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Abstract

We assess the predictive ability of 15 economic uncertainty measures in a real-time

out-of-sample forecasting exercise for The Conference Board’s coincident economic

index and its components (industrial production, employment, personal income,

and manufacturing and trade sales). The results show that the measures hold

(real-time) predictive power for quantiles in the left tail. Because uncertainty

measures are all proxies of an unobserved entity, we combine their information using

principal component analysis. A large fraction of the variance of the uncertainty

measures can be explained by two factors. First, a general economic uncertainty

factor with a slight tilt toward financial conditions. Second, a consumer/media

confidence index which remains elevated after recessions. Using a predictive

regression model with the factors from the set of uncertainty measures yields more

consistent gains compared to a model with an individual uncertainty measure.

Further, although accurate forecasts are obtained using the National Financial

Conditions Index (NFCI), the uncertainty factor models are better when forecasting

employment and in general the uncertainty factors have predictive content that is

complementary to the NFCI.
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1 Introduction

Understanding the fundamental causes of business cycles has intrigued macroeconomists

for decades, if not centuries. According to real option theory (Bernanke, 1983; Dixit

and Pindyck, 1994), uncertainty is one of the key drivers of such cyclical fluctuations:

as uncertainty increases, businesses hold off on investment and consumers postpone

large purchases, thus reducing economic activity. Bloom (2009) sparked a new line of

research, on empirically measuring economic uncertainty and assessing its relationship

with real macroeconomic variables such as output and employment, see Bloom (2014) for

an overview. This is not a straightforward exercise, because uncertainty is a latent concept

and its exact definition can be debated. Not surprisingly then, a variety of measures of

economic uncertainty has been proposed over the last decade. Examples include financial

volatility (Bloom, 2009), news based indices (Baker et al., 2016), dispersion in micro data

(Bloom, 2009), and dispersion in forecast errors (Jurado et al., 2015).

On the introduction of a new measure of economic uncertainty, it is usually added to

a vector autoregressive model to assess its impact on macroeconomic variables, typically

by means of impulse response functions. The comparison to other measures is usually

limited to simple correlations, a visual comparison of extremes, and of impulse response

functions. All uncertainty measures are proxies of a latent entity, which makes it difficult

to assess their quality. This partly explains why a thorough (statistical) comparison of

the proposed measures is lacking. Furthermore, evidence of the (dynamic) relationship

between uncertainty and economic activity thus far is almost exclusively based on

in-sample analysis. It is important for the validity of these findings to test whether

the relationship continues to hold out-of-sample. This is important to gain insight into

the practical usefulness of the various uncertainty measures. Though in-sample tests have

more power (Inoue and Kilian, 2005), a forecasting analysis is relevant for policy makers.

Policy decisions often rely on forecasts of economic activity. More accurate forecasts

could therefore lead to more informed decision making.

In this paper we address both open issues identified above. First, we collect an

extensive set of different uncertainty measures and conduct a factor analysis. This
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allows us to examine the similarities and differences between the various measures.

Furthermore, the resulting factors, essentially combining the information in the different

measures, might provide more comprehensive and accurate proxies of (different aspects

of) the underlying notion of ‘uncertainty.’ Second, we conduct a real-time out-of-sample

forecasting analysis to assess whether a forecaster is able to take advantage of the implied

relationship between uncertainty and economic activity.

For the first part of our analysis, we identify 15 monthly uncertainty measures that

comply with a number of restrictions such as being freely and directly available for

a substantial time period. An important additional restriction is that vintages of the

uncertainty measures should be available, in case they are subject to revisions. For the

uncertainty measures of Jurado et al. (2015) we reconstruct real-time versions thereof,

aiming to make our analysis as realistic as possible. The various measures can be

categorized into five categories, based on their source: (i) volatility, (ii) cross-sectional

dispersion, (iii) news, (iv) surveys, and (v) forecast errors. The collected measures are

spread quite evenly across these categories.

The factor analysis shows that there is indeed a fairly strong common component

among the uncertainty measures. The first principal component explains about 40%

of total variation for the period 1989-2021. It can be interpreted as general economic

uncertainty, because it loads positively on all measures, though slightly more strongly on

financial information. Interestingly, the importance of the factor increases during periods

of financial stress. Additionally, we identify a second factor, which loads most heavily

on news based and consumer survey based uncertainty measures. We therefore interpret

this factor as media/consumer uncertainty. This second factor remains elevated after

recessions, reflecting that media and consumers need more time to become confident

about the recovery than reflected by economic fundamentals. Finally, the factors are

robust over time. While the COVID-19 period does lead to some differences, the factors

remain clearly identified.

For the second part of our analysis, we set up an extensive real-time out-of-sample

analysis to forecast The Conference Board’s US coincident economic index (CEI), and
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its components: industrial production, employment, manufacturing and trade sales, and

personal income excluding transfer payments. Note that these variables are also taken

into account by the NBER business cycle dating committee, confirming their importance

as measures of real economic activity. In contrast with pseudo out-of-sample analyses,

we use monthly data vintages to take into account that publications of macroeconomic

variables are revised multiple times after their initial release. Using these vintages allows

us to assess whether a forecaster is able to gain from using the values that are available at

that point in time. The importance of employing real-time data in forecasting analyses

is discussed in Croushore (2006), among others. The increased interest in computing the

downside risk of macroeconomic growth, also known as growth at risk (Prasad et al.,

2019), motivates us to forecast quantiles. This provides insight into possible asymmetries

in the relationship between uncertainty and macroeconomic activity. Forecasts are

produced for the period 2000 to 2021, based on an expanding window starting in 1990.

We consider multiple forecasting horizons, from nowcasting up to 24 months ahead.

We find that the uncertainty measures mostly have predictive ability for the lower

quantiles for CEI (and its components’) growth rates. This mirrors the asymmetric

relationship between GDP growth and the Chicago Fed’s National Financial Conditions

Index (NFCI) documented by Adrian et al. (2019), among others. In comparison with

the uncertainty measures, we in fact find that generally the NFCI is a strong predictor.

When forecasting employment though, a factor model with uncertainty factors performs

better at forecasting horizons shorter than 12 months. Interestingly, Bloom (2009) finds

that employment responds negatively to uncertainty shocks, and uses this to build a

labor-capital model. Moreover, we find that uncertainty factor models hold predictive

content complementary to NFCI for other target variables as well. From the individual

uncertainty measures financial volatility perform best. The performance of individual

media and news based measures is disappointing. The Jurado et al. (2015) measures

– from the volatility of forecast errors on a large set of macroeconomic and financial

variables – are one of the best performing measures if the final vintage is used. Their

predictive ability is substantially worse when using a real-time version that we construct
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for this exercise. Forecasting accuracy is better and more consistent when using a factor

model instead of individual uncertainty measures. So in that sense it is recommended to

combine information from multiple uncertainty measures.

Our paper provides three main contributions. First, we add to the literature on

the relationship between economic uncertainty and real macroeconomic variables by

conducting a real-time quantile forecasting exercise. Second, we show how the different

uncertainty measures are related and that they can largely be summarized by two

common factors. Third, we provide further empirical evidence of the relationship between

economic uncertainty and the labor market.

There is little research on the forecasting performance of uncertainty measures.

Concurrently with this paper, contributions are made by Hengge (2019) and Rogers

and Xu (2019). Rogers and Xu (2019) predict GDP growth with a smaller subset of

uncertainty measures. Hengge (2019) investigates whether the macro uncertainty measure

of Jurado et al. (2015) predicts the GDP growth rate. We distinguish our analysis

by performing a real-time forecasting exercise for different, monthly measures of real

economic activity, and using a more extensive set of uncertainty measures.

While research on the predictive ability of uncertainty is limited, there is an extensive

literature on forecasting economic output using measures of financial conditions and risk.

We relate to this literature and draw inspiration from a few specific papers. First, Adrian

et al. (2019) allow for asymmetry across the density based on quantile forecasts and find

that especially the left tail of GDP growth is affected by financial conditions. Second,

most similar to our paper in spirit, Giglio et al. (2016) conduct a quantile forecasting

exercise for a set of systemic risk measures. They find that a single common factor

improves forecast accuracy, and that predictive power for the mean is limited. The main

difference with our paper – other than using uncertainty measures instead of systemic risk

measures – is that we conduct a real-time rather than a pseudo out-of-sample forecasting

exercise, taking into account revisions. Systemic risk and financial conditions are close

in concept to economic uncertainty. Hence, the findings by Giglio et al. (2016) and

Adrian et al. (2019) are consistent with our finding that economic uncertainty is useful
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in forecasting the lower quantiles of economic output.

The paper is structured as follows. Section 2 describes the uncertainty measures,

the selection criteria and the different categories, followed by the factor analysis in

Section 3. Section 4 provides the methodology and implementation details of the real-time

forecasting analysis. Full sample quantile regressions are presented in Section 5, followed

by the forecasting results in Section 6. Section 7 compares the uncertainty measures with

financial conditions and Section 8 concludes.

2 Uncertainty measures

Our selection of uncertainty measures is based on a number of criteria. First, we restrict

to US data such that all measures aim to capture the same entity. By far the largest

number of measures is available for the US and it makes the results better comparable to

the existing literature. Second, to match the frequency of the economic activity variables

used in the second part of our analysis we focus on monthly data. Measures available

at a higher frequency are transformed to monthly frequency appropriately. Measures

reported at a lower frequency are excluded. They could be included using mixed frequency

methods, see e.g. Carriero et al. (2018), but we choose to focus the analysis on a single

frequency. Third, the data should be available in real-time, because we are interested in

whether forecasters had been able to take advantage of the information. This excludes

measures that are estimated using ex post data, such as forecast error distributions and

many other decompositions. Fourth, we require a sufficient time series length such that

we have reasonable power for the forecast evaluation. Fifth, on a more practical note,

the data should be feasible to collect or compute.

Table A.1 lists the selected uncertainty measures, including a brief description, the

source and sample size. It is a reasonably sized set of 15 measures from October 1989 to

December 2021, and includes most of the popular ones that have been proposed thus far.

Notable exclusions are cross-sectional dispersion of firm level profit growth (Bloom, 2009),

total factor productivity growth (Bloom, 2009; Kehrig, 2015), Livingstone survey GDP
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forecasts (Bloom, 2009), price changes (Vavra, 2013), and employment growth (Bachmann

and Bayer, 2014). Conditional volatility from decomposing financial volatility into risk

aversion and uncertainty (Bekaert et al., 2013), shocks from political turmoil, natural

disasters or terrorist attacks (Baker and Bloom, 2013), Fama-French factor residual

variance (Gilchrist et al., 2014), and fiscal volatility shocks (Fernández-Villaverde et al.,

2015) are excluded as well, either because they are only available at a lower frequency, or

because they need to be computed ex post. Furthermore, we ignore measures based solely

on the Survey of Professional Forecasters (SPF) because these are of quarterly frequency

(Lahiri and Sheng, 2010; Rossi et al., 2016).

The descriptions in Table A.1 show that economic uncertainty can be proxied in a

variety of ways and from multiple sources. We identify five categories related to how

economic uncertainty is measured.1 First, a volatility estimate of some underlying, often

a financial asset. Times of high conditional volatility are assumed to be related to times

of high uncertainty. In our set, the underlying assets are stocks (VIX; Bloom, 2009),

long-term bonds (MOVE) and the WTI oil price (OVX; Kellogg, 2014).

The second type of uncertainty measure utilizes micro data to estimate cross-sectional

dispersion in each time period for a set of individuals, forecasters or firms. More

dispersed outcomes suggest higher economic uncertainty. We consider cross-sectional

dispersion in stock returns (CSDR and CSDRsic; Bloom, 2009), and forecast disagreement

between respondents from the Philadelphia Fed’s Manufacturing Business Outlook Survey

(FDISP; Bachmann et al., 2013) and from Consensus Economics GDP growth forecasts

(CEgdp; Dovern et al., 2012).

The third source is news, as conveyed via newspaper articles or Bloomberg

announcements, among others. In uncertain times, newspapers publish more articles

to report on uncertainty and Bloomberg announcements deviate more from expectations.

The most prominent measures in this category are the indexes from Baker et al.

(2016), based on newspaper article counts, from which we select general economic policy

uncertainty (EPU and EPU+) and monetary policy uncertainty (MPU).

1Kozeniauskas et al. (2018) also categorize uncertainty measures. They distinguish between macro
uncertainty, micro uncertainty, and higher-order uncertainty.
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Fourth, outcomes of polls or surveys taken among consumers, professional forecasters

or firms gauging their expectations for the coming period. This is a direct way

of measuring the uncertainty perceived by economic agents. For example, the

Reuters/University of Michigan Survey of Consumers includes the response “uncertain

times” for not buying a vehicle (LLv; Leduc and Liu, 2016) or large household goods

(LLh; Fajgelbaum et al., 2017). FDISP, CEgdp, and EPU+ can also be counted to this

category.

Fifth, uncertainty can be inferred from the volatility of forecast errors. This is to

distinguish the uncertainty measure from ‘forecastable’ time-varying volatility. Jurado

et al. (2015) construct uncertainty measures based on this principle. They pool a large

set of macroeconomic and financial variables, remove the forecastable part, and compute

measures as the stochastic volatility of the forecast errors. The volatility is calculated on

subsets of macroeconomic (JLNm), financial (JLNf) and real variables (JLNr).

The data set is well balanced across the five categories, see Table A.1. There are three

measures based on conditional volatility, news, or forecast errors, four measures based on

cross-sectional dispersion, and five measures based on survey data.

Only the EPU and JLN measures are subject to revisions. For the EPU measures,

vintages are available from 2013M6 (EPU+) or 2019M10 (EPU and MPU). Observations

before that period are from the first vintage. More details are provided in Appendix B.1.

