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Abstract

We consider an observation-driven location model where the unobserved location

variable is modeled as a random walk process and where the error variable is from

a mixture of normal distributions. The mixed normal distribution can approximate

many continuous error distributions accurately. We obtain a flexible modeling

framework which is particularly designed for robust filtering and forecasting. We

provide sufficient conditions for the strong consistency and asymptotic normality of

the maximum likelihood estimator of the parameter vector in the specified model.

The asymptotic properties are valid under correct model specification and can be

generalized to allow for potential misspecification of the model. A simulation study

is carried out to monitor the forecast accuracy improvements when extra mixture

components are added to the model. In an empirical study we show that our

approach is able to outperform alternative observation-driven location models in

forecast accuracy for a time-series of electricity spot prices.

Key words: time-varying parameters, asymmetric and heavy-tailed distributions,

robust filter, invertibility, consistency, asymptotic normality.

JEL classification: C13, C22.

1Blasques thanks the Dutch Science Foundation (NWO; grant VI.Vidi.195.099) for financial support.

Koopman acknowledges support from CREATES, Aarhus University, Denmark, funded by the Danish

National Research Foundation, (DNRF78). Corresponding author: S.J. Koopman, Vrije Universiteit

Amsterdam, School of Business and Economics, De Boelelaan 1105, 1081 HV Amsterdam, Netherlands.

Phone: +31205986019, Fax: +31205986020, Email: s.j.koopman@vu.nl.

1



1. Introduction

In the analysis and forecasting of economic and financial time-series it remains of key

importance to have an accurate estimate of the mean or location. The forecasting of a

time-series can only be successful when an accurate estimate of the conditional mean is

available. The conditional mean at a particular time-period is typically a function of past

time-series observations. We introduce a non-stationary time-varying location model for

the mixture of normal density. The mean or location is modeled as a random walk process

with drift and with innovations specified as a function of past observations. Hence, our

framework belongs to the class of observation-driven models ; see the discussion in Cox

(1981). In particular, the innovation for the random walk process is defined as the score

of the mixed normal density, conditional on past observations (predicted), with respect

to the mean variable. Hence, this formulation of a time-varying location model belongs

to the class of score-driven models which is introduced by Creal et al. (2013) and Harvey

(2013).

This time-varying location model relies on two particular novelties within score-driven

models: the choice for the mixed normal density and the non-stationary specification

for the location variable. The mixed normal density is known to be a very flexible

framework as it can approximate almost all continuous density functions, including those

with heavy tails, multiple modes, excess kurtosis and asymmetry. Any smooth density

can be approximated for any arbitrary amount of error by a finite mixture of normals,

when enough components are added to the mixture; see the discussions in McLachlan

and Peel (2004), Goodfellow et al. (2016, Section 3.9.6) and Nielsen (2021). The mixed

normal distribution is typically designed for settings where observations mostly fluctuate

in a moderate fashion but occasionally are contaminated by spikes and large “outliers”.

The observations may appear to be generated by a fat-tailed distribution, possibly with

excess kurtosis. In such a case, we can consider a mixed normal where some components

have a moderate variance and a high weight while some components have a large variance

and a low weight. A similar construction is used for the so-called ‘contaminated’ normal

distribution which is discussed by Tukey (1960) and Huber (1964), and which forms a

fundamental part of the literature on robust statistics. The mixed normal model is also

used in the context of time-series modeling. An example is the mixed autoregressive model

of Wong and Li (2000) where a mixture of stationary and non-stationary autoregressive

components is considered for the treatment of possible multimodality in the predictive

density.

Our second novelty is the non-stationary specification for the time-varying location.

Almost all score-driven models that have been studied in the literature so far have been
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analyzed in a stationary context. However, the score framework can also be applied in

settings where the observations are non-stationary without further adjustments. We pro-

pose a filter for estimating the non-stationary time-varying parameter and a maximum

likelihood estimator for the unknown parameter vector. The theoretical properties of

the filter and the maximum likelihood estimator have been established for the stationary

case; see Blasques et al. (2015) and Blasques et al. (2021). However, in a non-stationary

setting the development of theoretical results is more challenging and non-standard be-

cause the filtered path of the time-varying location will not be asymptotically stationary.

Fortunately, in the current setting, we can show that under fairly general conditions,

the difference between the observations and the filtered conditional mean converges to a

unique stationary and ergodic limit sequence. This result implies that consistency and

asymptotic normality of the MLE can be derived using a similar approach as one would

adopt in stationary settings.

Earlier time-varying location models within the family of score-driven models have

been proposed. Harvey and Luati (2014) and Caivano and Harvey (2014) consider a

similar non-stationary setting but for the Student’s t distribution and the exponential

generalized beta (EGB) distribution (of the second kind), respectively. More involved

dynamic specifications for the location are considered by Caivano et al. (2016). In these

contributions, the starting value of the time-varying process for the location are assumed

known or as an unknown parameter that needs to be estimated. We will argue that

under certain conditions, the starting value is irrelevant in the limit and therefore it does

not need to be estimated. In this way, we can provide a complete theoretical framework

for the non-stationary location process under a mixed normal error density. Catania

(2021) introduced a general dynamic mixture model which also falls within the class of

score-driven models. It allows for time-varying mixture components and a time-varying

composition, which indeed lead to a flexible and general modeling framework. However,

our model is inherently different as we consider a basic signal-plus-noise model where the

noise comes from a time-invariant mixed normal distribution. It is within this targeted

framework that we are able to provide a complete theoretical foundation.

The remainder of the paper is organized as follows. In Section 2 we provide the model

specification in detail. In Section 3 we discuss how to filter the time-varying parameter

and how to estimate the static parameter vector by means of maximum likelihood. We

further formulate conditions for the invertibility of the filter and establish consistency and

asymptotic normality of the maximum likelihood estimator of the parameter vector. We

argue that these results are also valid under misspecification of the model, when certain

conditions on the observations are valid. In Section 4 we carry out two Monte Carlo

experiments. The first experiment is to measure the accuracy of the filter in tracking the
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time-varying parameter in a finite sample. The second experiment is to verify whether

the correct number of components in the mixed normal can be determined within our

estimation framework. In Section 5 we analyze a daily time-series of electricity spot prices

and we show that our modeling approach can outperform other models, both in-sample

as well as out-of-sample. In Section 6 we provide concluding remarks. The proofs of the

theorems are given in the Appendix. The technical details and discussions are collected

in a Technical Appendix.

2. A non-stationary location model with mixed errors

We aim to develop a filter for the conditional expectation µt of univariate stochastic

sequences {yt}t∈Z with stationary and ergodic increments {∆yt}t∈Z. Given a sample

of observed data y1, . . . , yT , our object of interest is thus the sequence µ1, . . . , µT with

elements

µt = E(yt|Ft−1) , t = 1, . . . , T ,

where {Ft}t∈Z is the filtration composed of sigma algebras Ft = σ(yt, yt−1, . . .). We

propose a simple yet flexible way of filtering µt which ensures an analytically tractable

log-likelihood even in the presence of nonlinear dynamics and non-Gaussian innovations.

In particular, we employ a filtering model with an observation equation given by,

yt = µt + εt , (1)

where we assume that {εt}t∈Z is a zero mean, independent and identically distributed (iid)

sequence of mixed normal random variables. In particular, the innovations are assumed

to be drawn from a mixture of J normal distributions such that the probability density

function of the innovation εt is given by

pε(x) =
J∑
j=1

wj
σj
φ

(
x− cj
σj

)
,

where φ(·) is the standard normal density function, with fixed weights wj ≥ 0 which

are subject to
∑J

j=1 wj = 1, means cj ∈ R which are subject to
∑J

j=1 cjwj = 0, and

standard deviations σj > 0, for j = 1, . . . , J . The restriction on the means ensures that

the innovations have mean zero. The observation equation implies that the density of

the observations is given by py(yt|µt) = pε(yt − µt). The time-varying location µt is

specified as in the score-driven models of Creal et al. (2013) and Harvey (2013). Given

the observation equation (1), the location updating equation is

µt+1 = ω + µt + αs(yt − µt) , (2)
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where ω ∈ R is an unknown fixed drift coefficient, α ∈ R is an unknown fixed coefficient,

and function s(·) : R → R is the score of the innovation density multiplied by the

derivative of the inverse link function with the link function denoted by f(·) such that

yt = f(µt, εt) = µt + εt. We obtain

s(x) =
∂ log (pε(x))

∂x
· ∂f

−1(µt, yt)

∂µ
=

∑J
j=1 σ

−2
j wjφ

′(zj)∑J
j=1 σ

−1
j wjφ(zj)

· (−1) =

∑J
j=1 σ

−1
j hj(x) zj∑J

j=1 hj(x)
, (3)

with standardized variable zj = σ−1
j (x−cj) and the j-th scaling factor hj(x) = σ−1

j wjφ(zj),

for j = 1, . . . , J , where we notice that φ′(zj) := ∂φ(zj)/∂zj = −zjφ(zj). It follows that

the score s(yt − µt) is equal to the score of the conditional observation density py(yt|µt)
with respect to µt. We assume that the process {µt}Tt=1 is initialized at some value µ1

that is either a fixed but unknown constant, or a random variable that takes values in

R. Given the model equations (1)–(3), it is implied that the process {µt}t∈N is a random

walk with drift parameter ω and iid innovation s(εt). The coefficient α can be interpreted

as the signal-to-noise parameter as it determines how much µt+1 changes in relation to

µt, given the the innovation s(εt). In case J = 1 we have a linear filtering equation,

since then s(x) = x/σ2
1. This result is immediate because for J = 1 the innovations

are normally distributed with mean zero and variance σ2
1. Also, the case of J = 1 can

be regarded as an observation-driven analogue of the local level model made popular by

Harvey (1989) and Durbin and Koopman (2012, Chapter 2).

Our proposed filter (1)–(3) provides considerable flexibility. In practice, the mixture

density allows us to capture complex innovation densities which may possibly lead to

asymmetric updating mechanisms for (3). This feature can be readily exploited by score-

driven models where the updating mechanism reflects the innovation density directly. It is

widely established that the mixture density is able to approximate arbitrarily accurately

any heavy-tailed (or fat-tailed) density. The filter can subsequently achieve any level

of robustness to outliers. Hence, the score update can downweight innovations on any

compact set, and hence downweight any observation in a given sample. This ability

applies to both symmetric and asymmetric heavy-tailed distribution; see Titterington

et al. (1985) and McLachlan and Peel (2004). The use of a mixture density provides

robustness and flexibility, but it also allows us to establish the filtering and estimation

theory for this score-driven location model. We conclude that our specific use of nonlinear

score-driven filtering methods can be regarded as advantageous from both theoretical and

practical perspectives.

When we view the set of equations (1)–(3) as a statistical dynamic model, or as a data

generating process (DGP), we stress that the dynamic model produces a time-varying

location parameter {µt}t∈Z which exhibits non-stationary random walk dynamics. It

means that the model generates non-stationary data {yt}t∈Z with random walk dynamics
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and nonlinear moving average innovations. In the special case of ω = 0 and Gaussian

innovations (J = 1), the model is able to generate linear random-walk data {yt}t∈Z with

Gaussian iid innovations, see Remarks 1 and 2. The conditions for stationary score-driven

models are well established and the asymptotic theory has been developed recently in the

literature, see Blasques et al. (2021). In Section 3 we consider the theoretical aspects of

inference for non-stationary data as generated by the score-driven model (1)–(3).

Remark 1. As a data generating process, the model stated in (1)–(3) generates a sequence

{µt}t∈Z that is a random-walk with drift ω featuring iid innovations vt = αs(εt−1),

µt+1 = ω + µt + vt.

Naturally, if ω = 0 and J = 1 then {µt}t∈Z follows a random walk with iid Gaussian

innovations,

µt+1 = µt +
α

σ2
1

εt.

Remark 2. Let ω = 0. Then, as a data generating process, the model stated in (1)–(3)

generates a random-walk sequence {yt}t∈Z with nonlinear moving average innovations,

yt = yt−1 + εt + φ(εt−1) ,

where φ(εt−1) = αs(εt−1) − εt−1 is the nonlinear component. Furthermore, if J = 1 and

α = σ2
1 we have that φ(εt−1) = 0, and hence,

yt = yt−1 + εt.

3. Parameter estimation and asymptotic properties

The parameter vector for the model (1)–(3) is given by

θ = (ω, α,ψ′)
′
, where ψ =

(
c1, . . . , cJ−1, σ

2
1, . . . , σ

2
J , w1, . . . , wJ−1

)′
.

The parameters wJ and cJ are not included in θ as they are set as functions of the other

parameters and are given by

wJ = 1−
J−1∑
j=1

wj , and cJ = −
∑J−1

j=1 wjcj

wJ
,

where the expression for wJ enforces the weights to sum to unity while the one for cJ

follows from the restriction that the mean of εt is set to zero. Suppose that we have a

sample of T observations {yt}Tt=1, which is a subset of a sequence {yt}t∈N generated by the
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model equations (1) and (2) under some true parameter θ0. We do not observe {µt}Tt=1.

Hence, to construct the log-likelihood, we consider the filtered sequence {µ̂t(θ)}Tt=1 as

given by

µ̂t+1(θ) = ω + µ̂t(θ) + αs(yt − µ̂t(θ);ψ) , (4)

where the filtered sequence can for example be initialized using the first observation in

the sample µ̂1(θ) = y1 and where the ψ in s(· ;ψ) indexes the mixed normal parameters

used in the score function.

