, who is more likelihood insensitive than
agent j, pl inducing w′i(pl) = w′j(pl) in p < p̃ becomes smaller as the degree of
insensitivity of i becomes more severe with respect to that of j. That Lemma
also shows that pn such that w′i(pn) = w′j(pn) in p > p̃ becomes larger as i
becomes more insensitive with respect to j. Hence,

qε1 ∈ [
¯
q, q̃] and qε2 ∈ [q̃, q̄] guaranteeing w′i

(
1−F (qε1|e)

)
= w′i

(
1−F (qε2|e)

)
=

ε for arbitrary small ε > 0, take place at lower and higher output levels,
respectively, as i becomes more insensitive with respect to j. Stronger
likelihood insensitivity expands the segment q ∈ [qε1, qε2] in which w′i

(
1 −

F (q|e)
)
< ε becomes larger. This property makes (32) larger, which in

turn implies that dtsb
L (q)
dq < 0 becomes more likely for intermediate values in

q ∈ (
¯
q, q̃].

Ironing That dtsb
L (q)
dq < 0 is possible in q ∈ [

¯
q, q̃] for a sufficiently strong level

of likelihood insensitivity is undesirable. We iron the solution to avoid this
problem. Denote by qM := max

(
tsbL (q)

)
in q ∈ [

¯
q, q̃) and qS := min

(
tsbL (q)

)
in q ∈ (qM, q̃). Ironing requires finding qI1 in ∈ [

¯
q, qM) and qI2 ∈ (qS , q̄] such
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that

∫ qM

qI1
tsbL (q)dq −

∫ qS

qM
tsbL (q)dq +

∫ qI2

qS
tsbL (q)dq = 0, (55)

and
tsbL (qI1) = tsbL (qI2). (56)

There are four possible cases. First, ifmin{tsbL (q)} = tsbL (
¯
q) andmax{tsbL (q)} =

tsbL (q̄), then qI1 in ∈ (
¯
q, qM) and qI2 ∈ (qS , q̄) exist. The ironed incentives

scheme becomes:

t̃sbL (q) =

t
sb
L (q) if q ∈ [

¯
q, qI1) ∪ (qI2, q̄],

tsbL (qI1) if q ∈ [qI1, qI2].
(57)

Second, if min{tsbL (q)} = tsbL (qS) and max{tsbL (q)} = tsbL (q̄), then qI1 =
¯
q and

qI2 ∈ (qS , q̄). The resulting incentives scheme becomes:

t̃sbL (q) =

t
sb
L (q) if q ∈ [qI2, q̄],

tsbL (qI1) if q ∈ [
¯
q, qI2].

(58)

Third, if min{tsbL (q)} = tsbL (
¯
q) and max{tsbL (q)} = tsbL (qM), then qI1 ∈

(
¯
q, qM) and qI2 = q̄ . The resulting incentives scheme in such case is:

t̃LISB(q) =

t
sb
L (qI2) if q ∈ [qI2, q̄],

tsbL (q) if q ∈ [
¯
q, qI2].

(59)

Finally, if min{tsbL (q)} = tsbL (qS) and max{tsbL (q)} = tsbL (qM), qIl and qI2

do not exist, because t(q)LISB exhibits a sizable interval in which dtsb
L (q)
dq < 0,

the first-order solution cannot be ironed and incentive compatibility cannot
be implemented without including perverse incentives. �

Corollary 7

Proof. Let agent i be more likelihood insensitive than agent j. Lemma 10
shows that pl ∈ (0, p̃) guaranteeing w′i(pl) = w′j(pl) becomes smaller and
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that pm ∈ (p̃, 1) guaranteeing w′i(pn) = w′j(pn) becomes larger as i becomes
more insensitive with respect to j. Consequently, qε1 ∈ [

¯
q, q̃] and qε2 ∈ [q̃, q̄]

guaranteeing w′i
(
1−F (qε1|e)

)
= w′i

(
1−F (qε2|e)

)
= ε for arbitrary small ε > 0,

take place at lower and higher output levels, respectively, as i becomes more
insensitive. Stronger likelihood insensitivity expands the segment q ∈ [qε1, qε2]
in which w′i

(
1− F (q|e)

)
< ε becomes larger. Accordingly, the expression in

Eq. (32) becomes larger as agent i becomes more insensitive, which in turn
yields that dtsb

L (q)
dq < 0 is more likely for him than for j. Ironing is applied for

a larger interval.
�

Corollary 8

Proof. According to (37), the value of ν > 0 is the same across agents
with different probability weighting functions. Moreover, (39) shows that the
Lagrangian multiplier of the incentive compatibility constraint, µL>0, exhibits
µL > µEU in the segments q > q∗∗ and q < q∗ and µL < µEU otherwise.

The first-order condition presented in equation (27) is rewritten to obtain:

1
u′(tsbL (q)) =νw′

(
1− F (q|ē)

)
+

µLw′
(
1− F (q|ē)

)(
1− w′ (1− F (q|e)) f(q|

¯
e)

w′ (1− F (q|ē)) f(q|ē)

)
, (60)

where tsbL the second-best contract when the incentive compatibility constraint
binds at the optimum (Proposition 6 (ii) and (iii)). For the EU agent, the
optimal contract satisfies the first-condition presented in (41).

