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Abstract

We propose a credit portfolio approach for evaluating systemic risk and at-
tributing it across institutions. We construct a model that can be estimated from
high-frequency CDS data. This captures risks from privately held institutions and
cooperative banks, extending approaches that rely on information from the public
equity market. We account for correlated losses between the institutions, overcom-
ing a modeling weakness in earlier studies. A latent risk factor with heterogeneous
exposures fitted on the implied default probabilities quantifies the potential for joint
distress and losses. We apply the model to a universe of Dutch banks and insurers.
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Executive Summary

We propose a credit portfolio approach for evaluating systemic risk and attributing it
across institutions. For this purpose, we construct a model that can be estimated from
credit default swap (CDS) data. Our goal is to capture risks from privately held insti-
tutions and cooperative banks, extending approaches that rely on information from the
public equity market. We apply the model to key private institutions in the Dutch fi-
nancial sector to measure systemic risk, and to rank the systemic players on this market
according to the fraction of systemic risk that can be attributed to them.

The canonical approach to measuring various aspects of systemic risk in banking relies
on equity return correlations to assess interdependencies between banks’ losses above
Value at Risk (Adrian and Brunnermeier, 2016; Acharya et al., 2017). But for many
countries this approach is thwarted by the presence of state-owned and/or co-operative
banks. To circumvent this problem we extend the Adrian and Brunnermeier (2016)’s
CoVaR approach and Acharya et al. (2017)’s Marginal Expected Shortfall approach by
relying on CDS contracts rather than equity returns to extract the required information
on covariance structure.

First, we show that monitoring the financial risk of an institution in isolation of the
risks of its counterparties, and of the system as a whole, may offer a misleading ranking
of systemically important financial institutions. We relate our systemic ranking to the
O-SII regulatory framework and pointing out similarities and differences argue that a
holistic risk approach could improve the regulatory process for setting systemic risk buffer
requirements.

Second, we illustrate that high-frequency data from the CDS market can be used
to monitor ex-ante the build-up of systemic risk and systemic dependencies. This is
particularly valuable in the context of the Dutch financial sector, where key institutions
are privately held, and market data on their equity value is not available.

Third, we evaluate tail dependencies and link systemic risk to the potential for joint
distress between institutions and consequently joint large joint losses. A latent risk factor
with heterogeneous exposures fitted on the implied default probabilities quantifies this
potential. In this way, we overcome a modeling weakness in earlier studies.

Our framework does not require a particular view on what is causing systemic losses,
but rather offers an approach that can identify the potential for high joint distress based
on observed dependencies between traded credit protection on the market whatever the
underlying channels of interdependencies are. In reality, we know that systemic link-
ages arise directly from the channels by which banks operate on the interbank market.
Banks and insurers also tend to trade directly with each other on the derivative markets.
Also, systemic dependencies may arise indirectly, due to common exposure of the key
institutions to the same risk sources - either on the liability side, when funding sources
are similar, or on the asset side, when the institutions hold similar or correlated asset
portfolios.

A natural extension of the current study would be to expand the universe of insti-
tutions that are considered and to observe if those rankings systematically differ across
European countries. Also, our framework could be extended to provide a quantitative
basis for determining the size of the capital buffers that institutions need once they are
designated as systemic. A larger sample would also allow exploring non-linear struc-
tures of systemic risk dependencies using for example a factor Copula or a deep learning
approach. Alternatively, network models could be used to mimic the often observed
core-periphery structure of the financial sector.
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1 Introduction

The canonical approach to measuring various aspects of systemic risk in banking relies
on equity return correlations to assess interdependencies between banks’ losses above
Value at Risk (Adrian and Brunnermeier (2016)). But in many countries this approach
is thwarted by the presence of state-owned and/or co-operative banks. To circumvent
this problem we extend the Adrian-Brunnermeier approach (and the related Marginal
Expected Shortfall (MES) approach introduced by Acharya et al. (2017)) by relying
on CDS contracts rather than equity returns to extract the required information on
covariance structure. We extend the portfolio-of-loans approach suggested by Huang
et al. (2009, 2012) by explicitly focusing on tail risk and by modelling tail dependencies
in distress. We look at key private institutions in the Dutch financial sector (insurance
and banking) and develop a valuation-of-loans approach to measure systemic risk and
identify and rank the systemic players on this market. Our approach is appropriate
whenever potentially systemic institutions are not publicly traded on the equity market.
Our analysis confirms that financial institutions need to be monitored in the context of
other financial institution, as Adrian and Brunnermeier (2016) also argue. In particular,
we show that important linkages exist between banking and insurance firms that need to
be explored further and taken into account when measuring systemic risk.

Systemic linkages arise naturally through various channels. A direct link stems from
the channels by which banks operate on the interbank market. Banks and insurers also
tend to trade directly with each other on the derivative markets. Finally systemic de-
pendencies may also arise indirectly, due to common exposure of the key institutions to
the same risk sources - either on the liability side, when funding sources are similar, or
on the asset side, when the institutions hold similar or correlated asset portfolios (Moore
and Zhou, 2012; de Haan et al., 2019). We present a framework that does not require
a particular view on what is causing systemic losses, but rather offers an approach that
can identify the potential for high joint distress based on observed dependencies between
traded credit protection on the market whatever the underlying channels of interdepen-
dencies are.

First, we show that monitoring the financial risk of an institution in isolation of the
risks of its counterparties, and the system as a whole, may offer a misleading ranking
between systemically important financial institutions (SIFIs). Second, we illustrate that
high-frequency data from the credit default swap (CDS) market can be used to monitor
ex-ante the build-up of systemic risk and systemic dependencies. This is particularly
valuable in the context of the Dutch financial sector, where key institutions are privately
held, and market data on their equity value is not available. Third, we link systemic risk
to the potential for joint distress between institutions by evaluating the tail dependencies
in their losses if a default of one institution were to occur.

We define systemic risk both through the prospect that several key institutions become
distressed at the same time, and through the prospect that the common losses they
generate may have a large social impact. To quantify such risk, our model relies on
several building blocks. First, we use a contingent balance sheet approach (Merton,
1974) and define distress as the situation in which the market value of a firm’s assets falls
below a default barrier. The observed CDS spreads allow us to estimate the probability
of such distress occurring. Second, a latent factor is assumed to drive common changes
in the asset values of firms. Systemic risk will thus have two related components: first,
the possibility that several companies realize a credit event at the same time; and second,
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the magnitude and the dependency in the losses that are generated among the financial
institutions once a default occurs. We aggregate the two components using a credit
portfolio approach and estimate the MES for the institutions in the portfolio (Acharya
et al., 2017). The MES measures the average potential loss of an institution if the system
as a whole realizes a tail event, thus quantifying the sensitivity of an institution to other
institutional losses in the system. In addition, we relate the liability-weighted MES to
the share of systemic risk that can be attributed to a single institution.

To the best of our knowledge, we are the first to model empirically, in a systemic
risk context, dependencies between default occurrences and the potential losses given a
default. Such dependencies are crucial for a number of reasons. First, there is sound
empirical evidence that realized losses tend to rise in periods when risk probabilities also
increase (Artzner, 1999). Second, the potential default of a SIFI by definition will have
a strong impact on other players in the industry by increasing their default risk and
at the same time lowering the value of the assets backing up their liabilities below fair
value as industry-wide distress triggers fire sales. From that point of view, we argue that
reliable systemic risk estimation should cover the potential for LGD (Loss Given Default)
dependencies.

We use a flexible modeling approach which allows for factor exposure heterogeneity
fitted on CDS data. This is an improvement over the well-known Vasicek credit model
(Vasicek, 1987) which assumes a single correlation parameter driving the dependencies
in the whole portfolio.

We look at seven Dutch financial institutions: two insurers (Aegon and NN) and five
banks (ING Bank, Rabo, ABN, VB, Rabo, and NIBC). Our model allows us to rank the
companies by their contribution to risk, where risk is quantified by the Expected Shortfall
of the systemic portfolio.

The current paper continues as follows. In Section (2) we review the relevant lit-
erature. Section (3) describes the structural credit model we employ to describe co-
dependencies between institutions in the system. Section (4) discusses the credit risk
approach used to quantify the sensitivity and the contribution of each institution to sys-
temic risk. Section (5) reviews the dataset and defines the regulatory portfolio. Sections
(6) and (7) discuss the results and respectively their policy relevance, while Section (8)
concludes.

2 Literature Review

Our paper is part of the wider literature using high-frequency asset prices to inform cen-
tral bank policies. Examples are Hattori et al. (2016); Olijslagers et al. (2019) who use
option-implied asset volatilities and risk-neutral distributions to evaluate the effective-
ness of central bank stabilization policies. Market-implied views have also been seen as
a valuable tool for monitoring financial stability and for advising on macro-prudential
policies (Jayaram and Gadanecz, 2016). Acharya et al. (2014) use co-movements in CDS
rates of sovereigns and local banks during the Euro sovereign debt crisis to show how
a doom-loop channel evolves, in which a bail-out of a local bank in trouble, because it
is deemed systemically important, leads to a deterioration in the creditworthiness of the
government, which then further depresses the credit-worthiness of the bailed-out bank
due to its large exposure to local sovereign bonds; after which there are further hits to
the solvency of the government and so on.
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Also, our paper relates closely to the literature of systemic risk which utilizes equity
market information. In many cases, especially in Europe and certainly in the sample
of Dutch institutions that we consider, the major challenge in exposing market-implied
views is that some of the key players in the financial sector are not publicly traded. Ap-
proaches that rely on equity price co-movements (like Adrian and Brunnermeier (2016))
then cannot encompass the full system, cannot be used to track the systemic impact
of those institutions, and may in fact not be usable at all if too few of the quantita-
tively important institutions have an equity market listing. For this reason, we develop
a structural approach that utilizes information from the CDS market.

