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Abstract
We propose an observation-driven modelling framework that permits time variation
in the model’s parameters using a proximal-parameter (ProPar) update. ProPar
maximizes the observation log-density with respect to the parameter vector, while
penalizing the weighted ℓ2 norm relative to the one-step-ahead prediction. This
yields an implicit stochastic-gradient update; taking instead the explicit version
would produce the popular class of score-driven models. For log-concave observation
densities (even when misspecified), ProPar’s robustness is evident from its muted
response to outliers, stability under poorly specified learning rates, and global con-
tractivity towards a pseudo-truth. We illustrate ProPar’s usefulness for estimating
time-varying regressions, volatility, and quantiles.
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1 Introduction

Ample empirical evidence suggests it is often too restrictive to assume that model param-
eters remain constant for prolonged periods of time. In economics and finance, parameters
are often found to be regime dependent or subject to structural breaks (e.g., Stock and Wat-
son, 1996). Parameters may also change more gradually, following no discernible pattern;
particularly in this case, it is unclear how to update them after observing new data. Ex-post
estimators can be constructed in specific cases; e.g., in ARCH-type models (see Teräsvirta,
2009, for an overview) volatility is made time-varying using the squared shock, which pro-
vides an unbiased ex-post proxy of the true variance. In general, however, such proxies may
be difficult to derive, inefficient, or nonexistent.

We introduce a comprehensive framework that allows a model’s parameters to be made
time-varying in an observation-driven setting by means of proximal-parameter (ProPar) up-
dates. The proposed ProPar filter contains alternating prediction and update steps analogous
to those in Kalman’s (1960) filter. The key component of our framework is the ProPar up-
date step, which ensures that the update remains proximal (i.e., close) to the prediction.
Specifically, the ProPar parameter update is the solution to an optimization problem that
maximizes the log-likelihood contribution of the current observation subject to a weighted
ℓ2 penalty centered at the one-step-ahead prediction. This setup has the advantage of (a)
fully exploiting the log-likelihood contribution of the most recent observation, while (b) reg-
ularizing (i.e., limiting) the amount by which the update deviates from the prediction. The
weighted ℓ2 penalty is controlled by a positive-definite penalty matrix, the inverse of which
can be viewed as a learning-rate matrix.

The first-order condition corresponding to the optimization problem solved in the ProPar
update step can be formulated as an implicit stochastic-gradient update: implicit because
the gradient is evaluated in the updated rather than the predicted parameter, and stochastic
because it uses noisy data. In the optimization literature, such methods are known as
proximal-point or proximal-gradient methods, and are recognized as inherently more stable
than their explicit counterparts. Unlike explicit gradient updates, implicit approaches are
guaranteed to improve the objective function—in our case, the log-likelihood contribution
of the most recent observation. Explicit gradient methods are nonetheless widely used in
observation-driven models, e.g., in the popular class of score-driven models (see further
section 1.1).

The ProPar filter has several attractive theoretical properties. As outlined below and
demonstrated at length in the paper, these properties are typically sought in observation-
driven models, but rarely combined in a single framework; indeed, we are unaware of other
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approaches offering the same combination of advantages.

1. The ProPar filter is invertible (Theorem 1) under mild restrictions and assuming con-
cavity of the researcher-postulated logarithmic density; i.e., any differences stemming
from the initialization of the filter disappear almost surely and exponentially fast. This
holds even in the near absence of assumptions placed on the data-generating process;
as such, this result is highly robust to model misspecification.

2. The ProPar update yields an updated density that improves on the predicted density
(even if both are misspecified) by reducing the local Kullback-Leibler divergence rel-
ative to the true density (Proposition 3). This provides a local information-theoretic
foundation in the spirit of Blasques et al. (2015), but it is substantially stronger as
we are able to consider sizable (i.e., non-infinitesimal) adjustments of the time-varying
parameters.

3. The ProPar update is globally contractive (Theorem 2) in expectation to a small region
around the (pseudo-)truth. This means that, on average, the update is more accurate
than the prediction on which it is based, with the largest improvements expected for the
worst predictions. This contraction is global in that the predictions may be arbitrarily
bad; it is also robust in that it holds for an arbitrary (positive-definite) learning-rate
matrix. Only when the prediction is very close to the (pseudo-)true parameter may
the update be less accurate; this is no limitation but unavoidable when using noisy
data.

Beyond these theoretical advantages, the ProPar framework also has practical benefits.
It automatically coordinates the update of multiple interacting parameters. Additionally,
parameter constraints may be incorporated without necessarily requiring parameter trans-
formations (e.g., link functions).

We evaluate the empirical performance of the ProPar filter in three different settings,
demonstrating the theoretical and practical advantages outlined above. First, we consider a
linear regression of daily Microsoft equity returns on the market factor, where the regression
coefficient (i.e., the slope) is made time-varying. Second, we model time-varying volatility
using daily S&P500 data. In these illustrations, the robustness of the ProPar filter success-
fully mitigates the effects of large shocks, making it better able to cope with rare events
compared to standard alternatives. Third, we consider growth-at-risk estimates captured
by the lower quantiles of quarterly US GDP growth. The corresponding ProPar update
yields an implicit version of Engle and Manganelli’s (2004) adaptive CAViaR model, where
ProPar has the advantage in that its quantile update cannot be more extreme than the ob-
servation just received. This enhanced stability, together with simple parameter restrictions,
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ensures that simultaneously modeled quantiles remain properly ordered, thus avoiding the
quantile-crossing problem faced by other methods.

In Section 2, we outline the ProPar methodology, highlight the differences with con-
ventional score-driven models, and illustrate the proposed method by way of an example.
Section 3 presents the theoretical properties, focusing on stability, local information-theoretic
optimality, and global contractivity, while Section 4 discusses maximum-likelihood estima-
tion of the static parameters. Section 5 contains the empirical illustrations. Finally, Section
6 concludes with implications and recommendations. All proofs are provided in the online
Appendix.

1.1 Related literature

This paper ties in with two main strands of literature. First, the ProPar filter can be viewed
as a stochastic version of Rockafellar’s (1976) proximal-point algorithm, which combines
a function to be optimized with a quadratic penalty involving some previous iterate. As
our log-likelihood function involves (random) observations drawn from the true density, the
ProPar filter can be considered a stochastic proximal-point method (e.g., Ryu and Boyd,
2016; Bianchi, 2016; Patrascu and Necoara, 2018; Asi and Duchi, 2019). The first-order
condition associated with the proximal optimization can also be rewritten as an implicit
stochastic-gradient step (e.g., Toulis and Airoldi, 2015; Toulis et al., 2016; Toulis and Airoldi,
2017; Toulis et al., 2021). As in the optimization literature, we recognize the advantage of
implicit over explicit gradient methods in terms of enhanced stability. A key difference is,
however, that we consider a setup in which the parameter to be estimated is not constant
but changing over time—i.e., we are interested in tracking a moving target.

Second, this article is related to observation-driven time-varying parameter models, so
labeled in Cox et al. (1981). One benefit of these models is that the likelihood can be
computed in closed form, enabling numerical maximum-likelihood (ML) estimation. Within
this class of model, dynamic conditional score (DCS; Harvey, 2013) models and generalized
autoregressive score (GAS; Creal et al., 2013) models, as they are variously known, use the
score of the log-likelihood function to propagate time-varying parameters. This score-driven
framework encompasses many established models, such as the GARCH model, and is popular
for its ease of use and strong forecasting performance (e.g., Creal et al., 2014; Harvey and
Luati, 2014; Koopman et al., 2016; Harvey and Lange, 2017; Opschoor et al., 2018; Gorgi,
2020); some 300 articles using this method are listed on www.gasmodel.com.

As the current article demonstrates, this class of score-driven models can be obtained
within the ProPar framework by replacing, at every time step, the logarithmic observa-
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tion density by its local-linear approximation around the one-step-ahead prediction. Under
this approximation, ProPar’s implicit stochastic-gradient update is replaced by its explicit
version, yielding standard (i.e., explicit) score-driven models. Avoiding the local-linear ap-
proximation and preserving the full logarithmic observation density enables us to generalize
several attractive properties of score-driven models from the local to the global setting. We
are able to derive a stronger form of local information-theoretic optimality than is available
for score-driven models (Blasques et al., 2015); e.g., we need not restrict ourselves to arbitrar-
ily small adjustments in the time-varying parameter. Our invertibility results are stronger,
placing fewer demands on the data-generating process, and our framework allows for global
contractivity towards a (pseudo-)true parameter, a property with no obvious equivalent in
the literature on explicit score-driven models.

2 Proximal-parameter framework

2.1 Prediction-update recursion

We consider an N × 1 variable of interest yt, observed at times t = 1, . . . , T , drawn from
an observation density p0(·|θ0

t , ψ
0,Ft−1), where θ0

t is a time-varying parameter vector taking
its values in some parameter space Θ0, ψ0 is a vector of static shape parameters, and Ft−1

denotes the information set at time t− 1, thereby permitting the dependence on exogenous
variables and/or lags of yt. For readability, the dependence on ψ0 and Ft−1 is henceforth
suppressed.

The aim of this paper is to devise a modeling framework that attempts to approximate the
true distribution p0(·|θ0

t ). To this end, we propose a filter that alternates between prediction
and update steps. Specifically, let p(·|θt) denote the researcher-postulated density, which may
or may not be correctly specified, where θt denotes a K×1 vector of time-varying parameters
that can take values in some non-empty convex parameter space Θ ⊆ RK . As above, any
additional dependence on static shape parameters and/or other information available at
time t− 1 is permitted but suppressed for readability. We denote the predicted and updated
parameter vectors by θt|t−1 ∈ Θ and θt|t ∈ Θ, which reflect the researcher’s estimates of θt

using the information set available at times t− 1 and t, respectively.
The main difficulty in working with time-varying parameter models lies in specifying how

θt|t should differ from θt|t−1 after observing yt. We argue that a sound update scheme should
satisfy at least two natural criteria. First, the update should be in accordance with the
likelihood, such that p(yt|θt|t) ≥ p(yt|θt|t−1): i.e., the updated parameter yields an improved
fit when evaluated at the observed data yt. Second, as each observation yt is inherently noisy,
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it is desirable to regularize the amount by which the update θt|t deviates from the prediction
θt|t−1. Penalizing the magnitude of θt|t − θt|t−1 prohibits the filter from becoming excessively
volatile.