The JLN measures are not published in real-time. These measures are very popular and

quite different from the other measures though. Therefore, as an exception, we construct

our own monthly vintages using the methodology of Jurado et al. (2015), see Appendix

B.2. The vintages are available monthly from 1999M8 onwards.

3 Commonality in uncertainty measures

The comparison of uncertainty measures in the literature is thus far limited to comparing

the pattern of the different time series or computing correlations. Furthermore, it

usually involves quite a small set of about four uncertainty measures. We analyze the
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commonalities for our more extensive set of measures, and assess the underlying factor

structure. Haddow et al. (2013) and Charles et al. (2018) also use a factor model, but on

a set of 4 or 6 measures only, and their sample excludes the recent COVID-19 period.

Figure A.1 presents the time series of the 15 selected uncertainty measures. They

are largely similar in that all measures peak around the time of recessions. Nevertheless,

the average correlation between the uncertainty measures is quite modest at 40.8%. This

seems less than expected given that all measures aim to capture US economic uncertainty.

The modest average correlation could be due to measurement error, or because the

measures account for different aspects of economic uncertainty. The correlation matrix in

Figure A.2 indicates multiple blocks of more strongly correlated measures. The average

correlation between categories is 34.0%, while the average correlation within a category

is 63.0%. In particular the survey based measures (excluding FDISP) and the forecasting

error based measures of Jurado et al. (2015) are closely connected with correlations of

76.8% and 73.8%, respectively. Across categories, measures based on stock market data

are similar. For example, the correlation between VIX and JLNf is 83.3%.

The only outlier is FDISP. Other uncertainty measures are correlated no more than

23# with FDISP, and some are even negatively correlated: −9.9% (with LLv) and

−10.2% (with LLh). Figure A.1f confirms idiosyncratic pattern for FDISP, which could

be due its regional focus or because business surveys capture a unique part of uncertainty.

To determine the commonality between the uncertainty measures more formally, we

extract factors using principal components analysis. Table 1 presents the factor loadings,

and explained fraction of total variance for the first five principal components. The

principal component analysis suggests the presence of two common factors. Together,

they explain 63.9% of the total variance and both have a clear interpretation. The

first factor represents average (economic) uncertainty, with a slight emphasis on financial

uncertainty. The loadings are all positive, and it explains almost 50% of the total variance,

see Table 1. The factor level spikes during recessions and periods of financial turmoil,

such as Black Monday in October 1987, the Russian financial crisis in 1998, and the

Greek government debt crisis in 2012, see Figure 1. Figure 2 shows the explanatory

9



power for the first three recursively estimated factors. It is interesting to observe that

the explanatory power of the first factor increases during recessions. A large part of the

variation occurs during those periods as most measures increase during recessions, which

is captured by the first factor.

The second factor loads most heavily and positively2 on consumer confidence measures

LLv and LLh and news based uncertainty measures EPU and EPU+, see Table 1. This

factor can be interpreted as a consumer/media uncertainty factor. Consumers rely on

media outlets for economic news, which explains why they are linked. It is interesting

to see in Figure 1 that its value remains relatively high after the recession has ended.

Apparently, while fundamentals are recovering, the uncertainty among the public remains

elevated. This can be because the recovery still has to feed back to consumers, e.g. in

the form of new jobs – the unemployment rate typically lags other output variables. It

is in line with the jobless recoveries that characterize the periods following the recessions

in the 1990s and 2000s (Groshen and Potter, 2003; Jaimovich and Siu, 2020). Further,

consumer spending probably lags as well, as their savings might be depleted or at least

diminished at the end of a downturn so they probably want to save before spending again.

Alternatively, consumers and the media are simply not confident whether the recovery has

fully started or if it is simply just a coincidental good output number. This is plausible,

given that the NBER’s Business Cycle Dating Committee usually has a delay of several

months in ‘officially’ calling the end of recessions.

The other factors lack a clear interpretation or explain only a single measure, see

Table 1. The third factor explains the variance of mostly FDISP and MPU, but there

is no clear link between them. The fourth factor loads heavily on MOVE, and the fifth

explains most of FDISP.

As a final point, the COVID-19 period deserves extra attention. Intuitively

the uncertainty increased, but for reasons different from other recessionary periods.

Uncertainty indeed increases during the recession according to all measures, although

the increase is muted for FDISP and MOVE. Afterwards there are more pronounced

2The second factor is multiplied by -1. This does not matter for how much of the variance is explained
or for forecasting, but makes it more intuitive to explain our interpretation of the factor.
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Table 1: Factor loadings and marginal R2

r 1 2 3 4 5

VIX 0.292 −0.206 0.104 0.018 −0.044
MOVE 0.120 −0.384 −0.038 0.533 0.189
OVX 0.245 −0.155 0.236 −0.248 −0.060
CSDR 0.277 −0.292 −0.193 −0.008 −0.282
CSDRsic 0.249 −0.344 −0.228 0.105 −0.224
FDISP 0.052 −0.254 0.540 −0.018 0.653
CEgdp 0.265 0.096 −0.345 0.130 0.318
LLv 0.252 0.376 −0.128 0.223 0.161
LLh 0.267 0.296 −0.200 0.314 0.194
EPU+ 0.274 0.360 0.216 0.014 −0.107
EPU 0.265 0.327 0.311 −0.093 −0.230
MPU 0.206 0.006 0.467 0.447 −0.300
JLNm 0.315 0.036 −0.083 −0.364 0.227
JLNf 0.308 −0.204 −0.021 −0.177 −0.118
JLNr 0.334 −0.030 −0.087 −0.324 0.134

R2 0.478 0.161 0.078 0.070 0.055

The table presents the factor loadings (top panel) and the marginal R2, the fraction of total variance
explained by the r-th principal component, for the first five principal components for the sample
1989M10–2021M12, based on the final vintage of the EPU and JLN measures (2022M1). The second
factor is rotated (loadings multiplied by −1) for interpretation purposes. See Table A.1 for an explanation
of the abbreviations.

Figure 1: Uncertainty factors and NFCI
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The figure presents the time series of first releases of the first (solid blue line) and the second factor
(dashed orange line) from the full sample principal components analysis, and the NFCI (dash-dotted
black line). The second factor is rotated (multiplied by −1) for interpretation purposes. The gray bars
are recessions as determined by NBER’s Business Cycle Dating Committee. All series are standardized.
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Figure 2: Explanatory power over time
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The figure presents the marginal explanatory power of the first (solid blue line) and second principal
component (dashed orange line) of the uncertainty factor model, estimated recursively.

differences between the measures: while uncertainty quickly decreases according to most

measures, it remains high for others (e.g. JLNm, JLNr and CEgdp). Despite a mixed

response of the measures to the pandemic, the identification and interpretation of the

factors is robust over time. The first and second factor are clearly identified both in

the full sample and when excluding 2020–2021, and follow the same general pattern, see

Figure C.1. The first factor is nearly identical (99% correlation), while the correlation is

also high (89.0%) for the second factor between the different samples. For more details

see Section C.

4 Methodology

4.1 Coincident variables

Theory suggests a link of economic uncertainty with the business cycle (Bernanke, 1983).

For this reason, we consider The Conference Board’s Coincident Economic Index (CEI)

as our main target variable. In addition, we analyze the predictive ability of uncertainty

for the four CEI constituents, that is, industrial production (IP), nonfarm payroll
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employment (EMP), manufacturing and trade industries sales (MTS), and personal

income excluding current transfer receipts (PIX).

In order to asses whether a forecaster is able to improve the accuracy of her predictions,

real-time data should be used. That is, the vintages with values that were available to the

forecaster at the time the forecasts are made. This is relevant, because macroeconomic

variables are reported with a delay and are subject to revisions. Relying on final vintage

data would misrepresent the forecaster’s information set, see e.g. Croushore (2006).

Real-time data of CEI is obtained from The Conference Board. The four component

variables are obtained from the data set of Chauvet and Piger (2008).3 The data

set is updated using the Philadelphia Fed’s Real-Time Data Set for Macroeconomists

(Croushore and Stark, 2001) for industrial production and employment. The most recent

vintages for sales and personal income are taken from St. Louis Fed’s ALFRED. For

more details, see Appendix D.

The coincident economic index as well as its constituents are treated as integrated of

order 1 and we transform them into annualized growth rates:

yh,t+h+1
t+h = (1200/h) log(Yt+h+1

t+h /Yt+h+1
t ), (1)

where Yv
t is the original variable at time t from vintage v.

4.2 Quantile forecasts

Based on the link with financial conditions and findings by Giglio et al. (2016) and

Adrian et al. (2019), economic uncertainty is expected to mainly affect the left tail of

the distribution of the coincident variables. To examine whether the predictive ability of

uncertainty indeed varies across the distribution of output growth, we construct quantile

forecasts.4

3To be precise, it is an updated version of the Giusto and Piger (2017) data set, which updates the
Chauvet and Piger (2008) data set to 2013. Thanks to Jeremy Piger for uploading the raw data set on
his website: https://pages.uoregon.edu/jpiger/research/published-papers/.

4In preliminary research, we also checked the ability of uncertainty measures to forecast the mean.
The overall results were rather negative. There is little to no forecasting power.
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Before stating the forecasting model, there are two things to consider. First, following

Giglio et al. (2016), we are interested in the quantiles of the shocks to the growth

rates of economic activity rather than the growth rates themselves. These shocks are

approximated by residuals from an autoregressive (AR) model with p lags. Second, the

aim is to forecast output in real-time, emulating reality as close as possible. Therefore, we

use the ‘real-time vintage’ approach (Koenig et al., 2003; Clements and Galvão, 2013),

instead of using end of sample data. That is, we use the first release of the data for

estimation when available, matching the release maturity of the leading observations on

the left- and right hand side,5

yh,t+h+1
t+h = βh0 +

p∑
j=1

βhj y
1,t+1
t−j+1 + uh,t+h+1

t+h , (2)

for t = 1, . . . , T −h, where yh,vt is defined in (1). The number of lags 0 ≤ p ≤ 6 is selected

using BIC. The lags on the right hand side are from the same vintage as the first lag,

and can be lightly revised. For example, the second lag will be the second release of

that observation. Then, after estimating (2), the shocks are defined as the first release

residuals ûh,t+h+1
t+h .

Quantile regression is a semiparametric method dating back to the seminal work by

Koenker and Bassett (1978). The estimate of α-quantile Qα(y) for variable y is the

solution to the optimization

Qα(y) = arg inf
q

E [ρα (y − q)] , (3)

where ρα(x) =
(
α − 1(x ≤ 0)

)
x is the tick loss function, and we specify q as a linear

5Equation (2) is slightly different for MTS, because there is a two month rather than a one month
reporting lag. So to only use data available at the time of forecasting, the vintage is t + 2 instead of
t+ 1. The equation for MTS becomes

yh,t+h+2
t+h = βh

0 +

p∑
j=1

βh
j y

1,t+2
t−j+1 + uh,t+h+1

t+h .
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function of (exogenous) regressors. Then, the α-quantile forecasts can be written as

Qα(ûh,t+h+1
t+h |Ωt+1) = ψhα,0 +ψh

α,1w
t+1
t , (4)

with Ωt+1 the information set at time t + 1, and wt+1
t the set of regressors, so the

uncertainty measures, or factors, or NFCI, at time t from vintage t+ 1. Most regressors

are not revised, and can therefore be denoted without a vintage superscript. Financial

data is available instantly, but this is not the case for the survey data or the forecast

error based measures. To be consistent and to ensure that the information is available to

the forecaster, we use lagged values for all uncertainty measures. Adding more than just

the first lag of the regressors wt+1
t did not yield better forecasts.6

For values of α, we focus on 0.2, but also analyze results for 0.1, 0.5 (the median),

and 0.8. The parameters ψh
α,j are estimated using the interior point algorithm. For a

review on quantile forecasting, see Komunjer (2013).

4.3 Models

As regressors in (4), we consider the following variables. First, the predictive ability

of each uncertainty measure is considered individually, that is wv
t = zvi,t is the i-th

uncertainty measure at time t from vintage v. For the measures other than the EPU

and JLN measures, zvi,t = zi,t since they are not subject to revisions.

Second, we consider the factors extracted from the uncertainty measures using PCA,

wv
t = f vt , the vector of k uncertainty factors at time t from vintage v. The factors are

constructed each month in real-time based on the latest vintage data at the point of

forecasting. Following the results in Section 3, we consider models with a fixed number

of k = 1 up to 3 factors. This allows us to assess the relevance of adding a second or third

factor, and compare against the same model over time. We refrain from estimating the

number of factors k because methods of Bai and Ng (2002), Onatski (2010) and Ahn and

Horenstein (2013) are for larger panels (larger N) than in our case and the alternative

6In particular, we considered adding up to three lags and selection using BIC, in line with literature
on diffusion forecasting, see e.g. Stock and Watson (2002) or McCracken and Ng (2016).
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of a rank test (Cragg and Donald, 1997; Kleibergen and Paap, 2006) is not suitable for

covariance matrices, see Donald et al. (2007).

Third, we compare the results from the uncertainty measures and factors to a model

with NFCI as predictor, with wv
t = NFCIvt the end-of-month NFCI at time t from vintage

v. We use the ‘unofficial’ real-time version constructed by Amburgey and McCracken

(2022) available, which coincides with the official Fed vintages from May 2011 onwards.

It is available on McCracken’s website.

Finally, as a benchmark, the performance of the models is compared to the historical

quantile estimate q̂α,t, the empirical quantile based on data up to and including time t.7

4.3.1 Sample

In the forecasting exercise, we recursively estimate all models. That is, at each time

t, we first estimate the factors and models using data from 1989M12 to time t − h.