The true and unknown parameter θ0 can be estimated using the method of maximum

likelihood (ML). The average log-likelihood function is given by

L̂T (θ) =
1

T

T∑
t=2

`(yt, µ̂t(θ);θ) , (5)

where

`(yt, µ̂t(θ);θ) := log

[
J∑
j=1

hj (yt − µ̂t(θ))

]
,

with function hj(·) given below equation (3). The ML estimator is then defined as

θ̂T = arg max
θ∈Θ

L̂T (θ) , (6)

where Θ is assumed to be a compact parameter set with elements satisfying restrictions

for the parameters of the Gaussian mixture as given below.

Assumption PS: Θ ⊂ R3J is a compact set such that for some κ > 0, for each θ ∈ Θ:

(i) σ2
1 > . . . > σ2

J ≥ κ with minθ∈Θ σ
2
j − σ2

j+1 ≥ κ for every j = 1, 2, . . . , J − 1 ,

(ii) wj ≥ κ for j = 1, . . . , J − 1 and
∑J−1

j=1 wj < 1− κ.

The restrictions in Assumption PS are identification conditions. Condition (i) may be

relaxed to allow for components with equal variances. However, this would require some

ordering condition for the means and this would complicate the developments below.

In Section 3.1 we study the invertibility of the filter in this unit-root framework. In

Section 3.2 we show that the ML estimator defined in (6) is consistent and asymptotically

normal. In Section 3.3 we discuss how the proposed non-stationary score-driven model

is a reliable filter for general misspecified I(1) processes.

3.1. Invertibility of the filter and bounded moments of its derivatives

A key ingredient to derive the asymptotic properties of the ML estimator is to ensure

the invertibility of the filter µ̂t(θ). Even when we assume that the true parameter θ0 is
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known, we still have generally µ̂t(θ0) 6= µt because the true starting value µ1 is unknown,

meaning that the filter has to be initialized by some other value, for example the first

available observation. Invertibility, as defined by Straumann and Mikosch (2006), entails

that the filter µ̂t(θ0) converges to the true conditional expectation µt as t goes to infinity.

However, these invertibility results only apply for cases where the data generating process

is stationary and ergodic. In particular, under stationarity, the filter can be shown to

converge uniformly over the parameter space to a stationary and ergodic sequence, which

is also known as continuous invertibility; see the discussions in Wintenberger (2013).

Continuous invertibility can be used to study the limit properties of the likelihood function

and derive the consistency and asymptotic normality of the ML estimator. In our case,

the filter µ̂t(θ) does not converge to a stationary and ergodic sequence because {yt} is

a unit root process. We consider a different approach to ensure an appropriate form of

convergence of the log-likelihood function. The likelihood function in (5) depends on

the process {yt} only through the prediction error ĝt(θ) ≡ yt − µ̂t(θ). In the following,

we show that the prediction error ĝt(θ) converges to a stationary and ergodic sequence

uniformly over Θ. This will imply that the terms of the log-likelihood are asymptotically

stationary and ergodic. Therefore, the limit properties of the log-likelihood function can

be derived using standard arguments.

The prediction errors sequence {ĝt(θ)}Tt=1 can be expressed through the stochastic

recurrence equation (SRE) as given by

ĝt+1(θ) = ĝt(θ)− ω − αs(ĝt(θ);ψ) + ∆yt+1, (7)

where we choose ĝ1(θ) = 0, because we choose µ̂1(θ) = y1
2. It follows that the prediction

error ĝt(θ) is a SRE with stationary and ergodic innovations since ∆yt is a nonlinear

moving average process as shown in Remark 2.

The proposition below shows that, under a contraction condition, the prediction error

converges exponentially fast almost surely (e.a.s.) to a stationary and ergodic limit

process with a bounded log moment uniformly over Θ. Furthermore, it shows that the

filter evaluated at the true parameter value converges to the true conditional expectation

of the data generating process. For notational convenience, we write the SRE in (7)

as ĝt+1(θ) = φt(ĝt(θ),θ), where φt is a random function from R × Θ to R, defined by

φt(g,θ) = g − ω − αs(g;ψ) + ∆yt+1. We define the r-fold convolution of the function φt

as φ
(r)
t (·,θ) = φt(·,θ)◦ . . .◦φt−r+1(·,θ) and we define the derivative of φ

(r)
t as φ̇

(r)
t (g,θ) =

∂φ
(r)
t (g,θ)/∂g .

2The setting ĝ1(θ) = 0 is not strictly needed for the results presented in the remainder of this section

as they hold irrespective of the initialization ĝ1(θ).
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Proposition 1. Let {yt}t∈Z satisfy the model’s equations (1)-(3) for θ = θ0 with θ0 ∈ Θ.

Furthermore, assume that Θ satisfies Assumption PS and that the following condition is

satisfied for some integer r ≥ 1:

E log sup
θ∈Θ

sup
g∈R
|φ̇(r)
t (g,θ)| < 0. (8)

Then, the following results hold true:

(i) The prediction error ĝt converges e.a.s. to a unique stationary and ergodic sequence

{gt}t∈Z uniformly over Θ, with a finite log+-moment, i.e.

sup
θ∈Θ
|ĝt(θ)− gt(θ)| e.a.s.→ 0, as t→∞,

where E log+ supθ∈Θ |gt(θ)| <∞.

(ii) The filter µt(θ) evaluated at θ = θ0 converges e.a.s. to the true conditional expec-

tation µt,

|µ̂t(θ0)− µt| e.a.s.→ 0, as t→∞.

The proof relies on Straumann and Mikosch (2006, Theorem 2.8) and Bougerol (1993,

Theorem 3.1), which both provide sufficient conditions for the stability of SREs with

stationary and ergodic innovations. Proposition 1 entails that the limit of the prediction

error gt(θ), evaluated at θ0, is equal to the error term of the data generating process,

i.e. gt(θ0) = εt almost surely.

The contraction condition in (8) requires the r-th iterate of the function φt to be

contracting on average, for some integer r. For r = 1, the condition simplifies to a

uniform contraction, i.e. that |1−αs′(g;ψ)| < 1 uniformly over g ∈ R and θ ∈ Θ, but in

practice this is typically too strict and we need to consider r > 1. An analytical closed

form expression for the condition is not available in that case. For the simple case r = 1

and J = 2, it may be shown that the parameter set satisfying (8) is not degenerate.

In practice, this condition for r > 1 can be checked based on the observed data sample

following the approach of Blasques et al. (2018) for feasible invertibility conditions, where

empirical boundaries of the parameter space are constructed using the observations. In

the current setting, the verification requires a numerical maximization of the derivative

of the r-fold iterate over g for every observation, which is somewhat computationally

intensive, but not infeasible. In case of our empirical study in Section 5, the feasible

version of the invertibility condition holds for large values of r.

In order to establish asymptotic normality of the ML estimator, we also need to know

whether the first and second order derivative of the empirical prediction errors ĝt(θ)

converge to a limit stationary and ergodic process e.a.s. Furthermore, we need certain
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moments of gt(θ) and its first two derivatives to exist. The following proposition is similar

to Proposition of 3.4 of Blasques et al. (2021).

Proposition 2. Let {yt}t∈Z satisfy the model’s equations (1)-(3) for θ = θ0 with θ0 ∈ Θ.

Furthermore, assume that Θ satisfies Assumption PS. Let φt and its r-th iterate φ
(r)
t be

defined as in Proposition 1. Let for some integer r ≥ 1 and some n > 0,

E sup
θ∈Θ

sup
g∈R

∣∣∣φ̇(r)
t (g,θ)

∣∣∣n < 1 . (9)

Then the following results hold:

(i) {ĝt(θ)}t∈N converges e.a.s. uniformly over Θ to a unique stationary and ergodic

sequence {gt(θ)}t∈Z where gt(θ) has n bounded moments uniformly over Θ, i.e.

E supθ∈Θ |gt(θ)|n <∞.

(ii) {∂ĝt(θ)/∂θ}t∈N converges e.a.s. uniformly over Θ to a unique stationary and ergodic

sequence {∂gt(θ)/∂θ}t∈Z where E supθ∈Θ ‖∂gt(θ)/∂θ‖n <∞.

(iii) {∂2ĝt(θ)/∂θ∂θ′}t∈N converges e.a.s. uniformly over Θ to a unique stationary and

ergodic sequence {∂2gt(θ)/∂θ∂θ′}t∈Z where E supθ∈Θ ‖∂2gt(θ)/∂θ∂θ′‖n/2 <∞.

Notice that the conditions of Proposition 2 are stronger than those of Proposition 1.

In case condition (8) of Proposition 1 holds for r = 1, there is a uniform contraction,

implying that the contraction condition of Proposition 2 holds trivially. In case there is

no uniform contraction, a feasible version of the condition in (9) can be verified in the

same way as is suggested for the condition of Proposition 1. As we shall see below, the

conditions of Proposition 1 are sufficient for the consistency of the ML estimator, instead,

asymptotic normality relies on the conditions of Proposition 2 with n ≥ 4.

3.2. Asymptotic properties of the maximum likelihood estimator

The next result delivers the consistency of the ML estimator under the assumptions of

Proposition 1.

Theorem 1 (Consistency). Assume that the assumptions of Proposition 1 hold. Then

the ML estimator θ̂T satisfies θ̂T
a.s.→ θ0 as T →∞.

If additionally the assumptions of Proposition 2 hold, then the following theorem

provides the asymptotic normality of the ML estimator. In this theorem, `t(θ) denotes the

t-th log-likelihood contribution evaluated in the limit filter, i.e. `t(θ) ≡ `(yt, gt(θ)−yt;θ),

where `(·, ·; ·) is defined below (5).
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Theorem 2 (Asymptotic Normality). Let the assumptions of Proposition 2 hold for

n ≥ 4. Then, if θ0 lies in the interior of Θ, the ML estimator θ̂T satisfies

√
T (θ̂T − θ0)

d→ N (0, I−1) as T →∞ ,

where I := −E[∂2`t(θ0)/∂θ∂θ′] is the Fischer information matrix with its expression

given in Technical Appendix C.4.

We do not need the restriction α0 6= 0, to enforce identification of ω and β and to rule

out that µt is deterministic, since α0 = 0 is already ruled out by the contraction conditions

of Proposition 2. This notion follows immediately as these contraction conditions can

never hold if α = 0. There is no explicit expression of the Fischer information matrix in

terms of the parameters, because expectations such as E[s(εt;ψ0)2] cannot be evaluated

analytically for a general ψ0. Therefore, we can only provide an expression of the Fischer

information matrix in terms of expectations and parameters, see Technical Appendix C.4.

3.3. Filtering and estimation under misspecifcation

In the proof of Proposition 1, the correct specification assumption is only used to make

sure that {∆yt} has certain properties. Hence, it can be proved straightforwardly that

the following corollary holds.

Corollary 1. Let {yt}t∈Z be a sequence with first differences {∆yt}t∈Z that are stationary

and ergodic with n > 0 bounded moments. Then if Θ satisfies Assumption PS and

condition (8) holds for Θ and for some integer r ≥ 1, the prediction error ĝt converges

e.a.s. to a unique stationary and ergodic sequence {gt}t∈Z uniformly over Θ, i.e.

sup
θ∈Θ
|ĝt(θ)− gt(θ)| e.a.s.→ 0, as t→∞.

If also ∆yt is independent of ∆yt−s for all integers s ≥ 2, then E log+ supθ∈Θ |gt(θ)| <∞.

It follows that we can prove the existence of filter invertibility without the need to

assume the correct specification of the model. This is an important result because correct

model specification is a rather strong assumption in many practical settings. Corollary 1

implies that even if the observed data is not generated by the model under consideration,

the filter still forgets its initialization in the limit and the prediction errors will converge to

an I(0) sequence in the limit e.a.s. Therefore, filtering and estimation based on this model

can be justified, even when the correct specification assumption seems to be unrealistic.

Notice that the condition on the independence of ∆yt and ∆yt−s for s ≥ 2, that is needed

for a bounded log+-moment of the limit prediction error, can be weakened in case there

is a stronger contraction condition. In particular, if there is a uniform contraction, in
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other words, if condition (8) holds for r = 1, then this independence assumption is not

needed. It can be verified that the correct specification assumption of Proposition 2 can

be replaced by the same conditions on {yt}t∈Z as in Corollary 1.

The consistency and asymptotic normality results can also be generalized to a model

misspecification setting, in a similar way as shown by Blasques et al. (2021). In particular,

the strong consistency of Theorem 1 can be attained under potential misspecification if

the conditions of Corollary 1 hold, and if we assume there is a unique maximizer θ0 ∈ Θ

of the limit log-likelihood function E[lt(θ)]. In this case, θ0 is the so-called pseudo-

true parameter which minimizes the Kullback-Leibler divergence between the probability

measure of the sample and the one implied by the model. A thorough discussion of

statistical inference based on misspecified models is provided in the book of White (1994),

for example. To obtain asymptotic normality under misspecification, Theorem 2 should

be altered to impose that the data {yt}t∈Z is such that the results of Proposition 2 hold

for n ≥ 4 under misspecification; see the discussion above. Furthermore, we require that

there is a central limit theorem (CLT) that can be applied to the first derivative of the

log-likelihood function. For instance, a CLT for near epoch dependent sequences on a

mixing sequence of some size as in Blasques et al. (2021); see also Pötscher and Prucha

(1997, Chapter 6). Finally, the invertibility of the limit Hessian, evaluated at θ0, has to

be assumed as well.

4. Monte Carlo study

To assess whether our modeling framework is able to filter the conditional expectation µt

from a time-series accurately and whether it is able to select the correct J adequately in

a finite sample, we conduct a Monte Carlo study consisting of two experiments.