To satisfy both criteria, this article proposes the class of proximal-parameter (ProPar)
models. These models perform the parameter update at time t by maximizing the researcher-
postulated logarithmic observation density log p(yt|·) subject to a weighted ℓ2 penalty cen-
tered at the prediction θt|t−1. That is, we consider the parameter update

θt|t := argmax
θ∈Θ

f(θ|yt, θt|t−1, Pt), (1)

where
f(θ|yt, θt|t−1, Pt) := log p(yt|θ) − 1

2
∥∥∥θ − θt|t−1

∥∥∥2

Pt
. (2)

Here, f(θ|yt, θt|t−1, Pt) denotes the “regularized” log-likelihood contribution and ∥x∥2
Pt

=
x′Ptx is the squared ℓ2 norm with respect to a K×K positive-definite penalty matrix Pt. By
formulating the parameter update as the solution to a maximization problem, the proposed
method has several favorable characteristics. First, all information in the conditional density
is utilized to update the parameter, as opposed to, e.g., moment information only. Second,
elements of the parameter update θt|t are automatically interdependent, because jointly they
represent the solution to the multivariate optimization problem (1). Third, the update θt|t

is automatically contained in the correct space Θ and does not necessarily require a link
function to be specified (although we may employ link functions for other reasons). We may
constrain Θ to any non-empty convex subset, allowing for straightforward incorporation of
a great variety of convex and possibly non-differentiable constraints.

The weighted ℓ2 penalization yields tractable updates and can be interpreted as a second-
order Taylor expansion around θt|t−1 of an arbitrary, but more complicated, loss function,
where Pt acts as the corresponding Hessian. Furthermore, the update in the ProPar approach
defined in equations (1) and (2) takes a comparable form to Rockafellar’s (1976) classic
proximal-point algorithm, which similarly considers the optimization of a target function—
in our case, the log-likelihood contribution of the observation yt—subject to a quadratic
penalty. Because the likelihood contribution is based on the (a priori random) realization yt,
our approach can be viewed as a stochastic proximal-point method (Asi and Duchi, 2019).
Thanks to their favorable characteristics, proximal-point methods are widely employed in
optimization (see Section 1.1). We will exploit these characteristics to obtain a variety of
attractive properties of the ProPar filter in terms of stability and optimality (see Section 3).

Below, we formalize two standard assumptions (Assumptions 1 and 2) regarding the
existence and uniqueness of the solution to the maximization problem (1). We add two
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further assumptions (Assumptions 3 and 4) that allow us to characterize its solution us-
ing a standard first-order condition. While this simplification is not absolutely necessary
(e.g., we could work with subgradients), it benefits the clarity of exposition and improves
mathematical tractability.

Assumption 1 (Existence) The solution set of argmax
θ∈Θ

f(θ|yt, θt|t−1, Pt) is non-empty with
probability one.

Assumption 2 (Strictly concave regularized log likelihood) f(θ|yt, θt|t−1, Pt) is proper
strictly concave in θ, ∀θ ∈ Θ with probability one.

Assumption 3 (Interior solution) θt|t ∈ Int(Θ) with probability one.

Assumption 4 (Differentiability) log p(yt|θ) is at least once continuously differentiable
in θ, ∀θ ∈ Int(Θ) with probability one.

Under Assumptions 1 through 4, the first-order condition for the parameter update θt|t

in the maximization problem (1) can be rearranged as

θt|t = θt|t−1 + Ht ∇(yt|θt|t), (3)

where the inverse penalty Ht := P−1
t is referred to the learning-rate matrix and ∇(yt|θt|t) :=

(∂ log p(yt|θ)/∂θ)|θ=θt|t is the score vector, both at time t. Representation (3) demonstrates
that the ProPar framework yields a gradient-type parameter update. The learning-rate
matrix Ht controls the step size and allows for different learning rates and interactions
between the different time-varying parameters. Crucially, the score is evaluated at the update
θt|t rather than the prediction θt|t−1. This means that update (3) is an implicit gradient
method; i.e., the parameter update θt|t appears on both sides of the equation, hence is not
immediately computable. Because the update θt|t is also stochastic—it is based on the a
priori random realization yt—our framework is closely related to implicit stochastic-gradient
methods (see section 1.1). While the first-order condition (3) may not allow a closed-form
solution, Assumptions 2 and 4 guarantee that the global solution to optimization problem (1)
can always be found numerically using standard optimization techniques (e.g., quasi-Newton
methods).

An attractive property of implicit updates is their enhanced stability and optimality
relative to explicit gradient methods, which use the gradient evaluated in the prediction
θt|t−1 rather than the update θt|t. Implicit updates are guaranteed to increase the value
of the objective function—in our case the log-likelihood contribution of yt—whereas explicit
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versions may decrease the objective function value when the step size is too large; i.e., explicit
methods may “overshoot”. To mitigate this problem, explicit gradient methods must often be
implemented with smaller learning rates. In contrast, when the objective function is strictly
concave, implicit gradient methods can be shown to converge to the global optimum for any
positive definite learning-rate matrix Ht (Toulis and Airoldi, 2017). For this reason, implicit
optimization techniques are widely employed in statistics and machine learning (e.g., Kulis
and Bartlett, 2010; Li et al., 2014).

A key difference with the existing literature on implicit gradient methods in optimiza-
tion is that we consider a setting in which the true parameter is time-varying rather than
constant. In the optimization literature, the learning-rate matrix Ht is typically set to be
decreasing over time (e.g., Ht = O(t−1)), such that the parameter asymptotically converges
to some constant pseudo-true value. Here we are interested in tracking a time-varying true
parameter; hence, our filtered path must not converge over time, but remain responsive even
asymptotically. To achieve this we may keep Ht constant over time, i.e., set Ht = H for all
t, where H may contain static parameters that are to be estimated (see Section 4).

To complete our dynamic setup, the ProPar update step (3) is complemented with a
prediction step that generates one-step-ahead forecasts. For simplicity, we consider a linear
first-order specification as follows:

θt+1|t = ω + Φ θt|t, (4)

where ω is a K × 1 vector of constants and Φ is a K ×K autoregressive matrix. Conditions
ensuring stable recursions are discussed in the next section. The requirement θt+1|t ∈ Θ
can typically be fulfilled by appropriate parameter restrictions and/or link functions. In
principle, the prediction step (4) could be generalized to allow for non-linear and/or higher-
order dynamics. However, as no additional information is available during the prediction
step, a more complicated structure may not yield immediate benefits. For simplicity, do not
pursue this here.

To sum up, suppose we are given (a) some data {yt} for t = 1, 2, . . . , T , (b) a researcher-
postulated density p(·|θ) satisfying Assumptions 1 through 4, (c) a set of prediction pa-
rameters ω and Φ, (d) a sequence of penalization matrices {Pt}, and (e) some initial esti-
mate θ0|0 ∈ Θ. Then we can iteratively apply the prediction-update recursion consisting of
the prediction step (4) and the update step (1) or, equivalently, (3). Together, these recur-
sions produce sequences of parameter predictions, {θt|t−1}, and parameter updates, {θt|t},
such that the description of the ProPar filter is now complete.

7



2.2 Relationship with (explicit) score-driven filters

The implicit gradient-type update (3) suggests a close connection with the large litera-
ture on score-driven models. Here we show that linearizing the logarithmic observation
density in the optimization problem (1) produces the familiar explicit gradient update,
denoted by θe

t|t. Specifically, suppose we approximate the logarithmic observation den-
sity in equation (2) using a first-order Taylor expansion around the prediction θt|t−1, i.e.,
log p(yt|θ) ≈ log p(yt|θt|t−1) + ⟨θ − θt|t−1,∇(yt|θt|t−1)⟩, where ⟨x1, x2⟩ := x′

1x2 denotes the
inner product. To avoid boundary solutions, we suppose the maximization is over the Eu-
clidean space RK . Because the regularized log-likelihood contribution f(·|·, ·, ·) in optimisa-
tion problem (1) now contains a linear target in combination with a quadratic penalty, the
optimization can be performed in closed form. Indeed, the resulting linearized version of
optimization (1) and associated first-order condition now read

θe
t|t := argmax

θ∈RK

{
log p(yt|θt|t−1) + ⟨θ − θt|t−1,∇(yt|θt|t−1)⟩ − 1

2∥θ − θt|t−1∥2
Pt

}
, (5)

θe
t|t = θt|t−1 + Ht ∇(yt|θt|t−1). (6)

The score on the right-hand-side of the explicit update (6) is evaluated at the prediction θt|t−1

rather than the update θt|t, such that θe
t|t is immediately computable. In combination with

prediction step (4), the explicit updating strategy (5) yields a well-known class of explicit
score-driven models, known either as dynamic conditional score (DCS) models (Harvey, 2013)
or generalized autoregressive-score (GAS) models (Creal et al., 2013). This class of score-
driven models can be regarded as a first-order approximation to the implicit update (3),
similar to how explicit gradient methods in optimization are viewed as first-order approxi-
mations of implicit- or proximal-gradient methods.

It is natural to ask whether the implicit and explicit update strategies yield similar results.
Proposition 1 below shows that both strategies suggest adjustments of the time-varying
parameter that point roughly in the same direction. Geometrically, the angle between the
difference vector θt|t − θt|t−1 and the explicit version of the score (i.e., ∇(yt|θt|t−1)) cannot
exceed 90 degrees.

Proposition 1 (Gradient alignment) Fix t > 0 and let Assumptions 1 and 2 hold. Let
a prediction θt|t−1 ∈ Θ and positive-definite penalty Pt ∈ RK×K be given and assume that
∇(yt|θt|t−1) is well-defined. Compute θt|t by the update step (1). Then, with probability one,

⟨θt|t − θt|t−1,∇(yt|θt|t−1)⟩ ≥ 0. (7)
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For a scalar time-varying parameter (i.e., K = 1), Proposition 1 implies that θe
t|t − θt|t−1 and

θt|t − θt|t−1 have the same sign; in this case, the implicit score is “score equivalent”, using
the definition of Blasques et al. (2015).

Corollary 1 (Gradient-sign concordance in one dimension) Fix t > 0 and let As-
sumptions 1 to 4 hold. Let a prediction θt|t−1 ∈ Θ ⊆ R and penalty Pt > 0 be given.
Compute θt|t by the update step (1). Then, with probability one,

sign(∇(yt|θt|t)) = sign(∇(yt|θt|t−1)). (8)

To say more about the properties of the ProPar update step (1), we require more information
regarding the shape of the log-likelihood function log p(yt|θ). In this paper, we focus on the
family of concave log-likelihood functions, which allows us to derive a set of particularly
strong optimality and stability properties.

Assumption 5 (Log-concave observation density) log p(yt|θ) + αt/2 ∥θ∥2 is concave
in θ for some αt ≥ 0, ∀θ ∈ Θ, with probability one.

Assumption 5 is a stronger version of Assumption 2, as we now impose concavity on the
log-likelihood contribution itself, rather than on its regularized version (2). The strength of
concavity is measured by αt ≥ 0, where the boundary case αt = 0 implies concavity while
αt > 0 implies αt-strong concavity. A large collection of popular logarithmic densities, as
illustrated in the empirical section, are concave in their parameters. While Assumption 5
yields strong theoretical results, the optimization literature suggests that implicit gradient
methods remain effective in practice if the logarithmic density fails to be concave (e.g., Hare
and Sagastizábal, 2009); in fact, the global nature of the proximal update (1) may further
enhance the advantages relative to explicit methods in such a setting (e.g., Grimmer et al.,
2022, p. 31).