Earlier (initial) observations are included if the lag order is larger than one. We start in

1989M12 because that is the first period where at least three months of data is available

for all variables. Recursive estimation is in line with other diffusion forecasting literature,

see e.g. Stock and Watson (2002) and McCracken and Ng (2016). Using all available

information improves convergence of the factor estimates. Moreover, results using a

rolling window did not indicate the presence of a structural break, while the forecasting

results deteriorate in some cases.

Second, the parameter estimates and time t observations are used to construct the

forecast for the t + h value yh,t+h+1
t+h . We imagine a forecaster, who starts forecasting in

January 2000. The first forecast is made for period 1999M12 + h, and the final one for

2021M12, for horizons h of 1 (nowcast), 3, 6, 12, and 24 months. This yields a sample of

120 initial in-sample and 265−h out-of-sample observations.

7As another benchmark, we considered a factor model with factors from the FRED-MD dataset
(McCracken and Ng, 2016) as predictors, where real-time data is available from the 1999M08 vintage
(but published in real-time from the 2015M01 vintage) and the number of factor is selected using BIC,
with a maximum of 8 factors. The FRED-MD factors’ predictions are a bit disappointing at the lower
quantiles and oftentimes don’t even beat the historical quantile. The results are included in Appendix
E.
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4.4 Evaluation

A relevant question with real-time data is which values to use as ‘actuals’ to evaluate

the forecasts. Preferably, these are the true values that are no longer revised. This is

impossible however, because of benchmark revisions. For example, due to a change of

the index year, annual updating following the consensus numbers, and redefinitions or

measurement changes. Broadly, there are three alternatives.

One option is to use the x-th release observations yh,t+h+xt+h for some x ≥ 1. Many

empirical studies use x-th release data to evaluate their forecasts, see e.g. Romer and

Romer (2000), Groen et al. (2013) and D’Agostino et al. (2013). Selecting x requires

some knowledge on the revision process. For quarterly data the second revision (third

release) is often used because this is usually the ‘final’ revision from the statistical agency.

A second option is to use the final vintage observations yh,T+1
t+h . The final vintage is the

most recent publication of the numbers. For example Koenig et al. (2003) and Clements

and Galvão (2013) use the vintage published about a year and a half after the end of

their sample. An advantage is that it incorporates the latest available information and

are currently closest to the true values as a single time series.

The third option is to use the prebenchmark observations yh,PBM
t+h as actuals.

Prebenchmark values are the final observation before the first benchmark revision after

a first value for a given date has been reported. We choose to use this third option.

In contrast to regular non-benchmark revisions, benchmark revisions can and should

not be predictable to the forecaster (Croushore, 2006). An additional argument to use

prebenchmark values as actuals is that the actuals should represent the forecasters’ target

rather than be the closest possible to the current truth. Both x-th release and final vintage

observations are subject to benchmark revisions. Some prebenchmark observations are

still subject to regular revisions though.

To evaluate the quantile forecasts, the prebenchmark residuals that we use as actuals
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are defined as

ûh,PBMt+h = yh,PBMt+h −

(
β̂h0 +

p∑
j=1

β̂hj y
1,t+1
t−j+1

)
, (5)

with p the same value as in Equation (2) and β̂hj estimated from the model in Equation (2).

Because the estimated model using first vintage data is an efficient estimate of the actual

mean (Koenig et al., 2003), we can use it to ‘demean’ the actuals too to get the actual

shocks. So the mean is consistent across estimation and evaluation.

4.4.1 Evaluation measures

The relative forecast accuracy of the quantile forecasts is evaluated by comparing the

mean tick loss (MTL). Statistical significance is tested using one-sided Diebold and

Mariano (1995) tests, where we test the null of equal predictive accuracy, versus the

alternative of smaller loss compared to the benchmark model. The Diebold-Mariano

(DM) test is defined for a general loss function. The tick loss function can be used to

compare quantile forecasts.

Some econometric difficulties arise because of our setup of comparing (partially)

nested models, estimated using an expanding window with real-time data, see Clark

and McCracken (2013) for an overview. Clark and McCracken (2009) derive the limiting

distribution of tests of equal predictive accuracy when data is subject to revisions. Their

setting ignores benchmark revisions, which is in line with our data as we use prebenchmark

observations as actual values. However, their test is for comparing predictive accuracy

in population, while we are interested in the finite sample performance. Recently,

Amburgey and McCracken (2022) propose a finite sample correction when evaluating

quantile forecasts with data subject to revisions. One difference to our setting is that we

predict quantiles of shocks rather than the levels, though.

We follow the arguments by Faust and Wright (2013) by relying on the Monte Carlo

evidence presented by Clark and McCracken (2013). Their simulation study shows that

the Diebold-Mariano test statistic with standard normal critical values and the corrections
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by Harvey et al. (1997) yields satisfactory size, even for nested models.

Next to the relative performance, we test the absolute performance. This is typically

done by inspecting the sequence of violations or hits, the observations that fall below the

quantile forecast. For correct coverage, the number of hits should be approximately equal

to what is expected from the quantile level. Further, the hits should not be forecastable.

Therefore, we apply Engle and Manganelli’s (2004) dynamic quantile (DQ) test. It tests

the coverage conditional on Ωt, the information set at time t. Define et+h = 1(yt+h ≤

qt+h) − α the ‘demeaned’ hits for quantile level α, and the vector of k instruments xt,

which are in the information set at time t. It may contain qt or its lags, and lags of et for

example. The null hypothesis is E[xtet+h] = 0. The out-of-sample DQ test statistic is8

DQOOS = e′X (X ′X)
−1
X ′e/ (α(1− α)) , (6)

where e = (eT+h, . . . , eT+Tp+h)
′, and X = (x′T , . . . ,x

′
T+Tp

)′, with T and Tp the number

of in-sample and out-of-sample observations. DQOOS follows a χ2 distribution with k

degrees of freedom. We apply the test with two sets of instruments xt. First, xt = 1

for an unconditional coverage test. Second, xt = (1, qt)
′ for a conditional coverage test.

The latter is equivalent to a Wald test on a quantile version of the Mincer-Zarnowitz

regression.

5 Full sample quantile regressions

Before turning to the forecasting exercise, we briefly consider in-sample quantile

regressions of economic activity on the first uncertainty factor for evidence of a non-linear

relationship. We perform quantile regressions based on the full sample, from 1990M1 to

2021M12, on the 0.05 to 0.95 quantiles.

The parameter estimates in Figure 3 show that there is substantial evidence that

8Equation (6) only applies when h = 1. For longer horizon forecasts the variance of X ′e is computed
using a HAC covariance matrix with a rectangular kernel of width h − 1 to correct for the dependence
in overlapping forecasts. If the resulting covariance matrix is not PSD, it is computed using a Bartlett
kernel of width 1.5h. This is similar to how we compute the DM test statistic. For more information on
backtesting quantiles, see Barendse et al. (2021).
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the relationship between economic activity and uncertainty is unlikely to be linear. In

particular, the impact of the first uncertainty factor is stronger at the lower quantiles and

is close to zero at higher quantiles. This holds not only for the coincident economic index,

but also for its constituents. Moreover, Figure 3b shows that these results are robust to

including NFCI as additional regressor, and considering only pre-COVID data.

The pattern over the quantiles is in line with how systemic risk affects quantiles of

output shocks (Giglio et al., 2016). It provides empirical evidence to investigate the

real-time out-of-sample predictive power of uncertainty measures for quantiles of shocks

of the coincident economic index, with a focus on the lower quantiles.

Figure 3: In-sample quantile estimates for first uncertainty factor on CEI

(a) Full sample
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The left figure presents the in-sample quantile estimates for the full sample (1990M1–2021M12) of the
first uncertainty factor on the coincident economic index, at the 3 month forecasting horizon. The shaded
areas are bootstrapped confidence bounds at the 90% and 95% level for a linear model based on 1000
bootstrap samples. The right figure presents the in-sample quantile estimates of the first uncertainty
factor on the coincident economic index for the univariate regression, the multivariate regression (where
NFCI is included as additional regressor), and the univariate regression using only the pre-COVID sample
(up to 2019).

6 Forecasting results

To assess the predictive ability of uncertainty for quantile forecasts of real activity, we

compute the mean tick loss (MTL) relative to the historical quantile’s mean tick loss

(RMTL). This means that if the RMTL is below 1 for a model, it has a smaller loss

and thus yields on average more accurate quantile forecasts than the historical quantile

benchmark.
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We first examine the performance in forecasting the CEI. The RMTLs are plotted

in Figure 4 for different horizons and quantiles. It is evident that the NFCI beats the

models with uncertainty measures and factors in about half of the cases. For now though,

we turn our attention to the uncertainty measures and leave the comparison with NFCI

to Section 7.

6.1 Uncertainty measures

Figure 4a immediately shows that the models yield better forecasts at lower quantiles

than at higher quantiles. The average RMTL over the uncertainty measures is 0.963 for

quantile 0.1 and all but 2 measures yield an RMTL below 1, while it is on average 1.005

at quantile 0.5 with only 3 out of 15 measures outperforming the benchmark.

A few uncertainty measures stand out in terms of predictive power: OVX and VIX.

First, the model with OVX as regressor yields the smallest tick loss for the uncertainty

measures at the short horizon (up to 3 months) for the quantiles 0.1 and 0.2. At the 3

month horizon, the model with OVX significantly outperforms the historical quantile by

12.7% for quantile 0.1 and by 6.2% for quantile 0.2.

Second, the VIX yields good forecasts at medium horizons, with p-values under 10%

between 3 and 12 month horizons at quantile 0.2. The gains in terms of tick loss are

between 3% (3 month horizon) and 9% (6 month horizon) compared to the historical

quantile.

Models with other individual uncertainty measures do not perform as well consistently.

Uncertainty measures that perform surprisingly poorly are EPU and EPU+. Despite their

popularity, they do not yield better forecasts than the benchmark in most of the cases

when predicting CEI.

6.2 Uncertainty factors

Turning to the uncertainty factor models, Figure 4 shows that they generally perform on

par with or better than the best individual uncertainty measures. In particular at the

medium horizon, the uncertainty factor models perform well, with gains in tick loss of
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Figure 4: RMTL from forecasting coincident economic index

(a) Quantiles
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(b) Horizon
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The figures present the relative mean tick loss (RMTL), with the historical quantile as benchmark, from
forecasting the coincident economic index for multiple quantiles and forecast horizons. The forecasting
horizon for the different quantiles is 3 months. The quantile for the different horizons is α = 0.2. Gray
circles are models with a single uncertainty measure. Blue down-pointing triangles, orange up-pointing
triangles, and green squares are models with one, two and three uncertainty factors, respectively. Red
diamonds are models with NFCI. Filled symbols indicate significance of the one-sided DM test against
the historical quantile at the 5% significance level. The RMTL values are presented in tables in Appendix
E.

11.3% and 10.5% compared to the benchmark at the 6 and 12 month horizon for the 0.2

quantile for the one factor model. The forecasts are (close to) significantly better than

the benchmark with p-values of 3.3% (6 month horizon) and 6.2% (12 month horizon).

Importantly, the gains when using a factor are more consistent across horizons and (lower)

quantiles compared to individual uncertainty measures.9

While the number of factors needed to explain the commonality in the uncertainty

measures seems to be 2, this is not necessarily the number that yields the best forecasts.

In case of the CEI, the second factor does not hold much additional predictive power over

the first factor. In fact, the two factor model often leads to a slightly higher tick loss,

although the differences are small.

9In Section E.1, as an alternative aggregation method, we inspect the forecasting performance when
averaging uncertainty measures within the categories from Section 2. In short, the results confirm the
findings from the individual uncertainty measures: conditional volatility, cross-sectional dispersion, and
forecast errors yield the smallest RMTL. Which category holds most predictive information depends on
the horizon and target variable. Forecasts from the factor models are more accurate or on par with the
category averages, and are more consistent across horizons and target variables.
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6.3 Tick loss over time and impact of COVID-19

Perhaps unsurprisingly, most of the gains compared to the benchmark are achieved during

recessionary periods and specifically during the financial crisis in 2008, see Figure 5a. This

holds for models with individual uncertainty measures as well as the factor models. The

historical quantile does not capture the downturns. The quantile is overestimated, and

due to the tick loss function, this leads to a relatively large loss. Outside of recessions,

the historical quantile is hardly outperformed by the models under consideration.

The COVID-19 period differs from the other recessions in that the underlying reason

is not economic and therefore hard to predict using economic uncertainty and financial

conditions.10 Indeed, including 2020 and 2021 substantially increases the MTL for all

models. At the 3 month horizon for quantile 0.2, the MTL of the historical quantile

almost doubles from 0.566 to 1.105. Other models are impacted even more, as the relative

tick loss also worsens compared to the pre-COVID period. Again for the 3 month horizon

and the 0.2 quantile, the RMTL increases for 10 out of 15 uncertainty measures when

including 2020 and 2021 in the sample period. Still, they at least somewhat capture

the downturn as the average increase in RMTL over all uncertainty measures is only

2.2 percentage points. The same holds for the uncertainty factor models, where the

RMTL increases with 0.5 to 3.0 percentage points. Ultimately though, the ordering of

the models’ performance and the significance levels of the forecasting performance are

not affected much.

6.4 Forecasting the components of the coincident index

Forecasting results for the components of the coincident index (industrial production,

employment, manufacturing and trade sales, and personal income) are largely consistent

with those for the CEI. The most important and consistent finding is that uncertainty

measures and factors outperform the historical quantile when forecasting the left tail, see

Figure 6 for an example at the 3 month horizon.