4.1. Design of first Monte Carlo experiment

We simulate observations {yt}Tt=1 from the data generation process (DGP) given by

yt = µt + εt , {εt}Tt=1 ∼ iid Student’s Skew-t(τ = 0, σ2 = 2, ν = 3.5, γ = 0.8) , (10)

where the innovation εt is assumed to come from a (standardized) Student’s Skew-t

distribution, with its skewness enforced as in Fernández and Steel (1998), and with mean

τ = 0, variance σ2 = 2, degrees of freedom ν = 3.5 and skewness parameter γ =

0.8. Hence, the distribution of the innovation εt is negatively skewed. We consider four

different paths, with sample length T , for the time-varying location parameter µt in the

DGP model (10):
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1. Random walk:

µt+1 = µt + vt , {vt}Tt=1 ∼ iid N (0, 0.25) ,

see Figure 1 for the specific path that is generated.

2. Random walk with drift:

µt+1 = 0.2 + µt + vt , {vt}Tt=1 ∼ iid N (0, 0.25) ,

where we use the same random draws for vt as in 1.

3. Linear trend with cycle: µt = 0.04 + 5× sin (5 · 2πt / T ).

4. Linear trend with break: µt = 0.01 t+ 5× I{t > T/2}, where I{·} is the indicator

function returning 1 when argument is true, and 0 otherwise.

We have selected these particular paths because they have a unit root and/or a deter-

ministic trend. Such dynamic features in the data can also be generated by our proposed

model (1)–(3) in Section 2. However, for other selection of paths, also those without such

trends, we have found similar results as for those reported below3.

The Monte Carlo results are based on experiments where we have generated, for

each µt specification as given above, 1000 corresponding time-series yt from (10), with

time-series length T = 1000. For each simulated time-series, we consider the mixed-

normal score-driven location model (1)–(3), with J = 1, 2, 3 components, and estimate

its parameters by the method of maximum likelihood as discussed in Section 3. We should

emphasize that, as the number of components increases, the optimization becomes more

challenging because the log-likelihood surface may be somewhat ill-behaved, which results

in the optimization process having to overcome local optima. Notice that adopting an

expectation-maximization approach, as is common for mixture models, is no solution to

this, because the distributional parameters ψ occur both in the log-likelihood explicitly

and in the updating function of µt. To facilitate these estimation challenges for the

model with J = 3, we reduce the dimension of the parameter vector by restricting the

component variances as σ2
3 = σ2, σ2

2 = kσ2, σ2
1 = k2σ2 for the ‘new’ parameters σ2 > 0

and k > 1. This restriction is more or less arbitrary, but it is effective and the estimation

results are similar to those obtained from unrestricted estimation. In a few cases, the

restriction even leads to a higher maximized log-likelihood value. In these cases, the

unrestricted estimation process may have ended in a local optimum. When parameters

need to be estimated on a case-by-case basis in an empirical setting, it is advised to start

the (unrestricted) estimation process with different starting values of the parameters for

3Additional Monte Carlo results can be made available upon request.
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the optimization. In our first simulation study, for motivations of feasibility, we have

adopted the restriction as given above.

4.2. Filtering precision

For all DGPs, the model (1)–(3), for any choice of J , is clearly mis-specified, but we

anticipate that the mixture of normals can accommodate the thick tails and skewness of

the skewed Student’s t distribution accurately. Furthermore, our score-driven updating

mechanism provides a robust filtering method for the underlying location parameter µt.

Our Monte Carlo results support these propositions. The median filtered paths and their

2.5 and 97.5 percentiles, for the models with J = 1 and J = 3, are presented in Figure 1,

together with the true paths. The filtered path for J = 2 is omitted, because it is very

similar to the one for J = 3, only slightly less accurate. Our score-driven model (1)–(3)

is able to filter the true path accurately. For the DGP with a linear trend with break, it

takes some time for both filters to move to the right level after the break.

Furthermore, we can learn from the Monte Carlo results in Figure 1 that the J = 1

percentiles of the filtered estimates are further apart when compared to the J = 3 per-

centiles. This finding is expected since our filter with J = 3 is robust to large observations

which occur regularly due to the thick-tailed error distribution used in the DGP model

(10). The filter with J = 1 does not have such robustness features as it is based on

a linear function of past observations which are assumed to come from a normal dis-

tribution. Another finding of interest from the results for the filters with J = 1 and

J = 3 is the relatively large differences between their 2.5 percentiles compared to the

97.5 percentiles. The filter with J = 3 is able to account for the negative skewness of the

innovation distribution, in contrast to the linear and symmetric filter with J = 1. Overall

we can conclude that the nonlinear J = 3 filter is more accurate in the filtering of the

time-varying location µt compared to the linear J = 1 filter. Hence, the consideration of

a nonlinear filter can be more effective in estimating time-varying location variables.

Our Monte Carlo results are also summarized in Table 1. Given the filtered paths µ̂t for

the 1000 simulated time-series, it presents the averages of the maximized log-likelihood

values and the mean squared error T−1
∑T

t=1 (µt − µ̂t)2 values. The filtered locations

have smaller mean squared errors when they are based on models with multiple mixture

components, when compared to the linear filter (J = 1), for all four DGPs. The only

exception is the DGP of the linear trend with break. In this case, the linear filter of J = 1

is able to respond relatively quick to the break in the trend, which makes it as competitive

as the J = 2 and J = 3 filters. Finally, the fit in terms of maximized log-likelihood values

confirms that filters based on the model (1)–(3), with J > 1, considerably outperform

the linear filter (J = 1) for time-series coming from one of the considered DGPs. It is not
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Figure 1. Median of the 1000 filtered paths µ̂t for J = 1 (blue solid) and J = 3 (red solid), the

corresponding 2.5 and 97.5 percentiles (dashed), and the true simulated path µt (black solid)

Table 1. Monte Carlo results for filtering precisions.

Log-likelihood value Mean squared error

J = 1 J = 2 J = 3 J = 1 J = 2 J = 3

Random Walk -1.935 -1.851 -1.846 0.853 0.749 0.744

Random Walk w/Drift -1.935 -1.851 -1.845 0.848 0.745 0.740

Fixed Trend w/Cycle -1.865 -1.754 -1.746 0.480 0.371 0.364

Fixed Trend w/Break -1.814 -1.710 -1.699 0.245 0.261 0.247

We report the averages of the maximized log-likelihood values and the mean squared error

T−1
∑T
t=1 (µt − µ̂t)2 values, for 1000 simulated time-series, with T = 1000, from the data

generation process (DGP) model (10) with a particular path µt as depicted in Figure 1.

surprising that the average maximized log-likelihood value increases with J because the

models with J > 1 components nest the linear J = 1 component model, when ignoring

the identification restrictions.

4.3. Design of second Monte Carlo experiment

The second part of our Monte Carlo study focuses on the selection of the number of

components J . In the asymptotic theory, as developed in Section 3, we have assumed

that the number of components J has been selected beforehand, a-priori. In practice,
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we typically rely on likelihood-ratio statistics to determine a value of J . However, such

tests suffer from identification problems on the boundary of the admissible parameter set,

under the null hypothesis. Hence, the resulting test statistics do not have standard limit

distributions. To avoid such inference issues, we consider the use of Akaike’s Information

Criterion (AIC) and Schwarz’s Bayesian Information Criterion (BIC). In this Monte Carlo

simulation study, we assess how accurate these information criteria are in selecting the

correct number of components. For this purpose, we revisit the Monte Carlo design as

above but with the correct model in (1)–(3) as DGP with J = 2. We estimate the

parameters of the models with J = 1, J = 2 and J = 3 components for different sample

sizes (T = 250, 500, 1000) and obtain the AIC and BIC. Table 2 reports the number of

times each model is selected over 1000 Monte Carlo replications.

4.4. Accuracy in the selection of J

We can summarize the results reported in Table 2 as follows. The BIC selects the correct

number of components (J = 2) much more often when compared to the AIC. Further,

the AIC tends to produce an overestimation of the number of components J as it is

selecting J = 3 more often than J = 2. Both AIC and BIC improve as the sample size

increases. The BIC performs particularly well in small sample sizes, attaining 98% of

correct selections for T = 1000. For computational reasons we have considered J = 3 as

the maximum number of components of the model for this simulation study. The like-

lihood becomes more flat when the model is over-parameterized which makes numerical

optimization more challenging. Therefore, a limitation of this simulation study is that

the number of times J = 2 is selected may be overestimated, especially for AIC. However,

the reported results provide a good indication of the relative performance of AIC and

BIC; they highlight how selection improves as the sample size increases. Overall, we can

conclude that the BIC should be preferred to AIC as a practical way to select the number

of components of the mixture, especially for small T .

Table 2. Accuracy in the selection of J .

T = 250 T = 500 T = 1000

J = 1 J = 2 J = 3 J = 1 J = 2 J = 3 J = 1 J = 2 J = 3

AIC 0 126 874 0 242 758 0 373 627

BIC 5 773 222 0 917 83 0 980 20

Number of times each number of components J = 1, 2, 3 is selected by AIC and BIC for different

sample sizes. The results are based on 1000 Monte Carlo replications. The DGP is the model in

(1)–(3) with J = 2 and parameter vector (α, ω, σ2
1 , σ

2
2 , c1, w1) = (2, 0, 27.5, 3.5, 3.4, 0.1).
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5. Empirical study

We provide an empirical illustration where a time-series of daily electricity spot prices is

analyzed. Since the worldwide deregulation of wholesale electricity markets in the 1990s,

electricity spot prices have been studied to investigate the extremely volatile behaviour

in more detail. This volatility makes the prediction of spot prices more challenging.

Time-series of electricity prices can be characterised by random walk dynamics but con-

taminated by unexpected occurences or spikes of much higher prices during a short time

period. Such spikes are usually not encountered in daily asset prices traded at regulated

financial markets. According to Escribano et al. (2011), this erratic behaviour is primarily

caused by the non-storability of electricity, which implies that demand and supply must

always be balanced. Therefore, shocks in either supply or demand will induce large price

movements. It also plays a role that the demand of electricity is fairly price inelastic,

since the demand will barely react to price changes.

We consider a time-series of daily electricity spot prices of the PJM electricity market,

which serves 13 states in the United States, from June 1, 2007 to April 30, 2021. We take

logs of the prices and multiply them by 10; see Figure 2 for a plot of this time-series. The

final three years of the sample are used for out-of-sample forecast evaluations. Hence,

the implied in-sample time-series is of length T = 3987 (from June 1, 2007 to April 30,

2018). The time-series plot confirms the large (mainly positive) spikes in the data. After

a spike, the price typically quickly reverts back to its pre-spike level. For this reason, if we

are interested in filtering the conditional mean for this time-series, the case for a robust

filter is compelling. The filter should namely not react too strongly to occasional large

observations (or spikes), because these price shifts are usually temporary in nature. Our

score-driven mixed-normal location model with J > 1 components can deliver this needed

robustness, because it can take into account fat tails and asymmetry in the density of the

errors. This empirical study provides an illustration of our methodology. We do not claim

that our suggested model captures all the dynamic features in the data. For example, we

ignore the possible importance of conditional volatility in this time-series, as well as the

possible seasonal effects such as day-in-week, holidays, and quarterly variations.

5.1. Model specifications and parameter estimation

In our econometric analysis, we estimate the parameters for the the score-driven mixed

normal model (1)–(3), with J = 1, 2, 3. We also consider the score-driven model based on

the Student’s t distribution with ν degrees of freedom. This model is defined in equation

(18) of Harvey and Luati (2014). The filter implied by the Student’s t model is also robust

against outliers because the score contribution converges to zero for large observations.
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Figure 2. The log daily electricity spot prices of PJM from 1-6-2007 to 30-4-2021. The Dashed line

at 30-04-2018 indicates the end of the ‘in-sample data’ used for the estimates in Table 3.

This leads to a parametric form of trimming on the observations. It is this property of

the Student’s t filter which induces a theoretical problem in the current unit root setting,

as implied by the updating equation (2). Since the derivative of the score function also

converges to zero in the limit, we cannot formally establish filter invertibility for the

Student’s t model. However, we still consider the model of Harvey and Luati (2014) in

our empirical study because it is a natural candidate to compare it with our mixture

models.

We present in Table 3 the parameter estimates, the maximized log-likelihood values

and their corresponding information criteria AIC and BIC, for the mixed normal models

with J = 1, 2 and 3 components and for the Student’s t model. The model specifications

are without intercept, that is ω = 0 in equation (2), because the AIC and BIC values

are higher in all cases with ω 6= 0. The reported standard errors in Table 3 are obtained

by using the asymptotic variance matrix expression in Theorem 2, under the assumption

of correct model specification. Within the table the increase of J leads to lower values

for AIC and BIC. The model with J = 4 is not reported in Table 3 because it shows an

increase of both of these values. Recall that estimating the parameters in our model (1)–

(3) for higher values of J , including J = 4, is challenging. To ensure that the estimation

process has not ended in a local optimum, we have repeated the estimation for all models

many times with different starting values for the parameters. However, the estimation

process overall has not caused too many challenges; this is mainly due to the time-series

length which is sufficiently high.

For the model with J = 1 components, the contraction condition of Propositions 1 and
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Figure 3. In the top panel we display the log daily electricity spot prices of PJM from June 1, 2007 to

April 30, 2018, together with the filtered locations based on the fitted mixture models and the Student’s

t model. The two bottom panels present the same contents but for two sub-periods which are indicated

by the squares in the top panel.

2 hold for the maximum likelihood estimates (MLEs), since we have α/σ2
1 = 0.758 < 1.

For J = 2 and J = 3, a feasible version of the contraction condition of Proposition 1

holds at the MLEs for r = 50 and r = 100, respectively, which indicates that the filters

of these fitted models are invertible. This is confirmed by the fact that the MLEs barely

change when different starting values µ̂1 are used. Also, for the models with J = 2 and

J = 3 components, a feasible version of the contraction condition in Proposition 2 for

n = 4 holds for r = 90 and r = 225, respectively. These results indicate that gt(θ)

has the required number of bounded moments needed for asymptotic normality as stated

in Theorem 2. Hence, the reported standard errors in Table 3 are reliable, under the

assumption of correct specification.