It is well known in the optimization literature that the implicit gradient update is a
“shrunken” version of the explicit gradient update (e.g., Toulis and Airoldi, 2015). Proposi-
tion 2 reflects this relationship in our setting.

Proposition 2 (Step-size shrinkage) Fix t > 0 and let Assumptions 1 to 5 hold. Let
a prediction θt|t−1 ∈ Θ and positive-definite penalty Pt ∈ RK×K be given. Based on the
observation yt, compute θt|t by the implicit update (3) and θe

t|t by the explicit update (6).
Then, with probability one,

∥∥∥θt|t − θt|t−1

∥∥∥2

Pt+2αtIK

≤
∥∥∥θe

t|t − θt|t−1

∥∥∥2

Pt

, (9)
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where IK is the identity matrix of size K.

Inequality (9) features a weighted norm on both sides, where the weight matrix on the left-
hand-side has a diagonal that is increased by a multiple of the identity matrix. As a result,
the vector inside the norm on the left-hand-side must be smaller in some sense than the
vector inside the norm on the right-hand side. The magnitude of the shrinkage depends
on the ratio between the strength of concavity αt and the penalty Pt, where a larger αt or
smaller Pt imply more shrinkage. In the scalar case (i.e., K = 1), equation (9) can be written
as ∥θt|t − θt|t−1∥2 ≤ Pt

Pt+2αt
∥θe

t|t − θt|t−1∥2, where Pt/(Pt + 2αt) ∈ (0, 1] is the shrinkage factor.
In practice, the shrinkage of the vector θt|t − θt|t−1 evident from equation (9) provides

an additional level of robustness that is particularly useful for dealing with outliers. In the
presence of outliers, the learning-rate matrix Ht must typically be reduced in magnitude
to ensure that the filter is not excessively impacted by such aberrant observations. The
shrinkage property (9) mitigates this problem, enabling ProPar models to use larger learning
rates relative to standard (i.e., explicit) score-driven models. In the optimization literature,
the fact that implicit strategies often allow for larger learning rates is well known (e.g., Toulis
and Airoldi, 2017).

2.3 Example: Linear regression with time-varying slopes

This section illustrates several attractive properties of the ProPar framework using a linear
regression model with time-varying parameters.

Example 1 (Linear regression) Consider a linear regression model with dependent vari-
able yt ∈ R and independent variable xt ∈ RK, i.e.

yt = β′
t xt + εt, εt

i.i.d.∼ N(0, σ2), (10)

where βt is a K×1 vector of time-varying parameters and εt is an i.i.d. normally distributed
innovation with variance σ2. Then the ProPar update (1) can be computed in closed form
(see Appendix A for details) as

βt|t = βt|t−1 + σ2

σ2 + ∥xt∥2
Ht

Ht ∇(yt|βt|t−1, xt), (11)

where Ht = P−1
t is the learning-rate matrix and ∇(yt|βt|t−1, xt) denotes the explicit score

given as

∇(yt|βt|t−1, xt) =
yt − β′

t|t−1 xt

σ2 xt. (12)
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Example 1 illustrates the shrinkage result of Proposition 2 for the linear regression model.
The right-hand-side of equation (11) features the shrinkage factor σ2/(σ2 + ∥xt∥2

Ht
) ∈ (0, 1],

which would be absent (i.e., equal to unity) in the case of an explicit score-driven update;
hence, update (11) can be viewed as a robustified version of the explicit score-driven update.
The amount of shrinkage is increasing in the magnitude of the explanatory variable (i.e.,
∥xt∥2

Ht
) and decreasing in the observation variance (i.e., σ2). For the ProPar update (11), it

is easy to show that if a particular element of xt tends to infinity in an absolute sense (i.e.,
|xi,t| → ∞ for some i), then the corresponding element of βt|t goes to zero (i.e., βi,t|t → 0),
while the other elements remain unchanged at their predicted values (i.e., βj,t|t → βj,t|t−1

for j ̸= i). The fact that the shrinkage factor depends on the realization of the exogenous
variable xt appears to be distinctive for the ProPar version of the model; i.e., we are unaware
of (explicit) score-driven models with this property.

Another difference with explicit score-driven models is that the ProPar update (11) re-
mains bounded as the learning-rate matrix Ht grows larger (i.e., in a positive definite sense).
This can be seen by noting that Ht appears not only in front of the score, but also in the
denominator of the shrinkage factor. The practical relevance of this observation is that the
ProPar filter is robust against the (suboptimal) choice of the learning rate, whereas explicit
score-driven models tend to require more careful finetuning.

3 Theory

3.1 Stability

Turning to the stability properties of the proposed framework, we are particularly interested
in providing sufficient conditions for filter invertibility, meaning that filtered paths based
on identical data but with different initializations convergence exponentially fast over time.
First, we show in Lemma 1 that the update step (1) admits strong contraction properties
under Assumptions 1 through 5. We note that no additional conditions are imposed on the
true data-generating process (DGP), as discussed in further detail below.

Lemma 1 (Prediction-to-update stability) Fix t > 0 and let Assumptions 1 to 5 hold.
Let θt|t−1 and θ̃t|t−1 denote two predictions in Θ, which are combined with the observation yt

in the update step (1) to yield two corresponding parameter updates, θt|t and θ̃t|t, respectively.
Then, with probability one,

∥∥∥θt|t − θ̃t|t

∥∥∥2

Pt+2αtIK

≤
∥∥∥θt|t−1 − θ̃t|t−1

∥∥∥2

Pt
. (13)
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If, in addition, the postulated log-likelihood function θ 7→ log p(·|θ) is twice differentiable,
then, with probability one, the Jacobian matrix ∂θt|t

∂θ′
t|t−1

has all eigenvalues in (0, 1]. This
interval becomes (0, 1) when αt > 0.

The first part of Lemma 1 indicates that the update step of the ProPar filter is non-
expansive in the norm ∥·∥Pt , i.e., the update step does not magnify (and possibly shrinks) the
distance between different paths. The second part of Lemma 1 shows that the eigenvalues
of the Jacobian ∂θt|t/∂θ

′
t|t−1 are in the unit interval if the log-likelihood function is twice

continuously differentiable, which reflects an alternative definition of non-expansiveness. For
a strongly concave log-likelihood function (i.e., αt > 0), we obtain a strict contraction in the
norm ∥ · ∥Pt as long as the predictions are not identical (i.e., θt|t−1 ̸= θ̃t|t−1). In this case,
the eigenvalues of the Jacobian are strictly bounded between zero and one. The strength
of the contraction is determined by the strength of concavity αt and the penalty matrix Pt.
Interestingly, Lemma 1 does not require further assumptions on the DGP.

To obtain a strictly contracting prediction-to-prediction mapping from time t to time
t + 1, it is sufficient to have both the update and prediction steps be non-expansive in the
norm ∥ · ∥Pt with at least one of them being strictly contractive. That is, when αt = 0, the
prediction mapping from θt|t to θt+1|t must be strictly contracting in the norm ∥ · ∥Pt . When
αt > 0, on the other hand, it is sufficient for the prediction step to be non-expansive. For
example, the identity mapping θt+1|t = θt|t is non-expansive and often useful in practice.

A sufficient condition for non-expansiveness (contractiveness) of the prediction step in
the norm ∥ · ∥Pt is that Pt ⪰ Φ′PtΦ (Pt ≻ Φ′PtΦ). Here, the notation X ⪰ Y (X ≻ Y )
indicates that X−Y has non-negative (strictly positive) eigenvalues for two symmetric real-
valued matrices X and Y of the same size. This requirement is equivalent to ∥Φ∥Pt ≤ 1
(∥Φ∥Pt < 1), where ∥X∥Pt is the induced operator norm of a matrix X ∈ RK×K . This
condition is closely related to the discrete Lyapunov equation (e.g., Anderson and Moore,
2012). Lemma 2 summarizes the contraction of the prediction-to-prediction mapping in the
norm ∥ · ∥Pt .

Lemma 2 (Prediction-to-prediction stability) Fix t > 0 and let Assumptions 1 to 5
hold. Let Pt be given with Pt ⪰ Φ′PtΦ. Let θt|t−1 and θ̃t|t−1 denote two predictions in Θ that
are used in the update step (1) to yield two corresponding parameter updates, θt|t and θ̃t|t,
and subsequently passed to the prediction step (4) to yield two predictions, θt+1|t and θ̃t+1|t.
Then, with probability one,

∥∥∥θt+1|t − θ̃t+1|t

∥∥∥2

Pt
≤ κt

∥∥∥θt|t−1 − θ̃t|t−1

∥∥∥2

Pt
, (14)
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where the contraction coefficient κt is

κt = λmax(Pt) − λmin(Pt − Φ′PtΦ)
λmax(Pt) + 2αt

, (15)

where λmax(X) and λmin(X) denote the largest and smallest eigenvalues of X. If either
αt > 0 or Pt ≻ Φ′PtΦ, then, with probability one, κt ∈ [0, 1).

The strength of the contraction of the prediction-to-prediction mapping at time t is
measured by κt, which is a function of the strength of concavity αt, the penalty Pt and
the autoregressive matrix Φ. For a scalar time-varying parameter, the standard condition
|Φ| < 1 is sufficient to yield κt ∈ [0, 1). In the multiple-parameter setting, Φ′Φ ≺ IK implies
Φ′PtΦ ≺ Pt when (a) Φ and Pt are both diagonal or (b) either Φ or Pt is a constant multiple
of the identity. In this case, the standard condition that the spectral norm of Φ should be
less than one is sufficient to yield κt ∈ [0, 1). To allow for more richly parameterized Φ and
Pt, we could allow Φ to be time-varying by expressing it in terms of Pt as

Φt = P
−1/2
t V P

1/2
t , (16)

where V is a K ×K matrix of static autoregressive parameters with ∥V ∥2 < 1, where ∥ · ∥2

denotes the ℓ2 operator norm. It is straightforward to show that this transformation implies
Pt ≻ Φ′

tPtΦt. The matrices Φt and V are then similar; i.e., they have the same eigenvalues.
Alternatively, Pt = P could be taken to be constant for all t and expressed as the solution
to (the discrete version of) Lyapunov’s equation P − Φ′PΦ = ∆ ≻ 0, which has a unique
solution P ≻ 0 parameterized in terms of Φ and ∆ ≻ 0. The strict inequalities in this entire
paragraph are permitted to become weak if we additionally require αt > 0.

For the effects of the initialization to disappear exponentially fast, it is required that
the composition of all prediction-to-prediction mappings is contractive. A sufficient (but
stronger than necessary) condition is that each individual prediction-to-prediction mapping
is contractive in a single norm that is the same (i.e., shared) across all mappings over time.
Theorem 1 formulates sufficient conditions for the existence of such a shared norm and
contains an invertibility result that is crucial in enabling maximum-likelihood estimation
of the static parameters (e.g., Straumann and Mikosch, 2006). This desirable invertibility
property also ensures that numerical errors do not accumulate during implementation in
practice, a concern also expressed for the Kalman filter (Anderson and Moore, 2012).