10For discussions on how to treat the COVID-19 period when modelling or forecasting macroeconomic
variables, see e.g. Carriero et al. (2021), Lenza and Primiceri (2022) and Schorfheide and Song (2021).
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Figure 5: Tick loss for coincident index over time
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(b) Cumulative tick loss
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The left figure presents the realized values and the quantile forecasts for the coincident economic index
at quantile 0.2 for a 3 month horizon from the historical quantile (solid gray line), factor models (with r
factors) and the model with NFCI. The right figure presents the cumulative tick loss over the evaluation
period minus the cumulative tick loss from the historical quantile.

The forecasting results are most convincing for employment. At the 3 month horizon,

for quantile 0.2 all uncertainty measures beat the historical quantile, and the uncertainty

factors render the best performance with improvements of 5.6% to 6.7% in mean tick

loss compared to the benchmark. Moreover, the difference in tick loss is significant for all

factor models at the 5% significance level. The uncertainty measures that yield significant

gains are mostly those based on financial information: VIX, MOVE, CSDR(sic), and

MPU. This is in line with Bloom (2009), who considers the effect of uncertainty on the

labor market using the VIX (and CSDR(sic)).

The gains are similar for the 0.1 quantile forecasts of employment, see Figure 7a, while

there is little predictive power at the middle and higher quantiles. Further, Figure 7b

shows that the factor models perform best at the short to medium forecasting horizon

up to 12 months.

6.5 Relevance of real-time data

What are the consequences of ignoring revisions in the uncertainty measures and use

the latest available observations? We address this question by repeating the forecasting

exercise using the last vintage of the EPU and JLN measures (data up to 2021M12

24



Figure 6: Tick loss across target variables
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The figure presents the relative mean tick loss (RMTL), with the historical quantile as benchmark,
from forecasting the coincident economic index and its component: industrial production, employment,
manufacturing and trade sales, and personal income. The forecasting horizon is 3 months. The quantile
is α = 0.2. Gray circles are models with a single uncertainty measure. Blue down-pointing triangles,
orange up-pointing triangles, and green squares are models with one, two and three uncertainty factors,
respectively. Red diamonds are models with NFCI. Filled symbols indicate significance of the one-sided
DM test against the historical quantile at the 5% significance level. The RMTL values are presented
Appendix E in tables.

Figure 7: Tick loss in forecasting employment

(a) Quantiles
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(b) Forecast horizon
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The figures present the relative mean tick loss (RMTL), with the historical quantile as benchmark, from
forecasting non-farm payroll employment for multiple quantiles and forecast horizons. The forecasting
horizon for the different quantiles is 3 months. The quantile for the different horizons is α = 0.2. Gray
circles are models with a single uncertainty measure. Blue down-pointing triangles, orange up-pointing
triangles, and green squares are models with one, two and three uncertainty factors, respectively. Red
diamonds are models with NFCI. Filled symbols indicate significance of the one-sided DM test against
the historical quantile at the 5% significance level. The RMTL values are presented Appendix E in
tables.
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as published on Ludvigson’s website).11 When using these observations instead of the

real-time data, the RMTL for the models with the EPU measures still perform poorly. By

contrast, the models with the final vintage JLN measures improve drastically, in line with

findings by Rogers and Xu (2019). The RMTL decreases across all target variables from

a 3 month or longer horizon. The relative gains are larger at longer horizons, with gains

in the 3.4 to 16.3 percentage point range at the 6 and 12 month horizon for JLNm and

JLNf. The most dramatic decrease in RMTL is 34.8 percentage points when forecasting

employment at the 24 month horizon with the last vintage JLNr instead of the real-time

version. All JLN measures would be among the best individual uncertainty measures.

Using final vintage data also improves the forecasting performance of the uncertainty

factor models, in particular for employment. The RMTL for the two factor model

decreases by 1.4 to 5.9 percentage points from the 3 to the 24 months horizon. When using

real-time data, the results are more modest. A forecaster should therefore be cautious in

interpreting forecasting results based on final vintage data.

6.6 Coverage

Next, we evaluate the absolute performance of the quantile forecasts by means of Engle

and Manganelli’s (2004) DQ tests to verify if the coverage is in line with the expected

level, and whether the hits – observations smaller than the predicted quantile – are not

forecastable.

In general, the hit rates in Table 2 indicate that the coverage is good. Hit rates for the

individual uncertainty measures and other target variables are in Appendix F. At shorter

horizons, they are slightly below the expected level of 0.2, but the null of correct coverage

is not rejected for most models. As the forecast horizon increases, the hit rates increase

and match expectations best at the 3 and 6 month horizon. At the 24 month horizon,

the number of hits is often too high. The coverage of 1 month horizon employment

quantile forecasts is low, with hit rates from 0.102 (EPU+) to 0.155 (CSDRsic), and

correct coverage is rejected by the DQ test for most models. Again, at medium horizons

11We retain the real-time data for the target variables.
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the coverage is up to the expected level. So in short, the models are well specified at

horizons up to a year, but some caution is advised when forecasting longer horizons.

Table 2: Hit rates

Horizon (months) 1 3 6 12 24

Panel A: Coincident economic index

HQ 0.182 0.195 0.197 0.237 0.336 ‡
NFCI 0.208 ‡ 0.241 0.216 0.257 0.278
Factor models
r = 1 0.186 0.191 0.201 0.281 0.365 † ‡
r = 2 0.182 0.195 0.236 0.332 † ‡ 0.386 † ‡
r = 3 0.186 0.183 0.209 0.316 † ‡ 0.361 † ‡

Panel B: Employment

HQ 0.136 † ‡ 0.179 0.201 0.281 0.344 ‡
NFCI 0.114 † ‡ 0.168 0.154 0.225 0.291
Factor models
r = 1 0.117 † ‡ 0.191 0.205 0.285 0.373 †
r = 2 0.125 † ‡ 0.202 0.220 0.273 0.390 † ‡
r = 3 0.140 † 0.210 0.209 0.289 0.398 † ‡

The table presents hit rates for various forecasting horizons, for the full sample and quantile α = 0.2.
The † denotes rejection of the null hypothesis of correct unconditional coverage, and ‡ denotes rejection
of the null hypothesis of correct coverage conditional on an intercept and the quantile estimates qt, all
at a 5% significance level, based on the DQ test with HAC standard errors.

7 Economic uncertainty and financial conditions

Adrian et al. (2019) show that the NFCI has predictive power for the left tail of US

GDP growth. Additionally, Adams et al. (2021) find that financial conditions improve

forecasts of employment, industrial production and inflation. Financial conditions are

closely related to economic uncertainty, or at least capture part of it. The NFCI is

constructed to only reflect the financial conditions, not the general economic conditions.

Therefore, it is interesting to compare with the uncertainty measures.

The correlations between the uncertainty measures and NFCI are all positive.12 As

expected, it is quite strongly correlated with the financial measures (65.7% with VIX,

57.1% with CSDR, and 56.4% with JLNf). The strongest correlation pre-COVID is

actually with the forecast error based measures JLNm (79.1%) and JLNr (76.2%), but

the response to COVID-19 was so different that the correlations drop to 53.6% and

12Correlations in this section are based on first release data, from Amburgey and McCracken (2022).
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58.9% when including 2020 and 2021. It is interesting that the correlation with JLNm

is high since JLNm ought to describe macro uncertainty, while NFCI captures financial

conditions unrelated to other economic conditions. The correlations with consumer survey

based and news-based measures are more modest and in the range of 8.7% to 16.7%.

Figure 1 shows that the NFCI closely resembles the first uncertainty factor. There

are some deviations – for example the 2001 recession is not captured by the NFCI and

the impact of COVID-19 is relatively small – but the general pattern is very similar. The

correlation between the first factor and NFCI is quite high at 60.7%, and even 80.3% if we

exclude 2020 and 2021. This is not surprising given the correlations with the individual

uncertainty measures, and that the first factor loads somewhat more on the uncertainty

measures based on financial information. The correlation of NFCI with the second factor

is negative and moderate at −41.4% (−28.9% pre-COVID).

Section 6.2 shows good forecasting performance of the uncertainty factors. The

question from the correlations is how this compares to NFCI, whether the predictive

power is due to the relationship with NFCI, or whether it reflects additional relevant

information that is not captured by the NFCI.

7.1 Forecasting comparison

From the RMTL plots in Figures 4, 6 and 7 it is clear that NFCI is a strong competitor

for the uncertainty measures and factors, as expected from the findings by Adrian et al.

(2019) and Adams et al. (2021). The model with NFCI achieves the smallest tick loss in a

substantial number of cases. When forecasting employment, the uncertainty factor models

do edge out the NFCI.13 At the 3 month horizon for the 0.2 quantile, the uncertainty

factor models have a 1.5% (three factors) to 2.7% (one factor) lower tick loss compared

to the NFCI – according to the DM tests there is no significant improvement though.

There is some weak evidence at the 0.1 quantile with p-values of 5.8% (1 month horizon)

and 7.2% (3 month horizon) that the factor models yields statistically better forecasts

than the NFCI.

13Using last vintage date, the uncertainty factor models actually outperform NFCI at the 3, 6 and 24
month horizon when forecasting employment, see Section 6.5.
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Even if NFCI outperforms the uncertainty measures and factor models in many cases,

there may still be relevant information in the uncertainty measures that is not present in

the NFCI. Table 3 presents the results from the Giacomini and Komunjer (2005) quantile

encompassing test.14 The table shows whether none, both or only one of the variables

should be included. In the latter case, one encompasses the excluded one. Where it says

both, a combination of the quantiles is better than only one of the two.

Two conclusions follow from the encompassing tests. First, Table 3 shows that at

the 0.2 quantile it can be valuable to add uncertainty factors when forecasting at short

to medium horizons up to 12 months. For employment at the 3 month horizon, there is

some evidence that the uncertainty factor model encompasses NFCI. Second, the NFCI

encompasses the uncertainty factor model in many cases, especially at horizons of 6 and

12 months. This is somewhat contrary to Hengge (2019), who finds using the predictive

score that the predictive power of JLNm is not impacted by including NFCI. Diks et al.

(2011) show that using a different scoring rule can substantially affect the conclusions

though. Third, the uncertainty factor models comparatively do better further into the

tail. At the 0.1 quantile it is more clear that the uncertainty factor model tends to

encompass NFCI at shorter horizons up to 6 months, and vice versa at longer horizons.

To verify the encompassing results, we combine the quantile forecasts from the model

with NFCI and the uncertainty factor model in two ways. First, we include both forecasts

as regressors in a quantile regression (also including an intercept) and estimate the weights

recursively – the evaluation sample starts at 2002M12+h, to allow for a burn-in period

for the estimated combination weights. This specification corresponds to the model in

the encompassing test. Second, we also consider an equally weighted combination, which

is known to work well in general (see e.g. Timmermann, 2006).

The encompassing results are largely corroborated by the performance of the forecast

combinations, see Figure 8. As expected from Table 3, the model with only NFCI is the

14The unconditional version. To allow for misspecification, we implement the test with an intercept
and allow the competing quantile’s coefficient to differ from 1. That is, the combined quantiles are
q̂ct = θ0 + θ1q̂1t + θ2q̂2t, where q̂1t and q̂2t are the quantile predictions from the competing models, and
we test whether θ1 = 0 and/or θ2 = 0. Standard errors are computed using a Newey-West estimator
with h− 1 kernel width, following Giacomini and Komunjer (2005).
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Table 3: Preferred model from encompassing test

Horizon (months)

Target variable 1 3 6 12 24

α = 0.1

Coincident index Uncertainty Uncertainty Both None None
Industrial production Uncertainty Both NFCI NFCI NFCI
Employment Uncertainty Both Uncertainty Both None
Manufacturing and trade sales None NFCI NFCI Both Both
Personal income Uncertainty None Uncertainty Both Both

α = 0.2

Coincident index Both Uncertainty Both NFCI None
Industrial production NFCI Uncertainty Both NFCI None
Employment Both Uncertainty Both NFCI NFCI
Manufacturing and trade sales NFCI NFCI NFCI NFCI Both
Personal income Uncertainty NFCI NFCI NFCI Both

The table presents what model is preferred, based on the Giacomini and Komunjer (2005) encompassing
test at a 5% significance level, for forecasts of quantiles α = 0.1 and α = 0.2. The competing models are
the factor model with the first two uncertainty factors and the model with NFCI.

best model at the longer horizons of 12 and 24 months, except for employment at the 24

month horizon.

At shorter horizons up to 6 months, combining forecasts often yields a smaller RMTL.

This is almost only when considering an equally weighted combination of the uncertainty

factor model and NFCI model forecasts. The forecast combination based on quantile

regression is actually the worst model in many cases. On average, the RMTL at the 3

and 6 month horizon is 1.4 and 6.3 percentage points smaller when using equal weights

instead of estimated weights. This is in line with the known robustness of equally weighted

forecast combinations (Timmermann, 2006).

So, economic uncertainty seems to hold some relevant predictive information that is

not captured by financial conditions.

7.2 Financial and non-financial based uncertainty measures

The comparison with NFCI raises the question what information is relevant in forecasting

the coincident economic index and its components, whether this is related to financial

conditions or macroeconomic uncertainty. Caldara et al. (2016) and Ludvigson et al.

30



Figure 8: RMTL of forecast combinations
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The figure presents the relative mean tick loss (RMTL), with the historical quantile as benchmark,
from forecasting the coincident economic index and its component: industrial production, employment,
manufacturing and trade sales, and personal income. The quantile is α = 0.2. Models include the
uncertainty factor model with r = 2 factors (blue bars), the model with NFCI as regressor (orange
bars), and two forecast combinations that combines the forecasts from the 2 uncertainty factor model
and the model with NFCI, where the quantiles forecasts are weighted by recursively estimating a
quantile regression (QR, green bars) or equally weighted (EW, red bars). The evaluation period
is 2002M12+h–2021M12, to allow for a two year burn-in period for the weights in the forecasting
combination.