The MLEs for the model with J = 2 components show that the highest weight is given

to the second component with a mean close to zero and a moderately sized variance while

the first component has a low weight, a large mean and a very large variance, all in relative

terms. These estimation results are typical when the mixture model is used to analyze

data with many patches of spikes; see Figure 2. Similar interpretations can be given to
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the MLEs for the model with J = 3 components. In case of the Student’s t model, the

MLE of the degrees-of-freedom parameter ν is equal to 6.2 which is sufficiently low to

imply a heavy-tailed distribution for the innovations.

5.2. In-sample filtering

The filtered locations {µ̂t}Tt=1 for the four different models in our study are presented

in Figure 3. For illustrative purposes, we have magnified two sub-periods where the

time-series is more volatile and where the four score-driven updating functions behave

distinctively different from each other. In the overall more tranquile periods, the filtered

paths of all four fitted models are rather similar. However, in the first selected sub-period

the linear filter, our model with J = 1, responds more heavily on temporary spikes in

the prices, when compared to the other three models. The filtered path of the Student’s

t model is between the paths from the mixed normal with J ≥ 2 and the path of the

linear filter. The second sub-period also shows more volatile data. However, the filtered

paths from the linear filter and the Student’s t model respond strongly to the spikes in a

similar way, while those from the mixed normal with J ≥ 2 respond in a less pronounced

way. The second sub-periods show spikes during a pro-longed time period and hence the

former set of filters appear to represent the underlying location more precisely in this

sub-period. On the other hand, in this sub-period there are also a substantive amount of

lower values (second half of January 2018). The linear filter reacts to these lower values

when they occur while the Student’s t filter does not react. As we learn from Table 3,

the maximized log-likelihood value is the highest for our model with J = 3. However,

the linear filter clearly provides the highest log-likelihood contribution in the second sub-

period: the log-likelihood values between the dashed lines in Figure 3 are −116.1, −159.9,

−164.5, and −160.1, for the mixed models with J = 1, 2, 3 and the Student’s t model,

respectively. Although, the filter of the Student’s t behaves somewhat more in tune with

the linear filter, its contribution is similar to the robust mixed model filters with J = 2, 3.

Hence, while the filters behave somewhat exceptional in the second sub-period, the mixed

model with J = 3 provides our preferred filter.

The estimated innovation densities and corresponding scaled scores αs(x) are pre-

sented in Figure 4. The mixed normal densities (for J = 2, 3) have a different appearance

from the normal and Student’s t densities, but their shapes are not excessively different.

From a closer look, we learn that the densities from the mixed normal models are skewed

to the right while those of the other models are symmetric. These differences become

more apparent from the corresponding score functions as presented in the right panel of

Figure 4. The score plots show that especially moderately large positive values of yt− µ̂t
are downweighted more heavily by the mixed normal filters (J = 2, 3) compared to the
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Table 3. Parameter estimates with their standard errors (s.e) for four different models,

using daily log PJM electricity spot prices from June 1, 2007 to April 30, 2018.

θ Normal (J = 1) Mixed N (J = 2) Mixed N (J = 3) Student’s t

θ̂T s.e. θ̂T s.e. θ̂T s.e. θ̂T s.e.

α 4.527 0.180 2.155 0.117 2.336 0.113 0.866 0.037

σ2
1 6.022 0.135 32.585 2.398 66.731 5.593 3.988 0.123

σ2
2 3.783 0.110 9.604 1.315

σ2
3 3.490 0.137

c1 3.487 0.398 5.169 0.859

c2 -0.291 - 2.145 0.666

c3 -0.415 -

w1 0.077 0.008 0.024 0.004

w2 0.923 - 0.111 0.032

w3 0.866 -

ν 6.196 0.429

L̂T (θ) -9234.38 -9031.84 -8998.55 -9078.95

AIC 18472.77 18073.68 18013.10 18163.9

BIC 18485.35 18105.13 18063.42 18182.77

Parameter estimates are reported for the mixed normal model (1)–(3) and for the Student’s t model (4).

The maximized log-likelihood values L̂T (θ) in equation (5), together with their corresponding information

criteria AIC and BIC, are also reported.

linear filter (J = 1). The score functions of the Student’s t model and the mixed normal

models look somewhat similar for negative values. However, on the positive side of the

real line, the Student’s t filter has a higher response for values around 5. We notice that

the score of the Student’s t distribution converges to zero in the limit, while the score of

the mixed normal models goes to infinity, eventually. Nevertheless, on the interval that

we consider, the response to positive values is typically smaller for the mixture models

than for the Student’s t model.

5.3. Out-of-sample forecasting results

We complete the empirical study with a comparison in the accuracies of the out-of-sample

density forecasts from the four models. The out-of-sample forecasts are obtained from

a rolling window. We construct one-step-ahead density forecasts for the observations

from May 1, 2018 to April 30, 2021 (3987 forecasts). The point forecast of yT+1, based

on the observations until T , is simply equal to µ̂T+1(θ̂T ). We emphasize that for each
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Figure 4. The estimated probability densities (left) and corresponding scaled score αs(x) (right) for

the filters of the four different fitted models corresponding to estimates in Table 3.

forecast, the parameter vector is re-estimated using the rolling window of observations.

The density forecasts are used to compute the mean logarithmic scoring rule (MLSR) as a

measure of forecast accuracy; see Geweke and Amisano (2011). The MLSR is the average

of the 3987 realized one-step ahead forecast log-densities. We notice that the difference of

MLSRs between models can be regarded an approximation of the difference in Kullback-

Leibler divergence between true and conditional densities of models; see, for example,

Gneiting and Raftery (2007, Section 4.1). The MLSR values for each model are provided

in Table 4. We also report the Diebold-Mariano (DM) test based on heteroscedasticity

robust standard errors. The DM test verifies whether the MSLR values are significantly

different from each other. We can conclude from Table 4 that the J = 3 model has a

better MLSR than the J = 2 model. Also, both mixed normal models have a better

MLSR than the Student’s t model. All differences in MSLR are significantly different

from zero at a 5% or even 1% level. The DM test applied to the logarithmic scoring

rules of two models reduces to a likelihood-ratio test for the out-of-sample observations.

Hence, the mixed normal models with J = 2 and J = 3 components have a significantly

better out-of-sample log-likelihood value than the Student’s t model. It is reassuring that

this superiority remains to hold out-of-sample because it possibly counters the argument

of overfitting in the discussion of the in-sample results.

6. Conclusion

We have introduced a novel score-driven mixed-normal location model for time-series

observations. We treat effectively the time-varying mean of the mixed normal density

as a non-stationary random walk process with a (potentially) non-zero intercept and

with the score of the predicted mixed-normal density treated as the innovations. With

respect to the general framework of score-driven models, our treatment of a mixture

of normal model with a non-stationary process for location is innovative. Also, the

22



Table 4. Mean logarithmic scoring rule for forecasts of four different models using daily

log PJM prices from May 1,2018 to April 30, 2021 and the Diebold-Mariano statistics.

Normal (J = 1) Mixed N (J = 2) Mixed N (J = 3) Student’s t

MLSR -2.1900 -2.1202 -2.1054 -2.1387

DM J = 2 -3.233∗∗

J = 3 -4.132∗∗ -3.585∗∗

Student’s t -2.523∗ 2.158∗ 3.370∗∗

A positive/negative value for the Diebold-Mariano (DM) statistic corresponds to the model (in rows)

having a lower/higher mean logarithmic scoring rule (MLSR) value than another model (in columns).

The asterisks indicate significance at 5% (∗) and 1% (∗∗) levels.

theoretical developments in establishing consistency and asymptotic normality for the

maximum likelihood estimator of the parameter vector are to some extent novel. The

score-driven location model for the Student’s t density can be viewed as an obvious

competitive alternative to the mixed-normal model. However, in the context of a non-

stationary location, the theoretical developments are not valid for the Student’s t model

due to its lack of an invertibility condition. We have shown in a Monte Carlo study

that the mixed-normal location model is able to filter the true path of the time-varying

mean very accurately in finite samples The selection of the correct number of mixture

components can also be done accurately using likelihood-based information criteria, in

case the different components are sufficiently identifiable. We further have shown the

empirical relevance of our time-varying location model for an illustration of daily time-

series of electricity prices. The empirical results are convincing from both in-sample and

out-of-sample perspectives. In particular, the mixed-normal model outperforms both the

linear filter and the Student’s t model in terms of fit.

Appendix

A. Proofs of main results

Proof Proposition 1. (i) To prove the uniform convergence result supθ∈Θ |ĝt(θ)− gt(θ)| e.a.s.→ 0,

we follow the approach of (Straumann and Mikosch, 2006, Proposition 3.12). Note that we can

write

ĝt+1 = φ̃t(ĝt) ,

initialized at some ĝ1(θ) = ĝ1 ∈ R for all θ ∈ Θ, where φ̃t is a random map defined by φ̃t(g) =

φt(g(·), ·) where g ∈ C(Θ,R) , for a compact set Θ. So we can view {ĝt}t∈N initialized at ĝ1 as a
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sequence of random functions that lies in the separable Banach space C(Θ,R) that is equipped

with the norm ‖ · ‖Θ, where ‖gt(θ)‖Θ ≡ supθ∈Θ |gt(θ)| and ‖gt(θ)‖Θn ≡ (E supθ∈Θ |gt(θ)|n)1/n.

Under the assumption that the innovations {εt}t∈Z are i.i.d. together with the fact that φt

is a continuous function of ∆yt+1 = ω0 + α0s(εt;ψ0) + εt+1 − εt (using the correct specifica-

tion assumption) for every (g,θ) ∈ R×Θ, it follows from Krengel (1985, Proposition 4.3) that

{φ̃t(·)}t∈Z is stationary and ergodic. So we can apply Straumann and Mikosch (2006, Proposi-

tion 3.12). See also the proof of Proposition TA.4 in Blasques et al. (2021) for a more formal

verification of this.

Proceeding in a similar manner as the proof in Blasques et al. (2018, Proposition 3.1), it

follows from the mean value theorem that for any integer r ≥ 1:

sup
g1,g2∈R,g1 6=g2

∣∣∣φ(r)
t (g1,θ)− φ(r)

t (g2,θ)
∣∣∣

|g1 − g2|
≤ sup

g∈R

∣∣∣φ̇(r)
t (g,θ)

∣∣∣ ,
which implies that the following conditions are sufficient to be able to apply Bougerol (1993,

Theorem 3.1) and obtain the convergence to zero of ‖ĝt − gt‖Θ:

(a) E log+ ‖φt(ḡ, ·)‖Θ <∞ for some ḡ ,

(b) E supθ∈Θ supg∈R log+ |φ̇t(g,θ)| <∞ ,

(c) E supθ∈Θ supg∈R log |φ̇(r)
t (g,θ)| < 0 .

Condition (a) holds as it is implied by Lemma 1. Condition (b) holds as it is implied by Lemma

2. Finally, condition (c) holds by assumption as it is the same as condition (8) in the statement

of the proposition. Therefore, it follows from (a), (b) and (c) that (Straumann and Mikosch,

2006, Proposition 3.12) can be applied, so ‖ĝt−gt‖Θ e.a.s.→ 0 where {gt}t∈Z is a unique stationary

and ergodic sequence.

Next, we show that gt(θ) has a finite uniform log moment: E supθ∈Θ log+ |gt(θ)| <∞. For

convenience, we define ρr,t = supθ∈Θ supg∈R |φ̇(r)
t (g,θ)|. We notice that Lemma 2 implies that,

for any given r, ρr,t is bounded by the constant Kr. Furthermore, given a decreasing sequence

of positive numbers {ni}∈N such that ni → 0 and n1 = 1, we have that {Kr−(ρni
r,t−1)/ni}i∈N is

an increasing sequence of positive-valued random variables that converges a.s. to Kr − log ρr,t.

Therefore, an application of the monotone convergence theorem entails that limn→0 E(ρnr,t −
1)/n = E log ρr,t. This implies that there exists an n > 0 such that Eρnr,t < 1 since E log ρr,t < 0

by assumption. As a result, we obtain that E supθ∈Θ |gt(θ)|n < ∞ for some n > 0 by an

application of Lemma 3. We therefore conclude that E log+ supθ∈Θ |gt(θ)| <∞ .

(ii) The second result of the proposition follows straightforwardly from result (i). We namely

have that ĝt(θ) = yt − µ̂t(θ), so

|µ̂t(θ0)− µt| = |µ̂t(θ0)− yt + yt − µt|
= | − ĝt(θ0) + εt|
= |gt(θ0)− ĝt(θ0) + εt − gt(θ0)|
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≤ |gt(θ0)− ĝt(θ0)|+ |εt − gt(θ0)| e.a.s.→ 0 ,

as t→∞ , where the first term goes to zero e.a.s. by result (i) and where the second term goes

to zero because gt(θ0) = εt with probability one. The reason for the latter fact is that the limit

sequence {gt(θ0)}t∈Z is determined by the SRE in (7). Therefore, using the model equations

(1) and (2), we have:

gt+1(θ0) = gt(θ0)− ω0 − α0s(gt(θ0);ψ0) + ∆yt+1

= gt(θ0) + α0[s(εt;ψ0)− s(gt(θ0);ψ0)] + ∆εt+1 .

Clearly, a solution to this SRE is gt(θ0) = εt for every t and because result (i) of this proposition

states that the limit sequence {gt(θ)}t∈Z is unique, it must be that gt(θ0) = εt with probability

one.

Proof Proposition 2. (i) The e.a.s. convergence result follows directly from Proposition 1(i), be-

cause condition (8) holds whenever the contraction condition of this proposition holds. Namely,

by Jensen’s inequality, for any random variable x: E|x|k < 1 for some small k > 0 implies

E log |x| < 0. The bounded moment result follows from Lemma 3.