Theorem 1 (Invertibility) For all t > 0, let Assumptions 1 to 5 hold, with additionally
either (a) Pt ≻ Φ′PtΦ or (b) Pt ⪰ Φ′PtΦ and αt > 0. In addition, let there be some
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P̄ , A ∈ RK×K with P̄ ≻ A ≻ OK×K and a sequence {ρt > 0} such that for all t > 0, with
probability one,

κtPt + ρtA ⪯ ρt P̄ ⪯ Pt, (17)

where κt is defined in (15). Take two initial values θ0|0 ∈ Θ and θ̃0|0 ∈ Θ, yielding two
sequences {θt|t−1} and {θ̃t|t−1}, respectively. Then the filter composed of (1) and (4) is
invertible, i.e., there exists a constant c(·) > 1 such that as t → ∞, with probability one,

lim
t→∞

ct
(·)

∥∥∥θt|t−1 − θ̃t|t−1

∥∥∥2

(·)
→ 0, (18)

for any norm (·).

Equation (17) in Theorem 1 expresses a sufficient condition for a contraction of all prediction-
to-prediction mappings in the common norm ∥ · ∥P̄ , where P̄ is a constant matrix satisfying
inequality (17). For a scalar time-varying parameter, this condition is guaranteed irrespective
of the sequence {Pt} whenever the standard condition |Φ| < 1 holds. For the unit-root case
|Φ| = 1, it is sufficient that {Pt} is upper bounded while {αt} is strictly lower bounded away
from zero, in both cases uniformly across time, thereby preventing κt from approaching unity.
In the multiple-parameter setting, equation (17) essentially limits only the relative dynamics
of {Pt}, preventing the penalization of different elements of the time-varying parameter
from being too drastically different and varying too much across different time periods.
Condition (17) is less stringent when the persistence in the prediction step is reduced (i.e.,
for Φ closer to OK×K) and/or when the strength of concavity is increased (i.e., for larger
{αt}), as these conditions lead to stronger contractions (i.e., lower {κt}).

The presence of the scalar ρt > 0 in condition (17) indicates that the relative penalization
between parameters matters, but not the overall magnitude. This is because a contraction
in the norm ∥ · ∥P implies a contraction in the norm ∥ · ∥ρtP and vice versa. For this reason,
the sufficient condition (17) is automatically satisfied if the sequence {Pt} is a time-varying
scalar multiple of a static matrix; i.e., {Pt = ζtP} for some sequence {ζt > 0} and P ≻ OK×K

for which P ≻ Φ′PΦ. Matrix A in condition (17) is included to ensure that the contraction
coefficient with respect to the norm ∥ · ∥P̄ is bounded above, uniformly across time, at some
value strictly below unity.

Result (18) implies the exponential almost sure (e.a.s.) convergence of the different paths
{θt|t−1} and {θ̃t|t−1} based on the same data, such that differences due to either (a) varying
initializations θ0|0 and θ̃0|0 or (b) numerical errors due to finite computer precision disappear
exponentially fast as time progresses. Importantly, Theorem 1 relies on the researcher-
postulated, but not the true, observation density. Hence invertibility in the ProPar frame-
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work can be guaranteed without imposing additional restrictions on the true DGP, which
is convenient as the true DGP is typically unknown. We may even allow Assumptions 1
to 5 to fail for a particular realization of the observation, as long as this violation occurs
with probability zero. When the assumptions are guaranteed to hold for all observations
yt, the above stability result is entirely unaffected by model misspecification. In contrast,
the contraction property of explicit score-driven models is typically contingent on the true
DGP and the magnitude of the learning rate Ht = P−1

t . The maximum-permitted learning
rate in explicit score-driven models is closely tied to the properties of the true DGP, while
an infringement of this (typically unknown) upper bound may yield an explosive recursion
(e.g., Blasques et al., 2018, p. 1023).

In the optimization literature, similarly, Toulis and Airoldi (2017) find implicit stochastic-
gradient algorithms to be convergent under arbitrary misspecification of the learning rate
when the objective function is concave, whereas explicit methods require finetuning to avoid
divergence.

3.2 Local information-theoretic optimality properties

To illustrate the optimality properties of our framework, we outline several desirable char-
acteristics of the update procedure. We begin with investigating local optimality properties
and subsequently investigate global behavior. First, Definition 1 introduces the concept of
a likelihood-concordant update procedure.

Definition 1 (Likelihood concordance) A parameter update from a prediction θt|t−1 to
an update θt|t based on the observation yt is likelihood concordant if and only if log p(yt|θt|t) ≥
log p(yt|θt|t−1). The update is strictly likelihood concordant if in addition log p(yt|θt|t) =
log p(yt|θt|t−1) implies that θt|t = θt|t−1.

In our view, likelihood concordance serves as a useful minimal requirement for a sensible
parameter update. Specifically, if a parameter update is not likelihood concordant, the model
fit evaluated at the observation yt deteriorates after using yt to generate the update, which
is clearly undesirable. If Assumptions 1 and 2 hold, the ProPar update step is, due to the
optimization (1), automatically strictly likelihood concordant. In contrast, while standard
score-driven models with appropriately tuned learning rates may be likelihood concordant,
the general class is not. This is because explicit-gradient methods cannot be guaranteed to
improve the objective function unless the step size is arbitrarily small.

Likelihood concordance concerns an improvement in the likelihood of observing yt, which
is achieved by an updating scheme that utilizes the (same) observation yt. The observation
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yt may be atypical, however, such that likelihood concordance, while desirable, does not
necessarily imply an improvement in the expected likelihood of a theoretical redraw from
the true density. Nevertheless, it turns out that we can guarantee an expected improvement
in the likelihood for a new observation drawn from a set of positive probability in the vicinity
of the observation yt. To this end, we consider the Kullback-Leibler (KL) divergence of the
predicted and updated densities, where both may be misspecified, relative to the true density.
In computing the KL divergence, we consider only observations that are “similar” to yt.
Computing the difference between both KL divergences amounts to computing the difference
in cross-entropies, relative to the true density, of the updated and predicted densities. Hence
we define the local KL difference Dt(Y) with Y ⊆ Dom(y) = Dom(yt) as

Dt(Y) := E
y

[
log p(y|θt|t) − log p(y|θt|t−1)

∣∣∣ y ∈ Y
]
, (19)

where E
y
[·] denotes the expectation with respect to the true density p0(y|θ0

t ). Here we dis-
tinguish between the actual yt used to construct the update θt|t, and a theoretical redraw
from the true density, denoted y, which is assumed to be independent from yt. We refer to
updating schemes satisfying the condition Dt(Y) > 0, which is more stringent than likelihood
concordance, as being locally KL-improving.

Definition 2 (Locally KL-improving updates) A parameter update from prediction
θt|t−1 to update θt|t based on the observation yt is locally KL-improving if and only if ∃δ ≥ 0
such that, for Y := {y ∈ Dom(y)| ∥y − yt∥2 ≤ δ }, Pr(y ∈ Y|θ0

t ) :=
∫

Y p0(y|θ0
t )dy > 0 and

Dt(Y) > 0.

If the observations come from a discrete distribution and if θt|t ̸= θt|t−1, then strict likelihood
concordance trivially implies a local KL improvement. This is because, given that we have
observed yt, it is clear that Pr(y = yt|θ0

t ) > 0. Hence we may pick δ = 0 (which implies
Y = yt) to obtain the desired result. If the observations take values in a continuum, we
require the postulated density to be continuous, thus imposing no additional constraints
on the DGP. For observations from a continuous distribution, under Assumptions 1 and 2
and requiring merely continuity of our postulated density, we can show that all non-trivial
ProPar updates (i.e., for which θt|t ̸= θt|t−1) represent local KL improvements.

Proposition 3 (Local KL improvement of the ProPar update) Fix t > 0 and let
Assumptions 1 and 2 hold. In addition, let either (a) Pr(y = yt|θ0

t ) > 0 or (b) p(y|θ) be
continuous in y, ∀θ ∈ Θ. Then, with probability one, the ProPar update from θt|t−1 to θt|t

using the observation yt as in (1) is locally KL-improving if θt|t ̸= θt|t−1.
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Our concept of a locally KL-improving update is related to that in Blasques et al. (2015),
who introduce the notion of local realized KL optimality for univariate score-driven models
with continuous observations. However, our setup is different in several ways. Our def-
inition also encompasses discrete random variables and we limit neither yt nor θt to the
scalar case. The most important deviation is that we can dispense with the requirement in
Blasques et al. (2015) that θt|t is contained in an arbitrarily small neighborhood of θt|t−1.
This condition, which effectively limits the approach to infinitesimally small step sizes, is un-
avoidable in explicit score-driven models because, more generally, explicit-gradient methods
can only guarantee improvements of the objective function in the case of infinitesimal steps.
In practice, the condition that the update θt|t remains arbitrarily close to the prediction θt|t−1

requires that (a) the observation roughly confirms the accuracy of the prediction such that
the update is only marginally different, or (b) a sizeable adjustment appears to be needed
but the learning rate is kept arbitrarily small. These considerations suggest that information
in explicit score-driven models may be slow to be incorporated; indeed, one of our empirical
illustrations regarding the estimation of a time-varying market beta appears to confirm this
(see Section 5.1).

In sum, we find that ProPar models possess a stronger and more generally applicable form
of local optimality than explicit score-driven models. This result does not require us to place
any additional demands on the likelihood or the DGP; indeed, Assumptions 1 and 2 and
continuity of the postulated likelihood in the data are sufficient. The main disadvantage of
explicit-gradient methods with non-infinitesimal learning rates, namely that they can lead to
a deterioration of the objective function, is precluded when using implicit gradient methods.
While it is tempting to try and prove a guaranteed global KL improvement of the update by
investigating Dt(Y) with Y = Dom(yt), it is straightforward to show that this is generally
infeasible due to the stochastic nature of the observation and, hence, the update.

3.3 Global optimality properties

While there is no hope of generalizing Proposition 3 to the global setting, here we demonstrate
that the ProPar update is globally contracting towards some small region around the pseudo-
true parameter. To this end, we make the following additional assumptions:

Assumption 6 (Uniqueness of pseudo-truth) ∃θ⋆
t such that E

y
[log p(y|θ⋆

t )] > E
y
[log p(y|θ)]

∀θ ∈ Θ \ {θ⋆
t } and E

y
[∇(y|θ⋆

t )] = 0.