Comparison of (60) and (41) gives that tsbL (q) < tsbEU(q) only if w′
(
1 −

F (q|ē)
)
< 1, w′

(
1 − F (q|ē)

)
< w′

(
1 − F (q|

¯
e)
)
, and µEU > µL. These

conditions hold in the interval q ∈ [q̃, q∗∗].
Instead, in q ∈ [q∗, q̃] the inequality tsbL (q) < tsbEU(q) cannot hold. To see

why let q approach q∗. Since limq→q∗ w
′
(
1−F (q|ē)

)
= 1, the expression in (60)

becomes similar to that in (41) with the important exception that µL > µEU ,
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which leads to tsbL (q∗) > tsbEU(q∗). For higher output levels in q ∈ (q∗, q̃], the
relation tsbL (q∗) > tsbEU (q∗) can hold whenever w′

(
1−F (q|ē)

)
is sufficiently large.

This happens with sufficiently moderate levels of likelihood insensitivity. In
contrast, sufficiently high likelihood insensitivity yields w′

(
1−F (q|ē)

)
small at

the considered region(Lemma 10) and lead to w′
(
1−F (q|ē)

)
> w′

(
1−F (q|

¯
e)
)
,

both of which might outweigh µEU < µL.
Comparison of (60) and (41) gives that tsbL (q) > tsbEU(q) only if w′

(
1 −

F (q|ē)
)
> 1, w′

(
1 − F (q|

¯
e)
)
< w′

(
1 − F (q|ē)

)
, and µL ≥ µEU . These

conditions hold in the interval q ∈ [
¯
q, q∗).

The validity of the relation tsbL (q) > tsbEU (q) in q ∈ [q∗∗, q̄] is first evaluated
as q approaches q̄. Since limq→q̄

f(q|
¯
e)

f(q|ē) = 0 and limq→q̄ w
′
(
1− F (q|ē

)
= +∞,

equations (60) and (41) imply that tsbL (q̄) > tsbEU(q̄). To guarantee tsbL (q) >
tsbEU(q) for lower output levels, w′

(
1− F (q|ē)

)
has to be sufficiently large to

outweigh w′
(
1−F (q|ē)

)
< w′

(
1−F (q|

¯
e)
)
and µEU > µL. A possibility under

sufficiently large levels of likelihood insensitivity.
�
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Appendix B: Prospect Theory Preferences (On-
line)

In this Appendix, we extend the model to account for reference dependence.
To that end, we enrich the agent’s risk attitudes by characterizing them
according to Cumulative Prospect Theory (CPT from here onward, Tversky
and Kahneman, 1992). Accordingly, the agent does not evaluate the transfers
in t(q) as final carriers of wealth, but does so relative to a reference point
r > 0.

For simplicity, we assume that the reference point r is assumed to be
exogenous to the alternatives faced by the decision-maker. For instance, it can
be the agent’s current wealth at the moment of making decisions (Kahneman
and Tversky, 1979; Tversky and Kahneman, 1981). This reference point rule
has been recently validated empirically by Baillon et al. (2020a) as it explains
most of subjects’ behavior.

As stated in the main text, the main departure of CPT with respect to
RDU and EUT is that the agent can exhibit different risk preferences for
gains and losses. This is captured with two ingredients. First, transfers enter
the agent’s utility differently depending on whether they are classified as
gains or losses. A property that is captured by the following assumption on
the agent’s utility.

Assumption 5. The value function, V (t, r), is a piece-wise function,

V (t, r) =

v
(
t(q)− r

)
if t(q) ≥ r,

−λv
(
r − t(q)

)
if t(q) < r,

with the following properties:
• λ > 1;
• v(0) = 0;
• v′ > 0 for all q ∈ [

¯
q, q̄];

• v′′ < 0 for all q ∈ [
¯
q, q̄].

The agent’s utility is convex for losses, generating risk seeking attitudes,
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and concave for gains, generating risk aversion. Furthermore, Assumption 5
introduces loss aversion. That is, transfers counting as losses loom larger than
equally-sized transfers counting as gains. This latter property is captured by
the parameter λ > 1 and expresses a special dislike for losses.

The second ingredient is that the probability weighting function is defined
separately over gains and losses. Probabilities associated with gains are trans-
formed by the probability weighting function w, introduced in Assumption 3.
On the other hand, probabilities associated with losses are transformed with
a probability weighting function z that applies transformations to cumulative
probabilities, F (q|e), rather than to decumulative probabilities.19

We simplify the problem by assuming that z adopts the properties of w.

Assumption 6. A probability weighting function for losses is a function
z : [0, 1]→ [0, 1] satisfying the duality condition z(F (q|e)) = 1−w(1−F (q|e))
for any e.

All in all, the utility of an agent with CPT preferences when incentivized
with a contract t(q) is

CPT (t, e, r) =
q̄∫

¯
q

[
θv (t(q)− r)w′

(
1− F (q|e)

)

− λ(1− θ)v(r − t(q))z′
(
F (q|e)

)]
f(q|e) dq − c(e), (61)

where θ is an indicator function taking the value θ = 1 if t(q) ≥ r and
θ = 0 otherwise.

19In other words, the CPT agent orders possible transfers counting as losses from the
least-desirable, t(

¯
q), to the closest to the reference point from below, and uses a separate

weighting function z to transform the probabilities that emerge from these—as the literature
describes them—loss ranks.
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The principal’s program when facing a CPT agent is:

max
t(q)

q̄∫
¯
q

(
S(q)− t(q)

)
f(q|ē) dq

s.t. CPT (t, ē, r) ≥ Ū,

CPT (t, ē, r) ≥ CPT (t,
¯
e, r)

The optimal incentive scheme offered to agents with CPT preferences is
characterized next.