(ii) and (iii): The proof of (ii) and (iii) follows the same approach as the proof of Proposition

3.4 of Blasques et al. (2021), which is a similar proposition but then for a more general score-

driven model. The only important difference is that here we do not have a uniform contraction,

i.e. that ∂φt/∂g is uniformly bounded between −1 and 1 in all its arguments, but we only have

a contraction in expectation of the r-th iterates of the stochastic mapping functions.

Step 1: convergence. The convergence result can be shown by applying Theorem 2.10

of Straumann and Mikosch (2006) in virtually the same way as the proof of Proposition 3.4

in Blasques et al. (2021). The theorem considers a perturbed stochastic recurrence equation

(SRE) xt+1 = φ̂∗t (xt), where the sequence of maps {φ̂∗t }t∈N converges to a stationary limit

{φ∗t }t∈Z. In the current setting, the perturbed SRE of the first derivative process corresponds to

{∂ĝt(θ)/∂θ}t∈N, which is initialized at zero and depends on the initialized sequence {ĝt(θ)}t∈N.

The perturbed SRE of the second derivative process corresponds to {∂2ĝt(θ)/∂θ∂θ′}t∈N, and

is initialized at zero and depends on the initialized sequences {ĝt(θ)}t∈N and {∂ĝt(θ)/∂θ}t∈N.

The unperturbed SREs instead depend on the limit processes {gt(θ)}t∈Z and {∂gt(θ)/∂θ}t∈Z.

The derivative processes are practically the same as those in Blasques et al. (2021) and can be

described by the following equations:

∂gt+1(θ)

∂θ
= A

(1)
t +

∂gt(θ)

∂θ
Bt ,

∂2gt+1(θ)

∂θ∂θ′
= A

(2)
t +

∂2gt(θ)

∂θ∂θ′
Bt ,

where A
(1)
t = A(1)(θ; gt(θ)) is a vector, A

(2)
t = A(2)(θ; gt(θ), ∂gt(θ)/∂θ) is a matrix, and Bt =

B(θ; gt(θ)) is a scalar, which are defined in Technical Appendix C.2.

The conditions of Theorem 2.10 of Straumann and Mikosch (2006) regarding the convergence

of the perturbed {φ̂∗t }t∈N to the stationary limit {φ∗t }t∈Z can be verified by showing that

sup
θ∈Θ
|B(θ; ĝt(θ))−B(θ; gt(θ))| e.a.s.→ 0 ,
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sup
θ∈Θ
|A(1)

j (θ; ĝt(θ))−A(1)
j (θ; gt(θ))| e.a.s.→ 0 , and

sup
θ∈Θ
|A(2)

i,j (θ; ĝt(θ), ∂ĝt(θ)/∂θ)−A(2)
i,j (θ; ĝt(θ), ∂gt(θ)/∂θ)| e.a.s.→ 0 ,

where A
(1)
j denotes the j-th element of the vector A(1) and A

(2)
i,j denotes the i, j-th element

of the matrix A(2). The convergence result can be shown in the same way as in the proof

of Blasques et al. (2021, Proposition 3.4). The convergence of Bt and A
(1)
t is shown us-

ing the mean value theorem. Because we know from (i) that supθ∈Θ |ĝt(θ) − gt(θ)| e.a.s.→ 0,

for (ii) it suffices to show that the derivatives of Bt and A
(1)
t with respect to their sec-

ond argument g is uniformly bounded in g and θ. In Lemma TA.1, it is shown that this

is the case. More specifically, supg∈R,θ∈Θ |∂2s(g;ψ)/∂g2| can be bounded by a finite con-

stant, which can be used to show the convergence of Bt. Also, supg∈R,θ∈Θ |∂s(g;ψ)/∂g| and

supg∈R,θ∈Θ |∂2s(g;ψ)/∂ψi∂g| can be bounded by a finite constant, which is used to show the

convergence of A
(1)
t . Finally, to show the convergence of A

(2)
t , we can use exactly the same ap-

proach as the proof of Lemma TA.17 of Blasques et al. (2021), using the asymptotic stationarity

results of (i) and (ii) and that certain derivatives can be uniformly bounded. In Lemma TA.1,

it is namely argued that supg∈R,θ∈Θ |∂3s(g;ψ)/∂ψi∂ψ
′
j∂g| , supg∈R,θ∈Θ |∂3s(g;ψ)/∂ψ∂g2| and

supg∈R,θ∈Θ |∂2s(g;ψ)/∂g3| can be bounded by a finite constant.

Furthermore, condition S.1 of Straumann and Mikosch (2006, Theorem 2.10) says that we

need a bounded log+ moment for the unperturbed recurrence φ∗t evaluated at some deterministic

point. In other words we must show that A
(i)
t and Bt evaluated at the stationary limit sequences

{gt(θ)} and {∂gt(θ)/∂θ} have a finite log+ moment uniformly on Θ. This follows automatically

from the fact that A
(1)
t and Bt have n > 0 bounded moments, and A

(2)
t has n/2 > 0 bounded

moments, uniformly over Θ, which will be shown in Step 2 of the proof.

Finally, condition S.2 of Straumann and Mikosch (2006, Theorem 2.10) must hold. It was

shown in the proof of Proposition 1, that it suffices to show that

E sup
θ∈Θ

sup
g∈R

log+ ‖φ̇∗t (g,θ)‖ <∞ and E sup
θ∈Θ

sup
g∈R

log ‖φ̇∗(r)t (g,θ)‖ < 0 .

The first condition holds trivially, because the value of each of the elements of φ̇∗t is equal to

B(θ, gt(θ)) = 1−αs′(gt(θ),θ) for both derivative processes, and Bt is uniformly bounded. The

second condition follows from the contraction in (9). Namely, it is not hard to see that for

both the first and the second derivative process, the derivative of the r-th convolution of the

corresponding stochastic mapping φ∗t with respect to each single element is equal to

r−1∏
i=0

B(θ; gt−i(θ)) ,

which does not depend on ∂gt(θ)/∂θ and ∂2gt(θ)/∂θ∂θ′, but only on gt(θ). Hence, the supre-

mum over g can be dropped and the contraction condition simplifies to

E sup
θ∈Θ

log

∣∣∣∣∣
r−1∏
i=0

B(θ; gt−i(θ))

∣∣∣∣∣ < 0 .
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Upon closer inspection, it can be seen that this condition is weaker than condition (8) of

Proposition 1. Namely, φ
(r)
t (g,θ) has the same form, but then in the place of gt−i(θ), there is

φ
(r−i)
t−i−1(g,θ). Hence, we obtain

E sup
θ∈Θ

log

∣∣∣∣∣
r−1∏
i=0

B(θ; gt−i(θ))

∣∣∣∣∣ = E sup
θ∈Θ

log

∣∣∣∣∣
r−1∏
i=0

B(θ;φ
(r−i)
t−i−1(gt−r(θ),θ))

∣∣∣∣∣
≤ E sup

θ∈Θ
sup
g∈R

log

∣∣∣∣∣
r−1∏
i=0

B(θ;φ
(r−i)
t−i−1(g,θ))

∣∣∣∣∣
= E sup

θ∈Θ
sup
g∈R

log
∣∣∣φ(r)
t (g,θ)

∣∣∣ < 0 ,

where it was argued in (i) that the final inequality holds because of (9). This finishes the proof

of the convergence result in (ii) and (iii).

Step 2: bounded moments. We can almost directly apply the proof of Lemma 3 to the

unperturbed systems of the derivative processes. If we denote by φ∗t the stochastic mapping

defining the SREs of the first or second derivative process, then we can use that by the discussion

above we have that |φ̇∗(r)t (θ)| ≤ supg∈R |φ̇(r)
t (g,θ)| ≡ ρ

(r)
t . This is convenient, because by

assumption we have (E supθ∈Θ(ρ
(r)
0 (θ))n)1/n < 1. This means we can straightforwardly apply

the proof of Lemma 3, using this bounding argument, as long as we can show that

‖φ∗(r)t (ḡ,θ)‖Θn∗ <∞ ,

which proves that the derivative process has n∗ bounded moments.

We will proceed by showing that this moment condition holds for n∗ = n the first derivative

process and for n∗ = n/2 for the second derivative process, which will prove the bounded

moment result in (ii) and (iii) respectively. Notice that

φ
∗(r)
t (ḡ,θ) =

r−1∑
j=0

(
j−1∏
k=0

B(θ; gt−k(θ))

)
A

(i)
t−j + ḡ

r−1∏
j=0

B(θ; gt−j(θ)) ,

if we let φ∗t denote the mapping function of the first derivative process i = 1 or the second

derivative process i = 2. By inspecting the expression of Bt in Technical Appendix C.2 it

follows that Bt has bounded moments of any order, since ∂s(g;ψ)/∂g is uniformly bounded in

g and θ. Hence, using the Cr-inequality of Loève (1977) in a similar way as in the proof of

Proposition 3.4 of Blasques et al. (2021), it follows that to show that the moment condition

holds, it suffices to show that the elements of A
(1)
t and A

(2)
t have n and n/2 bounded moments

respectively.

For A
(1)
j,t , the j-th element of A

(1)
t , it is clear that the number of moments is equal to

n, because in Lemma TA.1 it is given that s(g;ψ) and the elements of ∂s(g;ψ)/∂ψ can be

bounded by d1 + d2|g| for positive constants d1 and d2, and from (i) we know that gt(θ) has n

bounded moments. Finally, the i, j-th element of A
(2)
t , A

(2)
i,j,t has n/2 bounded moments, because

∂s(g;ψ)/∂θ and ∂2s(g;ψ)/∂θ∂θ′ have n bounded moments, ∂s(g;ψ)/∂g, ∂2s(g;ψ)/∂θ∂g and
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∂2s(g;ψ)/∂g2 are uniformly bounded. Therefore, using that we have that ∂gt(θ)/∂θ has n

bounded moments by the result in (ii), we obtain that

∂s(gt(θ);ψ)

∂g

∂gt(θ)

∂θ′
,

∂2s(gt(θ);ψ)

∂θ∂g

∂gt(θ)

∂θ′
,

∂2s(gt(θ);ψ)

∂g2

∂gt(θ)

∂θ

∂gt(θ)

∂θ′
,

have n, n and n/2 bounded moments respectively. This finishes the proof.

Proof of Theorem 1. First consider some notation. It is convenient to use the following average

log-likelihood representation

L̂T (θ) =
1

T

T∑
t=2

ˆ̀
t(θ) =

1

T

T∑
t=2

`(ĝt(θ),ψ) (A.11)

where ˆ̀
t(θ) ≡ `(ĝt(θ),ψ) ≡ log py(yt|µ̂t(θ);ψ) is the log-likelihood contribution of the t-th

observation:

ˆ̀
t(θ) = log py(yt|µ̂t(θ);ψ) = log pε(ĝt(θ);ψ) = log

 J∑
j=1

wj
σj

exp

(
−(ĝt(θ)− cj)2

2σ2
j

) , (A.12)

because yt − µ̂t(θ) = ĝt(θ). We ignore the constant 1/
√

2π, because it is irrelevant for the

maximization of the log-likelihood over θ. Define LT (θ) as the average log-likelihood with ĝt(θ)

replaced by gt(θ) of Proposition 1 for every t:

LT (θ) =
1

T

T∑
t=2

`t(θ) =
1

T

T∑
t=2

`(gt(θ),ψ) , (A.13)

where `t(θ) ≡ `(gt(θ),ψ) ≡ log pε(gt(θ);ψ). Also define L(θ) ≡ E `1(θ), where we note that

{`t(θ)} is stationary and ergodic by Proposition 4.3 in Krengel (1985) because {gt(θ)}t∈Z is a

stationary and ergodic sequence by Proposition 1 and `(g,ψ) is continuous in g for every θ ∈ Θ.

Now turn to the real consistency proof. We use the same approach as in the proof of Blasques

et al. (2018, Theorem 4.1), which is similar to that of Straumann and Mikosch (2006, Theorem

4.1). Following the proof of Theorem 4.1 of Blasques et al. (2018), the following conditions are

sufficient for the strong consistency of the MLE θ̂T to the true parameter value θ0:

(A1) The function L̂T converges almost surely to LT uniformly over Θ:

sup
θ∈Θ

∣∣∣L̂T (θ)− LT (θ)
∣∣∣ a.s.→ 0 as T →∞ .

(A2) sup(g,θ)∈R×Θ `(g,ψ) <∞ and E|`1(θ0)| <∞

(A3) The model is identifiable, so the parameter θ0 is the unique maximizer of the limit log-

likelihood L(θ), i.e. L(θ) < L(θ0) for any θ ∈ Θ, θ 6= θ0.
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Below we complete the proof by showing that (A1)-(A3) hold.

(A1) Is satisfied by Lemma 4.

(A2) The first claim of this condition, namely that the log-likelihood is uniformly bounded

from above over R×Θ, is not hard to verify when looking at `(g,ψ) which is defined in (A.12).

We namely have that Θ is compact and that for every j, σj is bounded away from zero by (iii)

of Assumption PS. Furthermore, for any g ∈ R and θ ∈ Θ, it is clear that exp(−(g−cj)2/2σ2
j ) is

bounded from above by 1. Hence, `(g,ψ) is uniformly bounded from above by some finite value

which depends on the bounds of Θ. Note that this uniform upper bound on `(g,ψ) implies that

E `(gt(θ),ψ) = L(θ) exists for any θ ∈ Θ and that L(θ) ∈ {−∞} ∪ R.