The intuition behind the mechanism that we employ is simple. We know through
Merton (1974) that the market value of a company’s assets is related both to the market
value of its equity and of its liabilities. The level of the firm’s CDS spread at any
particular instance relates to the chance that the value of its assets may drop and that
it may experience distress in the form of a credit event captured by the CDS contract1.
What is more important for us however, is that co-movements in default probabilities can
provide information on the tendency of the institutions to become distressed at the same
time. Tarashev and Zhu (2006) also follow this line of reasoning. Rather than estimating
the unobservable asset values, as is done for example in Duan (1994, 2000) and in Lehar
(2005), we add a model of the losses in case of default that allows us to quantify the
distribution of systemic losses and the potential for large losses by several institutions at
the same time.

A CDS is in essence an insurance contract, which is traded over-the-counter (OTC),
and in which the protection buyer agrees to make regular payments, the CDS spread rate
over a notional amount, to the protection seller. In return, the protection seller commits
to compensate the buyer in case of default of the contractually referenced institution.
The value of a CDS contract thus provides information on the fair value spread that
should be used to discount the company’s debt.2.

The CDS market has several features that make it an attractive source of information
for the financial sector. It is more liquid and has fewer trading frictions compared to
credit traded directly through the corporate bonds market. In terms of information
transmission, CDS spreads have been shown to lead bond markets, especially in distress
periods, and have an edge over credit rating agencies (Bai and Collin-Dufresne, 2019;
Avino et al., 2019; Culp et al., 2018; Annaert et al., 2013). Some evidence exists that
they may even lead equity markets, especially in revealing negative credit news. This
relates to the fact that in contrast to conventional asset markets, the CDS market almost
by definition is composed of insiders (Acharya and Johnson, 2005). Furthermore, liquidity
and transparency in the market have increased substantially in recent years. After the
Financial Crisis of 2008/09, OTC derivatives, and as such also CDS contracts, became
subject to increased regulatory scrutiny through the EMIR framework in Europe and
the Dodd-Frank Act in the US. To cope with systemic risk issues, central clearing was
introduced with increased contract standardization and transparency was improved by

1For a similar line of thinking, cf Carr and Wu (2011) who provide a link between the value of a CDS
contract and deep out-of-the-money put options on a company’s stock.

2Apart from a hedging opportunity, CDSs are used to arbitrage away any relative mispricing between
the equity and bond prices of the reference entity (capital structure arbitrage (Kapadia and Pu, 2012)),
or to exploit mispricings in the value of traded debt (Augustin and Schnitzler, 2021). There is a large
empirical literature dealing with such possibilities and the limits to arbitrage, which we do not consider
in the current study.
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introducing reporting mandates for counterparties3.
Furthermore, CDS prices trade on standardized terms and conditions and do not have

be bootstrapped or interpolated as do bond yields. Also, comparison between firms is
easier, because unlike corporate fixed income securities, single-name CDS contracts do
not contain additional noise from issue-specific covenants, such as seniority, callability or
coupon structure (Zhang et al., 2009; Culp et al., 2018).

Several general concerns regarding CDS prices need to be mentioned as well however.
First, CDS rates also price in the risk of default of the protection seller and not only the
reference entity. The size of this extra premium, however, has been shown empirically
to be economically negligible (Arora et al., 2012), and with the recent rise of Central
Clearing for OTC derivatives it is likely to have decreased further (Loon and Zhong,
2014, 2016). Second, single-name CDS contracts are not as liquid as public equity and
this raises concerns that the spreads could be overstating default risk by confounding it
with an illiquidity premium. Even though the argument is valid, it misses two important
points. Illiquidity risk tends to be correlated with default risk, as protection dries up at
times when it is most needed (Kamga and Wilde; Augustin and Schnitzler, 2021). Also,
strong illiquidity in the CDS contract may be indicative of the market’s unwillingness to
fund a particular financial institution due to fears that a possible future fire sale could
push it into insolvency (cf Diamond and Rajan (2011)), and may well reflect a private cost
of leverage as in Shleifer and Vishny (1992). Overall, we take the view of Segoviano and
Goodhart (2009), backed up by empirical evidence, that even though in magnitude CDS
spreads may be overreacting to bad news in certain situations, the direction is usually
justified by information on the reference institution’s creditworthiness. Thus, we use the
CDS mid quotes without correcting them further for non-credit related premia.

Part of the literature on bank distress relies on reduced-form statistical modelling
to link bank CDS movements to periods of financial adversity. Avino et al. (2019), for
example, look at the spreads of single-name CDS contracts for European and US banks
and evaluate the propensity of spread changes to predict bank distress in the form of
recapitalization or nationalization. One standard deviation increase in the CDS spread
changes, is estimated to correspond to a 7% to 14% increase in the (physical) probability
of financial distress of a bank. Annaert et al. (2013) look at the determinants of CDS
spread changes for a universe of European banks and separate them into a firm-specific
credit risk component, a trading liquidity component, and a business cycle components
capturing common variation linked to the business environment.

On the methodological front, Oh and Patton (2018) link bank distress to large upticks
in the CDS prices of the reference banks, and measure the probability of joint distress
through a factor copula dependency model. Billio et al. (2012) offer an early econo-
metric model which quantifies interconnectedness through Granger-causality networks.
Bräuning and Koopman (2016) extend the idea with time-varying heterogeneity in the
link formation between banks using CDS spreads of US and European institutions. The
goal is to capture the dynamic formation of potential core-periphery clusters, which are
natural for the financial sector. Moratis and Sakellaris (2021) on the other hand use a
panel VAR model to decompose the transmission of systemic shocks across a universe of
global banks. These studies offer preliminary evidence that CDS fluctuations can serve
as an early warning signal of bank risk, supplementing data from the stock market, credit
rating agencies, and accounting data. Our contribution to this literature is to embed

3For an overview of the market microstructure, and recent regulatory reforms of the CDS market see
Aldasoro and Ehlers (2018) and Paddrik and Tompaidis (2019).
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CDS spreads into a structural model of the firm’s capital, which allows for non-linear
relationships to form naturally.

An earlier branch of the empirical literature also uses structural firm models to imply
bank fragility (Gropp et al., 2006; Chan-Lau and Sy, 2007; Bharath and Shumway, 2008).
Most notable is the distance-to-default (DD) measure (Merton, 1974; Crosbie and Bohn,
2002) which compares the current market value of assets to the default barrier of the
firm4. While the foundation in our study is similar, we aim to evaluating cross-linkages
and the impact each bank has on the system as a whole, rather than on modelling the
individual default risk of each bank in isolation.

Most of all, we relate to the broader literature on measuring and quantifying systemic
risk through asset price co-movements (Lehar, 2005; Segoviano and Goodhart, 2009; Zhou,
2010; Huang et al., 2012; Adrian and Brunnermeier, 2016; Brownlees and Engle; Acharya
et al., 2017; Engle, 2018). Some of the approaches developed in that area can be seen as
largely model-free since they do not rely on particular capital structure assumptions of the
individual firms. The CoVaR approach of Adrian and Brunnermeier (2016) for example,
along with an earlier study by Baur and Schulze (2009), relies on a quantile regression
on equity prices to determine tail co-dependencies and risk contributions. Wang (2021)
adapt this approach by embedding a neural network. Most of these studies rely on high-
frequency data on equity prices.

Another strand of the systemic literature, most notably Lehar (2005), relies on Mer-
ton’s theory of contingent claims to imply the market value of firm assets and the cor-
relations between institutions as a measure of systemic risk. In contrast, our approach
does not aim to imply the value of assets themselves. Rather, we directly focus on the
potential for systemic events to materialize and evaluate the potential losses for the sys-
temic portfolio when defaults occur. Using a structural model in combination with copula
default dependencies, Segoviano and Goodhart (2009) comes to the PAO measure, the
probability of at least one more bank defaulting given a default in particular bank. We
develop the idea further by also calculating the probability of two or more defaults given
that at least one has occurred. This allows us to concentrate specifically on periods of
financial contagion.

We view the regulatory space as a portfolio of risky loans, similar to Chan-Lau and
Gravelle (2005); Huang et al. (2009, 2012); Puzanova and Düllmann (2013); Kaserer and
Klein (2019). In that approach, systemic losses arise when an institution defaults and
cannot cover the value of its liabilities. The tendency of particular institutions to drive
systemic losses will result in a higher contribution to systemic risk.

From this perspective, the modeling tools developed by the securitization literature,
typically used to value n-th to default derivatives on loan portfolios, can be applied (Hull
and White, 2004; Tarashev and Zhu, 2006). In particular, Tarashev and Zhu (2006)
link the correlation structure embedded in CDS prices to the correlation between asset
values in the Merton capital structure framework. A latent factor model driving the asset
return variations can then be used to connect the default probabilities of the different
institutions.5

Our innovation is to also embed a model of correlated losses between the institu-

4Various extensions of the DD measure exist, capturing for example volatility clustering (Nagel and
Purnanandam, 2019), and asymmetric volatility shocks (Kenc et al., 2021).

5The approach here can be traced back to an early latent factor credit model developed by Vasicek
(1987) to price loan portfolios. In general, using a factor model to drive the correlations structure between
portfolio positions is referred to as a factor copula model.
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tions, overcoming a modeling deficiency in earlier studies, which typically assume a fixed
Loss Given Default (LGD) (Puzanova and Düllmann, 2013) or assume that Recovery
Rates (RRs) are random but sampled independently from each other (Huang et al., 2012;
Kaserer and Klein, 2019). In a tail scenario, a SIFI’s default can be expected not only
to raise the default risk of other participants in the sector, but also to simultaneously
decrease the value of the assets backing up their liabilities. From that point our approach
of endogenizing the LGD relates to the literature on fire sales. See for example Shleifer
and Vishny (1992) who argue that in times of industry-wide distress and increased default
rates, assets tend to go to industry outsiders who may lack the necessary skills to manage
them and will thus be willing to buy them only at a discount to fair value. As a result,
LGDs will tend to rise with the drop in liquidation prices. This has been empirically
observed among others by Acharya et al. (2007).6

We finish by quantifying systemic risk through a Monte Carlo simulation of the pos-
sible scenarios over the coming year by evaluating the average loss of an institution if the
portfolio as a whole is its tail (Acharya et al., 2017).