(2021) also differentiate between macroeconomic and financial uncertainty. Caldara et al.

(2016) report a negative effect on economic activity from both sources. Ludvigson et al.

(2021) find that high financial uncertainty is a cause of real activity shocks, while increases

in macroeconomic uncertainty are a response to it.

Therefore, we split the uncertainty measures into two groups: those based on

financial information (VIX, MOVE, OVX, CSDR, CSDRsic and JLNf) and those based

on non-financial information. Then, we compute the first factor from the principal

components analysis for each group separately.
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At first sight the first factors from both subsets of uncertainty measures seem to be

very similar, see Figure 9; with correlations of 87.7% (financial) and 86.0% (non-financial)

with the first factor obtained from the the full set. The correlation between the factors

of the subsets is only 55.1% though. Where the factors deviate most is during the

period 1996–2001 – likely due to the Asian and Russian financial crises and the dot-com

bubble. Also, the factor from financial-based uncertainty measures attains a higher value

during the financial crisis in 2007–2008, and responds less strongly to the COVID-19

crisis compared to the factor from non-financial uncertainty measures. As expected, this

pattern for the factor from financial-based uncertainty measures is more in line with the

NFCI and is also seen in the correlations: 66.2%, which is higher than the factor based

on the full set of measures (60.7%) or the non-financial based measures (34.8%).

The second factor from the full set is captured less strongly by the factors from the

subsets. The largest (absolute) correlation is 73.5%, with the second factor from the

non-financial subset, and 40.1% for the financial subset.

Since the NFCI outperforms the uncertainty factor models in many cases, we expect

that the factors based on the financial-based uncertainty measures outperform the

other factors models as well. Table 4 shows that this is partly true. Using the first

financial-based uncertainty factor leads to a smaller MTL compared to using the first

factor based on non-financial information. However, neither outperforms the factor model

based on the full set of uncertainty measures. Except for industrial production, where

the single factor model based on the financial uncertainty measures performs close to the

model with NFCI. At horizons of 12 months and more though, the NFCI yields smaller

RMTL. This could be due to that the NFCI is constructed from indicators of three

categories: risk, credit, and leverage indicators. By contrast, the financial uncertainty

measures are associated with the risk category only.

Interestingly, the second factor contains important predictive power when considering

the non-financial set, in particular when forecasting employment. The second factor loads

heavily on FDISP. Individually, FDISP doesn’t decrease the MTL by much compared to

the benchmark, up to 3.1% for a 12 month horizon or less. Though the gains are significant
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Figure 9: First factor from subsets of measures
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The figure presents the time series of first releases of the first factor from the principal components
analysis based on the full set of uncertainty measures (solid blue line), the subset of financial-based
uncertainty measures (dashed orange line), and the subset of non-financial-based uncertainty measures
(dash-dotted green line) and the NFCI (dotted black line). The gray bars are recessions as determined
by NBER’s Business Cycle Dating Committee. All series are standardized.

at all but the 3 month horizon. The non-financial factor models yield good forecasts for

employment also in the first ten years of the sample, from January 2001 to December

2009, so including the financial crisis. The non-financial factor models yield the smallest

tick loss with an RMTL of 0.820 (one factor) and 0.815 (two factors) at the 3 month

horizon and 0.2 quantile. So it seems that most relevant information comes from the

financial uncertainty measures, but not all predictive power.

8 Conclusion

Many economic uncertainty measures have been proposed over the last 15 years. We show

that they share a factor structure. The first common component explains over 40% of the

total variation. The second factor can be interpreted as a media/consumer uncertainty,

which tends to remain high after officially leaving recessions.
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Table 4: RMTL for factor models on subsets

Horizon (months) 1 3 6 12 24

Panel A: Coincident economic index

Financial information based measures
r = 1 0.999 0.960** 0.906*** 0.924** 0.931
r = 2 1.001 0.960** 0.923** 0.951* 0.933
Non-financial information based measures
r = 1 1.022 0.966 0.962 0.990 0.992
r = 2 1.021 0.967 0.921 0.957 0.911

Panel B: Industrial production

Financial information based measures
r = 1 0.981* 0.943* 0.897** 0.942 1.022
r = 2 0.969* 0.945* 0.911* 0.942 1.028
Non-financial information based measures
r = 1 0.982 0.989 0.976 1.009 0.992
r = 2 0.971* 0.976 0.896 0.909 0.902

Panel C: Nonfarm payroll employment

Financial information based measures
r = 1 0.972*** 0.956*** 0.930*** 0.917*** 0.965
r = 2 0.968*** 0.954*** 0.933*** 0.930** 0.989
Non-financial information based measures
r = 1 1.000 0.959 0.947 0.969 0.992
r = 2 0.983* 0.930** 0.908*** 0.867** 0.797**

Panel D: Manufacturing and trade sales

Financial information based measures
r = 1 0.986* 0.946 0.946 0.946 1.045
r = 2 0.984 0.962 0.972 0.983 1.070
Non-financial information based measures
r = 1 1.006 0.958 0.980 1.030 1.005
r = 2 1.003 0.936 0.886 0.902 0.911

Panel E: Personal income excluding transfer receipts

Financial information based measures
r = 1 0.962*** 0.954* 0.988 0.997 0.955
r = 2 0.950*** 0.962 0.981 1.007 0.990
Non-financial information based measures
r = 1 0.977 1.011 1.015 1.028 0.982
r = 2 1.002 0.995 1.014 1.038 0.886

The table presents the relative mean tick loss for various forecasting horizons and target variables, for
the full sample and quantile α = 0.2. ***,**, and * denote significance of a one-sided Diebold-Mariano
test at the 1%, 5% and 10%, respectively.

The results of our real-time forecasting analysis show that there is a non-linear

relation between the uncertainty measures and factors and the coincident economic

index, that can be utilized to forecast the lower quantiles of the index. The VIX

and OVX are recommended individual measures, but using the factors is preferred for

more consistent gains. The predictive content of economic uncertainty is relevant for
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professional forecasters and policy makers to keep an eye on, in particular when interested

in the labor market. Moreover, at shorter horizons, the uncertainty measures seem to

hold predictive content in addition to financial conditions as captured by the NFCI.
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Figure A.1: Uncertainty measure time series
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releases for the EPU and JLN measures. 44



Figure A.1: Uncertainty measure time series (continued)
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releases for the EPU and JLN measures. 45



Figure A.2: Correlation matrix
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Appendix B Real-time data: uncertainty measures

Two types of uncertainty measures are subject to revisions: the newspaper article based

measures of Baker et al. (2016), and the Jurado et al. (2015) (JLN) measures.

B.1 Economic policy uncertainty

The newspaper based uncertainty measures of Baker et al. (2016) are subject to revisions

because there is a delay in posting all the articles online for some newspapers. The first

vintages for these uncertainty measures are 2013M6 (EPU+) and 2019M10 (EPU and

MPU), available in ALFRED. Observations before that period are from the first vintage.

Two data issues need to be addressed. First, the vintages 2018M12 and 2019M1 of

EPU+ are missing. This is solved by imputing the x-th release data for those months

with an AR(p) model with up to 6 lags and the number of lags p selected by BIC. We only

use the observations that were available at that time, so only data prior to the 2018M12

vintage. Second, the reporting lag of MPU varies across the vintages from 1 to 2 months.

Most of the time it is 2 months, which is why we include it with a publication lag of 2

months.

B.2 JLN measures

The JLN measures depend on the macroeconomic variables that are subject to revisions,

so the measures themselves are subject to revisions. Sydney Ludvigson publishes the

JLN measures semi-annually, not monthly.15 Therefore, we construct a monthly real-time

version, using the methodology of Jurado et al. (2015).16

The first vintage is 1999M8, equal to the first available FRED-MD vintage. We

compute the vintages each month up to 2022M1, such that we have a total of 270 vintages.

The sample starts in 1960M1, in line with Jurado et al. (2015). The JLN measures are

computed for horizons up to h = 12 months. JLN publish the 1, 3, and 12 month

version. We use the 3 month version, but using the 12 month version does not affect our

15Ludvigson’s website: https://www.sydneyludvigson.com/macro-and-financial-uncertainty-indexes
16Thanks to Jurado, Ludvigson and Ng for sharing their code on Ludvigson’s website.
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conclusions. Data sources are the FRED-MD, CRSP and Kenneth French’s website. The

Cochrane-Piazzesi factor is constructed using the Gürkaynak et al. (2007) nominal yield

curve data, available at the Federal Reserve website: https://www.federalreserve.

gov/data/nominal-yield-curve.htm.

JLN use a balanced panel. However, in the monthly real-time setting, the latest month

is not available due to differences in reporting lag of some of the macro series. Sydney

Ludvigson publishes semi-annual updates with a longer lag, which avoids this issue. The

methods used to construct the JLN measures are robust to missing values (at least at

the start and end of the sample). So instead of a longer reporting lag or removing the

variable, we use an imbalanced panel. When there are observations missing in the middle

of the sample, we use an AR(p) model within that vintage to impute its values. This is

only for three observations: one in the series COMPAPFFx (2020M4) and two in CP3Mx

(2020M4 and 2020M5).

Two variables are adjusted or removed to handle outliers. First, the oil price is

in log differences instead of the twice log differenced series. The FRED-MD suggests

transformations to ensure stationarity for each of its macro series, and recommends twice

log differencing the oil price. However, using log returns makes more sense in terms of

interpretation and we don’t find evidence of non-stationarity. Additionally, using the

second log differenced series leads to very high (individual) uncertainties, dominating the

JLN measures at multiple vintages. Second, the variable NONBORRES is excluded from

the vintages 2008M3 and 2008M4. In those vintages, the predicted individual uncertainty

for NONBORRES is extremely high. The reason is an outlier in the underlying data:

in February 2008 the percentage change (transformation recommended by FRED-MD) is

very high because the previous value is relatively close to 0 (-800 in January compared

to -16,300 in February 2008). Finally, eight times a series is excluded because it has too

few available observations in that vintage.17

Figure B.1 shows plots our real-time version (vintage 2021M7) and the JLN measures

17RPI from vintage 1999M11; DSERRG3M086SBEA, DNDGRG3M086SBEA,
DDURRG3M086SBEA, PCEPI, W875RX1, and RPI from vintage 2003M12; CMRMTSPLx from
vintage 2015M8.
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Figure B.1: Real-time JLN uncertainty measures
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The figures are our real-time vintage 2021M7 of the Jurado et al. (2015) measures (solid blue line) and
the one published on Ludvigson’s website (dashed orange line) for the h = 3 month horizon version. The
‘real’ version are standardized for ease of comparison.

Figure B.2: Correlation between real-time version and Jurado et al. (2015)
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The figure presents the correlation between the real-time version and the one published on Ludvigson’s
website for the available vintages there, for the h = 3 month horizon version. The sample runs from
1960M1 until the end of the vintage.

published on Ludvigson website for the h = 3 month horizon. From the time series and the

correlations between the real-time version and the one published by JLN in Figure B.2, it

is clear that our version is very close the original. The ‘financial’ version is exactly equal

in 7 out of 15 vintages and the correlation is at least 99.6%. The correlations are also

very high for the ‘macro’ version with at least 92.7%, and up to 99.6%. The similarity

of the ‘real’ version is a bit less strong, but still quite high as the correlation fluctuates

between 61.6% and 77.5% depending on the vintage.

The main reason for the lower correlation for the real version is a difference in the
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underlying data. As of June 2016, the series NAPMPI, NAPMEI, NAPM, NAPMNOI,

NAPMSDI, NAPMII, and NAPMPRI are no longer included in the FRED-MD vintages.

These series have been manually updated by JLN from the original source (the Institute

for Supply Management Report on Business) since its removal. We do not have access to

the historical data and cannot append it to the FRED-MD. To see the impact, we can

compare the correlation of the last published version of the JLN ‘real’ measure (data up to

2022M6) with last vintage of the real-time version that included NAPM (2016M5) and the

correlation with the vintage on month later, for the same sample (1960M1−−2016M4).

The correlation decreases from 87.4% to 66.7%, due to the exclusion of the NAPM series.

Overall, our real-time version is close to the original by Jurado et al. (2015), and the

‘real’ version could be improved further by including the NAPM series.

Rogers and Xu (2019) also construct a real-time version of the JLN measures. Our

version differs in a number of ways. First, Rogers and Xu remove a substantial number

of the FRED-MD set, see notes 17 and 18 in their paper. They use 120 out of 132 of the

macroeconomic variables of the FRED-MD from the 2004M1 vintage onwards. The main

reason is that some series, e.g. the NAPM series, are excluded from the FRED-MD at

some point. They opt to remove them from preceding vintages as well. Instead, we take

the perspective that the real-time forecaster could not have predicted this change and keep

them in the earlier vintages. Second, Rogers and Xu exclude four variables in the factor

estimation: ‘MZMSL’, ‘DTCOLNVHFNM’, ‘DTCTHFNM’, ‘INVEST’. Third, Rogers

and Xu (2019) strictly work with a balanced panel, starting in 1978M6. Our version

allows for missing observations and starts in 1960M1.
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Appendix C Uncertainty factors and COVID-19

Figure C.1 shows the first two uncertainty factors for the full sample and when excluding

2020–2021. The first and second factor are clearly identified both in both samples, and

follow the same general pattern. The first factor is nearly identical (99% correlation),

while the correlation is also high (89.0%) for the second factor between the different

samples. The difference between the samples is due to MOVE deviating more from the

average uncertainty measure during the COVID-19 period. The correlations of MOVE

with other uncertainty measures before 2020 are on average 36.9%. When 2020 and

2021 are included, the correlations decrease on average by 16.3 percentage points and

even become negative in three cases, down to -14.4% with EPU. This results in a weaker

loading on the first factor and an increase in the second factor’s loading for MOVE. In

turn, the loadings of various news and consumer based measures (LLh, LLv and EPU)

in the second factor decrease.