The second claim is that E|`(g1(θ0),ψ0)| <∞. Recall from the proof of Proposition 1(ii) that

gt(θ0) = εt with probability one for every t. Therefore, using the form of `(g,ψ) given in (B.16):

E |`(g1(θ0),ψ0)| ≤ E

∣∣∣∣∣(g1(θ0)− c1,0)2

2σ2
1,0

∣∣∣∣∣+ E
∣∣∣∣log

(
w1,0

σ1,0
+B(g1(θ0),ψ0)

)∣∣∣∣
≤ E

∣∣∣∣∣(ε1 − c1,0)2

2σ2
1,0

∣∣∣∣∣+ C <∞

where we use that | log(w10/σ10 + B(g,ψ0)| is uniformly bounded by some constant C by

arguments given in the proof of Lemma 4. Furthermore, we use that εt has bounded moments

of any order because it is mixed normally distributed and that Θ is compact and condition (i)

of Assumption PS implies that σ2
1,0 > 0 .

(A3) By (A2) we know that `1(θ) is uniformly bounded from above and therefore it is

integrable, so in other words L(θ) = E`1(θ) exists for any θ ∈ Θ. Furthermore, we know by

(A2) that |L(θ0)| < ∞ and that L(θ) ∈ {−∞} ∪ R for any other θ ∈ Θ. For any θ ∈ Θ for

which L(θ) = −∞, it is therefore clear that L(θ) < L(θ0). So we can from now on consider

values of θ ∈ Θ, θ 6= θ0 for which L(θ) ∈ R and show that for those values L(θ) < L(θ0) also

holds.

A condition that implies uniqueness of θ0 as a maximizer of L(θ) is that `(gt(θ),ψ) =

`(gt(θ0),ψ0) almost surely if and only if θ = θ0. Lemma 5 says that this condition holds under

the current assumptions. This condition implies identification by a standard argument (see for

example the proof of Theorem 4.1 of Blasques et al. (2018)) which we will repeat here: The

well-known inequality log(x) ≤ x − 1, which holds for any x > 0 and is only an equality for

x = 1, implies that

`(gt(θ),ψ)− `(gt(θ0),ψ0) ≤ pε(gt(θ),ψ)

pε(gt(θ0),ψ0)
− 1 .

Clearly, if we can show that `(gt(θ),ψ) = `(gt(θ0),ψ0) almost surely if and only if θ = θ0,

then the inequality above will be strict with a probability greater than zero for any θ ∈ Θ with

θ 6= θ0 . Hence, if this condition holds, then for any θ ∈ Θ other than θ0,

E[`(gt(θ),ψ)− `(gt(θ0),ψ0)] < E
[
pε(gt(θ);ψ)

pε(gt(θ0);ψ)

]
− 1 = E

[
E
[
pε(gt(θ);ψ)

pε(εt;ψ0)

∣∣∣Ft−1

]]
− 1 = 0 ,
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using the law of total expectation, the fact that gt(θ0) = εt with probability one and that the

conditional expectation has value one. The true conditional density function is namely given

by pε(εt;ψ0), which implies that

E
[
pε(gt(θ);ψ)

pε(εt;ψ0)

∣∣∣Ft−1

]
=

∫
pε(h+ εt;ψ)

pε(εt;ψ0)
pε(εt;ψ0) dεt

∣∣∣
h=gt(θ)−εt

=

∫
pε(h+ εt;ψ) dεt

∣∣∣
h=gt(θ)−εt

= 1 ,

where we use that gt(θ)− εt is Ft−1-measurable, because ĝt(θ)− εt = µt(θ0)− µ̂t(θ) is clearly

Ft−1-measurable and will converge e.a.s. to gt(θ) − εt by the same arguments as used in the

proof of Proposition 1 for the convergence of ĝt(θ) to gt(θ). The final integral is equal to one

because the integrand is a probability density function of a mixed normally distributed random

variable with j-th component mean c∗j = cj − h. Therefore, we have that

L(θ)− L(θ0) = E[`(gt(θ),ψ)− `(gt(θ0),ψ0)] < 0 ,

in case `(gt(θ),ψ) = `(gt(θ0),ψ0) almost surely if and only if θ = θ0. Hence, (A3) must hold,

because Lemma 5 shows that this condition is satisfied here.

Proof Theorem 2. This proof follows the same approach as the asymptotic normality result of

Theorem 3.1 of Gorgi and Koopman (2021), which is based on the asymptotic normality proof

in Section 7 of Straumann and Mikosch (2006). This approach starts by deriving the asymptotic

distribution of the ML estimator θ̃T , defined by

θ̃T = arg max
θ∈Θ

LT (θ) ,

where LT is the limit log-likelihood, see (A.13). The final result is then derived by showing that

θ̃T and θ̂T have the same asymptotic distribution.

LT is twice continuously differentiable in Θ, see Technical Appendix C.3 for the expressions

of the first and second derivatives L′T and L′′T , which are based on the limit processes {gt(θ)}t∈Z,

{∂gt(θ)/∂θ}t∈Z and {∂2gt(θ)/∂θ∂θ′}t∈Z, which are stationary and ergodic by Proposition 2.

It follows from Krengel (1985, Proposition 4.3) that L′T and L′′T are stationary and ergodic.

Looking at the proof of Theorem 1, it is clear that θ̃T
a.s.→ θ0, where θ0 lies in the interior of Θ

by assumption. In the proof of Gorgi and Koopman (2021), it is argued that
√
T (θ̃T − θ0)

d→
N (0,Ω) as T →∞ with Ω = −E[`′′t (θ0)]−1, if the following conditions hold:

(A) E supθ∈Θ ‖`′′t ‖ <∞ ,

(B) −E[`′′t (θ0)] is positive definite ,

(C)
√
TL′T (θ0)

d→ N (0,Ω−1) .
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It is shown that these three conditions hold in Lemmas 6, 7 and 8, respectively. Now it is argued

by Gorgi and Koopman (2021) that given condition (A), the following condition is sufficient to

show that the asymptotic distribution of θ̃T and θ̂T are equal:

√
T sup
θ∈Θ
‖L′T (θ)− L̂′T (θ)‖ a.s.→ 0 ,

which is proved to hold in Lemma 9. This finishes the proof.

B. Lemmas

Lemma 1. Let the assumptions of Proposition 1 hold. Then, ‖φt(ḡ, ·)‖Θn < ∞ for any n > 0

and for any ḡ ∈ R.

Proof. For any n ≥ 1, we can use the sub-additivity of the norm ‖ · ‖Θn . It follows immediately

that the condition holds for 0 < n < 1. We can take n ≥ 1 and have

‖φt(ḡ, ·)‖Θn ≤ |ω|+ sup
θ∈Θ
|α| · ‖s(ḡ;ψ)‖Θn + ‖∆yt+1‖n

≤ |ω|+ sup
θ∈Θ
|α| · ‖s(ḡ;ψ)‖Θn + |ω0|+ (E|εt+1|n)1/n + (E|εt|n)1/n+

|α0| · ‖s(εt;ψ0)‖n .

Since Θ 3 θ0 is compact and εt has bounded moments of any order, it suffices to show that

‖s(εt;ψ)‖Θn is finite (which implies ‖s(ḡ;ψ0)‖n is finite for some ḡ ∈ R too). Using the notation

fj(x;ψ) ≡ exp(−(x− cj)2/2σ2
j )wj/σj , we have

s(x;ψ) =

∑J
j=1

x−cj
σj

fj(x;ψ)∑J
j=1 fj(x;ψ)

=

x−c1
σ1

+
∑J

j=2
x−cj
σ2
j

fj(x;ψ)
f1(x;ψ)

1 +
∑J

j=2
fj(x;ψ)
f1(x;ψ)

≤ x− c1

σ2
1

+
J∑
j=2

x− cj
σ2
j

fj(x;ψ)

f1(x;ψ)
,

where we divide the numerator and denominator by f1(x;ψ), which is strictly positive for every

(x,θ) ∈ (R,Θ), since Θ is compact and w1 ≥ κ > 0 for every θ ∈ Θ. The inequality follows from

the fact that the denominator 1 +
∑J

j=2 fj(x;ψ)/f1(x;ψ) only attains values on the interval

[1,∞) for any (x,θ) ∈ (R,Θ). Now we will argue that the sum from j = 2 to J in the final

expression can be uniformly bounded by a finite value over all (x,θ) ∈ R×Θ. Namely, because

σ2
1 − σ2

j ≥ κ > 0 and wj ≥ κ > 0 for any θ in the compact set Θ, it is clear that for any

j = 2, . . . , J :

lim
|x|→∞

sup
θ∈Θ

∣∣∣∣∣x− cjσ2
j

fj(x;ψ)

f1(x;ψ)

∣∣∣∣∣ = lim
|x|→∞

sup
θ∈Θ

∣∣∣∣∣wjσ1

w1σj

x− cj
σ2
j

exp

(
−1

2

[
(x− cj)2

σ2
j

− (x− c1)2

σ2
1

])∣∣∣∣∣ ,
equals zero by l’Hôpital’s rule, because the exp(·)-term will go to zero at an exponential rate.

By the compactness of Θ and because for all j, σ2
j ≥ κ > 0, it follows that there exists a finite

number C such that

sup
x∈R

sup
θ∈Θ

∣∣∣∣∣∣
J∑
j=2

x− cj
σ2
j

fj(x;ψ)

f1(x;ψ)

∣∣∣∣∣∣ ≤ C <∞ .
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Therefore, we have that:

‖s(εt;ψ)‖Θn =

∥∥∥∥εt − c1

σ2
1

∥∥∥∥Θ

n

+ C ≤ 1

κ
(‖εt‖Θn + sup

θ∈Θ
|c1|) + C <∞ ,

because εt has bounded moments of any order. Hence, the desired result holds.

Lemma 2. Let the assumptions of Proposition 1 hold. Then, there is a positive constant K

such that supθ∈Θ supg∈R |φ̇t(g,θ)| ≤ K <∞.

Proof. We have that φ̇t(g,θ) = 1− α · ∂s(g,ψ)/∂g , so by the compactness of Θ, it will suffice

to show that

sup
θ∈Θ

sup
x∈R

∣∣∣∣∂s(x,ψ)

∂x

∣∣∣∣ <∞ .

When again using the notation fj(x;ψ) ≡ exp(−(x− cj)2/2σ2
j )wj/σj , we have

∂s(x,ψ)

∂x
=

 J∑
j=1

fj(x;ψ)

−2 J∑
j=1

fj(x;ψ)

 J∑
j=1

1

σ2
j

fj(x;ψ)


−

 J∑
j=1

fj(x;ψ)

−2
J∑
j=1

J∑
i=j+1

(
x− cj
σ2
j

− x− ci
σ2
i

)2

fj(x;ψ)fi(x;ψ) .

Dividing the numerator and the denominator by f1(x;ψ), so the factor of the component with

the largest variance, leads to

∂s(x,ψ)

∂x
=

1 +
J∑
j=2

fj(x;ψ)

f1(x;ψ)

−21 +
J∑
j=2

fj(x;ψ)

f1(x;ψ)

 1

σ2
1

+
J∑
j=2

1

σ2
j

fj(x;ψ)

f1(x;ψ)


−

1 +

J∑
j=2

fj(x;ψ)

f1(x;ψ)

−2
J∑
j=1

J∑
i=j+1

(
x− cj
σ2
j

− x− ci
σ2
i

)2
fj(x;ψ)

f1(x;ψ)

fi(x;ψ)

f1(x;ψ)
.

We will argue that this expression can be bounded uniformly. The denominator is bounded

from below by 1, because fj(x;ψ)/f1(x;ψ) ≥ 0 for every x ∈ R and θ ∈ Θ. All the factors in

the numerator can also be uniformly bounded, because as |x| → ∞ none of the sums diverge

and it can be seen that for any value x ∈ R all sums are finite uniformly over Θ, given the

restrictions on Θ that are in place. For example, for any j = 1, . . . , J and i > j:

lim
|x|→∞

sup
θ∈Θ

∣∣∣∣∣∣
(
x− cj
σ2
j

− x− ci
σ2
i

)2
fj(x;ψ)

f1(x;ψ)

fi(x;ψ)

f1(x;ψ)

∣∣∣∣∣∣
= lim
|x|→∞

sup
θ∈Θ

∣∣∣∣∣∣
((

1

σ2
j

− 1

σ2
i

)
x−

(
cj
σ2
j

− ci
σ2
i

))2
wjwiσ

2
1

σjσiw2
1

× exp

(
−1

2

[
(x− cj)2

σ2
j

+
(x− ci)2

σ2
i

− 2
(x− c1)2

σ2
1

])∣∣∣∣∣
= 0 ,
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because of the restrictions on the compact set Θ and in particular the fact that for every θ ∈ Θ ,

σ2
1 > σ2

2 > · · · > σ2
J . More specifically, the exp(·)-factor will converge to zero at an exponential

rate, while the term containing x2 will only diverge at a quadratic rate. The convergence to

zero can be shown formally by bounding the expression on Θ and applying l’Hôpital’s rule.

Lemma 3. Let the assumptions of Proposition 1 hold. Furthermore, assume that for some

integer r ≥ 1

E sup
θ∈Θ

sup
g∈R
|φ̇(r)
t (g,θ)|n < 1, n > 0.

Then, the following uniform moment condition is satisfied

E sup
θ∈Θ
|gt(θ)|n <∞.