.

3 A Structural Model of Defaults and Losses
We begin by defining the structural credit risk model behind the occurrence of systemic
losses. Key here will be the assumptions driving asset value correlations and loss corre-
lations. These asset value processes will be at the core of the data-generating processes
that we define in sections (3.1) and (3.2), dealing respectively with default correlations
and correlations of Losses Given Default. These data-generating processes will then guide
factor model estimation in Section (3.3), and tail-risk estimation later in Section (4).

3.1 Default and Asset Correlations

We start from Merton (1974) and describe the evolution of the value of assets of each
institution i = 1, ..., n under the risk-neutral measure through the process

d lnVi,t = rdt+ σv,idWi,t (1)

Note that we can write (1) as dWi,t =
d lnVi,t−rdt

σv,i
which gives the statistical interpre-

tation of dWi,t as the standardized excess asset returns under the risk-neutral measure.
We assume that the risk component of asset value changes is driven by a common

factor component Mt and an idiosyncratic component Zi,t:

dWi,t = AiMt +
√

1− AiA′
iZi,t (2)

where Mt = [m1, . . .mf ]
′ is the vector of stochastic latent factors and Zi,t is the firm-

specific factor. Ai = [αi,1, ..., αi,f ] is the vector of factor loadings, such that AiA
′
i ≤ 1. All

factors are assumed to be mutually independent with zero mean and a standard deviation
of one. Note that if one assumes Ai = Aj for all i, j, one gets the well known Vasicek
loan pricing model which assumes the same averaged-out factor exposure across all loans.

6See also IJtsma and Spierdijk (2017) for a discussion of fire sales, endogenous LGDs and the relation
to systemic risk.
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In the approach used here, we allow for exposure heterogeneity. One could interpret the
factors as independent economy-wide and industry-wide shocks affecting the uncertainty
in the firm’s asset value.

In Merton’s setting7, default occurs at maturity (T = t +∆t) when assets fall below
the face value of debt:

PDt = P(Vt+∆t ≤ D)

= P

(
Vt exp

(
(r − σ2

v

2
)∆t+ σvWt+∆t

)
≤ D

)
Consider next the well known concept Distance to Default DDt

8:

DDt =
ln Vt

D
+
(
r − σ2

v

2

)
∆t

σv

√
∆t

which allows us to rewrite the expression for the probability of default as:

PDt = P

(
Wt+∆t√

∆t
≤ −DDt

)
As a result, we get:

PDt = Φ(−DDt) (3)

where Φ(.) is the cumulative normal distribution.
We can then write the discrete first difference of DDt as:

∆DDt =
∆ lnVt

σv

The correlation between asset returns can be written as:

ρi,j = Corr(∆ lnVi,t, ∆ lnVj,t)

= Corr(σv,i∆DDi,t, σv,j∆DDj,t)

Correlations are invariant to linear transformation, so we can drop the σv term. Then
after substituting in the inverted relationship (3), the asset correlations can be implied
from the correlations between the transformed probabilities of the default:

ρi,j = Corr
(
∆Φ−1(PDi,t), ∆Φ−1(PDj,t)

)
(4)

Equation 4 is of crucial importance because it relates the co-dependencies in the
probabilities of default (PDs) to the asset correlations of the underlying institutions.
This allows us to use PDs that can be derived from observed single-name CDS prices to
pinpoint values for the correlations between institutions. In Section (3.3) we discuss in
detail how these asset correlations can be used to estimate the parameters of the latent
factor model in (2).

7See Appendix (A) for presentation of Merton’s firm value model and the role spreads play in it.
8The DD measure has a wide application to risk management as a predictable indicator of bank

fragility (Gropp et al., 2006; Chan-Lau and Sy, 2007).
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Our reliance on the Merton (1974) framework implies that we assume default to occur
when a fixed default barrier is crossed at debt maturity. Further refinements have been
developed to relax this assumption, of which we mention in particular Leland (1994)
who endogenizes the default barrier and defines it as the boundary beyond which equity
holders refuse to supply new equity to avoid default. Even though the Merton framework
maybe conceptually restrictive, it is a widely used as a raw approximation of default.
The related Merton-based DD has also been shown to be predictive of actual defaults
(Bharath and Shumway, 2008) and has certain robustness against model misspecification
(Jessen and Lando, 2015). As a result, we do not pursue any of the structural extensions
in this study.9

In section (3.3) we discuss in detail how observed CDS rates can be used to imply
default probabilities for the period, how the target correlations ρi,j are set and in turn
how the factor model driving asset returns is estimated, but before doing that we have
to specify the processes driving losses conditional on default.

3.2 A Model of Loss Correlations

The next step is determining the size of the potential losses if a default were to occur.
A common deficiency in the systemic risk literature which uses the portfolio-of-loans
approach is that the realized recovery rate RR is assumed to be either fixed (Puzanova
and Düllmann, 2013) or stochastic but independent across firms and from the realization
of default (Huang et al., 2009, 2012; Kaserer and Klein, 2019).10 Relying on strong
assumptions on default losses is inevitable, as defaults, especially of SIFIs, are rarely
observed. Yet, we try to addresses the empirical evidence that as default rates in the
economy increase, the recovery values on assets decrease (Altman et al., 2004; Acharya
et al., 2007). Therefore in an extension of the existing literature we allow default losses to
be dependent on the latent factors driving asset correlations. Accounting for this is likely
to have significant consequences for the quantification of systemic risk which inevitably
depends on the tail risk dependencies between institutions.

To do so we follow Frye (2000) and Andersen and Sidenius (2005) and model the
RRs based on the value of a stochastic collateral process Ci,t which backs up liabilities.
Dependency is achieved by making the value of the collateral dependent on the same
set of factors that drive the asset value processes. In particular, we define the value of
collateral per euro of liabilities as:

d lnCi = σcdW
c
i (5)

where dW c
i is a term driving the total recovery risk and σc is a scaling parameter.

We assume that common collateral value variation is driven by the same common
factors defining the asset correlations in (2). Zc

i defines an independent factor capturing
possible firm-specific discrepancies between the underlying assets of the firm and the value
of recovered collateral, which could be due to a loss on the value of intangible assets, or
any other restricting costs due to, liquidation, or delay costs. The same factor loadings
determined in (2) are assumed to hold here as well. Formally, we therefore have

dW c
i = AiM +

√
1− AiA′

iZ
c
i (6)

9See Sundaresan (2013) for a review of structural credit models and their applications.
10This relies on a modelling approach often used in the credit risk literature to sample simulations of

the random RRs independently from triangular or beta distributions (Hull, 2018).
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Finally, in case of default, the recovery rate (RRi) as a proportion of liabilities is never
larger than 100% of the recovered liabilities:

RRi = µc,i min(1, Ci)

= µc,i min (1, exp{σcdW
c
i })

(7)

where µc,i is calibrated to match the assumption of the expected RR.
We do not have a reliable way to estimate σc for each institution in the portfolio, so

we match it to the VSTOXX index (Figure (14)) as a way of generating time variation
which is tied to the willingness of investors to take risks and thus to the overall asset
valuation sentiment in the economy. VSTOXX, similarly to its US counterpart VIX,
measures the implied volatility derived from near-term exchange-traded options on the
Euro Stoxx 50 index. The options are widely used by investors for hedging purposes, so
the two composite indices constructed from their prices are indicative of the risk appetite
prevalent in the economy. A low appetite for risk relates to a greater cost of capital,
lowering investments, and driving down prices, while a high appetite relates to credit and
asset price bubbles, increasing the chance for future recessions and stress in the financial
system (Illing and Aaron, 2005; Gai and Vause, 2006; Aven, 2013).

3.3 Estimation of the Latent Factor Model

We now proceed with the estimation of the factor loadings of equation (2). The first
step is to find the institutions’ default probabilities over time. Once we have these time
series, relation (4) allows us to pin down the asset correlation matrix between the various
institutions under consideration. These will serve as target correlations against which the
model is fitted when estimating the factor loadings.

So, first, we extract the (risk-neutral) default probabilities needed in Equation (4)
from the observed CDS rates. Following Duffie (1999) we assume, in this subsection only,
that RRs are constant over the horizon of the contract, setting aside the equation (7)
we use in analyzing correlated LGDs. We do not try to identify expected recovery rates
separately from the observed CDS data. There are alternative and more sophisticated
approaches; for example Pan and Singleton (2008) identify separately the RR and the
default intensity of the credit process exploiting the term structure of the CDS curve
constructed from contracts with different maturities. Christensen (2006) models jointly
the dynamics of the RR, the default intensity, and interest rate by breaking away from
the standard Recovery of Market Value (RMV) approach of Duffie and Singleton (1999)
according to which at default the bondholder receives a fixed fraction of the prevailing
market value of the firm. Under the RMV approach the default intensity only shows up
within a product with the recovery rate, so the two cannot be identified separately. Having
one collateral model when assessing LGD correlations and another one when extracting
default probabilities from observed CDS spreads comes down to an inconsistency that is
well known in the literature (cf Tarashev and Zhu (2006)’s discussion of precisely this
issue). Yet, the simplifying assumption we employ in estimation is widely used in the
literature and is hard to improve on given the identification problem we just discussed.

With this in mind we can proceed with the pricing equation of the CDS contract.
By market convention, at the initiation date t of the contract the spread CDSt is set to
ensure that the value of the protection leg and the premium leg of the contract are equal,
such that the contract has a zero value:

11



CDSt

∫ t+T

t

e−rτ τΓτdτ︸ ︷︷ ︸
PV of CDS premia

= (1− ERRt)

∫ t+T

t

e−rτ τqτdτ︸ ︷︷ ︸
PV of protection payment

(8)

rτ is the risk-free rate, CDSt is the observed CDS spread for the day, qτ is the annualized
instantaneous risk-neutral default probability , Γτ = 1−

∫ τ

t
qsds is the risk-neutral survival

probability until time τ , and ERRt is the expected recovery rate in case of default,
assumed to be constant over time.