Figure C.1: Impact of COVID-19 on the uncertainty factors
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The figures present the time series of the first two factors estimated on the full sample,
1989M10–2021M12, vintage 2022M1 (solid blue line), and the first two factor estimated on the
pre-COVID sample, 1989M10–2019M12, vintage 2020M1 (dashed orange line). The second factor based
on the full sample is rotated (multiplied by −1) for interpretation purposes. The gray bars are recessions
as determined by NBER’s Business Cycle Dating Committee.
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Appendix D Real-time data: coincident variables

Real-time data of the coincident economic index (CEI) is obtained from The Conference

Board. The four component variables – industrial production (IP), nonfarm payroll

employment (EMP), manufacturing and trade industries sales (MTS), and personal

income excluding current transfer receipts (PIX) – are obtained from the data set of

Chauvet and Piger (2008). It is an updated version of the Giusto and Piger (2017)

data set, which updates the Chauvet and Piger (2008) data set to 2013.18 The data

set is updated using the Philadelphia Fed’s Real-Time Data Set for Macroeconomists

(Croushore and Stark, 2001) for industrial production and employment. The most recent

vintages for sales and personal income are taken from St. Louis Fed’s ALFRED. For

manufacturing and trade industries sales, we use real manufacturing and trade industries

sales (CMRMTSPL). Three vintages of MTS are missing (2013M10, 2014M01, and

2015M09), and we use vintages from the Conference Board to fill post-1996 observations.

For personal income excluding current transfer receipts, we follow Giusto and Piger

(2017) by computing the real personal income excluding transfer receipts as the difference

between personal income (PI) and personal current transfer receipts (PCTR), and

dividing by the ratio of nominal (DSPI) to real disposable income (DSPIC96). Three

vintages are missing of PIX due to a large (NIPA) revision at the end of 1995. Imputing

the values as Chauvet and Piger (2008) is not possible because it requires observations

before and after the missing sample, from the same vintage. In fact, Chauvet and Piger

(2008) and Giusto and Piger (2017) skip the 1995M11–1996M1 vintages. Similarly,

we delete the rows corresponding to the missing values before estimation. Since it

involves only three vintages, it costs at most six observations. Additionally, there are

five (additive) outliers in the level of PIX (1992M12, 1993M12, 2004M12, 2005M08, and

2012M12). We still include them in the estimation sample – it is probably difficult for

the forecaster to identify outliers in real-time. However, due to the autoregressive model,

the outliers also affect other forecasts. As an alternative, we impute the outliers by the

18Thanks to Jeremy Piger for uploading the raw data set on his website: https://pages.uoregon.

edu/jpiger/research/published-papers/.
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final vintage’s unconditional median growth rate. In both cases, the periods at which the

outliers are observed are excluded in the evaluation.

Benchmark revision dates are from the documentation of Philadelphia Fed’s

Real-Time Data Set for Macroeconomists (Croushore and Stark, 2001), from the

Federal Reserve Board of Governors (https://www.federalreserve.gov/releases/

g17/), from the Bureau of Labor Statistics (https://www.bls.gov/web/empsit/cestn.

htm#section7), and from the Bureau of Economic Analysis (Page 1-10, note 22, of

the November 2017 edition of the NIPA handbook, https://www.bea.gov/resources/

methodologies/nipa-handbook). Further, we check for revisions in the data by looking

at non-zero revisions of the sixth up to the twelfth release per vintage to identify remaining

revisions. Though the reporting of revisions is quite accurate, we do identify some

additional ones. But these are mostly in the in-sample period.
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Appendix E Relative mean tick loss
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Table E.1: Relative mean tick loss by forecast horizon, α = 0.2

Horizon (months) 1 3 6 12 24

Panel A: Coincident economic index

MTL of HQ 1.518 1.105 0.937 0.856 0.800

NFCI 1.015 0.977 0.879*** 0.800** 0.714**
FRED-MD 1.011 1.069 1.098 1.003 0.922
Factor models
r = 1 1.010 0.942* 0.887** 0.895* 0.955
r = 2 1.007 0.960 0.898** 0.931 0.896
r = 3 1.001 0.966 0.896** 0.899* 0.814**
Uncertainty measures
VIX 1.003 0.971* 0.913** 0.932* 0.943
MOVE 0.997 0.992 0.987 1.023 1.022
OVX 0.993 0.938* 0.965* 1.001 0.924
CSDR 1.011 1.002 0.970 1.002 0.957
CSDRsic 1.001 0.981* 0.966* 0.976 0.981
FDISP 0.994 0.992 0.958*** 0.964 0.839***
CEgdp 1.024 0.982 0.969 1.017 0.995
LLv 1.009 0.982 1.032 1.040 0.974
LLh 0.998 0.963 1.004 1.058 0.987
EPU+ 1.009 1.029 1.052 1.088 1.023
EPU 1.015 1.005 0.986 1.033 1.020
MPU 1.002 0.982 0.949*** 0.980 0.998
JLNm 1.035 0.990 0.984 1.037 1.007
JLNf 0.998 0.988 0.968 0.980 1.000
JLNr 1.015 0.977 0.977 1.060 1.118

Panel B: Industrial production

MTL of HQ 3.080 2.064 1.882 1.590 1.356

NFCI 0.964** 0.950* 0.865* 0.835 0.818
FRED-MD 1.001 1.069 1.031 1.038 1.050
Factor models
r = 1 0.973* 0.950 0.878* 0.978 1.025
r = 2 0.973* 0.946 0.886* 0.939 0.950
r = 3 0.958** 0.922* 0.837** 0.915 0.896
Uncertainty measures
VIX 0.962** 0.936* 0.920* 0.957 1.015
MOVE 0.992 1.024 0.995 1.019 0.983
OVX 0.973 0.961* 0.934* 0.987 1.012
CSDR 1.000 0.974 0.943* 0.962 1.045
CSDRsic 0.999 0.978* 0.952* 0.984 1.061
FDISP 0.990 0.971** 0.964** 0.994 0.960
CEgdp 1.007 1.009 0.995 1.043 1.007
LLv 1.012 1.010 1.023 0.982 0.941**
LLh 1.001 1.017 1.036 1.007 0.951
EPU+ 0.994 1.016 1.044 1.026 1.006
EPU 0.981 0.990 0.995 1.008 1.051
MPU 0.970** 0.955** 0.969 0.994 1.020
JLNm 0.995 1.003 0.981 1.018 1.006
JLNf 0.990 0.974 0.972 0.985 0.999
JLNr 0.981 0.995 0.985 1.110 1.146

The table presents the relative mean tick loss (RMTL) with the historical quantile (HQ) as benchmark
for various forecasting horizons for the out-of-sample period 1999M12+h–2021M12 and quantile level
α = 0.2. Further, the table presents the mean tick loss (MSPE) of the historical quantile. ***,**, and
* denote significance of a one-sided Diebold-Mariano test at the 1%, 5% and 10%, respectively. See
Table A.1 for an explanation of the abbreviations.
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Table E.1: Relative mean tick loss by forecast horizon, α = 0.2 (continued)

Horizon (months) 1 3 6 12 24

Panel C: Nonfarm payroll employment

MTL of HQ 1.330 1.157 0.900 0.839 0.728

NFCI 0.978*** 0.959** 0.924** 0.845** 0.712**
FRED-MD 0.939*** 0.997 1.005 0.971 0.973
Factor models
r = 1 0.980** 0.933*** 0.910*** 0.905** 0.961
r = 2 0.974*** 0.935*** 0.910*** 0.890*** 0.853*
r = 3 0.971*** 0.944** 0.911*** 0.887*** 0.832**
Uncertainty measures
VIX 0.975** 0.943** 0.926*** 0.913*** 0.987
MOVE 0.974*** 0.981 0.943** 0.966 1.048
OVX 0.988 0.963** 0.962*** 0.965** 0.973
CSDR 0.990* 0.980** 0.978* 0.963* 0.971
CSDRsic 0.980*** 0.981** 0.973** 0.956** 1.010
FDISP 0.984*** 0.996 0.988** 0.969* 0.894***
CEgdp 1.020 0.983 0.977 1.011 1.014
LLv 1.021 0.993 1.007 1.014 0.985
LLh 1.010 0.983 1.000 1.022 0.983
EPU+ 1.015 0.979 1.008 1.030 1.016
EPU 1.012 0.976 0.997 1.008 1.029
MPU 0.981*** 0.975*** 0.968*** 0.969* 1.007
JLNm 1.009 0.928* 0.926* 0.898* 0.880
JLNf 0.983** 0.970* 0.959* 0.923* 0.968
JLNr 0.985 0.946* 0.945 0.951 0.999

Panel D: Manufacturing and trade sales

MTL of HQ 3.419 1.884 1.420 1.224 1.065

NFCI 0.965*** 0.895** 0.800** 0.759** 0.758**
FRED-MD 1.035 1.031 1.040 1.075 1.059
Factor models
r = 1 0.985 0.933 0.925 0.958 1.043
r = 2 0.992 0.939 0.916 0.893 0.925
r = 3 1.001 0.943 0.895 0.922 0.895
Uncertainty measures
VIX 0.974** 0.962 0.952 0.949 1.039
MOVE 0.988 0.986 1.049 1.061 1.043
OVX 0.982 0.978 0.962 0.964 0.990
CSDR 1.006 0.988 0.982 0.994 1.010
CSDRsic 0.988* 0.976 0.984 0.992 1.046
FDISP 0.995 1.012 0.999 0.966 0.894***
CEgdp 0.993 0.991 0.990 1.024 1.009
LLv 1.022 1.006 1.046 1.075 0.946
LLh 1.012 0.997 1.053 1.075 0.974
EPU+ 1.024 1.021 1.029 1.069 0.962
EPU 1.028 1.022 1.018 1.032 0.968
MPU 1.016 0.995 0.998 1.016 0.995
JLNm 0.995 0.986 0.950 0.987 1.041
JLNf 1.000 0.981 0.982 0.998 1.121
JLNr 0.983 1.002 0.937 1.014 1.124

The table presents the relative mean tick loss (RMTL) with the historical quantile (HQ) as benchmark
for various forecasting horizons for the out-of-sample period 1999M12+h–2021M12 and quantile level
α = 0.2. Further, the table presents the mean tick loss (MSPE) of the historical quantile. ***,**, and
* denote significance of a one-sided Diebold-Mariano test at the 1%, 5% and 10%, respectively. See
Table A.1 for an explanation of the abbreviations.
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Table E.1: Relative mean tick loss by forecast horizon, α = 0.2 (continued)

Horizon (months) 1 3 6 12 24

Panel E: Personal income excluding transfer receipts

MTL of HQ 1.563 1.062 0.773 0.733 0.723

NFCI 1.004 0.957** 0.903** 0.848* 0.680**
FRED-MD 0.982 0.957 1.001 1.006 0.960
Factor models
r = 1 0.950** 0.954 0.972 0.992 0.935
r = 2 0.997 0.981 0.986 1.016 0.888
r = 3 0.990 0.973 0.975 0.934 0.822**
Uncertainty measures
VIX 0.990 0.971 1.038 1.008 0.936
MOVE 0.963*** 0.978 0.984 1.051 1.013
OVX 0.968** 0.928* 0.998 0.995 0.962
CSDR 0.975** 0.971 1.033 1.051 1.034
CSDRsic 0.972** 0.980 1.019 1.047 1.028
FDISP 1.004 0.994 0.990 1.018 0.881**
CEgdp 0.988 1.010 1.007 1.037 0.998
LLv 1.006 1.027 1.033 1.048 1.005
LLh 0.978 0.984 1.012 1.062 1.004
EPU+ 1.036 1.076 1.073 1.041 1.102
EPU 1.032 1.021 1.067 1.012 1.048
MPU 0.994 0.988 0.997 0.994 1.019
JLNm 0.972 0.970 1.047 1.002 0.960
JLNf 0.989 0.998 1.068 1.040 1.006
JLNr 0.956** 0.953 1.053 1.087 1.067

The table presents the relative mean tick loss (RMTL) with the historical quantile (HQ) as benchmark
for various forecasting horizons for the out-of-sample period 1999M12+h–2021M12 and quantile level
α = 0.2. Further, the table presents the mean tick loss (MSPE) of the historical quantile. ***,**, and
* denote significance of a one-sided Diebold-Mariano test at the 1%, 5% and 10%, respectively. See
Table A.1 for an explanation of the abbreviations.
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Table E.2: Relative mean tick loss by evaluation period, h = 3 and α = 0.2

Evaluation 2000M1– 2000M1–
period 2021M12 Recessions Expansions 2019M12

Panel A: Coincident economic index

MTL of HQ 1.105 3.596 0.807 0.566

NFCI 0.977 0.939 0.998 0.952
FRED-MD 1.069 0.847 1.187 1.061
Factor models
r = 1 0.942* 0.832** 1.001 0.912
r = 2 0.960 0.860** 1.013 0.952
r = 3 0.966 0.842** 1.032 0.961
Uncertainty measures
VIX 0.971* 0.953 0.982 0.960
MOVE 0.992 0.932 1.023 0.970
OVX 0.938* 0.843 0.989 0.909
CSDR 1.002 0.984 1.011 1.016
CSDRsic 0.981* 0.953 0.996 0.971
FDISP 0.992 0.972 1.003 0.987
CEgdp 0.982 0.867 1.044 0.972
LLv 0.982 0.819 1.068 0.977
LLh 0.963 0.758 1.072 0.927
EPU+ 1.029 0.854 1.123 1.082
EPU 1.005 0.914 1.053 1.034
MPU 0.982 0.986 0.980 0.992
JLNm 0.990 0.863 1.057 0.990
JLNf 0.988 0.930 1.019 0.985
JLNr 0.977 0.907 1.015 0.981