Assumption 7 (Bounded information) E
y
[∥∇(y|θ⋆

t )∥2] < ∞.
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Assumption 6 asserts the existence of a unique pseudo-truth θ⋆
t that maximizes the expected

(postulated) log-likelihood function E
y
[log p(y|θ⋆

t )]. Equivalently, θ⋆
t is the unique minimizer

of the KL divergence. If the logarithmic density is differentiable and strongly concave with
probability one—i.e., Assumptions 4 and 5 hold for some αt > 0—then the existence of a
unique pseudo-truth is automatic and need not be separately assumed. In the case of correct
model specification, the truth and pseudo-truth coincide (i.e., θ0

t = θ⋆
t ). Assumption 7 posits

that the norm of the squared score computed with the postulated density, and evaluated in
the pseudo-truth, is finite in expectation with respect to the true observation density.

When the prediction θt|t−1 is very close to the pseudo-truth θ⋆
t , the update θt|t will be in-

ferior to the prediction with some positive probability, as θt|t is based on the noisy realization
yt. Hence an improvement is harder to achieve when the prediction is quite accurate; indeed,
an improvement is impossible by Assumption 6 when the prediction is already pinpoint ac-
curate (i.e., in the case θt|t−1 = θ⋆

t ). On the other hand, when the prediction θt|t−1 is far from
the pseudo-truth θ⋆

t , the update θt|t will in expectation be superior to the prediction θt|t−1.
The next result makes explicit this tug of war between contractive and expansive forces.

Lemma 3 (Contractive and expansive forces) Fix t > 0 and let Assumptions 1 to 7
hold. Then

E
yt

[∥∥∥θt|t − θ⋆
t

∥∥∥2

Pt

]
︸ ︷︷ ︸
MSE after updating

≤
∥∥∥θt|t−1 − θ⋆

t

∥∥∥2

Pt︸ ︷︷ ︸
SE of prediction

+ 2E
yt

[
⟨∇(yt|θt|t) − ∇(yt|θ⋆

t ), θt|t − θ⋆
t ⟩
]

︸ ︷︷ ︸
≤ 0, contractive force

(20)

+ E
yt

[∥∥∥∇(yt|θ⋆
t )
∥∥∥2

Ht

]
︸ ︷︷ ︸

≥ 0, expansive force

,

where E
yt

[·] denotes the expectation with respect to the true density p0(yt|θ0
t ) and (M)SE de-

notes the (mean) squared error.

Lemma 3 shows that the expected squared distance of the update from the pseudo-truth
measured in a weighted norm (i.e., E

yt
[∥θt|t − θ⋆

t ∥2
Pt

]) is at most equal to the squared distance
of the prediction from the pseudo-truth (i.e., ∥θt|t−1 − θ⋆

t ∥2
Pt

) plus two additional terms. These
terms determine whether the update is expected to be an improvement or not. When the
researcher-postulated logarithmic density is concave with probability one (Assumption 5), we
have that ⟨∇(yt|θt|t)−∇(yt|θ⋆

t ), θt|t −θ⋆
t ⟩ is non-positive with probability one. Its expectation

is then automatically non-positive, such that this term can be seen to act as a contractive
force. The last term on the right-hand side involves a weighted norm of the postulated
gradient evaluated at the pseudo-truth and averaged over yt using the true density; hence,
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it reflects the irreducible noise obtained by updating based on the noisy observation yt.
Naturally, this term is non-negative and acts as an expansive force.

Importantly, the magnitude of the irreducible noise does not depend on the prediction
θt|t−1; hence, the strength of the expansive force remains constant as θt|t−1 is moved further
from the pseudo-truth θ⋆

t . On the other hand, the contractive force is typically increasing in
the distance of θt|t−1 from θ⋆

t , such that this contractive force tends to dominate when θt|t−1

is far from θ⋆
t . In the region where this contractive force dominates, we can expect updates

to be beneficial. Conversely, the region around θ⋆
t where the expansive force dominates is

known as the noise-dominated region (NDR, e.g. Ryu and Boyd, 2016, p. 15, Patrascu and
Necoara, 2018, p. 3).

While the assumption of an increasing contractive force as we move further from the
pseudo-truth is intuitive and verifiably true for most densities used in practice, it must
still be formalized, as we do below in Assumption 8. The assumption itself is somewhat
subtle to state, as it turns out that concavity (i.e., αt = 0) of the postulated logarithmic
observation density is neither necessary nor sufficient, while strong concavity (i.e., αt > 0)
is sufficient but stronger than necessary. Assumption 8 contains weaker versions of strong
concavity similar to the ones employed in the optimization literature (e.g., Toulis et al., 2021,
Assumption 3). Effectively, Assumption 8 ensures that the gradient is, on average, pointed
in the correct direction while its magnitude increases sufficiently fast as we move away from
the pseudo-truth.

Assumption 8 (Increasing expected gradient away from pseudo-truth)
a) ∃δ, C > 0 such that ∀θt|t ∈ Θ⋆

δ := {θ ∈ Θ| ∥θ⋆
t − θ∥2 ≥ δ},

2E
yt

[
⟨∇(yt|θt|t) − ∇(yt|θ⋆

t ), θt|t − θ⋆
t ⟩
]
< −E

yt

[
∥∇(yt|θ⋆

t )∥2
Ht

]
− C, (21)

b) ∃α̃t > 0 such that ∀θt|t ∈ Θ,

E
yt

[
⟨∇(yt|θt|t) − ∇(yt|θ⋆

t ), θt|t − θ⋆
t ⟩
]

≤ −α̃tE
yt

[
∥θt|t − θ⋆

t ∥2
]
. (22)

Assumption 8a posits that if θt|t is far enough from θ⋆
t , the contractive force dominates the

irreducible noise E
yt

[∥∇(yt|θ⋆
t )∥2

Ht
] by at least some positive amount C. Assumption 8b is a

stronger version of Assumption 8a and assumes that the contractive force scales with the
distance ∥θ⋆

t − θt|t∥2. Assumption 8b can in turn be seen as a weaker condition than αt-
strong concavity, as the latter implies the existence of some α̃t ≥ αt. This is because the
relationship in Assumption 8b is expressed (a) in terms of an expectation and (b) in relation
only to the pseudo-truth θ⋆

t , whereas αt-strong concavity would require a similar inequality
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to hold (a) with probability one and (b) for all pairs of points. Assumptions 8a and 8b thus
allow for some degree of non-concavity in the postulated log-likelihood function; combining
them with Lemma 3 yields the contraction result in Theorem 2.

Theorem 2 (Contraction to the NDR) Fix t > 0 and let Assumptions 1-4, 6-7 and 8a
hold. Then ∃δ, C > 0 such that ∀θt|t ∈ Θ⋆

δ := {θ ∈ Θ| ∥θ⋆
t − θ∥2 ≥ δ},

E
yt

[
∥θt|t − θ⋆

t ∥2
Pt

]
≤ ∥θt|t−1 − θ⋆

t ∥2
Pt

− C. (23)

If in addition 8b holds for some α̃t > 0, then ∀θt|t ∈ Θ,

E
yt

[
∥θt|t − θ⋆

t ∥2
Pt+2α̃tIK

]
≤ ∥θt|t−1 − θ⋆

t ∥2
Pt

+ E
yt

[
∥∇(yt|θ⋆

t )∥2
Ht

]
. (24)

In Theorem 2, Assumption 8a guarantees a fixed reduction in the expected squared error
when the prediction is far from the pseudo-truth. Under Assumption 8b, this result can be
strengthened to obtain a global linear contraction up to some level of accuracy determined
by the weighted magnitude of the additive noise. The speed of contraction is regulated by
the average curvature of the log-likelihood function from the prediction to the pseudo-truth,
measured by α̃t, and the size of the penalty Pt. Ceteris paribus, a smaller penalty or stronger
form of concavity yields a faster contraction. Moreover, the irreducible noise is increasing in
the size of the learning-rate matrixHt = P−1

t , such that larger learning rates (or, equivalently,
smaller penalties) lead to a larger NDR. The optimal choice of learning rate is therefore
determined by a trade-off between contraction speed when far from the pseudo-truth and
the size of the NDR. By continuity, the expected contraction in terms of the parameter θ
to the pseudo-truth θ⋆

t also implies a contraction on an upper bound in the expected log-
likelihood difference relative to the pseudo-truth; in the correctly specified case, this is the
KL divergence. We conclude that the ProPar update possesses advantageous optimality
properties that are unavailable in the explicit domain; this is the strength of preserving and
fully exploiting all information in the log-likelihood contribution using optimization.

4 Estimation

The parameters of the ProPar model, including the penalty matrices {Pt} in the update (1),
parameters ω and Φ in the prediction step (4), and any additional fixed shape parameters in
the observation density are generally unknown and need to be estimated. In our empirical
illustrations below, the penalty matrix is taken to be constant (i.e., Pt = P for all t) and tar-
geting is used for the initialization (alternatively, the initial parameter values θ0|0 could have
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been estimated). Determination of all aforementioned parameters can proceed by maximum-
likelihood (ML) estimation based on the standard prediction-error decomposition. We use
the results obtained in Blasques et al. (2022), who derive sufficient conditions for consistency
and asymptotic normality of the ML estimator for explicit score-driven models with a scalar
time-varying parameter (K = 1). They consider both the correctly and incorrectly specified
cases. A crucial ingredient of their proofs is the invertibility concept in Bougerol (1993) and
Straumann and Mikosch (2006).

In the asymptotic ML theory of Blasques et al. (2022), verifying the contraction condition
required for filter invertibility is often the hardest part. For concave logarithmic observation
densities, Theorem 1 presents a simpler and stronger form of invertibility for the ProPar
model than is available for explicit score-driven models. Therefore, under similar or possibly
weaker assumptions regarding the DGP and the parameter space of Pt and Φ, we may obtain
consistency and asymptotic normality of the ML estimator by applying the theory developed
in Blasques et al. (2022). Specifically, these assumptions include that the static parameters
to be estimated are identified, that the series {yt} is stationary ergodic and near-epoch de-
pendent with some finite moments, and that the postulated density is sufficiently continuous
in its arguments and has bounded derivatives. The latter conditions provide sufficient mo-
ments to be used in the appropriate law of large numbers and central-limit theorem (see
Blasques et al., 2022, Theorem 4.6 and 4.15 for details). For log-concave densities, we con-
jecture that for ProPar models these results can in principle be straightforwardly extended
to the multi-parameter case (K > 1), a full asymptotic investigation of which is beyond the
scope of this article.

5 Empirical illustrations

5.1 Linear regression with time-varying slope

The capital asset pricing Model (CAPM), an important benchmark in finance, links the
expected excess returns of individual assets to those of the market in a linear fashion. How-
ever, empirical evidence (e.g., Jagannathan and Wang, 1996) shows that the assumption of a
constant market coefficient β may be unrealistic, especially in equity markets. We examine
the possible time-varying nature of the CAPM market β using the ProPar framework. We
model the excess asset return yt as

yt = α + βt mt + εt, εt
i.i.d.∼ N(0, σ2), (25)
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where α is a static intercept, mt denotes the excess market return at time t, and εt is an
i.i.d. normally distributed shock with mean zero and variance σ2. The ProPar update is a
special case of the general setup of Example 1. For the prediction step, we use the linear
first-order specification (4). The penalty parameter or its inverse, the learning rate η > 0, is
assumed to be constant.