For simplicity we assume that the risk-free rate r and the annualized default rate q
are fixed over the horizon of the contract. Then the default probability q at time t follows
from equation (8):

qt =
aCDSt

a(1− ERRt) + bCDSt

(9)

with a =
∫ t+T

t
e−rτdτ and b =

∫ t+T

t
τe−rτdτ . Setting T = 5 to capture 5 year CDS

contracts, we can imply the annualized default probabilities.11 We can then substitute
the implied risk neutral probability qt for PDt in Equation (4), which then allows us to
fix the asset correlations between all pairs of institutions.

Next we find the loadings of the latent factor model (2) by minimizing the squared er-
ror between the target correlations derived from co-movements in the default probabilities
and the correlations implied by the factor loadings:

min
Â1,...,Ân

N∑
i=2

N∑
j=1

(ρij − ÂiÂ
′
j)

2 (10)

An efficient algorithm that solves to minimization problem is provided by Andersen and
Basu (2003). It operates through an iterative principal component analysis rather than
by brute force numerical optimization. Appendix (B) clarifies the algorithm.12

Finally we should point out that we are ignoring correlation risk premia. We rely on
evidence provided by Tarashev and Zhu (2006) that such premia, if they exi at all, are
quantitatively very small in CDS prices.

4 Measuring Systemic Risk: A Credit Portfolio Ap-
proach

We now have the machinery in place to start modeling systemic risk. We model the space
of institutions falling under the regulator’s supervision as a structured credit portfolio.
An institution becomes distressed if a credit event occurs in its subordinated debt. Each

11In credit risk (and more generally in survival analysis), the variable q relates to the hazard rate, the
constant arrival rate (in a Poisson sense) of a credit event. At any instant, given that a default has not
yet occurred, the time until it does is exponentially distributed with parameter q. For a small ∆t and
small q, the probability of default is then ∆t.q. See Duffie (1999) for details.

12An alternative is to use Kalman Filtering techniques. As shown by Tarashev and Zhu (2006), the
two produce very similar results.
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institution’s liability can be seen as a loan from the public and amounts to the total
Exposure at Distress (EAD). A loss occurs whenever an institution defaults and cannot
deliver the full promise of its outstanding liabilities to its counterparties.

Formally, the systemic loss Lsys is the sum of the individual losses of each institution
in case of distress over the following year; the sum is scaled by the total liabilities in the
system:

Lsys =
n∑

i=1

wiLi

Li = 1di(1−RRi)

(11)

where each loss Li stands for the percentage losses in default as a proportion of the own
liabilities of institution i, and wi = Bi∑N

j=1 Bj
is the relative weight of the institution’s

liabilities (Bi) in the systemic portfolio. 1di is a default indicator function, where in line
with the structural assumptions made so far default occurs when dWi ≤ −DDi, in line
with the expression from equation (3).

We define systemic risk as the potential for large default losses in the financial system.
A single entity’s contribution to systemic risk then will be measured as its propensity to
increase that potential. Several elements can thus drive the systemic risk contributions
of an institution. First of all, both increases in the default probability and decreases in
the proportion that can be recovered in case of default will lead to a higher contribution.
Second, the size of the institution, measured by its outstanding liability relative to the
size of others, will determine how important the institution’s potential losses are for the
system as a whole. Third, the propensity of the institution to become distressed or to
realize large losses whenever other institutions in the portfolio are distressed will also
affect its systemic risk contribution.

Formally, we quantify downside risk through Expected Shortfall13 (ES), which mea-
sures the average losses of an institution, or, where relevant, the portfolio as a whole, in
the worst q-th percentile of its potential loss distribution:

ESi = E(Li|Li ≥ V aRi) (12)

where V aRi stands for the Value-at-Risk of the institution at confidence level (CL) 1−q:14

P(Li ≥ V aRi) = q

The ES thus measures the average loss once the V aR-threshold of an institution has
been exceeded. An appealing feature of this measure is that it is coherent, in the sense
of Artzner (1999), and thus allows for capturing diversification in an intuitive way when
the losses of a system are aggregated.15

The V aR and the ES of a financial institution quantify the potential losses that could
occur if an institution is distressed. These measures however do not take into account the

13The measure is often referred to as Expected Tail Loss or Conditional Value at Risk (Rachev et al.,
2008)

14Typically, q stands for the tail probability and takes value of e.g. 5%, 1%, .01% depending on how
far in the tail we want to measure the potential for extreme losses. Then, given the potential loss
distribution, we are (1− q)% certain that losses will not exceed the corresponding V aR estimate.
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fact that banks operate in a network and each institution’s failure may trigger failures of
other institutions.

As a measure of tail codependency, we follow Acharya et al. (2017) to define Marginal
Expected Shortfall (MES) as the average loss of institution i given that the system is in
the worst q-th percentile of its distribution of potential losses:

MESi = E (Li|Lsys ≥ V aRsys) (13)

Note that the weighted sum of all MESs in the portfolio provides the ES of the system.
This follows from (12) and (11):

ESsys =E

(∑
i

wiLi|Lsys ≥ V aRsys

)
=
∑
i

wiE (Li|Lsys ≥ V aRsys)

=
∑
i

wiMESi

(14)

This additivity property allows us to break down the total ES of the portfolio into
percentage contributions due to each institution as

PC to ESi =
wiMESi

ESsys

(15)

which will be a useful metric further on in attributing risk across institutions and ranking
them by systemic importance. Note that (14) implies also that the MES measure can
be interpreted as the sensitivity of the system’s tail risk to the weight of the institution
in the portfolio as we have ∂ESsys

∂wi
= MESi

5 Data

5.1 Note on the Dutch Financial Sector

The Dutch banking sector is comparatively large relative to other EU countries: the
total cumulative balance sheet value of all banks accounts to about 400% of GDP in
the beginning of 2013, a rise from about 100% in the 1970s. For comparison that figure
amounted to about 300% in the EU and in Germany according to figures by DNB (2015).
By 2018, The Netherlands is in the top 5 countries ranked by the ratio of value of bank
assets to GDP DNB (2019) The sector is highly concentrated, and domestic banks are
dominating the market. We look at the five largest Dutch banks:

15The set of coherent risk measures are defined axiomatically through a number of intuitive properties:
(1) Monotonicity : comparing several random payoffs, lower losses in all states of nature imply lower risk;
(2) Positivide homogeneity : scaling a portfolio random payoff by a positive factor also scales its risk by
the same factor; (3) Sub-additivity : the risk of the portfolio is not greater than the sum of the risks of
the assets which comprise it; (4) Invariance: adding cash to a portfolio reduces its risk by the amount
added. ES covers all of the properties, while VaR fails at sub-additivity. In fact, functionals which satisfy
(2) and (3) are convex, a feature that defines mathematically the concept of diversification in modern
portfolio theory (Rachev et al., 2008).

15In the risk management jargon (Hull, 2018), the weighted MESs are often referred to as Component
Expected Shortfall.
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• ING Bank: privately held by ING Group, it is the most internationally oriented
Dutch bank with operations also in Mexico, Taiwan, etc.

• ABN AMRO: mostly focused domestically with some operations abroad. Equity
on the company is publicly traded, providing a little less than half of the capital of
the bank. The remainder is Government held, down from 100 % after a national-
ization/rescue in 2008. It is the only bank in our sample whose equity is publicly
traded.16

• Rabobank: a cooperative bank, largely focused on the agricultural and consumer
sector with certain activities abroad.

• NIBC Bank N.V.: a commercial bank, subsidiary of NIBC Holding N.V. which
is publicly traded

• De Volksbank: a bank holding operating exclusively in the Netherlands owned
by the Dutch state since the nationalization of its predecessor SNS in 2012

Out of the 5 institutions, ABN AMRO, ING, and Rabobank are designated as sys-
temically important by the European Banking Authority.

In addition, we look at two insurance companies, which have CDS swaps traded on
their name:

• NN Group: one of the largest insurance holdings in the Netherlands. It is active
in life and non-life insurance, and also has an asset management branch. NN was
part of the ING Group and was split off from it between 2013 and 206. Its equity
is currently publicly traded.

• Aegon NV: a holding company engaging in insurance, pensions, and asset man-
agement services. It is globally active in its operations.

The goal is to check if the market perceives dependencies between the insurance sector
and the banking sector in the Netherlands and to check if any of the insurance firms will
show up as systemically important when looked at in the context of the total financial
sector. Also, we want to capture any potential interlinkages between insurers and banks
that could drive systemic losses. The equity of both insurers is publicly traded on the
equity market.

5.2 Dataset and Data Assumptions

We use weekly data for ISDA’14 compliant CDS mid prices on subordinated debt. The
data is collected from Bloomberg. Figure (12) in Appendix (C) shows the evolution of
CDS rates for each institution and Figure (13) (also in Appendix (C)) shows a scatter
matrix and distribution plots for the CDS rate log changes. This gives an initial view of
the possible dependencies in the occurrence of credit events between institutions.

We evaluate systemic risk in a cross section and over time. First we use the period
September 9th, 2019 to September 13th, 2021 to evaluate and rank the institutions by

16ING Group’s equity is publicly traded, but it owns a large number of subsidiaries operating worldwide
that are operationally and legally disjoint from the Dutch subsidiary. NIBC’s equity has been de-listed
since February, 2021.
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their contribution to systemic risk. Then we use a rolling window backtest in the period
January 1st, 2010 up to September 13th, 2021 to evaluate the evolution of the systemic
risk measures. In the spirit of Lehar (2005), the time window consists of 2 years of weekly
observations to evaluate the model and project the risk metrics, after which the window
is shifted forward by a week and the model is re-evaluated. This produces a series of
out-of-sample metrics.