Panel B: Industrial production

MTL of HQ 2.064 6.378 1.548 1.465

NFCI 0.950* 0.824** 1.012 0.917*
FRED-MD 1.069 0.956 1.124 1.084
Factor models
r = 1 0.950 0.829** 1.010 0.907*
r = 2 0.946 0.822** 1.007 0.907*
r = 3 0.922* 0.823** 0.970 0.900*
Uncertainty measures
VIX 0.936* 0.850 0.978 0.902*
MOVE 1.024 1.018 1.027 1.024
OVX 0.961* 0.933 0.975 0.958
CSDR 0.974 0.892 1.014 0.959
CSDRsic 0.978* 0.942 0.995 0.967*
FDISP 0.971** 0.945 0.983 0.948**
CEgdp 1.009 0.935 1.045 0.994
LLv 1.010 0.960 1.034 0.996
LLh 1.017 0.966 1.043 1.011
EPU+ 1.016 0.908 1.069 1.004
EPU 0.990 0.895 1.037 0.967
MPU 0.955** 0.963 0.951 0.937*
JLNm 1.003 0.838 1.084 0.955
JLNf 0.974 0.859 1.030 0.952
JLNr 0.995 0.784 1.099 0.975

The table presents the relative mean tick loss (RMTL) with the historical quantile (HQ) as benchmark
for various evaluation periods for a forecast horizon of 3 months and quantile level of α = 0.2. Further,
the table presents the mean tick loss (MSPE) of the historical quantile. ***,**, and * denote significance
of a one-sided Diebold-Mariano test at the 1%, 5% and 10%, respectively. Significance testing is not done
for the recession and expansion subsets, because this is not a single consecutive period, required for the
kernel for estimating the HAC standard errors. See Table A.1 for an explanation of the abbreviations.58



Table E.2: Relative mean tick loss by evaluation period, h = 3 and α = 0.2
(continued)

Evaluation 2000M1– 2000M1–
period 2021M12 Recessions Expansions 2019M12

Panel C: Nonfarm payroll employment

MTL of HQ 1.157 2.750 0.966 0.313

NFCI 0.959** 0.877** 0.987** 0.842**
FRED-MD 0.997 0.913 1.025 0.933
Factor models
r = 1 0.933*** 0.884** 0.950** 0.829**
r = 2 0.935*** 0.893** 0.949** 0.826***
r = 3 0.944** 0.895** 0.961* 0.862**
Uncertainty measures
VIX 0.943** 0.884 0.963 0.868**
MOVE 0.981 0.958 0.989 0.900***
OVX 0.963** 0.946 0.969 0.930**
CSDR 0.980** 0.947 0.991 0.939**
CSDRsic 0.981** 0.969 0.985 0.940**
FDISP 0.996 0.974 1.004 0.967*
CEgdp 0.983 0.971 0.988 0.960**
LLv 0.993 0.981 0.997 1.019
LLh 0.983 0.951 0.994 0.981
EPU+ 0.979 0.906 1.004 1.016
EPU 0.976 0.909 1.000 1.024
MPU 0.975*** 0.961 0.980 0.940**
JLNm 0.928* 0.884 0.943 0.883*
JLNf 0.970* 0.907 0.991 0.918
JLNr 0.946* 0.877 0.969 0.893

Panel D: Manufacturing and trade sales

MTL of HQ 1.884 6.873 1.287 1.492

NFCI 0.895** 0.692*** 1.025 0.842**
FRED-MD 1.031 0.700 1.242 0.968
Factor models
r = 1 0.933 0.727*** 1.065 0.875*
r = 2 0.939 0.724*** 1.076 0.885*
r = 3 0.943 0.703*** 1.096 0.877*
Uncertainty measures
VIX 0.962 0.835 1.044 0.941
MOVE 0.986 0.876 1.057 0.964
OVX 0.978 0.827 1.074 0.952
CSDR 0.988 0.855 1.074 0.968
CSDRsic 0.976 0.883 1.035 0.948
FDISP 1.012 0.970 1.038 1.008
CEgdp 0.991 0.785 1.123 0.966
LLv 1.006 0.853 1.104 0.991
LLh 0.997 0.788 1.131 0.965
EPU+ 1.021 0.724 1.211 1.009
EPU 1.022 0.782 1.175 1.010
MPU 0.995 0.948 1.026 0.977
JLNm 0.986 0.702 1.167 0.913
JLNf 0.981 0.852 1.063 0.962
JLNr 1.002 0.768 1.152 0.966

The table presents the relative mean tick loss (RMTL) with the historical quantile (HQ) as benchmark
for various evaluation periods for a forecast horizon of 3 months and quantile level of α = 0.2. Further,
the table presents the mean tick loss (MSPE) of the historical quantile. ***,**, and * denote significance
of a one-sided Diebold-Mariano test at the 1%, 5% and 10%, respectively. Significance testing is not done
for the recession and expansion subsets, because this is not a single consecutive period, required for the
kernel for estimating the HAC standard errors. See Table A.1 for an explanation of the abbreviations.
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Table E.2: Relative mean tick loss by evaluation period, h = 3 and α = 0.2
(continued)

Evaluation 2000M1– 2000M1–
period 2021M12 Recessions Expansions 2019M12

Panel E: Personal income excluding transfer receipts

MTL of HQ 1.062 2.659 0.863 0.765

NFCI 0.957** 0.934 0.965** 0.931**
FRED-MD 0.957 0.824 1.008 0.957
Factor models
r = 1 0.954 0.857* 0.991 0.910*
r = 2 0.981 0.907 1.010 0.944
r = 3 0.973 0.868* 1.014 0.954
Uncertainty measures
VIX 0.971 0.934 0.985 0.967
MOVE 0.978 1.003 0.969 0.971
OVX 0.928* 0.886 0.944 0.930*
CSDR 0.971 0.963 0.974 0.938*
CSDRsic 0.980 0.979 0.981 0.952
FDISP 0.994 0.949 1.011 0.982
CEgdp 1.010 0.887 1.057 0.963
LLv 1.027 0.844 1.097 0.973
LLh 0.984 0.839 1.040 0.929
EPU+ 1.076 0.916 1.137 1.083
EPU 1.021 0.941 1.052 1.010
MPU 0.988 0.993 0.986 0.985
JLNm 0.970 0.815 1.030 0.887*
JLNf 0.998 0.980 1.005 0.982
JLNr 0.953 0.883 0.980 0.886*

The table presents the relative mean tick loss (RMTL) with the historical quantile (HQ) as benchmark
for various evaluation periods for a forecast horizon of 3 months and quantile level of α = 0.2. Further,
the table presents the mean tick loss (MSPE) of the historical quantile. ***,**, and * denote significance
of a one-sided Diebold-Mariano test at the 1%, 5% and 10%, respectively. Significance testing is not done
for the recession and expansion subsets, because this is not a single consecutive period, required for the
kernel for estimating the HAC standard errors. See Table A.1 for an explanation of the abbreviations.
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Table E.3: Relative mean tick loss by quantile, h = 3

α 0.1 0.2 0.5 0.8

Panel A: Coincident economic index

MTL of HQ 0.946 1.105 1.210 0.995

NFCI 0.999 0.977 0.970* 0.978**
FRED-MD 1.058 1.069 1.023 1.033
Factor models
r = 1 0.894* 0.942* 0.999 1.011
r = 2 0.905 0.960 0.996 1.021
r = 3 0.910 0.966 0.977 0.993
Uncertainty measures
VIX 0.943 0.971* 0.998 1.006
MOVE 0.993 0.992 1.001 1.001
OVX 0.873** 0.938* 1.002 1.006
CSDR 0.980 1.002 1.006 1.002
CSDRsic 0.957 0.981* 1.007 0.998
FDISP 0.970 0.992 1.002 1.003
CEgdp 0.952 0.982 1.023 0.990**
LLv 0.970 0.982 1.013 1.003
LLh 0.937 0.963 1.008 1.004
EPU+ 1.012 1.029 1.006 1.009
EPU 1.012 1.005 0.993 1.012
MPU 0.970 0.982 0.993 1.001
JLNm 0.989 0.990 1.012 1.026
JLNf 0.925 0.988 1.001 1.013
JLNr 0.964 0.977 1.010 1.022

Panel B: Industrial production

MTL of HQ 1.595 2.064 2.477 1.848

NFCI 0.925* 0.950* 0.991 1.005
FRED-MD 1.139 1.069 1.043 1.024
Factor models
r = 1 0.914* 0.950 1.004 1.007
r = 2 0.897* 0.946 1.002 1.007
r = 3 0.894* 0.922* 0.956** 0.966
Uncertainty measures
VIX 0.890** 0.936* 0.996 1.017
MOVE 1.005 1.024 1.007 1.001
OVX 0.924** 0.961* 0.990 1.002
CSDR 0.960* 0.974 1.004 1.006
CSDRsic 0.971 0.978* 1.009 1.000
FDISP 0.966* 0.971** 0.993 0.999
CEgdp 1.051 1.009 1.000 0.977**
LLv 1.056 1.010 1.002 0.983***
LLh 1.045 1.017 1.003 0.982***
EPU+ 1.055 1.016 1.014 1.012
EPU 1.034 0.990 1.001 1.030
MPU 0.980 0.955** 0.976*** 0.989**
JLNm 0.962 1.003 1.034 0.995
JLNf 0.948 0.974 1.004 1.021
JLNr 0.970 0.995 1.019 0.983

The table presents the relative mean tick loss (RMTL) with the historical quantile (HQ) as benchmark
for various quantile levels for the out-of-sample period 1999M12+h–2021M12, with a forecast horizon
of 3 months. Further, the table presents the mean tick loss (MSPE) of the historical quantile. ***,**,
and * denote significance of a one-sided Diebold-Mariano test at the 1%, 5% and 10%, respectively. See
Table A.1 for an explanation of the abbreviations.

61



Table E.3: Relative mean tick loss by quantile level, h = 3 (continued)

α 0.1 0.2 0.5 0.8

Panel C: Nonfarm payroll employment

MTL of HQ 1.102 1.157 1.072 0.819

NFCI 0.962** 0.959** 0.987 1.006
FRED-MD 1.011 0.997 1.020 1.021
Factor models
r = 1 0.918*** 0.933*** 1.010 1.020
r = 2 0.923*** 0.935*** 1.004 1.028
r = 3 0.929*** 0.944** 0.991 0.977*
Uncertainty measures
VIX 0.915*** 0.943** 1.001 1.012
MOVE 0.973 0.981 0.991 0.992*
OVX 0.938** 0.963** 0.995 1.005
CSDR 0.962*** 0.980** 1.005 0.999
CSDRsic 0.964*** 0.981** 1.007 0.992**
FDISP 0.991 0.996 1.003 0.998
CEgdp 0.972 0.983 1.026 0.978***
LLv 0.966 0.993 1.006 1.019
LLh 0.952* 0.983 1.005 1.016
EPU+ 0.928* 0.979 1.013 1.022
EPU 0.915* 0.976 1.008 1.014
MPU 0.966*** 0.975*** 0.997 0.996*
JLNm 0.879** 0.928* 1.023 1.029
JLNf 0.938*** 0.970* 1.013 1.009
JLNr 0.911** 0.946* 1.009 1.016

Panel D: Manufacturing and trade sales

MTL of HQ 1.404 1.884 2.239 1.646

NFCI 0.850** 0.895** 0.966 0.974
FRED-MD 1.075 1.031 1.108 1.128
Factor models
r = 1 0.900* 0.933 1.021 1.011
r = 2 0.920 0.939 1.026 1.012
r = 3 0.956 0.943 1.012 0.989
Uncertainty measures
VIX 0.891** 0.962 1.020 1.006
MOVE 0.930 0.986 1.014 1.009
OVX 0.934 0.978 1.011 0.996
CSDR 0.932** 0.988 1.024 1.011
CSDRsic 0.945* 0.976 1.019 1.007
FDISP 0.984 1.012 1.004 1.003
CEgdp 0.954 0.991 1.023 1.011
LLv 0.995 1.006 1.019 1.004
LLh 0.964 0.997 1.019 1.006
EPU+ 1.052 1.021 1.038 1.018
EPU 1.041 1.022 1.028 1.023
MPU 1.023 0.995 1.008 0.982
JLNm 0.961 0.986 1.044 1.069
JLNf 0.935* 0.981 1.011 1.014
JLNr 0.933 1.002 1.036 1.022

The table presents the relative mean tick loss (RMTL) with the historical quantile (HQ) as benchmark
for various quantile levels for the out-of-sample period 1999M12+h–2021M12, with a forecast horizon
of 3 months. Further, the table presents the mean tick loss (MSPE) of the historical quantile. ***,**,
and * denote significance of a one-sided Diebold-Mariano test at the 1%, 5% and 10%, respectively. See
Table A.1 for an explanation of the abbreviations.
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Table E.3: Relative mean tick loss by quantile level, h = 3 (continued)

α 0.1 0.2 0.5 0.8

Panel E: Personal income excluding transfer receipts

MTL of HQ 0.830 1.062 1.264 0.907

NFCI 0.950** 0.957** 0.992 0.989**
FRED-MD 0.923 0.957 0.975 1.006
Factor models
r = 1 0.944 0.954 0.974 1.022
r = 2 0.953 0.981 0.983 1.033
r = 3 0.935 0.973 0.978 1.017
Uncertainty measures
VIX 0.966 0.971 0.987 0.994
MOVE 0.978 0.978 0.994 0.983*
OVX 0.884** 0.928* 0.989* 0.998
CSDR 0.955* 0.971 1.006 1.001
CSDRsic 0.944* 0.980 1.007 0.999
FDISP 0.973* 0.994 1.006 1.012
CEgdp 0.994 1.010 1.018 1.045
LLv 0.986 1.027 1.012 1.064
LLh 0.953 0.984 0.982 1.037
EPU+ 1.070 1.076 1.022 1.049
EPU 1.085 1.021 1.017 1.054
MPU 0.991 0.988 1.007 1.002
JLNm 0.958 0.970 1.008 1.082
JLNf 0.979 0.998 0.988 1.002
JLNr 0.952 0.953 0.991 1.034

The table presents the relative mean tick loss (RMTL) with the historical quantile (HQ) as benchmark
for various quantile levels for the out-of-sample period 1999M12+h–2021M12, with a forecast horizon
of 3 months. Further, the table presents the mean tick loss (MSPE) of the historical quantile. ***,**,
and * denote significance of a one-sided Diebold-Mariano test at the 1%, 5% and 10%, respectively. See
Table A.1 for an explanation of the abbreviations.
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E.1 Forecast results: averaging within category

Applying principal components is one possible way of aggregating the uncertainty

measures. An obvious alternative would be to use the categories as identified in Section 2

to aggregate the uncertainty measures. This could also provide more insight into how

each category contributes to the forecasting results. We aggregate by taking the average

of the (standardized) uncertainty measures within each category.