Proposition 7. Let Assumptions 3 to 6 hold. There exists a threshold
q̂ ∈ [

¯
q, q̄] such that the second best-contract, tsbC :

(i) pays r everywhere if q̂ = q̄;
(ii) pays r in q < q̂ and depends on performance as in Proposition 3,

Proposition 4, or Proposition 6 in q ≥ q̂ if q̂ ∈ (
¯
q, q̄);

(iii) depends on performance as in Proposition 3, Proposition 4, or Propo-
sition 6 if q̂ =

¯
q.

Proof. Rewrite Eq. (61) using Assumption 6 as

CPT (t, e, r) =
q̄∫

¯
q

[
θv (t(q)− r)w′

(
1− F (q|e)

)

− λ(1− θ)v(r − t(q))w′
(
1− F (q|e)

)]
f(q|e) dq − c(e), (62)

where θ is an indicator function taking a value one if t ≥ r. Let first
θ = 0. Denoting by ν and µ the multipliers associated to the participation
and the incentive compatibility constraints, respectively, the Lagrangian of
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the principal’s problem can be written as

L(q, t) =
(
S(q)− t(q)

)
f(q|ē)

+ µ

(
− λv

(
r − t(q)

)(
w′
(
1− F (q|ē)

)
f(q|ē)− w′

(
1− F (q|e)

)
f(q|e)

)
− c

)

+ ν

(
− λv

(
r − t(q)

)
w′
(
1− F (q|ē)

)
f(q|ē)− c− Ū

)
.

(63)

Pointwise optimization with respect to t(q), and some re-arrangements yield:

1
λv′
(
r − t

)(
w′
(
1− F (q|ē)

)) = ν + µ

(
1−

w′
(
1− F (q|e)

)
f(q|e)

w′
(
1− F (q|ē)

)
f(q|ē)

)
.

(64)

Denote by tsbC (q) the transfer satisfying Eq. (64). We show next that
a lottery L = (p, r; 1 − p, 0) improves upon the solution tsbC (q) whenever
0 < tsbC (q) < r. Since −λv

(
r − tsbC (q)

)
is increasing in tsbC (q), there exists a

number ρ ∈ [0, 1] for each realization q such that

λv
(
r − tsbC (q)

)
= λ

(
1− w(ρ)

)
v(r). (65)

Hence Lρ := (ρ, r; 1 − ρ, 0) leaves the agent’s participation and incentive
compatibility constraints unchanged. Using the fact that v′′ < 0 gives

λv
(
r − tsbC (q)

)
≤ λv

(
(1− w(ρ))r

)
. (66)

Since v′ > 0 is increasing then tsbC (q) > w(ρ)r. The lottery contract Lρ
can be cost-efficient for the principal, it provides the same incentives at a
lower perceived expected cost. Note that when w(ρ) < ρ the lottery contract
has a lower expected cost.

The incentives of offering Lρ are studied next. Let L̄ := ρr. The utility of
an agent is

CPT (Lρ, ē, r) = −
(

1− w
(
L̄

r

))
λv(r)− c (67)
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The above equation is not linear in L̄ due to w having curvature (Assumption
3). Hence, changes in L̄ affect marginal utility. To understand how changes
in L̄ affect the marginal incentives of offering the lottery, we compute the
first-order condition of (67) with respect to ρ, which gives us

w′(ρ)λv(r) = 0. (68)

Denote by ρopt the probability satisfying the condition in (68). The
second-order condition evaluated at ρopt is

w′′(ρopt)λv(r). (69)

Hence, ρopt ∈ (0, 1) whenever w′′ < 0. This holds under optimism or
likelihood insensitivity.

Due to Assumption 3, limρ→1w
′(ρ) = 0 under optimism so in that case

ρopt → 1. Instead, ρopt ∈ {0, 1} if w′′ > 0 for any interval in p ∈ (0, 1). Since

CPT (Lρ=1, ē, r) = −c > −λv(r)− c = CPT (Lρ=0, ē, r), (70)

then ρopt = 1 in that case. Therefore, either for optimism or whenever w(p)
is convex in any interval, the principal avoids exposing the agent to losses by
paying t = r.

Let now θ = 1. The Lagrangian of the principal’s problem in that case
can be written as

L(q, t) =
(
S(q)− t(q)

)
f(q|ē)

+ µ

(
v
(
t(q)− r

)(
w′
(
1− F (q|ē)

)
f(q|ē)− w′

(
1− F (q|e)

)
f(q|e)

)
− c

)

+ ν

(
v
(
t(q)− r

)
w′
(
1− F (q|ē)

)
f(q|ē)− c− Ū

)
.

(71)

Pointwise optimization with respect to t(q), and some re-arrangements
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gives us

1
v′
(
t− r

)
w′
(
1− F (q|ē)

) = ν + µ

(
1−

w′
(
1− F (q|e)

)
f(q|e)

w′
(
1− F (q|ē)

)
f(q|ē)

)
.

(72)

Since v′ > 0 and v′′ < 0 and w(p) is as described by Assumption 3, the
solution is similar to that presented in Proposition 3 and Proposition 6, except
that it can be that r > 0. Hence, r is now taken as the initial value for those
solutions.