Annual balance sheet data is collected from FactSet and from publicly available finan-
cial statements of the firms, whenever the data provider has a gap. The annual numbers
are interpolated to weekly with a cubic spline to avoid jumps at year-end, driven by
accounting standards rather than the arrival of new market information.

The structure of the liabilities of each company is used to induce the expected recovery
rate (ERR) in case of default (Figure (15) and Table (1)). Following Kaserer and Klein
(2019), an expected recovery rate of 80% is assumed on deposits (in case the institution
is a bank) or policy insurance liabilities (in case the institution is an insurer) and 40%
on other liabilities. The reasoning is that the collateral on the former type of liabilities
is regulated to be more liquid and low-risk and thus higher recovery in case of default
can be expected. Kaserer and Klein (2019) provides an overview of the empirical studies
which underpin the numbers on the expected recovery rates ERR.

Figure (15) (in Appendix (C)) shows for each institution the value of the deposits
and insurance policies, the value of other liabilities, and the resulting ERR assumptions.
There is little variation in the ERR over time but diversity across institutions is large.
Table (1) below shows the average liability weights (LW), the weight of the institution in
the systemic portfolio; the liability ratio (LR), the ratio of deposits and policy liabilities
to other types of liabilities, and the ERR and per institution. Ranked by LW, the largest
institutions are ING Bank, Rabobank, and Aegon. In terms of ERR, Volksbank has the
highest value, while Aegon has the lowest (note that RR is a ratio).

Table 1: Recovery Assumptions

LW LR ERR

ABN 0.15 0.64 0.66
INGB 0.35 0.72 0.69
RABO 0.23 0.61 0.64
NIBC 0.01 0.57 0.63
VB 0.02 0.83 0.73
AEGO 0.16 0.31 0.52
NN 0.09 0.72 0.69

Note. This table shows the average Liability Weights (LW) over the period 2010-2021 in the regulatory
portfolio, the Liability Ratio (LR) as the average ratio of deposits (or respectively policy weights) in the
company’s balance sheet, and average recovery rate (RR) per company.
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6 Results: an Overview

6.1 Factor Exposures and Asset Correlations

The first building block for evaluating the potential systemic losses driven by individual
institutions consists of the estimation of the latent factor model,cf Section (3.1). The
latent factor, synthesized from the common asset return variation in the sample, is often
interpreted as a market driver of risk. From that point of view, the factor loadings on their
own provide a useful interpretation as market exposures. They measure the sensitivity
of an institution to market movements, and indicate the number of standard deviations
the asset return of an institution will fall below the mean in response to one standard
deviation drop in the return of the market.

Figure (1) shows the exposure values for each institution. The factor loadings are
estimated based on the observed CDS prices over the considered time window. We can
already see that three groups of institutions start to form - those with high sensitivity
to the common factor (Aegon, Rabo, and VB), those with median exposure (ING, ABN,
NIBC), and those with low factor sensitivity (NN).

Figure 1: Common Factor Loadings
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Note. This figure shows the estimated exposure (loading) of each institution to the common latent factor.

For interpretation purposes, it is also useful to translate the exposure figures into the
share of total asset return variation due to market risk vs. the share due to idiosyncratic
variation. In fact, squaring the loadings provides the share of market risk:

Var(∆ lnVi)

σi

= a2i Var(Mi) + (1− a2i )Var(Zi)

= a2i︸︷︷︸
Factor Risk Share

+ (1− a2i )︸ ︷︷ ︸
Idiosyncratic Risk Share

(16)

In the same line of thought, cross-multiplying the loadings of two institutions provides
the implied correlation between the return of their asset holdings, since we have:

Corr(∆ lnVi, ∆ lnVj) = aiaj
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Figure 2: Common Factor Loadings
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(b) Implied Asset Correlations

Figures (2) below illustrate the results. Naturally, the smaller the factor loading of
an institution is, the more the risk of that institution is purely idiosyncratic, and the less
correlated it is with all other institutions in the market.

6.2 Probabilities of Joint and Systemic Defaults

The next building block of the model is the default simulation based on a fixed default
barrier in line with the Merton firm model. To do this we draw 500K independent
Monte Carlo simulations for the idiosyncratic and the common factors. Based on each
institution’s factor exposures, outlined in the previous section, these can be translated
into scenarios of (standardized) asset value changes over the coming year. The default
probability implied through the observed CDS rate for the period provides the default
boundary for the institution, as indicated in equation (3). Subsequently, in each simulated
scenario of asset value drops, we can evaluate whether the barrier would be crossed and
whether a default would occur. The common factor provides co-variation in the occurance
of defaults, which will guide the probability of multiple defaults occurring at the same
time.

In aggregate, this allows us to estimate the average share of default scenarios per
institution, matching the estimated individual default probability from the observed CDS
spread. More importantly, we can find the average share of joint defaults, illustrating
the tendency of institutions to become distressed at the same time. Figure (3a) shows
these numbers. The diagonal corresponds to the standalone default probabilities. VB,
Aegon, and Rabo are ranked highest. The off-diagonal terms show the probability of
joint defaults. The three highest pairs here are, maybe not surprisingly, again among the
group of institutions that have the highest common factor exposure: Aegon with Rabo,
Aegon with VB, and VB with Rabo.

Next, we can translate the joint default probabilities into conditional probabilities of
one institution’s default conditional on a default of another institution using the defini-
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tional relationship:

P(1di = 1|1dj = 1) =
P(1di = 1, 1dj = 1)

P(1dj = 1)

where in each case P(·) indicates the probability of default. Figure (3b) below shows the
results. We can see that the high asset correlations also translate into high joint and
conditional default probabilities.

Figure 3: Default Probability Matrix
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(b) Conditional Probability of Default

Note: This set of charts shows (a) the probability that two institutions may default together over a one
year horizon; (b) the probability that institution i may default, conditional on j being in default.

We also want to look at the potential for a systemic event to trigger cascading defaults.
For the purpose, we define the random variable Nd which will measure the number of
defaults that will materialize over the coming period as:

Nd =
N∑
i=1

1di (17)

The factor-based simulation, outlined in Section (3), allows us to evaluate the pro-
portion of cases where more than k = 1, 2, 3, 4 defaults happen at the same time. This
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Table 2: Probability of Systemic Defaults

k P(Nd ≥ k) P(Nd ≥ k|Nd ≥ 1) P(Nd ≥ k|Nd ≥ 2)

1 7.17 - -
2 2.50 34.88 -
3 1.24 17.27 49.50
4 0.61 8.52 24.43

Note. The first column in the table indicates the threshold number of defaults k. The second column
shows the unconditional probability that more than k out of 7 firms default at the same time. The third
and fourth columns show respectively the conditional probability that more than one or two additional
institutions will default given that at least one or respectively two have already defaulted.

produces P(Nd ≥ k1), as summarized in column two in Table (2). There is about 7%
chance that at least one of the considered institutions may default over the next year.
The probability is relatively high, but the overall trend, as Figure (4a) indicates, has been
decreasing since the 2008/09 financial crisis.

We also compute the probability that there are more defaults, given that one or
two have already materialized. Using the law of conditional probabilities, these can be
computed as

P(Nd ≥ k)

P(Nd ≥ k)

where k is the total number of defaults given that at least k have already happened.
The results are reported in column three and column four of Table (2) for k equal to
one or two, respectively. If a default, occurs, there is a substantial chance (about 34%)
that other defaults may follow. Examining the trend of conditional defaults over time,
Figure (4b) shows that the cyclical pattern here is different - the probability decreases
after the Euro government debt crisis in 2010-2011, increases in 2016, possibly due to
Brexit concerns, and spikes suddenly in March 2020, which is when the first Covid waves
came up in Europe.

It is worth noting that, since our model is not identifying causality in any form, the
conditional probability of additional defaults could stand either for potential spillovers
from one distressed bank to another, or could represent a common external shock affecting
multiple institutions.

6.3 Marginal Expected Shortfall

Evaluating only systemic default probabilities as was done in Section 6.2 does not take
into account the fact that the default of some institutions may have a much larger impact
than that of others. Everything else fixed, bailing out a larger institution, will be more
costly for the regulator, and its default and the possibility that it cannot cover its liabilities
will have a wider impact on the economy. A proper systemic risk appraisal should also
capture the size of the potential losses given that joint distress occurs. So our next step is
to assess the size of the expected losses if tail risk events do in fact happen. Now we need
to incorporate the stochastic nature of expected losses and the way they are correlated
across institutions and, equally important, the way they depend on default probabilities,
following the approach outlined in Section (3.2).
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Figure 4: Probability of Systemic Defaults
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Note. This set of charts shows (a) the probability that more than one, two, three
or four defaults occur at the same time; (b) the probability that more than two
defaults could occur is one has alreadyy happened.
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Figure 5: Systemic Default Loss Distribution.
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Note. The first figure presents the probability that systemic losses (as percent of total liabilities in the
system) will be larger than a threshold L as a function of that threshold. The second figure shows the
expected systemic loss, as percent of total liabilities in the system, conditional on the factor dropping
by more than M standard deviations away from the mean.

The charts in Figure (5) show an initial view into the potential size of the systemic
losses and the probability that such losses could be realized. First, Figure (5a) shows
the distribution of the simulated cumulative losses as a percent of the total outstanding
liabilities in the system. Consistent with the earlier estimates in Table (2), in about
93% of the cases (corresponding to 1 − P(Lsys > 0)), the system is resilient and does
not encounter any distress which would lead to default losses for any of its composite
institutions. In about 3% of the cases, systemic losses could be above 10%.