Proof. This proof is similar to the proof of Proposition 3.1 of Blasques et al. (2021), but this

proof is more general because we look at the r-th iterate and do not impose i.i.d. ‘innovations’

∆yt. Consider the stationary limit sequence {gt(θ)}t∈Z that exists by Proposition 1. We can

bound ‖gt(θ)‖Θ as follows, for any ḡ ∈ R:

‖gt(θ)‖Θ = ‖φ(r)
t−1(gt−r(θ),θ)‖Θ

≤ ‖φ(r)
t−1(gt−r(θ),θ)− φ(r)

t−1(ḡ,θ)‖Θ + ‖φ(r)
t−1(ḡ,θ)‖Θ

= sup
θ∈Θ

(
|gt−r(θ)− ḡ| × |φ

(r)
t−1(gt−r(θ),θ)− φ(r)

t−1(ḡ,θ)|
|gt−r(θ)− ḡ|

)
+ ‖φ(r)

t−1(ḡ,θ)‖Θ

≤ ‖gt−r(θ)− ḡ‖Θ × sup
θ∈Θ

sup
g1,g2∈R,g1 6=g2

|φ(r)
t−1(g1,θ)− φ(r)

t−1(g2,θ)|
|g1 − g2|

+ ‖φ(r)
t−1(ḡ,θ)‖Θ

≤ ‖gt−r(θ)− ḡ‖Θ × sup
θ∈Θ

sup
g∈R
|φ̇(r)
t (g,θ)|+ ‖φ(r)

t−1(ḡ,θ)‖Θ

≤ sup
θ∈Θ

ρ
(r)
t−1(θ) · ‖gt−r(θ)‖Θ + sup

θ∈Θ
ρ

(r)
t−1(θ) · |ḡ|+ ‖φ(r)

t−1(ḡ,θ)‖Θ ,

where we use the subadditivity of the ‖ · ‖Θ-norm and the mean-value theorem. Also, we use

the notation ρ
(r)
t (θ) ≡ supg∈R |φ̇(r)

t (g,θ)|. Now unfold this recursion k steps backwards:

‖gt(θ)‖Θ ≤
(
k−1∏
i=0

sup
θ∈Θ

ρ
(r)
t−ri−1(θ)

)
· ‖gt−rk(θ)‖Θ (B.14)

+
k−1∑
j=0

(
j−1∏
i=0

sup
θ∈Θ

ρ
(r)
t−ri−1(θ)

)(
sup
θ∈Θ

ρ
(r)
t−rj−1(θ) · |ḡ|+ ‖φ(r)

t−rj−1(ḡ,θ)‖Θ
)
.

Because φt(g,θ) = g − ω − αs(g;ψ) + ∆yt+1, it is clear that φ̇t(g,θ) does not depend on

∆yt. It follows that ρ
(r)
t (θ) does not depend on ∆yt+1, but only on ∆yt, . . . ,∆yt−r+2 . As was

argued in the proof of Proposition 1, ∆yt ⊥ ∆yt−s for s ≥ 2, because the innovations sequence

{εt}t∈Z is i.i.d. It follows that for any s ∈ Z, {supθ∈Θ ρ
(r)
s+rt(θ)}t∈Z is an i.i.d. and therefore

stationary and ergodic sequence. Furthermore, its elements are nonnegative random variables
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with E log supθ∈Θ ρ
(r)
0 (θ) < 0 by the conditions of Proposition 1. Therefore, it follows from

(Straumann and Mikosch, 2006, Lemma 2.4) that for every t we have that:

k∏
i=0

sup
θ∈Θ

ρ
(r)
t−ri−1(θ)

e.a.s.→ 0 , as k →∞ .

Together with the fact that {‖gt(θ)‖Θ}t∈Z is stationary and ergodic by the first part of this

proposition, this implies that there exists some large k ∈ N, such that(
k−1∏
i=0

sup
θ∈Θ

ρ
(r)
t−ri−1(θ)

)
· ‖gt−rk(θ)‖Θ < 1 , a.s. (B.15)

First consider the case where n ≥ 1 , so then ‖ · ‖Θn is sub-additive. Clearly, showing that

E‖gt(θ)‖Θn < ∞ implies the result E supθ∈Θ |gt(θ)|n < ∞. Now taking a large enough k such

that (B.15) holds, we have by (B.14) and the sub-additivity of ‖ · ‖Θn , that

‖gt(θ)‖Θn ≤ 1 +

k−1∑
j=0

∥∥∥∥∥
(
j−1∏
i=0

sup
θ∈Θ

ρ
(r)
t−ri−1(θ)

)(
sup
θ∈Θ

ρ
(r)
t−rj−1(θ) · |ḡ|+ ‖φ(r)

t−rj−1(ḡ,θ)‖Θ
)∥∥∥∥∥

n

≤ 1 + |ḡ| ·
k−1∑
j=0

(
j−1∏
i=0

(
E sup
θ∈Θ

(
ρ

(r)
t−ri−1(θ)

)n)1/n
)(

E sup
θ∈Θ

(
ρ

(r)
t−rj−1(θ)

)n)1/n

+
k−1∑
j=0

(
j−2∏
i=0

(
E sup
θ∈Θ

(
ρ

(r)
t−ri−1(θ)

)n)1/n
)
·
∥∥∥∥sup
θ∈Θ

ρ
(r)
t−r(j−1)−1(θ) · ‖φ(r)

t−rj−1(ḡ,θ)‖Θ
∥∥∥∥
n

≤ 1 + ((ρ̄(r)
n )2 |ḡ|+Kr‖φ(r)

t−rj−1(ḡ,θ))‖Θn )
k−1∑
j=0

(
ρ̄(r)
n

)j−1

≤ 1 +
(ρ̄

(r)
n )2 |ḡ|+Kr‖φ(r)

t−rj−1(ḡ,θ))‖Θn
1− ρ̄(r)

n

<∞ ,

where ‖ · ‖n ≡ (E[·]n)1/n, ρ̄
(r)
n ≡ (E supθ∈Θ(ρ

(r)
0 (θ))n)1/n < 1, which holds by assumption

and where K is the uniform bound in Lemma 2. Also, we use that {supθ∈Θ ρ
(r)
s+rt(θ)}t∈Z

is an i.i.d. sequence for any s ∈ Z and that φ
(r)
s+rt is independent of ρ

(r)
s+r(t+i) for all i ∈

N \ {0, 1}, by the independence of the innovations {εt}t∈Z 4. The third inequality holds be-

cause supθ∈Θ ρ
(r)
t−r(j−1)−1(θ) can be uniformly bounded by Kr because of Lemma 2. Lastly,

Lemma 1 shows that ‖φt(ḡ,θ)‖Θn < ∞ for any n > 0. Using the same approach (so using that

supg,θ s(g,ψ) ≤ d1 + d2|g| for finite constants d1 and d2), it can be shown that for any integer

r ≥ 1 also ‖φ(r)
t (ḡ,θ)‖Θn <∞. This finishes the proof of E supθ∈Θ |gt(θ)|n <∞ for n ≥ 1.

For 0 < n < 1, ‖ · ‖Θn is no longer sub-additive, but then the result can be proved by simply

directly using (‖ · ‖Θn )n = E supθ∈Θ | · |n, which is sub-additive in that case.

4More specifically, it can be verified that ρ
(r)
s+r(t+i) only depends directly on

∆ys+r(t+i), . . . ,∆ys+r(t+i−1)+2, and that φ
(r)
s+rt only depends directly on ∆ys+rt+1, . . . ,∆ys+r(t−1)+2.

So ρ
(r)
s+r(t+i) ⊥ φ

(r)
s+rt for i ≥ 2 because ∆yt ⊥ ∆yt−q for any integer q ≥ 2.
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Lemma 4. Let the assumptions of Theorem 1 hold. Then the function L̂T defined in (A.11)

converges almost surely to LT defined in (A.13) uniformly over Θ:

sup
θ∈Θ

∣∣∣L̂T (θ)− LT (θ)
∣∣∣ a.s.→ 0 as T →∞ .

Proof. First is convenient to rewrite the log-likelihood contribution `(g,ψ) defined implicitly in

(A.12) in the following manner:

`(g,ψ) = log

exp

(
−(g − c1)2

2σ2
1

)w1

σ1
+

J∑
j=2

wj
σj

exp

(
−
[

(g − cj)2

2σ2
j

− (g − c1)2

2σ2
1

])
= −(g − c1)2

2σ2
1

+ log

(
w1

σ1
+

J∑
j=2

wj
σj

exp

(
−
[

(g − cj)2

2σ2
j

− (g − c1)2

2σ2
1

])
︸ ︷︷ ︸

≡B(g,ψ)

)
. (B.16)

By part (iii) of Assumption PS and because Θ is compact, it follows that w1/σ1 +B(g,ψ) can

be uniformly bounded from below and above over R × Θ. The uniform upper bound follows

from the mentioned assumption which says that σ2
1 is strictly greater than all other σ2

j ’s and

that all σ2
j ’s are bounded away from zero. So, the arguments in the exp(·)’s go to −∞ as

|g| → ∞ uniformly over Θ, because σ2
1 ≥ σ2

j + κ for j = 1, 2, . . . and κ > 0. The arguments

in the exp(·)’s can be positive for intermediate values of g + εt if cj 6= c1, but this value can

be uniformly bounded by a finite constant because of the compactness of Θ. The uniform

lower bound follows from part (iv) of Assumption PS, which says that for any θ ∈ Θ we have

wj ≥ κ > 0 for all j. Together with the fact that B(g,ψ) only attains non-negative values, this

assumption implies that the argument in the log, so w1/σ1 +B(g,ψ), can be uniformly bounded

from below by κ/σ2
1 > 0, over R×Θ. Here σ2

1 <∞ is the maximum value that σ2
1 attains in the

compact set Θ. In conclusion, the second term of `(g,ψ) in (B.16) can be uniformly bounded

between two finite values.

Now we can turn to showing that L̂t converges to Lt almost surely uniformly over Θ. Using the

expression for `(g,ψ) in (B.16) and that ˆ̀
t = `(ĝt,ψ) and `t = `(gt(θ),ψ), we have that

L̂T (θ)− LT (θ) =
1

T

T∑
t=2

− 1

2σ2
1

(
(ĝt(θ)− c1)2 − (gt(θ)− c1)2

)
+

1

T

T∑
t=2

[
log

(
w1

σ1
+B(ĝt(θ),ψ)

)
− log

(
w1

σ1
+B(gt(θ),ψ)

)]
.

Both these averages converges to zero uniformly almost surely over Θ. For the first term this

holds true, because we can show that its terms converge to zero exponentially fast almost surely

uniformly over Θ. It follows from (Straumann and Mikosch, 2006, Lemma 2.1) that the sum of

these terms from t = 1 to ∞ then converges almost surely, and therefore the average of these

terms converges to zero almost surely. The terms converge to zero e.a.s. because

sup
θ∈Θ

∣∣∣∣ 1

2σ2
1

(
(ĝt(θ)− c1)2 − (gt(θ)− c1)2

)∣∣∣∣ ≤ 1

2κ2
sup
θ∈Θ

∣∣(ĝt(θ)− c1)2 − (gt(θ)− c1)2
∣∣ ,
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where we use that by part (iii) of Assumption PS, σ2
1 ≥ κ > 0 for any θ ∈ Θ. It follows from

Proposition 1 that

sup
θ∈Θ
|(ĝt(θ)− c1)− (gt(θ)− c1)| = sup

θ∈Θ
|ĝt(θ)− gt(θ)| e.a.s.→ 0 ,

as t → ∞, where gt has a uniform log+ moment, i.e. E log+ supθ∈Θ |gt(θ)| < ∞ . Therefore,

it follows that the difference of the squares of ĝt(θ) − c1 and gt(θ) − c1 also converges to zero

uniformly over Θ, see Lemma TA.17 of Blasques et al. (2021).

We finalize the proof by arguing that the second average in (B.16) also converges to zero almost

surely. Again we do this by showing that the terms of the average converge to zero e.a.s. We

will do so by applying the mean value theorem twice. First apply the mean value theorem to

log(w1/σ
2
1 + x) to get

sup
θ∈Θ

∣∣∣∣log

(
w1

σ1
+B(ĝt(θ),ψ

)
− log

(
w1

σ1
+B(gt(θ),ψ)

)∣∣∣∣
≤ sup
θ∈Θ,g∈R

∣∣∣∣∣ 1
w1
σ1

+B(g,ψ)

∣∣∣∣∣ · sup
θ∈Θ
|B(ĝt(θ),ψ)−B(gt(θ),ψ)| ,

where supθ∈Θ |1/(w1/σ1 +B(g,ψ))| < ∞ because in the discussion above we argued that

w1/σ1 + B(g,ψ) is bounded from below on R × Θ by a strictly positive value. Now apply

the mean value theorem again to the continuously differentiable function B(g,ψ) for fixed ψ to

get:

sup
θ∈Θ
|B(ĝt(θ),ψ)−B(gt(θ),ψ)| ≤ sup

θ∈Θ,g∈R

∣∣∣∣∂B(g,ψ)

∂g

∣∣∣∣ · sup
θ∈Θ
|ĝt(θ)− gt(θ)|

≤ B̄′ · sup
θ∈Θ
|ĝt(θ)− gt(θ)| e.a.s.→ 0 ,

as t → ∞. The convergence result follows from the e.a.s. convergence of ĝt to gt uniformly

over Θ that follows from Proposition 1. Furthermore, we use that the derivative ∂B(g,ψ)/∂g

is uniformly bounded over g and ψ by a finite constant B̄′, because:∣∣∣∣∂B(g,ψ)

∂g

∣∣∣∣ =

∣∣∣∣∣∣
J∑
j=2

−wj
σj

(
g − cj
σ2
j

− g − c1

σ2
1

)
· exp

(
−
[

(g − cj)2

2σ2
j

− (g − c1)2

2σ2
1

])∣∣∣∣∣∣ < B̄′ <∞ ,

where the bounding constant B̄′ exists by similar arguments that we used to argue that the

term B(g,ψ) itself is bounded. More specifically, we have by part (iii) of Assumption PS that

σ2
1 − σ2

j ≥ κ > 0, for every j > 1, which ensures that the factor exp(·) converges to zero at

an exponential rate as |g| → ∞. The term in front of the exp(·)-function diverges as |g| →
∞, but not at an exponential rate. Therefore, for every j the product converges to zero as

|g| → ∞, uniformly over Θ (this can be shown more formally using l’Hôpital’s rule). Because

of the compactness of Θ and the fact that the variances are bounded away from zero, it is now

straightforward to see that the derivative can be uniformly bounded by some finite value B̄′.