To establish the location shift from paying the amount t = r, given to
protect the agent from losses, to a solution that increases in performance, as
given by Proposition 3 or Proposition 6), denote by q̂ ∈ [

¯
q, q̄] the performance

level satisfying:

1
λv(r)
r

= ν + µ

(
1−

w′
(
1− F (q̂|e)

)
f(q̂|e)

w′
(
1− F (q̂|ē)

)
f(q̂|ē)

)
.

(73)

Where the left-hand side of (73) denote the marginal incentives of offering
Lρ=1. The existence and uniqueness of q̂ is guaranteed by the fact that the
left-hand side of Eq. (73) of is positive and constant in q while the right-hand
side of that equation increases with q (Assumption 4) over [0,+∞).

There are three cases. When λv(r)
r

is small and the right-hand side of (73)
is large enough, then q̂ ≥ q̄. In that case tsbC = r. Alternatively, λv(r)

r
can

be large so that q̂ ≤ q̄ and the solution is fully given by Proposition 3 and
Proposition 6, depending on the shape of w. Finally, if q̂ ∈ [

¯
q, q̄] then

tsbC (q) =

r if q < q̂,

tsbP (q), tsbO (q) (Proposition 3), or tsbL (q) (Proposition 6) if q ≥ q̂.

(74)
�

Under CPT preferences, the optimal contract often includes a performance-
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insensitive segment paying the amount r. The reason behind these segments
is loss aversion. Exposing the agent to losses by paying amounts lower than r
would generate large disutility, leading eventually to rejection. To prevent
this, the principal can either introduce large rewards that compensate the
agent for facing such risk of losses, or she can eradicate the possibility of
losses. The former solution is expensive since losses loom larger than equally
sized gains by a factor of λ. Consequently, the principal offers, wherever
necessary, the minimum amount required to locate the agent in the domain
of gains: t(q) = r. This payment is given unless the realization of output
crosses a critical threshold q̂.

Moreover, the optimal contract might as well include transfers that depend
on performance in the same way as the contracts described in Propositions 3
or 6. Depending on the agent’s probability perception in gains, the shape of
one of these contracts applies for all q > q̂. That is because in the domain
of gains, the CPT agent exhibits risk attitudes equivalent to those of the
RDU agent. So, the second-best contract that motivates an RDU agent,
also suffices to incentivize a CPT agent with the same probability weighting
function.

The contract characterized in Proposition 7, leads to incentive schemes
that are often observed in practice. For instance, when the CPT agent is
sufficiently pessimistic the resulting optimal contract can be binary. It pays
a fixed salary, t(q) = r in q < q̂, and a lump-sum bonus, paid in in q > q̂.
This shape reflects different sources of risk aversion. The first fixed-pay level
ensures that the agent does not face losses, while the second fixed-pay level
reflects the impossibility faced by the principal to implement incentives due
to the agent’s severe pessimism. The emergence of these binary incentive
schemes is also documented by Herweg et al. (2010). The difference between
their setting and ours is that they do not consider probability transformations,
so the agent’s risk attitudes are not characterized by CPT. Also, our result
holds for any level of loss aversion, i.e. even if λ > 2.
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Appendix C: Continuous Effort (Online)

Let e ∈ [
¯
e, ē] with

¯
e ≥ 0. The following assumptions are made on c(e) the

function capturing the cost of effort.

Assumption 7 (cost of effort). c(e) : [
¯
e, ē]→ [0,+∞) is C2 with c′(e) > 0

and c′′(e) > 0.

Furthermore, we impose the following assumptions on the cumulative
distribution function.

Assumption 8 (output distribution). F (y|e) : [
¯
y, ȳ]→ [0, 1] is C2 with

respect to e and y, and exhibits Fee(y|e) > 0.

As in the main body of the paper, the probability density function is
defined as f(y|e) := Fq(q|e). Note that the convexity of the CDF, Fee(y|e) > 0,
has been shown to ensure the validity of the first-order approach.

Furthermore, we extend the continuous MLRP, d
dq

(
fe(q|e)
f(q|e)

)
> 0, to account

for probability distortions.

Assumption 9 (continuous WMLRP). d
dq

 d
de

(
w′(1−F (q|e))f(q|e)

)
w′(1−F (q|e)f(q|e))

 > 0

A central implication of Assumption 9 is that it implies first-order stochas-
tic dominance, Fe(q|e) ≤ 0.

We are in a position to show that stronger conditions are required to
guarantee the validity of the first-order approach under probability distortion.

Lemma 11. For the first-order approach to be valid it suffices that
wee

(
1−F (q|e)

)
Fe(q|e)

we

(
1−F (q|e)

) <

Fee(q|e)
Fe(q|e) , or it is necessary and sufficient that cee(e) > B, where

B :=
∫

¯
q

q̄
u′
(
t(q)

)dt(q)
dq

(
we
(
1−F (q|e)

)
Fee(q|e)−wee

(
1−F (q|e)

)(
Fe(q|e)

)2
)
dq.

Proof. Using integration by parts, rewrite the agent’s utility in Eq. (3) as

RDU(t, e) = u
(
t(

¯
q)
)
−
∫

¯
q

q̄
u′
(
t(q)

)dt(q)
dq w

(
1− F (q|e)

)
dy − c(e). (75)
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Denote by tfo the solution to the following principal’s program:

max
{t(y)}

∫ ȳ

¯
y

(
S(y)− t(y)

)
f(y|e)dy

s.t. u
(
t(

¯
q)
)
−
∫

¯
q

q̄
u′
(
t(q)

)dt(q)
dy w

(
1− F (q|e)

)
dq − c(e) ≥ Ū,∫

¯
q

q̄
u′
(
t(q)

)dt(y)
dq we

(
1− F (q|e)

)
Fe(y|e)dq − c′(e)

(76)

In the above program, the incentive compatibility constraint is replaced
by the first-order condition of Eq. (75) with respect to e. This approach is
necessary and sufficient if the following condition holds:

∫
¯
q

q̄
u′
(
t(q)

)dt(q)
dq

(
we
(
1−F (q|e)

)
Fee(q|e)−wee

(
1−F (q|e)

)(
Fe(q|e)

)2
)
dq−c′′(e) < 0.