Figure (5b) on the other hand, relates the size of the aggregate losses that can be
expected to the size of a potential systemic shock driven by a drop in the common factor
M . By our estimates, for example, a drop of more than two standard deviations in the
latent factor (e.g. a shock of the magnitude of the 2008/09 Financial Crisis) can be
expected to bring losses of about 20% of the size of aggregate liabilities. In other words,
given the defaults that this large systemic shock would generate, some of the financial
institutions will experience asset value drops by such a magnitude that they will not be
able to deliver about 20% of their outstanding liability commitments.

A standard approach to quantify the risk of losses within a portfolio in a single number
is to employ the downside risk measures defined in section (4). In particular, we use the
Expected Shortfall to measure the average of the worst 1% of the possible outcomes for
the coming year. Using the simulated systemic losses, we evaluate the systemic risk by
the ES of the portfolio of institutions, and arrive at an estiamte of 35.05% (cf Table (3)).
Table (3) summarizes the risk for the system and for each individual institution, where
the ES will be indicative of standalone risk.

For the system as a whole, Figure (6) puts the risk evaluation in context, plotting
over time the ES and the V aR of the systemic portfolio. Note that in contrast to the
downward trend of Figure (4a), the tail risk of the systemic portfolio is not on a downward
trend over time but seems to be more in line with the cycles in Figure (4b).

Overall, these estimates allow regulators not only to track the resilience in the system
and to look for increased probability of large systemic losses, but also to verify whether
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Figure 6: Systemic Risk (ES, VaR)
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Note. This plot shows the tail risk of the systemic portfolio quantified by the ES and V aR.

the buffers currently in the system are enough to cover the potential losses once a systemic
event materializes. If the buffers are not sufficient, regulators could either require higher
buffers to be set aside, or could look for ways to increase the resilience of the system, by
closely examining the institutions which are the highest contributors to risk.

In order to attribute the potential systemic losses to the individual institutions com-
prising the system, we employ the MES measure suggested by Acharya et al. (2017) and
defined in (13). In particular, we look at the percentage contributions defined in (15).

Table (3) summarizes the results. First of all, it points to a certain discrepancy
between bank vulnerability rankings in relation to banks’ own risk, as measured by ES99,
and in relation to the vulnerability of the system as a whole, as measured by MES99.
The two riskiest institutions on their own are Aegon and Rabo. They are also the most
sensitive to shocks in the system, followed by VB which is number five when ranked by
ES.

Second, taking institutional size into account, the top three contributors to systemic
risk shift. Ranking by PC to ES, Rabo becomes first, owning about 32% of the total
systemic risk, followed by ING with about 28%, Aegon, an insurer, with 26% and ABN
with about 9%.

We can also define a so-called network relation based on ES as:

NESi,j = E (Li|Lj ≥ V aRj) (18)

to measure the average losses of institution i when institution j is in distress. In contrast
to the asset correlations and the conditional default probabilities, this distress dependency
metric also takes into account the size of the losses.

Figure (7a) then shows the expected loss of the row entry given that the column
entry is below its 99% V aR, where the diagonal of the table corresponds to the ES
of each entity, and the last column corresponds to the MES of each institution. More
interesting are the off-diagonal entries, which quantify loss co-dependencies between the
different institutions, corresponding to the NESi,j measure defined earlier: the average
loss of institution i given that j is in distress. In contrast to the asset correlations and the
conditional default probabilities, this distress dependency metric takes into account the
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Figure 7: Network Expected Losses, q = .99
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Note: These set of charts illustrate the network effects of tail losses. The first chart shows the expected
loss of the i entry, conditional on the j entry. The last column and the last row, labeled Sys, stand for
Systemic losses. The diagonal of the table corresponds to the ES of each entity, and the last column
corresponds to the MES of each institution, the last row measures the CoES of the column item, and
the off-diagonal terms measure NESi,j with i as the row entry and j as the column entry.
The second chart shows the percentage contributions to systemic losses given that the column item is in
its tail. Column items sum up to 100% and can be interpreted as percentage contributions to CoES.
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Table 3: Systemic Risk Statistics

EL w ES99 MES99 PC to ES99

ABN 0.73 (4) 14.67 (4) 51.21 (3) 21.38 (5) 8.95 (4)
INGB 0.60 (6) 34.57 (1) 47.87 (6) 28.24 (4) 27.86 (2)
RABO 0.97 (2) 23.24 (2) 58.88 (2) 49.45 (2) 32.80 (1)
NIBC 0.65 (5) 0.73 (7) 50.07 (5) 14.22 (6) 0.30 (7)
VB 0.94 (3) 2.50 (6) 50.56 (4) 29.33 (3) 2.09 (5)
AEGO 1.29 (1) 15.54 (3) 67.15 (1) 59.65 (1) 26.46 (3)
NN 0.47 (7) 8.75 (5) 35.09 (7) 6.22 (7) 1.55 (6)
System 0.81 100.00 35.05 35.05 100.00

Note. This table shows the Expected Loss, Liability Weight, ES, MES, and Percentage Contribution
to ES statistics. All statistics are in percentage loss format. The numbers in the brackets provide the
ranking relative to the group.

size of the losses. The largest co-dependent loss here occurs between Aegon and Rabo.
In particular, if Rabo is in its tail, Aegon would lose 52.5%, which is not far from the loss
it would realize in its tail, an ES of 58.9%.

Note that the last row of Figure (7a) shows, the average loss of the system given
that the institution is in its tail, a measure which we can call the CoES.This is an
inverted version of the MES presented in (13). The additivity property of the expectation
combined with common conditioning, allows us to break down the CoES of an institution
into its weighted network components:

CoESj = E(Lsys|Lj ≥ V aRj)

= E(
∑
i

wiLi|Lj ≥ V aRj) =
∑
i

wiNESi,j
(19)

One possible interpretation of the CoES is as a stress scenario, measuring the expected
systemic loss if one institution becomes distressed. Note that all other institutions in that
scenario will not be held fixed but will react following their tail dependencies with the
distressed institution. A higher value for the metric means that either the distressed
entity has more impact on the system on its own, or that all institutions are strongly
correlated when generating losses. In the extreme, if either an entity is driving all the
losses in the system, or the entity’s losses are fully correlated to those of other players,
its CoES will be equal to the ES of the system. From that point of view Rabo, Aegon,
and ING Bank respectively have the highest potential to impact the system.

Weighting up and adding up all NESi,j over i, i.e. all row entries over a column entry
j, generates the CoES of institution j, as indicated earlier in (19). This allows us to
determine the percentage contribution each institution will bring about to systemic losses
when one of its peers is in its tail. Formally, we have

Network PC to ESi,j =

∑
i NESi,j

CoESj

The highest systemic loss of 31.1% will occur if Rabo ends up in its tail. If that were
to happen, we can see from Figure (7b) that only 44% of the systemic losses will be due
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to Rabo itself. The rest will be contributed in large part by Aegon (26.2% of the risk),
ING (17.9%), and ABN (about 8%).

Figure (8) shows rolling-window MES estimates for each institution. Note that the
ES, as a measure of standalone risk, is not always moving in conjunction with the systemic
contributions (MES). Periods, where the two disagree in direction, are indicative of
changes in the correlation between the institution and the portfolio.

The Covid impact spike at the beginning of 2020 is a clear systemic event increasing
the standalone risk of each company. For some companies, the standalone risk spikes
together with the corresponding contribution and reverses a former trend of declining
contributions (Rabobank, NIBC, Aegon). For NIBC, in contrast, the spike keeps the
firm at an increased level of systemic contribution. For ABN and VB, the shock seems
to be largely transient. An interesting case is NN. Even though it experiences an uptick
in standalone risk, its contribution does not move.

Figure 8: Backtest, 99% MES
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Note. This figure shows the MES vs. the ES at q = .99% for each company. The MES of the institutions
sums up to the total ES of the system.

Figure (9) shows the contributions to systemic risk over time as a share of total
systemic risk. The companies are ranked on the chart by contribution as of the end of
2021. There is no change in ranking for the top three contributors over time: Rabobank,
ING Bank, and Aegon. However, the relative contribution coming from ING Bank has
diminished after 2017.

6.4 Robustness

Finally, as a robustness chcek, we employ two checks to verify if changing or isolating out
some components of the model changes the systemic rankings we estimate. First, we look
at whether several other measures of systemic risk sensitivity comply with the rankings
established in Section (6.3). Second, we look at the sensitivity of our results relative to
the parameter assumption of σc underlying the RR dynamics in (5).
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Figure 9: 99% MES (Percentage Contribution)

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
0.0

0.2

0.4

0.6

0.8

1.0

NIBC
VB
NN
ABN
AEGO
INGB
RABO

This figure shows the MES vs. the ES at q = .99% respectively for each company. The MES of the
institutions sums up to the total ES of the system.

As indicated in Section (2), there is a wide variety of measures in use that imply the
systemic risk sensitivity of an institution from market data. Adrian and Brunnermeier
(2016) propose the CoV aR to quantify the tail-dependency between an institution and
the system it is part of. It is evaluated as the worst q% losses of the system, given that
an institution i is in its worst q%. To align this measure with the concept underlying
the MES, we invert it to get the Exposure ECoV aR, which now also quantifies the
sensitivity of the institution’s losses to a systemic tail event17:

P(Li ≥ ECoV aRi|Lsys ≥ V aRsys) = q

Both the MES and the ECoV aR measure the institution’s losses if the system ends up
in the tail of its potential losses over the coming year. However, in contrast to MES,
which measures the average loss once the system is its tail, the ECoV aR zooms in deep
in the tail of the potential losses of the institution, measuring the q-th quantile not only
with respect to the systemic losses but also with respect to the institution’s losses.