Focusing on forecasting the coincident index and employment, the results in Figure E.1

show that there are clear differences across the categories. These are in line with what we

found with the individual uncertainty measures. Indeed, the news and survey averages

yield comparatively worse forecasts than the other categories.

Further, the results show that it is worthwhile to combine information, and most

predictive information is in the three categories conditional volatility, cross-sectional

dispersion, and forecast errors. Conditional volatility performs well at the shorter horizon,

up to 6 months. Cross-sectional dispersion is among the best models when forecasting

the coincident index. The forecast error average leads to the lowest tick loss across these

averaged uncertainty measures when forecasting employment for all horizons except at

the 1 month horizon.

Figure E.1 shows that RMTL from the two uncertainty factor model is smaller or

on par with those of the category averages. The factor model combines all uncertainty

measures, which yields more robust predictive performance over the forecast horizons for

CEI and employment.
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Figure E.1: Tick loss for averages within category
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(b) Employment
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The figure presents the relative mean tick loss (RMTL), with the historical quantile as benchmark, from
forecasting the coincident economic index (left figure) and employment (right figure) across forecasting
horizons in months. The quantile is α = 0.2. Black stars are RMTL from the two uncertainty
factor model. Other RMTLs are from the average of the measures within the categories conditional
volatility (blue down-pointing triangle), cross-sectional dispersion (orange up-pointing triangles), news
(green squares), surveys (red diamonds), and forecast errors (magenta circles). Filled symbols indicate
significance of the one-sided DM test against the historical quantile at the 5% significance level.
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Appendix F Hit rates
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Table F.1: Hit rates by horizon

Horizon (months) 1 3 6 12 24

Panel A: Coincident economic index

HQ 0.182 0.195 0.197 0.237 0.336 ‡
NFCI 0.208 ‡ 0.241 0.216 0.257 0.278
FRED-MD 0.208 ‡ 0.233 ‡ 0.270 ‡ 0.265 ‡ 0.361 † ‡
Factor models
r = 1 0.186 0.191 0.201 0.281 0.365 † ‡
r = 2 0.182 0.195 0.236 0.332 † ‡ 0.386 † ‡
r = 3 0.186 0.183 0.209 0.316 † ‡ 0.361 † ‡
Uncertainty measures
VIX 0.201 0.244 0.209 0.257 0.332 ‡
MOVE 0.227 0.294 † ‡ 0.309 † 0.332 † ‡ 0.357 ‡
OVX 0.193 0.210 0.201 0.245 0.328
CSDR 0.193 0.218 0.243 0.277 0.365 †
CSDRsic 0.208 0.206 0.247 0.273 0.415 † ‡
FDISP 0.208 0.237 0.228 0.273 0.357
CEgdp 0.189 0.210 0.255 0.289 0.340
LLv 0.152 † 0.160 0.182 0.237 0.332
LLh 0.163 0.172 0.197 0.237 ‡ 0.344
EPU+ 0.159 0.168 ‡ 0.174 0.253 ‡ 0.320 ‡
EPU 0.167 0.187 0.178 0.241 0.315 ‡
MPU 0.189 0.199 0.232 0.265 0.328 ‡
JLNm 0.193 ‡ 0.214 0.174 ‡ 0.245 ‡ 0.361 † ‡
JLNf 0.193 0.199 0.205 0.269 ‡ 0.274 ‡
JLNr 0.189 ‡ 0.229 0.243 0.285 ‡ 0.465 † ‡

Panel B: Industrial production

HQ 0.246 0.233 0.247 ‡ 0.324 ‡ 0.361 ‡
NFCI 0.231 0.218 0.205 0.277 0.390 †
FRED-MD 0.284 † ‡ 0.294 † ‡ 0.274 ‡ 0.391 † ‡ 0.448 † ‡
Factor models
r = 1 0.246 0.241 0.255 0.344 † ‡ 0.411 † ‡
r = 2 0.242 0.252 0.305 † 0.391 † ‡ 0.490 † ‡
r = 3 0.250 † 0.233 0.274 0.399 † ‡ 0.473 † ‡
Uncertainty measures
VIX 0.239 0.263 0.278 0.344 † ‡ 0.411 † ‡
MOVE 0.277 † ‡ 0.282 † ‡ 0.324 † ‡ 0.387 † ‡ 0.332
OVX 0.258 † 0.229 0.251 0.304 ‡ 0.373 † ‡
CSDR 0.246 0.233 0.301 † 0.360 † ‡ 0.407 † ‡
CSDRsic 0.258 † 0.260 0.282 0.372 † ‡ 0.465 † ‡
FDISP 0.269 † ‡ 0.233 0.259 0.312 0.436 † ‡
CEgdp 0.254 † ‡ 0.225 0.270 0.336 ‡ 0.365 † ‡
LLv 0.231 0.225 0.255 ‡ 0.320 0.365
LLh 0.239 0.233 0.251 ‡ 0.304 ‡ 0.365 †
EPU+ 0.231 0.210 ‡ 0.247 ‡ 0.336 † ‡ 0.353 ‡
EPU 0.193 0.187 ‡ 0.247 0.308 ‡ 0.353 ‡
MPU 0.258 † 0.256 0.247 0.348 † 0.340 ‡
JLNm 0.227 0.214 0.216 0.285 0.415 † ‡
JLNf 0.239 0.244 0.293 0.348 † 0.373 †
JLNr 0.239 0.225 0.266 0.304 ‡ 0.436 † ‡

The table presents hit rates for various forecasting horizons, for the out-of-sample period
1999M12+h–2021M12 and quantile α = 0.2. The † denotes rejection of the null hypothesis of correct
unconditional coverage, and ‡ denotes rejection of the null hypothesis of correct coverage conditional on
an intercept and the quantile estimates qt, all at a 5% significance level, based on the DQ test with HAC
standard errors. See Table A.1 for an explanation of the abbreviations.
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Table F.1: Hit rates by horizon (continued)

Horizon (months) 1 3 6 12 24

Panel C: Employment

HQ 0.136 † ‡ 0.179 0.201 0.281 0.344 ‡
NFCI 0.114 † ‡ 0.168 0.154 0.225 0.291
FRED-MD 0.140 † 0.199 0.216 0.277 0.390 † ‡
Factor models
r = 1 0.117 † ‡ 0.191 0.205 0.285 0.373 †
r = 2 0.125 † ‡ 0.202 0.220 0.273 0.390 † ‡
r = 3 0.140 † 0.210 0.209 0.289 0.398 † ‡
Uncertainty measures
VIX 0.117 † ‡ 0.168 ‡ 0.216 0.245 0.390 † ‡
MOVE 0.152 † 0.229 0.255 0.364 † ‡ 0.361 ‡
OVX 0.136 † ‡ 0.183 ‡ 0.201 0.261 0.357 ‡
CSDR 0.133 † ‡ 0.187 0.232 0.293 0.390 †
CSDRsic 0.155 0.199 0.239 0.285 0.440 † ‡
FDISP 0.144 † 0.191 0.216 0.296 0.378 †
CEgdp 0.133 † ‡ 0.187 0.201 0.285 0.344 ‡
LLv 0.117 † ‡ 0.168 0.209 0.285 0.344 ‡
LLh 0.114 † ‡ 0.157 0.201 0.277 ‡ 0.353
EPU+ 0.102 † ‡ 0.149 0.224 0.277 ‡ 0.332 ‡
EPU 0.110 † ‡ 0.157 0.205 0.285 ‡ 0.340 ‡
MPU 0.136 † ‡ 0.176 0.220 0.285 0.349 ‡
JLNm 0.106 † ‡ 0.164 0.162 0.241 0.373 † ‡
JLNf 0.117 † ‡ 0.191 0.209 0.237 0.349
JLNr 0.133 † ‡ 0.202 0.243 0.296 0.432 † ‡

Panel D: Manufacturing and trade sales

HQ 0.193 0.263 0.270 ‡ 0.296 0.261 ‡
NFCI 0.186 0.267 0.270 0.265 0.365 † ‡
FRED-MD 0.227 ‡ 0.286 † ‡ 0.290 † ‡ 0.300 ‡ 0.357 † ‡
Factor models
r = 1 0.178 0.248 0.309 † ‡ 0.328 † 0.336
r = 2 0.186 0.256 0.348 † ‡ 0.348 † ‡ 0.427 † ‡
r = 3 0.178 0.244 0.305 † ‡ 0.360 † ‡ 0.328 ‡
Uncertainty measures
VIX 0.189 0.271 0.293 0.289 0.320
MOVE 0.239 0.321 † ‡ 0.394 † ‡ 0.328 † ‡ 0.295
OVX 0.178 0.267 ‡ 0.263 0.273 0.282 ‡
CSDR 0.182 ‡ 0.290 † ‡ 0.336 † ‡ 0.340 † ‡ 0.344
CSDRsic 0.201 0.298 † ‡ 0.344 † ‡ 0.376 † ‡ 0.336
FDISP 0.201 0.260 0.286 0.289 0.311
CEgdp 0.208 0.267 0.290 ‡ 0.316 ‡ 0.291 ‡
LLv 0.171 0.244 0.266 ‡ 0.308 0.278
LLh 0.182 0.241 ‡ 0.259 ‡ 0.281 0.295
EPU+ 0.167 0.191 ‡ 0.255 ‡ 0.332 † ‡ 0.270
EPU 0.186 0.199 ‡ 0.259 0.308 0.307 ‡
MPU 0.212 0.271 † 0.301 † ‡ 0.296 0.266 ‡
JLNm 0.171 0.233 ‡ 0.297 † ‡ 0.281 ‡ 0.477 † ‡
JLNf 0.201 0.263 0.309 † ‡ 0.273 0.261 ‡
JLNr 0.197 0.302 † ‡ 0.348 † ‡ 0.356 † ‡ 0.465 † ‡

The table presents hit rates for various forecasting horizons, for the out-of-sample period
1999M12+h–2021M12 and quantile α = 0.2. The † denotes rejection of the null hypothesis of correct
unconditional coverage, and ‡ denotes rejection of the null hypothesis of correct coverage conditional on
an intercept and the quantile estimates qt, all at a 5% significance level, based on the DQ test with HAC
standard errors. See Table A.1 for an explanation of the abbreviations.
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Table F.1: Hit rates by horizon (continued)

Horizon (months) 1 3 6 12 24

Panel E: Personal income excluding transfer receipts

HQ 0.155 0.188 0.213 0.279 0.298
NFCI 0.186 0.219 0.241 0.316 † 0.272
FRED-MD 0.205 0.234 0.245 ‡ 0.296 0.357 † ‡
Factor models
r = 1 0.178 0.227 0.253 0.340 † 0.366 † ‡
r = 2 0.155 0.223 0.269 0.364 † ‡ 0.396 † ‡
r = 3 0.143 † ‡ 0.227 0.281 0.377 † ‡ 0.298
Uncertainty measures
VIX 0.167 0.227 0.253 ‡ 0.316 0.302
MOVE 0.205 0.254 0.312 † 0.389 † ‡ 0.345
OVX 0.155 ‡ 0.207 0.237 0.304 0.306
CSDR 0.178 0.215 0.249 0.328 † 0.323
CSDRsic 0.178 0.242 0.249 0.316 0.353 †
FDISP 0.163 0.211 0.237 0.304 0.353 † ‡
CEgdp 0.186 0.219 0.257 0.332 † ‡ 0.379 † ‡
LLv 0.159 0.180 0.221 0.300 ‡ 0.289 ‡
LLh 0.167 0.180 0.245 0.287 ‡ 0.319
EPU+ 0.136 † ‡ 0.172 ‡ 0.210 ‡ 0.271 ‡ 0.285 ‡
EPU 0.143 † ‡ 0.164 0.225 0.255 0.281 ‡
MPU 0.171 0.223 0.245 0.300 0.306 ‡
JLNm 0.167 0.199 0.245 0.316 ‡ 0.404 † ‡
JLNf 0.167 0.219 0.225 ‡ 0.287 0.251 ‡
JLNr 0.209 0.227 0.269 ‡ 0.344 † ‡ 0.400 † ‡

The table presents hit rates for various forecasting horizons, for the out-of-sample period
1999M12+h–2021M12 and quantile α = 0.2. The † denotes rejection of the null hypothesis of correct
unconditional coverage, and ‡ denotes rejection of the null hypothesis of correct coverage conditional on
an intercept and the quantile estimates qt, all at a 5% significance level, based on the DQ test with HAC
standard errors. See Table A.1 for an explanation of the abbreviations.
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