(77)
Since c′′(e) > 0 (Assumption 7), u′ > 0 (Assumption 1), dt(q)

dq ≥ 0 (As-
sumption 2), the following condition suffices for the concavity of RDU(t, e):

we
(
1− F (q|e)

)
Fee(q|e)− wee

(
1− F (q|e)

)(
Fe(q|e)

)2
< 0 (78)

Due to Fee(q|e) > 0 (Assumption 8) and we
(
1−F (q|e)

)
> 0 (Assumption

3), a probability weighting function that exhibits wee
(
1−F (y|e)

)
< 0 cannot

fulfill the condition in Eq. (78). Hence, for the optimality of tfo it suffices
that wee

(
1 − F (q|e)

)
> 0. Letting p = 1 − F (q|e), that condition can be

written as w′′(p) > 0.
�

The Lemma shows that the first-order condition suffices to characterize
the incentive constraints when the weighting function is sufficiently convex,

so as to guarantee
wee

(
1−F (q|e)

)
Fe(q|e)

we

(
1−F (q|e)

) < Fee(q|e)
Fe(q|e) , or when the cost function

is sufficiently convex. For simplicity we assume that when w′′(p) is not
sufficiently convex, c(e) attains the bound presented in the above Lemma. If
that were not the case, the principal might require other means to incentivize
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the agent. Gonzalez-Jimenez (2020) stochastic contracts are optimal when
this condition does not hold.

We are in a position to characterize the optimal contracts when effort is
observable. It turns out that they are identical to those presented under the
binary case.

Proposition 8. The optimal first-best under optimism, pessimism, or likeli-
hood insensitivity exhibit the shapes of the contracts presented in Proposition
1 and Proposition 5.

Proof. Denoting the Lagrange multiplier of the agent’s participation constraint
by ν, the Lagrangian of the principal’s problem writes as:

L(q, t) =
(
S(q)− t(q)

)
f(q|e)

+ ν

[
u(t(q))w′

(
1− F (q|e)

)
f(q|e)− Ū − c(e)

]
.

Pointwise optimization with respect to t(q) and algebraic manipulations yield

1
u′
(
tfb(q)

)
w′
(
1− F (q|e)

) = ν. (79)

By assumption, u′(t) > 0 and w′(p) > 0, so ν > 0. The participation
constraint binds at the optimum.

The optimal effort level, e∗ satisfies

∫ q̄

q̄

(
S(q)− tfb(q)

)
fe(q|e∗)dq+

ν

(
−
∫ q̄

¯
q
u′
(
tfb(q)

)(
we
(
1− F (q|e∗)

))
Fe(q|e∗)dq − c′(e∗)

)
= 0.

(80)

Since −
∫ q̄
¯
q u
′
(
tfb(q)

)(
we
(
1− F (q|e∗)

))
Fe(q|e∗)dq − c′(e∗) = 0, the above

equation becomes:
∫ q̄

q̄

(
S(q)− tfb(q)

)
fe(q|e∗)dq = 0. (81)
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The solution of the principal’s program is thus given by {(tfb(q), e∗)},
where tfb(q) is the transfer satisfying Eq. (79) and e∗ satisfies Eq. (81).

To investigate the shape of tfb(q) we differentiate (79) with respect to q,
giving us

tfb
′(q) =

u′
(
tfb(q)

)
u′′
(
tfb(q)

)w′′
(
1− F (q|e∗)

)
w′
(
1− F (q|e∗)

) f(q|e). (82)

This is exactly the equality in (7) when letting ē = e∗. The analyses of the
shape of tfb(q) under optimism, pessimism, and likelihood insensitivity in
Propositions 5 and 1 immediately follow. �

Consider now a setting of moral hazard. First, we show that when
optimism or likelihood insensitivity are moderate, the first-best may suffice to
elicit high effort levels. This solution is the analog of Proposition 3 if c < ĉO

and Proposition 6 if c < ĉL , but, as a direct consequence of considering a
continuous output space, we condition on the values of e∗∗, the optimal effort
level implemented by the principal, rather than on c.

Proposition 9. Assume Optimism or Likelihood Insensitivity. There exists
a unique effort level ê ∈ [

¯
e, ē] such that if e∗∗, the effort level implemented

by the principal, is such that e∗∗ < ê, the optimal contract is the first-best
contract from Proposition 8.

Proof. Denote by ν the Lagrange multiplier of the agent’s participation
constraint, and µ, of the incentive compatibility constraint. The Lagrangian
of the principal’s maximization problem writes as

L(q, t) =
(
S(q)− t(q)

)
f(q|e)

+ µ

[
u(t(q))

(
w′
(
1− F (q|e)

)
fe(q|e)− w′′

(
1− F (q|e)

)
fe(q|e)f(q|e)

)
− c′(e)

]

+ ν

[
u(t(q))w′

(
1− F (q|e)

)
f(q|e)− Ū − c(e)

]
.