Next, we relate to another measure, which focuses only on default correlations as
presented in Section (6.2). The idea is to compare our results to a measure that is not
influenced by the assumptions on how losses are formed and how they correlate between

17Note that originally Adrian and Brunnermeier (2016) define CoV aR by conditioning on individual
losses being equal to a quantile rather than a region of their distribution as:

P(Lsys ≥ CoV aRi|Li = V aRi) = q

This allows the use of quantile regression for the estimation of the measure. On the negative side,
such conditioning can give a misleading tail-risk indication when the loss distribution is fat-tailed, by
not capturing the probability mass below the V aR quantile. In our case, systemic losses are strongly
non-Gaussian, so we use the modified version of CoVaR, as in Huang et al. (2012), which conditions on
Li ≥ V aRi. See also Nolde and Zhou (2021) for the same argument, and the relation to Extreme Value
Theory of the modified measure.
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companies, as these assumptions will inevitably affect both the MES and the ECoV aR
which are driven by the same loss simulations. To measure the sensitivity of individual
institutions to distress in the system, Zhou (2010) defines the Vulnerability Index (VI) as
the probability that institution i will be in default conditional on more than one default
in the system:

V Ii = P(1di = 1|Nd > 1) (20)

Note that Zhou (2010) relies on Extreme Value Theory to estimate the proposed measures.
Also, we rely on default as an indication of distress, whereas the original measure is
constructed to capture large tail movements in the equity value of the institution. Our
approach differs methodologically, but based on the outlined model, the measures can be
adapted.18

Table (4) summarizes the results. First, we compare the unweighted systemic risk
measures to the MES rankings of Table (3). The rank correlations in sub-table (b)
indicate strong agreement between the V I measure and the MES. The MES and the
ECoV aR agree only moderately. Closer inspection indicates that the disagreement is
that ECoV aR switches the ranks of NIBC and VB, and of ABN and ING.

Sub-table (c) compares the size-weighted measures and finds strong agreement be-
tween them. It is worth noting that only the weighted MES measure (the ranking of
which coincides with the presented earlier ranking by PC to ES) sums up to total sys-
temic risk. This is due to the additivity property (14). The two other risk measures do
not have this property and their weighting can be considered only as a heuristic.19Once
the measures are weighted, they show a stronger correlation among each other. It is worth
noting that size itself correlates strongly to MES. It fails however to identify Rabo as
the major contributor to systemic risk. Yet, both the PC to ES and the weighted V I
find Rabo to be more systemic than ING.

Next, we vary the parameter σc to verify to what extent the results are driven by the
decision to calibrate the parameter to the VSTOXX index. Table (5) shows the resulting
percentage difference in the 99% MES estimates when a fixed number of .15 and then to
.05 is used in the model, relative to the base figures in which the value of the VSTOXX
index was used (at the reference date the index has a value of .2). The parameter choice
affects the magnitude of the MES estimates. The new MES figures however do not
change the systemic ranking.

Figure (10) shows the ES of the system for each alternative σc estimate. Again, the
magnitude of the tail risk values change, but the overall trends do not. Using VSTOXX
also makes the estimates more sensitive to short-term variations. Having a reliable esti-
mate of the individual institutions’ asset variance will make a difference in differentiating
better between their risk characteristics or in defining the magnitude of the possible
losses. In absence of such data, however, using a single number matched to the implied

18The VI index is constructed by inverting an earlier measure of conditional default proposed by
Segoviano and Goodhart (2009). To evaluate the impact of each institution upon the system, they
measure the probability that at least one more institution becomes distressed (PAO) conditional on the
distress of one particular institution: PAOi = P(Nd > 1|1di

= 1). We do not explore systemic impact
measures here, as an initial analysis shows that there is very little difference in rankings between the
impact measures (PAO and SII) and the sensitivity measure (SII) for our sample.

19To see how the CoV aR can be broken down into components that satisfy the additivity property see
Puzanova and Düllmann (2013). For general discussion on the additivity of risk measures see the Euler
property in e.g. Chapter 12 of Hull (2018).
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Table 4: Systemic Rankings Comparison

ECoV aR (%) V I (%) w · ECoV aR w · V I

ABN 64.94 (4) 33.81 (4) 9.52 (4) 4.96 (4)
INGB 63.65 (5) 32.12 (5) 22.00 (1) 11.10 (2)
RABO 67.73 (2) 57.33 (2) 15.74 (2) 13.33 (1)
NIBC 65.39 (3) 28.06 (6) 0.48 (7) 0.21 (7)
VB 62.41 (6) 53.26 (3) 1.56 (6) 1.33 (6)

AEGO 73.95 (1) 67.00 (1) 11.49 (3) 10.41 (3)
NN 56.72 (7) 15.41 (7) 4.96 (5) 1.35 (5)

(a) Rankings

MES ECoV aR V I

MES
ECoVaR 0.64

VI 0.96 0.68
(b) Rank Correlations

w PC to ES w · ECoV aR w · V I

w
PC to ES 0.93
w · ECoV aR 1.00 0.93
w · V I 0.96 0.96 0.96

(c) Rank Correlations, Weighted Measures

Note. This set of tables shows the systemic risk rankings according to alternative measures and the rank
correlations between them.

29



Table 5: Percentage Change in MES when Varying σc

σc = .15 σc = .05

ABN 8.22 24.31
INGB 8.22 22.54
RABO 9.50 30.04
NIBC 7.41 21.29
VB 11.36 35.07
AEGO 6.76 20.89
NN 6.25 17.27
Sys 8.28 24.90

Note. This table shows the percentage difference in MES estimates, relative to the base case from Table
(3), when arbitrary fixed values are used to calibrate the σc parameter.

volatility of European stocks seems an appropriate second-best alternative that does not
enforce ranking changes in systemic risk across the observed universe.

Figure 10: Expected Shortfall of the Systemic Portfolio
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Note. This figure shows ES for the system calculated based on two assumption: σc is scaled by the
implied volatility of the VSTOXX index, and σc is fixed to 20%. Evaluated at .95 confidence level.

7 Policy Relevance
Our results are relevant for the policy framework for systemic risk. For Global Sys-
temically Important Banks (G-SIBs), the Basel Committee on Banking Supervision and
the European Banking Authority (EBA) specify in detail the methodology according to
which capital surcharges are allocated to institutions that are designated as systemically
important. The goal of the surcharges is to improve the resilience of the system by in-
ternalizing the systemic risk generated in the financial sector. In addition, the European
Union designates banks that it regards to be systemically significant as Other Systemi-
cally Important Institutions (O-SIIs), and requires that national authorities, under EBA
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guidance, decide on identification procedure and on the size of the surcharges for these
institutions.

There is currently a large disconnect between the academic approaches used to mea-
sure systemic risk and the regulatory approach used to set systemic capital buffers. Sec-
tion (2) has extensively explored the academic perspective. For European regulators,
the general guidance by the EBA is to focus on four criteria of systemic relevance: size,
importance, complexity, and interconnectedness (EBA, 2020). Usually, a score is pro-
vided in each category and the four categories are equally weighted up to a single O-SII
score. The ranked institutions are bucketed based on score ranking, and for each bucket,
systemic buffer surcharges are discretionary set through a step-up ladder structure.

As we focus on institutions residing in the Netherlands, we can directly compare the
systemic ranking coming out of our model to the ranking based on the O-SII surcharge
rate set by the Dutch regulator. In the Netherlands, as of 2021 the following O-SII
buffers apply20: ING Bank (2.5%), Rabo (2%), ABN (1.5%), Volksbank (1%). As Table
(3) indicates, this ranking differs from our ranking by PC to ES, where Rabo comes before
ING. Ranking by size, however, we match the O-SII results. It is difficult to generalize
based on our small sample, but this could be an indication that the O-SII score is not
putting enough weight on the interdependency between the institutions, and is focused
more either on size or on standalone risk, where ING ranked on top.

Naturally, the sample that we have is too small to allow us to generalize any con-
clusions. Yet, we relate to other studies that find a difference between the policy and
the academic approaches on measuring systemic risk. For example, Brogi et al. (2021)
compare the G-SIB buffer rankings to systemic risk rankings calculated based on a credit
portfolio approach similar to ours. They use the DIP measure provided by Huang et al.
(2009, 2012) which calculates the average loss (rather than the ES) for the regulatory
portfolio, where loss is again generated in default. They find significant differences in the
two approaches and argue that the regulatory framework would benefit by incorporating
also a risk contribution metric into generating systemic rankings.

Bianchi and Sorrentino (2021), on the other hand, explore a small sample consisting of
the four Italian banks designated as systemically important and largely find consistency
in the ranking based on the CoVaR measure and based on the O-SII buffer rates set by
the Italian central bank. Yet, having higher frequency data allows them to link systemic
risk estimates to the evolution of bank characteristics and conditions.

Overall, we can conclude that there is no downside to embedding market-based implied
measures of systemic risk, as ours, into the policy process. First of all, such measures
could provide a way to verify the ranking that policymakers come up with based on
EBA’s guidelines and using regulatory data. Any discrepancy in the rankings based on
the two approaches could raise important questions, the answers of which could improve
the regulator’s approach to assessing systemic risk. Or even if no discrepancy between the
two appears, a market-based measure as the MES can be used to assess risks between
annual policy assessments.

8 Conclusion

In this paper we examined the systemic linkages and the potential systemic risks arising
in the Dutch financial sector. In particular, we look at seven key insurance and banking

20See https://www.esrb.europa.eu/national_policy/systemically/html/index.en.html
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institutions. To do so we addressed a common challenge in estimating and monitoring
the build-up of systemic risks: a regulator cannot resort to equity prices for institutions
that are privately or state-held. In these cases, we show how high-frequency data from
the CDS market can still be used to imply views on co-dependencies and joint losses. We
use the Dutch financial sector as a case study for our approach.

We argue that in contrast to micro-prudential policies, an appropriate macro-prudential
view should try to monitor and manage not only the risky positions of an institution on
its own, but also the interdependencies between institutions and the potential for several
of them to realize large losses at the same time. From that perspective, in the sample
that we consider, we confirm that a risk ranking incorporating tail dependence across
the institutions is different from a ranking based on standalone tail risk. From a risk
management point of view, it is clear that a focus on the former is more important if the
goal is to curb risk in the total portfolio. Yet, we find in our sample that the latter is
closer to the current ranking based on the O-SII capital surcharges for systemic risk.