We apply the ProPar dynamic regression model (25) to simple daily excess returns of
Microsoft (MSFT) from 14 March 1986 until 29 April 2022, obtained from Yahoo Finance.1

For the market return and risk-free rate we use the series from Kenneth French’s database.2

Figure 1 shows the evolution of βt|t−1 for the ProPar model and its explicit version, i.e., the
explicit score-driven model. Figure 1 also contains the estimated impact curves βt|t − βt|t−1

with respect to the market return mt for a fixed yt = 0 and two different predictions (i.e.,
βt|t−1 = 1 and βt|t−1 = −0.5).

Figure 1: Time-evolution of βt|t−1 and estimated impact curve of the ProPar and explicit
score-driven (i.e., GAS) models for MSFT from March 1986 until April 2022. Vertical dotted
lines mark Black Monday on October 19, 1987.

In Figure 1, we observe that the ProPar and explicit score-driven models generally gen-
erate a similar series {βt|t−1}, while the path generated by the ProPar model seems to be
leading. In particular, the explicit score-driven model appears to be slow to recover from
large shocks, such as the crash on Black Monday, 1987. The reason for this delayed reaction
is that, in explicit score-driven models, the learning rate η must be substantially reduced
to deal with outliers, even though this implies a reduced responsiveness in the remainder of
the sample, as is evident around 1994 and 2004. This problem is drastically reduced for the
ProPar model by the more favorable (asymptotic) impact curve with respect to the exoge-
nous input. In Figure 1, we observe an unbounded quadratic impact of mt on the adjustment
βt|t − βt|t−1 in the explicit score-driven model, while the ProPar impact curve is similar for

1https://finance.yahoo.com/quote/MSFT/history?p=MSFT
2https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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small |mt| but bounded for large |mt|. Specifically, for ProPar we observe that |mt| → ∞
implies βt|t −βt|t−1 → −βt|t−1 and hence βt|t → 0. When the exogenous variable is excessively
large, therefore, the dynamic slope βt|t under the ProPar specification reverts to zero. This
enhanced stability property allows ProPar’s estimated learning rate to substantially exceed
that of the explicit score-driven model (η̂ = 0.0169 versus η̂ = 0.0092 for ProPar and the
explicit method, respectively), which explains ProPar’s higher sensitivity during non-crisis
times.

5.2 Time-varying volatility

Modeling asset-price volatility plays a central role in finance and provides important input
for risk management, among others. We consider a time-varying volatility model using the
ProPar filter. Specifically, we model the logarithmic asset return yt as

yt = µ+ σt zt, σt = exp(ht) zt
i.i.d.∼ N(0, 1), (26)

where µ is a static mean, ht = log σt is the dynamic conditional logarithmic volatility, and
zt is a standardized i.i.d. normally distributed shock. The ProPar update and prediction are

ht|t = ht|t−1 + η

( yt − µ

exp(ht|t)

)2

− 1
 , ht+1|t = ω + ϕht|t, (27)

where the prediction parameters (i.e., ω ∈ R and ϕ ∈ [0, 1)) and the learning rate (i.e., η > 0)
are to be estimated by maximum likelihood. The ProPar update ht|t can be analytically
solved from equation (27) using the Lambert W function, which is available in most standard
software packages.

We estimate the ProPar volatility model in (27) for daily S&P500 returns from 4 January
2000 until 28 June 2022, obtained from the Oxford-Man library. We compare the ProPar
model against its explicit (i.e., GAS) counterpart, which can be obtained by replacing ht|t

on the right-hand-side of update (27) by ht|t−1. In addition, we estimate Nelson’s (1991)
EGARCH model without a leverage term. Figure 2 shows the estimated paths of σt|t−1 for
the different models and the estimated impact curves for σt|t−1 = 1.

Figure 2 reveals that the ProPar filter closely aligns with the EGARCH model. The
explicit score-driven model displays a similar pattern, but is more sensitive to large shocks
during low-volatility periods. The estimated impact curves demonstrate that the ProPar
model is less sensitive to large shocks than the EGARCH model, which in turn is more robust
than the explicit score-driven model. In the absence of large shocks, the three models closely
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Figure 2: Time-evolution of σt|t−1 and estimated impact curve of the ProPar, explicit score-
driven (i.e., GAS) and EGARCH models for daily S&P500 returns from January 2000 until
June 2022.

align. In terms of fit, we find minor advantages of the ProPar model over the EGARCH
model, which in turn outperforms the explicit score-driven model. For example, the log-
likelihood values are −7781.4, −7790.3 and −7795.7 for the ProPar, EGARCH, and explicit
score-driven models, respectively. We find a similar result in terms of the mean squared
error (MSE) when compared to the 5-minute realized variance (5.033, 5.047, and 5.120,
respectively). Similarly, the ProPar update σ2

t|t outperforms its explicit counterpart (MSE
4.902 versus 4.972, respectively), which suggests that the ProPar updating step may be
useful for now-casting. We conclude that the ProPar framework can be used to construct a
competitive volatility model with an ingrained robustness to outliers, even when it is based
on a Gaussian observation density. This illustrates that the robustness of ProPar comes
about by a different mechanism than in explicit score-driven models, which typically require
heavy-tailed observation densities.

5.3 Time-varying growth at risk

Modeling macroeconomic downside risk is crucial for policymakers. The growth-at-risk
(GaR) framework refers to conditional lower quantiles of GDP growth and has become a
popular measure for macroeconomic risk assessment. Typically, estimation is performed by
means of quantile regressions (QRs; see Koenker and Hallock, 2001). These regressions usu-
ally rely on a set of exogenous variables; e.g., capturing the relationship between GaR on
the one hand and economic and financial conditions on the other (Adrian et al., 2019).

We propose to endogenously update a time-varying conditional quantile by postulating
an asymmetric Laplace distribution with a time-varying location. Maximizing such a density
is equivalent to the minimization of Koenker and Bassett’s (1978) QR check function, see
Koenker and Machado, 1999. The ProPar update for the τ -level quantile at time t, denoted
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by qt|t(τ), can be computed in closed form as

qt|t(τ) = 1[yt ≤ qt|t−1(τ)] max{yt, q
e
t|t(τ)} + 1[yt > qt|t−1(τ)] min{yt, q

e
t|t(τ)}, (28)

where yt denotes the GDP growth rate at time t, while 1[·] equals an indicator function that
equals one if the condition in square brackets is satisfied and zero otherwise. The ProPar
update (28) is expressed in terms of the explicit score-driven update, denoted qe

t|t(τ), which
is obtained as follows:

qe
t|t(τ) = qt|t−1(τ) + η

σ
(τ − 1[yt ≤ qt|t−1(τ)]), (29)

where η > 0 and σ > 0 denote the learning rate and a dispersion parameter, respectively,
which are assumed constant over time. The form of qe

t|t(τ) is the same as in Engle and
Manganelli’s (2004) adaptive CAViaR model, yielding a downward adjustment of size η(τ −
1)/σ when the observed growth yt falls below the quantile prediction qt|t−1 and an upward
adjustment of size ητ/σ otherwise. Equation (28) reveals that the ProPar update is a
shrunken version of the explicit update; in particular, ProPar has the desirable property
that the update can never be more extreme than (i.e., is capped at) the observation yt.

Quantile crossing poses an important problem in practice when simultaneously model-
ing multiple quantiles using QRs. Thanks to the particular form of the update (28), the
ProPar model can ensure an appropriate ordering of the quantiles using simple parameter
restrictions. Specifically, if we assume that all quantile updates share the same learning
rate η and dispersion parameter σ, then the updated quantiles remain correctly ordered.
To illustrate, consider an observation yt that falls between the predictions of two different
quantiles. Consequently, one must be updated downward, the other upward. Because the
ProPar update is capped at the observation, the two quantiles cannot cross. In contrast, the
explicit score-driven update generally permits such crossings to occur. To guarantee that the
correct ordering of quantiles is maintained not only in the update but also in the prediction
step, we specify the prediction as

qt+1|t(τ) = c(τ) (1 − ϕ) + ϕ qt|t(τ) + γ xt, (30)

with an autoregressive parameter ϕ ∈ [0, 1) that is common across quantiles and intercepts
c(τ) that are strictly ordered in τ . Furthermore, xt denotes an exogenous variable available
at time t with common slope parameter γ. While it may be useful to allow for different sen-
sitivities to the exogenous input xt for different quantiles, this has the potential to introduce
quantile crossings. Moreover, we find for our application that the likelihood improvement of
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quantile specific slopes γ(τ) is too small to justify the additional model complexity.
We estimate the 5, 10, 25, and 50 percent GaR using the ProPar and adaptive CAViaR

models using quarterly US GDP growth rates from 1971-Q1 until 2021-Q4. For the exoge-
nous variable xt, we follow Adrian et al. (2019) in using the National Financial Conditions
Index (NFCI), where quarterly values are constructed by averaging the corresponding weekly
values. Both time series were obtained from the FRED database.3 To reduce the number
of parameters to be estimated, we use a targeting approach and set c(τ) equal to the corre-
sponding empirical quantiles. The remaining static parameters are estimated in a composite-
likelihood fashion, comparable to Zou and Yuan (2008). We fix the scale parameter σ = 1,
as it does not influence the quantile dynamics and can be treated as a nuisance parameter
(e.g., Geraci and Bottai, 2007). Our postulated log-likelihood function equals the sum of
four logarithmic Laplace densities, of which three are asymmetric and one is symmetric (i.e.,
the one corresponding to the median).

Figure 3: Growth-at-risk estimates for the ProPar and adaptive CAViaR models for τ = 0.05,
τ = 0.10, τ = 0.25 and τ = 0.50, 1971-Q1 until 2021-Q4.

Figure 3 shows the 5, 10, 25, and 50 percent GaR estimates obtained from the ProPar
model (28) and adaptive CAViaR model (29). It reveals that the ProPar model is more
responsive than the adaptive CAViaR model. For example, the ProPar model shows greater
downward adjustments during the onset of the COVID-19 pandemic in April 2020 in com-
bination with a faster mean reversion after the crisis. This behavior is made possible by
the enhanced stability of the implicit update (28) relative to the explicit update (29), which
means that the estimated learning rate η of the ProPar model much exceeds that of the
adaptive CAViaR model (η̂ = 4.002 and η̂ = 0.804 for ProPar and adaptive CAViaR, re-
spectively). Furthermore, the adaptive CAViaR model occasionally suffers from quantile
crossing, while all ProPar quantiles remain strictly ordered at all times. When considering
the median (τ = 0.50), the adaptive CARiaR update frequently cuts across (i.e., overshoots)

3See https://fred.stlouisfed.org/series/GDP and https://fred.stlouisfed.org/series/NFCI.
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the observation yt, whereas the ProPar model, with its capped updates, produces more sta-
ble dynamics that closely mimic the data. In line with Adrian et al.’s (2019) results, we find
that the effect of the NFCI on the quantiles is negative (γ̂ = −0.052 and γ̂ = −0.019 for
ProPar and adaptive CAViaR, respectively), such that higher values of the NFCI correspond
to more negative quantiles.