Pointwise optimization with respect to t(q) and algebraic manipulations
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yield

1
u′
(
tsb(q)

)
w′
(
1− F (q|e)

) = ν + µ

 d
de

(
w′(1− F (q|e))f(q|e)

)
w′(1− F (q|e)f(q|e))

 (83)

The optimal transfer under moral hazard, tsb(q) results from the condition
above.

The optimal effort level under moral hazard, e∗∗, must satisfy

∫ q̄

q̄

(
S(q)− tfb(q)

)
fe(q|e∗∗)dq+

µ

(
−
∫ q̄

¯
q
u′
(
tfb(q)

)(
we
(
1− F (q|e∗∗)

)
Fee(q|e∗∗)− wee

(
1− F (q|e∗∗)

)
Fe(q|e∗∗)

)
dq − c′′(e∗∗)

)
= 0.

(84)

The solution of the principal’s program is thus given by {(tsb(q), e∗∗)},
where tsb(q) is the transfer satisfying Eq. (83) and e∗∗ satisfies Eq. (84).

We next show that µ > 0 might not hold the optimum under optimism or
likelihood insensitivity and the solution to the principal’s problem becomes
{(tfb(q), e∗∗)}. Suppose instead that µ = 0. Accordingly, tsb(q) = tfb(q),
where tfb(q) is the first-best contract presented in Proposition 8.

Optimism Consider the case of an agent with optimism in the sense of
Definition 1. From the complementary slackness condition from µ we get

u′
(
t(q)

)dt(y)
dq we

(
1− F (q|e)

)
Fe(y|e)dq > c′(e) (85)

Assumption 9 implies Fe(q|e) < 0 which, together with dt(q)
dq > 0 (Propo-

sition 8), w′ > 0 (Assumption 3) and u′(t) > 0 (Assumption 1), imply that
the left-hand side of (85) is weakly positive, rendering the inequality in
(Assumption 3) feasible.

The right-hand side of (85) is increasing because c′(0) = 0 and c′′(e) > 0.
Also, because we

(
1− F (q|e)

)
Fe(q|e) is decreasing (Lemma 11) the left-hand
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side of (85) is decreasing. Hence, there exists an effort level ê ∈ [
¯
e, ē] such

that
u′
(
t(q)

)dt(y)
dq we

(
1− F (q|ê)

)
Fe(y|ê)dq = c′(ê).

Hence, for e ∈ [
¯
e, ê), the inequality in (85) holds .

Likelihood insensitivity For likelihood insensitivity dt(q)
dq > 0 (Propo-

sition 8) so the inequality in (Assumption 3) is feasible. Since, w′′(p) > 0 in
(0, p̃), then we

(
1−F (q|e)

)
Fe(q|e) is decreasing (Lemma 11) in that probability

interval, the existence of ê is guaranteed.
�

Second, it is shown that the contract shapes presented in Proposition 3
and Proposition 6 continue to hold when effort is continuous.

Proposition 10. The optimal second-best exhibits the shapes of the contracts
presented in Proposition 3 and Proposition 6 under pessimism, or if e∗∗ > ê

and under either likelihood insensitivity or optimism.

Proof. Assume µ > 0. Differentiate (83) with respect to q to obtain:

tsb
′(q) = u′(tsb(q))w′′(1− F (q|e∗∗))

u′′(tsb(q))w′ (1− F (q|e∗∗))f(q|e∗∗)

+ µ
w′ (1− F (q|e∗∗))u′(tsb(q))2

u′′(tsb(q))
d
dq

 d
de

(
w′(1− F (q|e))f(q|e)

)
w′(1− F (q|e)f(q|e))

 .
(86)

The above equation and Eq. (30) differ only in that ē is now e∗∗ and the
discrete MLRP is replaced by its continuous analog. Therefore, the analysis
of tsb′(q) is similar to that presented in Proposition 3.

Under optimism, w′′(p) < 0 for all p ∈ (0, 1) implies that both terms in
Eq. (86) are positive, implying that tsb is everywhere increasing. Moreover,
since limq→q̄ w

′(p) = +∞ and limq→
¯
q w
′(p) = 0, then tsb′(q)→ +∞ at both

extremes.
Under pessimism, w′′(p) > 0 for all p ∈ (0, 1). Hence, the first term in

the right-hand side of Eq. (86) is negative, while the second one is positive.
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Due to limq→q̄ w
′(p) = 0, then limq→q̄

w′′(p)
w′(p) = +∞; the first term in Eq. (86)

dominates and limq→q̄ t
sb′(q) = −∞.

Eq. (86) implies that tsb′(q) > 0 under pessimism requires:

− d
dq

 d
de

(
w′(1− F (q|e))f(q|e)

)
w′(1− F (q|e)f(q|e))

 >
w′′(1− F (q|e))f(q|e)

w′(1− F (q|e))

 1
µw′

(
1− F (q|e)

)
u′(tsb(q))

 .
(87)

The W-MLRP gives

d
dq

 d
de

(
w′(1− F (q|e))f(q|e)

)
w′(1− F (q|e)f(q|e))

 = d
dq

(
fe(q|e)
f(q|e)

)

+

−
(
w′′(1− F (q|e))

)2
Fe(q|e)f(q|e)(

w′(1− F (q|e))
)2

−

(
w′′(1− F (q|e))

)
f(q|e)

w′(1− F (q|e))

 ,
(88)

we use the above expression to rewrite Eq. (86) as

d
dq

(
fe(q|e)
f(q|e)

)
>

(
w′′(1− F (q|e))

)2
f(q|e)(

w′(1− F (q|e))
)2

(
−Fe(q|e) + 1

µu′(tsb(q))w′′(1− F (q|e))

)

− d
de

(
w′′(1− F (q|e))f(q|e)

)
w′(1− F (q|e)) .