In the process, we presented a model, which builds upon the existing academic lit-
erature that addresses systemic risk from a structured credit angle (Huang et al., 2012;
Puzanova and Düllmann, 2013). The financial institutions in the system are seen as part
of a defaultable loan portfolio. Systemic losses occur in the case of default of one or
several institutions. The average tail losses of the portfolio (the ES measure) speak for
the magnitude of the systemic risk. The average losses of each institution, given that the
system is in its tail, speak for the sensitivity of each institution to systemic risk. The
share of the portfolio tail risk that can be attributed to each institution speaks for the
contribution of the institution to systemic losses. We extend the existing approaches by
also incorporating dependency in the size of the losses, and not purely in the default
probabilities.

Our research speaks directly to the policy debate around the risk rankings used to set
additional buffer charges for systemic risk for banks. We find certain differences in the
top three institutions ranked as most systemic by our portfolio-based approach and the
regulatory approach. The sample that we consider is too small to draw general conclusions
but may indicate a disconnect between how regulators measure systemic importance, and
what market co-movements in the price of default protection imply. A natural extension
of the current study would be to expand the universe of institutions that are considered
and to observe if those rankings systematically differ across European countries. The
O-SII buffer rates in Europe are mandated separately by each national regulator, each
following its own implementation of the EBA guidelines.

It needs to be acknowledged that there is currently little theoretical backing on de-
termining the size of the capital buffers that institutions need once they are designated
as systemic. The policy approach has been to recommend a two-step heuristic, where in
the first step institutions are ranked based on a set of criteria associated with systemic
importance, and in the second they are bucketed together and surcharges are set in a
step-up manner to each bucket. This holds both of O-SIIs and for G-SIIs. Previous
studies have found that the approach is very sensitive both to the ranking and bucketing
mythologies used (Brogi et al., 2021). In the methodology that we propose, it is natural
to link the size of the capital surcharges directly to the possible systemic contributions,
measured by the weighted MES. Further research is needed to determine what mapping
between the two would be socially optimal.

A larger sample would also allow the exploration of additional features in the sys-
temic risk model. In fact, the currently proposed portfolio approach could be considered

32



a basic architecture, which is extendable to incorporate specific observed stylized features
of asset prices or of the structure of the examined financial network. Since tail correla-
tions between the institutions are a key driver of systemic contributions, it is worthwhile
exploring non-linear structures of these dependencies. The ability to model large multi-
dimensional dependencies is key. Oh and Patton (2018) for example suggests the use of
a factor Copula approach. Wang (2021) suggest a deep learning approach. Alternatively,
network models could be used to mimic the often observed core-periphery structure of the
financial sector (Bräuning and Koopman, 2016; Andrieş et al., 2022). Institutions that
constitute the core of the network could be dominant drivers of systemic risk (Glasserman
and Young, 2016; Jackson and Pernoud, 2021).

To sum up, estimating systemic risk contributions properly is essential for the efficient
regulation of the financial system. The additional capital surcharges are a cost that
needs to go to the institutions generating the systemic externality, so identifying these
institutions is crucial. More research into the methods used to quantify and attribute
systemic risk is thus important.
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Appendices
A The Merton model of firm value
We present the baseline model of Merton (1974). The value of assets is an exogenous
process following a Geometric Brownian Motion

dVt = µvVtdt+ σvVtdWt (21)

The company’s debt is a zero-coupon bond with maturity T and face value of D and
default can occur only at the moment when it matures. If the value of its assets are below
the face value of its debt, the owners of the company will prefer to succumb to default.
If the value is above the value of debt, the owners retain any residual value.

ET = max[0, VT −D]

In that case, the value of equity at maturity can be seen as a long European call option
on the firm’s assets, and before maturity can be evaluated through the Black-Scholes (BS)
equation as:

E(t, Vt, σv) = VtN(d1)−D∗N(d2) (22)

where D∗ = De−r∆t is the value of debt, discounted at the risk-free rate r, ∆t = T − t
is the time until debt maturity, N(.) stands for the standard normal distribution, and d1
and d2 are given as follows: 21

d1 = −
ln
(

D∗

Vt

)
σv

√
∆t

+
1

2
σv

√
∆t (23)

d2 = d1 − σv

√
∆t (24)

In the Merton framework under the risk-neutral measure d2 corresponds to Distance
to Default (DD), a measure often used to assess the credit risk of a firm. Loosely speaking
it measures the number of standard deviations of the asset value of the firm to the default
barrier point (?). The risk neutral survival probability in the Merton model can be shown
to be P (Vt > D) = N(d2), and N(−d2) is the default probability, where d2 is then the
risk-neutral Distance-to-Default measure DD.

Both the asset value and the asset volatility are unknown. As E = E(t, Vt, σt) is a
function of the stochastic underlying asset value, applying Ito’s rule we can write the
default probability as:

dE =

(
∂E

∂t
+ µvV

∂E

∂Vt

+
1

2
σ2
vV

2∂
2E2

∂V 2
t

)
dt+ σvVt

∂E

∂Vt

dWt

The standard approach in calibrating the model, relying on Ronn and Verma (1986),
notes that stock prices Et are themselves observable on the market and follows a Geo-
metric Brownian motion of the type
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dEt = µEEtdt+ σEEtdWt

Matching coefficients in the diffusion term with (22) we get,

σEEt = σvVt
∂E

∂Vt

(25)

We can then solve the system of two equations and two variables defined by (22) and
(25). In Merton’s setting, we get that ∂E

∂Vt
= N(d1), where the derivative is also known

as the option delta in option pricing theory.
At any time, the value of assets can be decomposed by sources of financing into debt

and equity, so we can write the current market value of its debt as

Bt = Vt − Et (26)

which, using (22), can also be written as

B(t, Vt, σv) = VtN(−d1) +D∗N(d2) (27)

Equivalently, at maturity bondholders either get back the face value of debt or if the
company defaults, they get the residual asset value, such that:

BT = min[D, VT ] = D −min[0, D − VT ]

As a result, the value of liabilities corresponds to a portfolio of a short put with strike
D and a long risk-free bond with the same face value. Valuing liabilities before maturity
can again be done through the BS formulas by evaluating: Bt = De−r(T−t)−P (Vt) where
P (.) is the corresponding value of a European put option with a strike D written on the
asset’s underlying.

Using the put-call parity, with E(.) and P (.) the values for a call and a put written
on the company assets as an underlying, we have E(Vt)−P (Vt) = Vt−D exp{−r(T − t)}
which implies

Bt = Vt − E(Vt)

At the same time, denoting yt as the yield on the corporate bond, we have

Bt = D∗e−(yt−r)∆t

which implies a corporate bond spread:

s(t, Vt, σv) = yt − r = − 1

∆t
ln

Bt

D∗ (28)

where Bt is given by (27). Note then that:

∂st
∂Vt

= − 1

∆t

N(−d1)

Bt

(29)

where we make use of the fact that ∂Bt

∂Vt
= ∂(Vt−Et)

∂Vt
= 1−N(d1) = N(−d1).
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Figure 11: Merton Model
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This figure shows the results of using the spread level to imply through the Merton model (a) the firm’s
liabilities (b) the firm’s Equity value and (c) the asset value of the company. The company’s debt is
fixed at 100.

B Latent Factor Model Estimation
We apply the following algorithm based on Andersen and Basu (2003) to estimate the
latent factor model from time-series data of the institutions’ CDS prices.

Assume that Σ is an n × n matrix containing the target asset correlations between
the key institutions. Assume the following factor model

U = AM +Z

where U is an n × 1 vector of standardized asset returns for the n institutions, A is an
n × f common factor loadings matrix, M is an f × 1 vector of common factors and Z
is a n× 1 vector of idiosyncratic factors. All factors are independent of each other with
zero expectation and unit variance.

The problem is one of solving for A by minimizing the least squared difference of the
model correlation matrix to the target one, such that:

min
A

{
(Σ−AA′ − F ) (Σ−AA′ − F )

′}
where F is a diagonal matrix such that diag(F ) = 1− diag(AA′).

The numerical solution algorithm then is

1. Guess F 0

2. Perform PCA on Σ−F i and compute Ai = Ei
√
Λ

i
, where i is an iterations counter,

E is a matrix of the normalized column eigenvectors of Σ − F ,
√
Λ is Cholesky

decomposition of the diagonal matrix containing the f largest eigenvalues of Σ−F .

3. Calculate F i+1

4. Continue with Step 2, until F i+1 is sufficiently close to F i.
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C Charts and Graphs

Figure 12: CDS Prices (bps)
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Figure 13: CDS Prices Log Changes

Figure 14: VSTOXX
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Figure 15: Liability Weights
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Figure 16: Simulations, Scatter Matrix

Figure 17: Asset Simulation
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Figure 18: Recovery Rate Simulations
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D Glossary

CoVaR Codependet VaR. Tail loss of the system given a tail loss in one particular
institution

CDS Credit Default Swap

DD Distance to Default in Merton’s firm model

EBA European Banking Authority

ECoVaR Exposure CoVaR. Tail loss of a particular institution given a tail loss in the
system

ES Expected Shortfall. The average loss if the variable is in its tail

G-SIB Global Systemically Important Banks

MES Marginal Expected Shortfall. The average loss of an institution if the system is in
its tail

O-SII Other Systemically Important Institutions

PC to ES Percentage Contribution to Expected Shortfall

PAO Probability of Additional Default if one particular institution defaults

RR Recovery Rate in case of default

SII Systemic Impact Index. Expected number of defaults, if one particular institution
defaults

SIFI Systemically Important Financial Insinuation

VaR Value at Risk. The q-th quantile of worst losses; defines the tail of the loss distri-
bution

VI Vulnerability Index. The probability that a particular institution will default, given
that there are more than one defaults
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