6 Conclusion

This article introduced a novel framework for updating time-varying parameters in an
observation-driven setting. Specifically, we proposed a proximal-parameter update that max-
imizes, at each point in time, the logarithmic observation density subject to a quadratic
penalty centered at the one-step-ahead prediction. The first-order condition associated with
this maximization can be written as an implicit stochastic-gradient update, connecting the
proposed method with recent advances in statistics and machine learning. We derived model
invertibility for the class of (possibly misspecified) concave logarithmic observation densities
and formulated sufficient conditions for a global contraction of the parameter update towards
a pseudo-truth. We demonstrated that the class of explicit score-driven models—known var-
iously as dynamic conditional score (DCS; Harvey, 2013) or generalized autoregressive score
(GAS; Creal et al., 2013) models—can be obtained within the ProPar framework by replacing
the logarithmic observation density at each point in time by its local-linear approximation
around the prediction. More directly, this class of models can be obtained by replacing
ProPar’s implicit stochastic-gradient update with its explicit version. Comparing the two
methods, we found that the ProPar model extends several attractive properties of explicit
score-driven models from the local to the global setting. In addition, it admits stronger
contraction properties, yielding a well-behaved filter regardless of multiple types of misspec-
ification. Empirical benefits were demonstrated in three illustrations involving asset pricing,
stock-market volatility, and growth-at-risk.
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A Example 1: Linear regression

Consider the linear regression model with dependent variable yt ∈ R and independent vari-
able xt ∈ RK , that is,

yt = β′
t xt + εt, εt

i.i.d.∼ N(0, σ2), (A.1)

where βt is a K×1 vector of time-varying parameters and εt is an i.i.d. normally distributed
innovation with variance σ2.

The log-likelihood contribution log p(yt|β) is obviously twice continuously differentiable
with respect to β for all yt, such that Assumption 4 (differentiability) holds. In addition, the
Hessian is equal to − 1

σ2xtx
′
t and is therefore negative semi-definite. Combined with strong

concavity of the penalty this means that the regularized log likelihood f(β|yt, βt|t−1, Pt) :=
log p(yt|β) − 1

2

∥∥∥β − βt|t−1

∥∥∥2

Pt

is strongly concave in β. Because f(β|yt, βt|t−1, Pt) is finite-
valued for any β ∈ RK , we have that it is thus strictly proper concave such that Assumption
2 (strictly concave regularized log likelihood) holds.

The first-order condition (FOC) of the ProPar update at time t associated with the model
(A.1) takes the following form

βt|t = βt|t−1 +Ht∇(yt|βt|t, xt), (A.2)

where Ht = P−1
t is the learning-rate matrix and ∇(yt|βt|t, xt) denotes the implicit score given

as,

∇(yt|βt|t, xt) =
yt − β′

t|t xt

σ2 xt. (A.3)

Note that strong concavity of f(β|yt, βt|t−1, Pt) and the unrestricted nature of the optimiza-
tion (i.e. we maximize over RK) imply that if the FOC (A.2) has a solution then it is the
unique global maximizer. Solving the FOC will thus also directly verify Assumptions 1
(existence) and 3 (interior solution).

Collecting all terms containing βt|t on the left-hand side, we may write the FOC in (A.2)
as

(IK +Ht
xtx

′
t

σ2 )βt|t = βt|t−1 +Ht
ytxt

σ2 . (A.4)

Now using the Sherman-Morrison identity, we left-multiply with (IK + Ht
xtx′

t

σ2 )−1 = IK −
Htxtx′

t

σ2+x′
tHtxt

, which yields

βt|t = (IK − Htxtx
′
t

σ2 + x′
tHtxt

)(βt|t−1 +Ht
ytxt

σ2 ). (A.5)
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Eliminating brackets and using the notation ∥xt∥2
Ht

:= x′
tHtxt then gives

βt|t = βt|t−1 +Ht
ytxt

σ2 − Htxtx
′
t

σ2 + ∥xt∥2
Ht

βt|t−1 − Htxtx
′
t

σ2 + ∥xt∥2
Ht

Ht
ytxt

σ2 , (A.6)

where changing the ordering using the fact that yt, σ2, x′
tβt|t−1 and ∥xt∥2

Ht
are scalars and

again using the definition of ∥xt∥2
Ht

, we get

βt|t = βt|t−1 +Ht
yt

σ2xt − 1
σ2 + ∥xt∥2

Ht

Htx
′
tβt|t−1xt −

∥xt∥2
Ht

σ2 + ∥xt∥2
Ht

Ht
yt

σ2xt. (A.7)

Multiplying the second and third term on the right-hand side with σ2+∥xt∥2
Ht

σ2+∥xt∥2
Ht

and σ2

σ2 , respec-
tively, allows us to combine the second through fourth terms as follows

βt|t = βt|t−1 + σ2

σ2 + ∥xt∥2
Ht

Ht

yt − x′
tβt|t−1

σ2 xt, (A.8)

where using the definition of the explicit gradient ∇(yt|βt|t−1, xt) gives the final result

βt|t = βt|t−1 + σ2

σ2 + ∥xt∥2
Ht

Ht∇(yt|βt|t−1, xt). (A.9)

B Proofs

B.1 Proposition 1: Gradient alignment

By Assumption 2 we have that the regularized log likelihood f(θ|yt, θt|t−1) is concave in θ

with probability one in yt. As a result, we have for almost every yt that

f(θt|t|yt, θt|t−1) ≤ f(θt|t−1|yt, θt|t−1) + ⟨∇(yt|θt|t−1), θt|t − θt|t−1⟩, (B.10)

reordering and using the fact that θt|t maximizes f(θ|yt, θt|t−1) we obtain

⟨∇(yt|θt|t−1), θt|t − θt|t−1⟩ ≥ f(θt|t|yt, θt|t−1) − f(θt|t−1|yt, θt|t−1) ≥ 0, (B.11)

which yields the desired result. Filling in the first-order condition produces

⟨∇(yt|θt|t−1), Ht∇(yt|θt|t)⟩ ≥ 0, (B.12)

providing an equivalent statement under Assumptions 3 and 4.
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B.2 Corollary 1: Gradient-sign concordance in one dimension

Using the result of Proposition 1, we have in the scalar case that ∇(yt|θt|t−1)∇(yt|θt|t) ≥ 0
using the strict positivity of the learning rate. Furthermore, ∇(yt|θt|t) = 0 implies that
θt|t = θt|t−1 by the first-order condition, in turn implying that ∇(yt|θt|t−1) = ∇(yt|θt|t) = 0.
Conversely, if ∇(yt|θt|t−1) = 0, we have that θt|t = θt|t−1, as filling in θt|t−1 solves the first-
order condition (and Assumption 2 implies uniqueness of θt|t). Therefore, ∇(yt|θt|t−1) = 0 if
and only if ∇(yt|θt|t) = 0. Combining this with the fact that ∇(yt|θt|t−1)∇(yt|θt|t) ≥ 0, we
obtain sgn(∇(yt|θt|t)) = sgn(∇(yt|θt|t−1)).

B.3 Proposition 2: Step-size shrinkage

Using the first-order conditions of the implicit and explicit update we obtain that the differ-
ence in the update θt|t − θe

t|t can be written as

θt|t − θe
t|t = θt|t−1 +Ht∇(yt|θt|t) − θt|t−1 −Ht∇(yt|θt|t−1), (B.13)

whereby rearranging yields

θe
t|t − θt|t−1 = θt|t − θt|t−1 −Ht[∇(yt|θt|t) − ∇(yt|θt|t−1)]. (B.14)

Pre-multiplying with H
−1/2
t = P

1/2
t , which denotes the symmetric square root of H−1

t = Pt,
and taking the quadratic norm yields

∥θe
t|t − θt|t−1∥2

Pt
= ∥θt|t − θt|t−1∥2

Pt
− 2⟨∇(yt|θt|t) − ∇(yt|θt|t−1), θt|t − θt|t−1⟩

+ ∥∇(yt|θt|t) − ∇(yt|θt|t−1)∥2
Ht
.

(B.15)

Now using that ∥∇(yt|θt|t) − ∇(yt|θt|t−1)∥2
Ht

≥ 0 and that ⟨∇(yt|θt|t) − ∇(yt|θt|t−1), θt|t −
θt|t−1⟩ ≤ −αt∥θt|t − θt|t−1∥2 by (strong) concavity of the log likelihood from Assumption 5,
we obtain

∥θt|t − θt|t−1∥2
Pt+2αtIK

≤ ∥θe
t|t − θt|t−1∥2

Pt
, (B.16)

which concludes the proof.

B.4 Lemma 1: Prediction-to-update stability

Consider two predictions θt|t−1 and θ̃t|t−1 that are updated based on the observation yt to θt|t

and θ̃t|t, respectively. We consider the weighted norm with respect to Pt of the difference in
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updates and substitute the first-order conditions. This yields

∥θ̃t|t − θt|t∥2
Pt

= ⟨Ptθ̃t|t−1 + ∇(yt|θ̃t|t) − Ptθt|t−1 − ∇(yt|θt|t), θ̃t|t − θt|t⟩

= ⟨Pt(θ̃t|t−1 − θt|t−1), θ̃t|t − θt|t⟩ + ⟨∇(yt|θ̃t|t) − ∇(yt|θt|t), θ̃t|t − θt|t⟩,
(B.17)

where the second term is non-positive by concavity of the likelihood. We now use the fact
that ⟨a, b⟩ ≤ 1

2∥a∥2 + 1
2∥b∥2 for any a, b ∈ Rd, which follows from ∥a − b∥2 = ⟨a − b, a −

b⟩ = ∥a∥2 + ∥b∥2 − 2⟨a, b⟩ ≥ 0 and reordering. Filling in a = P
1/2
t (θ̃t|t−1 − θt|t−1) and

b = P
1/2
t (θ̃t|t − θt|t) and also using concavity of the second term yields

∥θ̃t|t − θt|t∥2
Pt

≤ 1
2∥θ̃t|t−1 − θt|t−1∥2

Pt
+ 1

2∥θ̃t|t − θt|t∥2
Pt

− αt∥θ̃t|t − θt|t∥2, (B.18)

from which it straightforwardly follows that

∥θ̃t|t − θt|t∥2
Pt+2αtIK

≤ ∥θ̃t|t−1 − θt|t−1∥2
Pt
. (B.19)

This proves that under Assumptions 1-5, including concavity of the likelihood, we have that
the ProPar update is non-expansive with respect the ∥ · ∥Pt norm. The inequality is strict in
the case of a strongly concave density (αt > 0) and if θt|t ̸= θ̃t|t.