(89)

Since limq→q̄ w
′(p) = +∞, then limq→q̄ w

′′(p) = +∞. Therefore, the
quantity

1
µu′(tsb(q))w′′(1− F (q|e))
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goes to 0 as q approaches
¯
q. All is left is

d
dq

(
fe(q|e)
f(q|e)

)
>

(
w′′(1− F (q|e))

)2
f(q|e)(

w′(1− F (q|e))
)2

−Fe(q|e) +
− d

de

(
w′′(1− F (q|e))f(q|e)

)
w′(1− F (q|e))

 ,
(90)

which holds from the WMLRP (See Eq. (88)). Therefore, there exists
an output level qh ∈ (

¯
q, q̄) such that tsb′(q) > 0 if q ∈ [

¯
q, qh) and tsb′(q) < 0

otherwise. The method for ironing is the same as in Proposition 3.
�
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Appendix D: Adverse selection (Online)

Assume for simplicity that there are two types of agents: EUT and non-EUT.
Also, suppose that non-EUT agents have RDU preferences with likelihood
insensitivity and pessimism. Their weighting function exhibits an inverse-S
shape and it yields E(t) > Ẽ(t), where Ẽ(t|e) :=

∫ q̄
¯
q u(t)dw

(
1− F (q|e)

)
— a

non-additive expectation. Various studies support this assumption (Bruhin
et al., 2010; Harrison and Rutström, 2009).

The principal knows that she contracts with a EUT agent with probability
πE and with a non-EUT agent with the complement 1− πE. The timing of
her problem is as follows:

1. The agent learns his type: EU or L.
2. The principal offers a stochastic contract t(q).
3. The agent accepts or rejects the contract.
4. If the contract is accepted, the agent exerts effort e, which translates

into performance q.
5. The transfer specified by the contract is paid to the agent.
The solution to this problem of moral hazard followed by adverse selection

is provided next.

Proposition 11. The optimal menu of contracts, {tsbEU , tsbL }, exhibits the
following properties:

1. tsbEU satisfies E
(
u(tsbEU)|ē

)
= c while tsbL satisfies Ẽ

(
u(tsbL )|ē

)
= Ẽ

(
u(tsbL )|ē

)
if w′ (1− F (q|ē)) > 1.

2. tsbL satisfies Ẽ(tsbL |ē) = c while tsbEU satisfies Ẽ(tsbEU |ē) = Ẽ(tsbEU |ē) if
w′ (1− F (q|ē)) ≤ 1.

Proof. the moral hazard incentive constraint of the EUT agent when given a
contract tEU is

q̄∫
¯
q

u
(
tEU(q)

)
f(q|ē) dq − c ≥

q̄∫
¯
q

u
(
tEU(q)

)
f(q|

¯
e) dq, (91)
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and the moral hazard incentive constrain of the non-EUT agent when given
tL is

q̄∫
¯
q

u
(
tL(q)

)
w′
(
1− F (q|ē)

)
f(q|ē) dq − c ≥

q̄∫
¯
q

u
(
tL(q)

)
w′
(
1− F (q|

¯
e)
)
f(q|

¯
e) dq.

(92)

To distinguish between the two agents, tL and tEU must satisfy the adverse
selection incentive-compatible constraints. That is for the EUT agent:

q̄∫
¯
q

u
(
tEU(q)

)
f(q|ē) dq − c ≥ max

e∈{
¯
e,ē}


q̄∫

¯
q

u
(
tL(q)

)
f(q|ē) dq − c(e)

 , (93)

and for the non-EUT agent:

q̄∫
¯
q

u
(
tL(q)

)
w′
(
1− F (q|ē)

)
f(q|ē) dq − c

≥ max
e∈{

¯
e,ē}


q̄∫

¯
q

u
(
tEU(q)

)
w′
(
1− F (q|ē)

)
f(q|ē) dq − c(e)

 . (94)

Finally, the participation constraint of both agents, when the contracts
targeted to them are selected, are

q̄∫
¯
q

u
(
tEU(q)

)
f(q|ē) dq − c ≥ 0, (95)

and
q̄∫

¯
q

u
(
tL(q)

)
w′
(
1− F (q|ē)

)
f(q|ē) dq − c ≥ 0. (96)

The standard approach to solve the adverse selection problem is to provide
rents to the more efficient agent, which in turn depends on the impact of
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exerting high effort. Formally, efficiency for the non-EUT agent amounts to:

∫ q̄

¯
q
w′ (1− F (q|ē)) f(q|ē)dq −

∫ q̄

¯
q
w′ (1− F (q|

¯
e)) f(q|

¯
e)dq =

w (1− F (q|ē))− w (1− F (q|
¯
e)) . (97)

Instead, for the EU agent, efficiency amounts to:

∫ q̄

¯
q
f(q|ē)dq −

∫ q̄

¯
q
f(q|

¯
e)dq = (1− F (q|ē))− (1− F (q|

¯
e)) . (98)

TheW-MLRP (Assumption 4) implies both F (q|ē) < F (q|
¯
e) and w (1− F (q|ē)) >

w (1− F (q|
¯
e)).

A sufficient condition for (97) to be larger than (98) is w′(1− F (q|e)) > 1
for any e. That is because

∫ 1−F (q|ē)

1−F (q|
¯
e)
w′(s)ds >

∫ 1−F (q|ē)

1−F (q|
¯
e)

ds⇔

w (1− F (q|ē))− w (1− F (q|
¯
e)) > F (q|

¯
e)− F (q|ē) (99)

Under likelihood insensitivity w′(1−F (q|e)) > 1 holds in q ∈ [
¯
q, q∗∗l ), where

q∗∗l satisfies w′ (1− F (q∗∗l |e)) = 1 and w′′ (1− F (q∗∗l |e)) > 0, and also in q ∈
(q∗∗h , q̄], where q∗∗h is such that w′ (1− F (q∗∗h |e)) = 1 and w′′ (1− F (qh∗∗|e)) <
0.

Suppose the non-EUT agent is more efficient. As shown above, this
mainly happens when the agent’s possible actions generate probabilities that
are located at extremes of the output interval. We first reduce the number
of constraints to solve the principal’s problem. Equations (95) and (94)
immediately imply (96). Hence, at the optimum the participation constraint
in (95) binds, while the participation constraint in (96) slacks.

From equation (93) and the constraint in (95), which binds at the optimum,
we obtain:

0 ≥ max
e∈{

¯
e,ē}


q̄∫

¯
q

u
(
tL(q)

)
f(q|ē) dq − c(e)

 , (100)

81



which implies that EUT agents cannot afford to mimic non-EUT agents.
Hence, the relevant adverse selection constrain is that in (94), which states
that the non-EUT agent derives rents from mimicking the EUT agent. In
contrast, equation (93) slacks at the optimum.

A direct implication that (94) binds is tL(q) ≥ tEU (q), which in turn gives

q̄∫
¯
q

u
(
tEU(q)

)
f(q|ē) dq − c >

q̄∫
¯
q

u
(
tEU(q)

)
f(q|

¯
e) dq. (101)

Hence, the moral hazard constraint in (91) slacks at the optimum.
Next, from the inequality in (96), which slacks at the optimum, along

with equation (100), which holds with strict inequality, we obtain:

q̄∫
¯
q

u
(
tL(q)

)
w′
(
1− F (q|ē)

)
f(q|ē) dq − c > 0 ≥

max
e∈{

¯
e,ē}


q̄∫

¯
q

u
(
tL(q)

)
f(q|ē) dq − c(e)

 . (102)

The above equation, together with the assumption of likelihood insensitivity
with pessimism, implies that the non-EUT agent’s perception of probabilities
generate:

q̄∫
¯
q

u
(
tL(q)

)
f(q|

¯
e) dq >

q̄∫
¯
q

u
(
tL(q)

)
w′ (1− F (q|

¯
e)) f(q|

¯
e) dq, (103)

Equations (102) and (103) imply

q̄∫
¯
q

u
(
tL(q)

)
w′
(
1− F (q|ē)

)
f(q|ē) dq − c >

q̄∫
¯
q

u
(
tL(q)

)
w′ (1− F (q|

¯
e)) f(q|

¯
e) dq.

(104)

and equation (92) is implied by other constraints in the principal’s program.
Hence, at the solution only equations (94) and (95) bind. Thus, the

optimal transfer given to the EUT agent, tEU , must guarantee E
(
u(tEU )|ē

)
:=
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∫ q̄
¯
q u(tEU)f(q|ē)dq = c, satisfying the binding constraint in (95). Moreover,
the transfer offered to the non-EUT, tL, should satisfy

Ẽ
(
u(tL)|ē

)
:=
∫ q̄

¯
q
u(tL)w′

(
1− F (q|ē)

)
f(q|ē)dq = Ẽ

(
u(tEU)|ē

)
,

as implied by (94).
At implied probabilities that make the EUT is more efficient, the proof

follows a similar logic. The participation constraint of the non-EUT agent
binds and the adverse selection incentive compatibility constraint for the EUT
binds. Together these two binding constraints lead to a solution whereby tL
guarantees Ẽ

(
u(tL)|ē

)
= c and tEU guarantees E

(
u(tEU)|ē

)
= E

(
u(tL)|ē

)
, at

those output intervals. f
�

The principal offers a menu of contracts with a contract targeting each
existing type. Thus, in our case the optimal menu consists of two contracts.
Moreover, the principal implements high effort by making each of these
contracts contingent on perfffformance either as described by Proposition 2,
or as described by Proposition 6. This guarantees that incentives are given
according to they way in which each type perceives output realizations.
Importantly, to guarantee self-selection into the right contract, informational
rents are included in one of the contracts. Specifically, the contract that targets
the most efficient type is embellished with rents to discourage mimicking.

So far this solution seems standard. However, whether one agent is more
efficient than the other crucially depends on probability weighting. When the
agent’s actions yield high and/or low probability, the agent suffering from
likelihood insensitivity inflates the impact of his action on the probability
of obtaining higher output levels. In that case, this irrational agent is more
efficient; he is more likely to exert high effort with lower pay. In this situation,
the menu in Proposition 11 (2) becomes relevant as it disincentivizes the
non-EUT agent to mimic the EUT agent. Alternatively, when the agent’s
actions yield intermediate probability events, exerting effort seems pointless
to the likelihood insensitive agent. The EUT agent is more efficient as he
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would require lower incentives to be motivated. The menu of contracts in
Proposition 11 (1) becomes relevant in this case.
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