For the second result, we take the derivative of the first-order condition with respect to
θt|t−1. Assuming that the log likelihood is twice differentiable, we obtain

Ht∇2(yt|θt|t)
∂θt|t

∂θ′
t|t−1

= ∂θt|t

∂θ′
t|t−1

− IK , (B.20)

which may be rearranged to yield

∂θt|t

∂θ′
t|t−1

= [Pt − ∇2(yt|θt|t)]−1Pt, (B.21)

whereby the existence of [Pt − ∇2(yt|θt|t)]−1 is guaranteed by the twice differentiability as-
sumption and the strict concavity of the regularized likelihood in Assumption 2. This is
because under these assumptions the second-order condition reads

∇2(yt|θt|t) − Pt ≺ OK×K , (B.22)

where OK×K the K × K zero matrix and ≺ indicates that the right-hand side minus the
left-hand side yields a positive definite matrix. Therefore, Pt −∇2(yt|θt|t) ≻ OK×K is positive
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definite and invertible. As a result, we have that ∂θt|t
∂θ′

t|t−1
is the product of two (symmetric)

positive definite matrices, such that its smallest eigenvalue is strictly larger than 0. To derive
an upper bound for the eigenvalues of ∂θt|t

∂θ′
t|t−1

we rewrite (B.21) as follows

∂θt|t

∂θ′
t|t−1

= IK − [Pt − ∇2(yt|θt|t)]−1(−∇2(yt|θt|t)), (B.23)

where (−∇2(yt|θt|t)) is positive semi-definite by Assumption 5, such that [Pt−∇2(yt|θt|t)]−1(−∇2(yt|θt|t))
has non-negative eigenvalues. It follows that ∂θt|t

∂θ′
t|t−1

has maximum eigenvalue 1. Note that in
the case of strict concavity of the log likelihood, we have that the second term has eigenvalues
strictly larger than 0, such that the maximum eigenvalue of ∂θt|t

∂θ′
t|t−1

is strictly less than 1.

B.5 Lemma 2: Prediction-to-prediction stability

The update-to-prediction mapping from time t to t+ 1 can be written as

∥θt+1|t − θ̃t+1|t∥2
Pt

= ∥Φ(θt|t − θ̃t|t)∥2
Pt

= −∥θt|t − θ̃t|t∥2
Pt−Φ′PtΦ + ∥θt|t − θ̃t|t∥2

Pt
(B.24)

≤ −λmin(Pt − Φ′PtΦ)∥θt|t − θ̃t|t∥2 + ∥θt|t − θ̃t|t∥2
Pt

(B.25)

≤ ε1,t∥θt|t − θ̃t|t∥2
Pt
, (B.26)

where the second line uses that λmin(Pt − Φ′PtΦ) ≥ 0 by positive semi-definiteness of Pt −
Φ′PtΦ, while the last line uses −∥ · ∥2 ≤ −λmax(Pt)−1∥ · ∥2

Pt
. Here ε1,t is given by

ε1,t = λmax(Pt) − λmin(Pt − Φ′PtΦ)
λmax(Pt)

. (B.27)

By positive definiteness of Pt it follows that Φ′PtΦ is positive semi-definite due to its quadratic
form. Therefore, we have that 0 ≤ λmax(Φ′PtΦ) = λmax(Pt − (Pt − Φ′PtΦ)) ≤ λmax(Pt) +
λmax(−(Pt − Φ′PtΦ)) = λmax(Pt) − λmin(Pt − Φ′PtΦ) ≤ λmax(Pt), such that ε1,t ∈ [0, 1]. If
Pt − Φ′PtΦ is positive definite, we have that ε1,t ∈ [0, 1).

In addition, we can write the result of Lemma 1 as

(1 + 2αt

λmax(Pt)
)∥θ̃t|t − θt|t∥2

Pt
≤ ∥θ̃t|t − θt|t∥2

Pt+2αtIK
≤ ∥θ̃t|t−1 − θt|t−1∥2

Pt
, (B.28)

which yields
∥θ̃t|t − θt|t∥2

Pt
≤ ε2,t∥θ̃t|t−1 − θt|t−1∥2

Pt
, (B.29)
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where ε2,t is given as

ε2,t = λmax(Pt)
λmax(Pt) + 2αt

. (B.30)

Clearly, we have that ε2,t ∈ (0, 1] if αt ≥ 0 and ε2,t ∈ (0, 1) if αt > 0.
Combining (B.26) and (B.29), we obtain

∥θt+1|t − θ̃t+1|t∥2
Pt

≤ κt∥θt|t−1 − θ̃t|t−1∥2
Pt
, (B.31)

where κt is given as

κt = ε1,tε2,t = λmax(Pt) − λmin(Pt − Φ′PtΦ)
λmax(Pt)

λmax(Pt)
λmax(Pt) + 2αt

(B.32)

= λmax(Pt) − λmin(Pt − Φ′PtΦ)
λmax(Pt) + 2αt

, (B.33)

where if either αt > 0 or Pt−Φ′PtΦ positive definite we have that κt ∈ [0, 1), which concludes
the proof.

B.6 Theorem 1: Invertibility

By assumption there exists a P̄ such that we have for all Pt that κtPt ≺ ρtP̄ ⪯ Pt for some
ρt > 0. This condition implies that the prediction-to-prediction mapping from time t to t+1
is strictly contracting in the norm ∥ · ∥ρtP̄ . To see this, we may write

∥θt+1|t − θ̃t+1|t∥2
ρtP̄ ≤ ∥θt+1|t − θ̃t+1|t∥2

Pt
≤ κt∥θt|t−1 − θ̃t|t−1∥2

Pt
(B.34)

= −∥θt|t−1 − θ̃t|t−1∥2
ρtP̄ −κtPt

+ ∥θt|t−1 − θ̃t|t−1∥2
ρtP̄ (B.35)

≤ −λmin(ρtP̄ − κtPt)∥θt|t−1 − θ̃t|t−1∥2 + ∥θt|t−1 − θ̃t|t−1∥2
ρtP̄ (B.36)

≤ δt∥θt|t−1 − θ̃t|t−1∥2
ρtP̄ , (B.37)

where δt is given as

δt = λmax(ρtP̄ ) − λmin(ρtP̄ − κtPt)
λmax(ρtP̄ )

. (B.38)

Due to the condition ρtP̄ − κtPt ⪰ ρtA ≻ 0, we obtain that δt ∈ [0, δ], where δ is given as

δ = λmax(ρtP̄ ) − λmin(ρtA)
λmax(ρtP̄ )

= λmax(P̄ ) − λmin(A)
λmax(P̄ )

, (B.39)

where due to positive definiteness of P̄ and A we have that δ ∈ (0, 1).
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It now follows that

∥θt+1|t − θ̃t+1|t∥2
P̄ ≤ δ∥θt|t−1 − θ̃t|t−1∥2

P̄ , (B.40)

such that every prediction-to-prediction mapping is now strictly contracting in a common
norm ∥ · ∥2

P̄
with at least strength of contraction δ ∈ (0, 1). Therefore we may pick any

c ∈ (1, 1
δ
) and obtain that

lim
t→∞

ct∥θt|t−1 − θ̃t|t−1∥2
P̄ → 0, (B.41)

such that differences due to initialization disappear exponentially fast almost surely. By
norm equivalence it follows that this difference convergences to 0 in any norm.

B.7 Proposition 3: Local KL improvement of the ProPar update

First note that if θt|t ̸= θt|t−1, then we must have that log p(yt|θt|t) > log p(yt|θt|t−1). This
follows directly from the definition of θt|t as the maximizer of the regularized log-likelihood
contribution f(θ|yt, θt|t−1, Pt) := log p(yt|θ) − 1

2

∥∥∥θ − θt|t−1

∥∥∥2

Pt

. For the discrete case, i.e.
Pr(y = yt|θ0

t ) > 0, we may therefore pick δ = 0 such that Y = yt and obtain the desired
result.

In the continuous case, we may use the assumed continuity of the postulated density
in terms of y to extend the improvement at yt to a neighbourhood of yt. Namely, by
continuity, ∀ε > 0 with 0 < ε < log p(yt|θt|t) − log p(yt|θt|t−1), we have that ∃δ > 0 such
that ∀y ∈ Y := {y ∈ Dom(y)| ∥y − yt∥2 ≤ δ }, we have that log p(y|θt|t) − log p(y|θt|t−1) ≥
log p(yt|θt|t)− log p(yt|θt|t−1)−ε > 0. In addition, we have that ∀δ > 0, that Pr(y ∈ Y|θ0

t ) :=∫
Y p0(y|θ0

t )dy > 0 (otherwise yt could not have occurred), which completes the proof.

B.8 Lemma 3: Contractive and expansive forces

We write the first-order condition of the ProPar update as follows

H
−1/2
t (θt|t − θt|t−1) = H

1/2
t ∇(yt|θt|t), (B.42)

adding H1/2
t ∇(yt|θ⋆

t ) −H
−1/2
t θ⋆

t to both sides and rearranging gives

H
−1/2
t (θt|t − θ⋆

t ) +H
1/2
t (∇(yt|θ⋆

t ) − ∇(yt|θt|t)) = H
−1/2
t (θt|t−1 − θ⋆

t ) +H
1/2
t ∇(yt|θ⋆

t ). (B.43)
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Taking the quadratic norm yields

∥θt|t − θ⋆
t ∥2

Pt
+ ∥∇(yt|θ⋆

t ) − ∇(yt|θt|t)∥2
Ht

+ 2⟨∇(yt|θ⋆
t ) − ∇(yt|θt|t), θt|t − θ⋆

t ⟩ (B.44)

= ∥θt|t−1 − θ⋆
t ∥2

Pt
+ ∥∇(yt|θ⋆

t )∥2
Ht

+ 2⟨∇(yt|θ⋆
t ), θt|t−1 − θ⋆

t ⟩. (B.45)

We now take the expectation over yt with respect to the DGP on both sides and use that
E
yt

[∇(yt|θ⋆
t )] = 0 by Assumption 6 and that ∥∇(yt|θ⋆

t ) − ∇(yt|θt|t)∥2
Ht

≥ 0 to obtain

E
yt

[∥θt|t−θ⋆
t ∥2

Pt
] ≤ ∥θt|t−1−θ⋆

t ∥2
Pt

+2E
yt

[⟨∇(yt|θt|t)−∇(yt|θ⋆
t ), θt|t−θ⋆

t ⟩]+E
yt

[∥∇(yt|θ⋆
t )∥2

Ht
], (B.46)

which concludes the proof.

B.9 Theorem 2: Contraction to the NDR

The statements follow directly from substituting the expressions in Assumptions 8a and 8b
in Lemma 3. Note that Assumption 5 (concave log-likelihood function) is not needed for
deriving the particular expression in Lemma 3; it is only used to determine the signs of the
components on the right-hand side.
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