This finishes the proof.
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Lemma 5. Let the assumptions of Theorem 1 hold. Then

`(gt(θ),ψ) = `(gt(θ0),ψ0) almost surely if and only if θ = θ0 .

Proof. We proceed in a way similar to the approach used, for example, by Blasques et al. (2021).

Recall from the proof of Proposition 1(ii) that gt(θ0) = εt almost surely for every t. Our first

step is to show that `(h + εt,ψ) = `(εt,ψ0) can only hold with probability one if h = 0 and

ψ = ψ0. Because εt is mixed normally distributed with parameter ψ0 from Θ, εt has a positive

density function on the entire real line R. This implies that it is sufficient to show that for any

ψ1,ψ2 ∈ Θ, `(h+ x,ψ1) = `(x,ψ2) can only hold for every x ∈ R if h = 0 and ψ1 = ψ2. Look

at the expression of `(g,ψ) given in (A.12). For any ψ1 and ψ2 from Θ and any h ∈ R, it is

clear that to have

J∑
j=1

wj1
σj1

exp

(
−(h+ x− cj1)2

2σ2
j1

)
=

J∑
j=1

wj2
σj2

exp

(
−(x− cj2)2

2σ2
j2

)
,

for any x ∈ R, we must have ψ1 = ψ2 and h = 0 . By Assumption PS we namely have that

the component variances σ2
j > 0 are such that σ2

1 > · · · > σ2
J , that all weights are non-zero

and that the J-th component mean cJ is such that
∑J

j=1wjcj = 0 . Hence, it follows from this

discussion that for some t, `(gt(θ0),ψ0) = `(εt,ψ0) = `(h+ εt,ψ) can only hold almost surely

if h = 0 and ψ = ψ0.

Therefore, to show that `(gt(θ),ψ) = `(gt(θ0),ψ0) a.s. holds if and only if θ = θ0, it only

remains to be shown that given that θ = (ω, α,ψ) ∈ Θ is such that ψ = ψ0, then gt(θ) = gt(θ0)

almost surely if and only if (ω, α) = (ω0, α0) . Recall that {gt(θ)}t∈Z is stationary and ergodic.

Hence, we can use that if gt(θ) = gt(θ0) = εt almost surely, for some t, then it holds for every

t ∈ Z. Now, given that gt(θ) = gt(θ0) = εt almost surely, then gt+1(θ) will satisfy

gt+1(θ) = εt − ω − αs(εt;ψ0) + ∆yt+1

= ω0 − ω + (α0 − α)s(εt;ψ0) + εt+1,

using the model equations (1) and (2) to work out ∆yt+1. First, we can argue that if gt+1(θ) =

εt+1 almost surely, then we must have ω = ω0. Namely, if ω 6= ω0, then we must have

(α0 − α)s(εt;ψ0) = ω − ω0 6= 0 almost surely. This implies that we must have that α0 − α
and s(εt;ψ0) are non-zero constants. However, s(εt;ψ0) is not degenerate because clearly

∂s(x;ψ0)/∂x
∣∣
x=εt

6= 0 for almost every εt. So we must have ω = ω0. Because ω = ω0 and

s(εt;ψ0) is non-zero with probability one, we can only have gt+1(θ) = εt+1 almost surely if

α = α0 . This finishes the proof.

Lemma 6. Let the assumptions of Theorem 2 hold. Then:

E sup
θ∈Θ
‖`′′t (θ)‖ <∞ ,

where `′′t (θ) = ∂2`(gt(θ),ψ)/∂θ∂θ′, as defined in Technical Appendix C.3 and ‖ · ‖ denotes the

operator norm induced by the L1-norm.
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Proof. For notational convenience, we define the sup-norm as ‖ · ‖Θ ≡ supθ∈Θ ‖ · ‖ and we

define the following functions: `a(g,ψ) = ∂`(g,ψ)/∂a and `ab(g,ψ) = ∂2`(g,ψ)/∂a∂b′ with

a, b ∈ {θ, g}. Using the sub-additivity of the sup-norm

E
∥∥`′′t (θ)

∥∥Θ ≤ E
∥∥∥`θθ(gt(θ),ψ)

∥∥∥Θ
+ E

∥∥∥∥`θg(gt(θ),ψ)
∂gt(θ)

∂θ′

∥∥∥∥Θ

+ E
∥∥∥∥∂gt(θ)

∂θ
`gθ(gt(θ),ψ)

∥∥∥∥Θ

+ E
∥∥∥∥`gg(gt(θ),ψ)

∂gt(θ)

∂θ

∂gt(θ)

∂θ′

∥∥∥∥Θ

+ E
∥∥∥∥`g(gt(θ),ψ)

∂2gt(θ)

∂θ∂θ′

∥∥∥∥Θ

,

so it suffices to show that each of these terms is bounded. By the assumptions in Theorem 2,

Proposition 2 implies that

E sup
θ∈Θ
|gt(θ)|n <∞, E sup

θ∈Θ
‖∂gt(θ)/∂θ‖n <∞, E sup

θ∈Θ
‖∂2gt(θ)/∂θ∂θ′‖n/2 <∞,

for some n ≥ 4. Furthermore, from the bounds of the log-likelihood derivatives given in Lemma

TA.1, it follows that the first term is finite as `′′t (θ) has n/2 > 1 uniform bounded moments.

To show the boundedness of the next terms, use the generalized Hölder’s inequality, which says

that if ‖ · ‖p = (E‖ · ‖p)1/p, for random variables or vectors x and y, ‖x · y‖1 ≤ ‖x‖p‖y‖q, where

p, q > 0 are such that 1 = p ∗ q/(p + q). For the second and third term use the generalized

Hölder inequality and the submultiplicativity of the sup-norm to see that:

E
∥∥∥∥`θg(gt(θ),ψ)

∂gt(θ)

∂θ′

∥∥∥∥Θ

≤
∥∥∥`θg(gt(θ),ψ)

∥∥∥Θ

2

∥∥∥∥∂gt(θ)

∂θ′

∥∥∥∥Θ

2

<∞ ,

This expression is finite because both ∂gt(θ)/∂θ and `θg(gt(θ),ψ) have n ≥ 4 bounded moments.

The fourth term is also finite, because `gg(g,ψ) is uniformly bounded in g and θ, and ∂gt(θ)/∂θ

has n ≥ 4 bounded moments. Finally, for the last term apply the generalized Hölder’s inequality,

and use that `g(gt(θ),ψ) has n ≥ 4 bounded moments and ∂2gt(θ)/∂θ∂θ′ has n/2 ≥ 2 bounded

moments.

Lemma 7. Let the assumptions of Theorem 2 hold. Then the Fischer information matrix

I = −E[`′′t (θ0)] = E[`′t(θ0)`′t(θ0)>]

is positive definite.

Proof. We use a proof similar to that of Lemma A.5 of Gorgi and Koopman (2021). First of all,

−E[`′′t (θ0)] = E[`′t(θ0)`′t(θ0)>] because of the Fischer information matrix equality. We namely

assume that the model is correctly specified, so `t(θ0) is the true log density evaluated at yt and

the second derivative of the log-likelihood function has a finite moment by Lemma 6. Therefore,

we can obtain the result above via a standard argument.

Now turning to the positive definiteness result: E[`′t(θ0)`′t(θ0)>] is positive semi-definite by

construction, so it only remains to be shown that it is invertible. This can be done by proving

that

v>`′t(θ0) = v>




0

0
∂`(εt,ψ0)

∂ψ

+


∂gt(θ0)
∂α

∂gt(θ0)
∂ω

∂gt(θ0)
∂ψ

 `g(εt,ψ0)

 = 0 ,
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almost surely, only if v = 0, where v ∈ R3J and `g is defined in the proof of Lemma 6. We can

split up the vector v = (v′1, v
′
−1)′ with v1 ∈ R2 and v−1 ∈ R3J−2, such that v1 corresponds to

the derivative with respect to α and ω and v−1 corresponds to the derivative with respect to

ψ. Recall from the proof of Lemma 5 that gt(θ0) = εt almost surely. Furthermore, notice that

`g(g,ψ) = −s(g;ψ), so it is equal to the score function.

Similarly to the proof of Gorgi and Koopman (2021), we can now argue that v>`′t(θ0) = 0

almost surely, can only hold for v 6= 0, if we are in one of the following cases: (i) v1 6= 0 and

v−1 = 0, (ii) v1 = 0 and v−1 6= 0, and (iii) v1 6= 0 and v−1 6= 0. For (i) to hold, we must have

s(εt;ψ0)v>1

(
∂gt(θ0)
∂α

∂gt(θ0)
∂ω

)
= 0 .

Looking at the score function, it is clear that s(εt;ψ0) 6= 0 with probability one. So for

the equation to hold, we must have v1,1∂gt(θ0)/∂α + v1,2∂gt(θ0)/∂ω = 0 a.s. Note that the

derivative processes of ∂gt(θ0)/∂α and ∂gt(θ0)/∂ω are virtually the same, but the former has

‘innovation’ −s(εt;ψ) and the latter has ‘innovation’ 1, see Technical Appendix C.2. It is

clear that both processes are not degenerate and since s(εt;ψ) 6= −1 with probability one, the

derivative processes are linearly independent. Hence, option (i) is ruled out.

For case (ii), we would need to have

v>−1

[
∂`(εt,ψ0)

∂ψ
(s(εt;ψ0))−1 − ∂gt(θ0)

∂ψ

]
= 0 ,

this is ruled out because the elements of the vector in brackets are linearly independent. To

see this, first notice that ∂gt(θ0)/∂ψ is Ft−1-measurable, and ∂`(εt,ψ0)/∂ψ and s(εt;ψ0) are

not. Next, look at the expression of the vector ∂`(εt,ψ)/∂ψ, which can be constructed using

the building blocks in Technical Appendix C.1:

i = 1, . . . , J − 1 :
∂`(εt,ψ)

∂wi
=

1
σi

exp
(
− (εt−ci)2

2σ2
i

)
−
[
1− εt−cJ

σ2
J

(cJ − ci)
]

1
σJ

exp
(
− (εt−cJ )2

2σ2
J

)
∑J

j=1
wj

σj
exp

(
− (εt−cj)2

2σ2
j

) ,

i = 1, . . . , J − 1 :
∂`(εt,ψ)

∂ci
=

εt−ci
σ2
i

wi
σi

exp
(
− (εt−ci)2

2σ2
i

)
− εt−cJ

σ2
J

wi
σJ

exp
(
− (εt−cJ )2

2σ2
J

)
∑J

j=1
wj

σj
exp

(
− (εt−cj)2

2σ2
j

) ,

i = 1, . . . , J :
∂`(εt,ψ)

∂σ2
i

=

[
(εt−ci)2
σ2
i
− 1
]
wi

2σ3
i

exp
(
− (εt−ci)2

2σ2
i

)
∑J

j=1
wj

σj
exp

(
− (εt−cj)2

2σ2
j

) .

It is immediately clear that all the elements of ∂`(εt,ψ0)/∂ψ are linearly independent given the

identification conditions in Assumption PS, and they are also non-degenerate. Hence, there is

no nonzero vector v−1 such that v>−1∂`(εt,ψ0)/∂ψ = 0 almost surely, and in effect, the same

counts for (s(εt;ψ0))−1v>−1∂`(εt,ψ0)/∂ψ = 0. This rules out case (ii), because ∂gt(θ0)/∂ψ is

independent of ∂`(εt,ψ0)/∂ψ(s(εt;ψ0))−1.
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Lastly, for case (iii), we would need to have

v>1

(
∂gt(θ0)
∂α

∂gt(θ0)
∂ω

)
+ v>−1

∂gt(θ0)

∂ψ
= (s(εt;ψ0))−1v>−1

∂`(εt,ψ0)

∂ψ
,

but this condition will not hold for a similar reason. The left hand side is namely Ft−1-

measurable and the right hand side is not, and the derivatives on both sides are not degenerate.

This namely implies that for this condition to hold, we must have that both sides of the equation

are equal to zero, and we just argued that the elements of ∂`(εt,ψ0)/∂ψ are linearly indepen-

dent, so there exists no v−1 ∈ R3J−2 for which the right hand side is equal to zero almost surely.

This means case (iii) is also ruled out, which finishes the proof.

Lemma 8. Let the assumptions of Theorem 2 hold. Then:

√
TL′T (θ0)

d→ N (0,K) as T →∞ ,

with K = E[`′t(θ0)`′t(θ0)′] and where L′T and `′t(θ) = ∂`(gt(θ),ψ)/∂θ are defined in Technical

Appendix C.3.

Proof. We obtain this result by applying the Central Limit theorem for stationary and ergodic

martingale difference sequences of Billingsley (1999). In order to be able to apply this theorem,

we have to argue that {`′t(θ0)}t∈Z is a stationary and ergodic martingale difference sequence

with a finite second moment.

It follows from (Krengel, 1985, Proposition 4.3) that {`′t(θ0)}t∈Z is stationary and ergodic,

because `′t is a continuous function of gt(θ) and ∂gt(θ)/∂θ, while Proposition 2 states both are

elements of stationary and ergodic sequences. Furthermore, {`′t(θ0)}t∈Z is a martingale differ-

ence sequence since the model is assumed to be correctly specified and `′t(θ0) is the conditional

score, defined as the derivative of the conditional log-likelihood with respect to θ, evaluated

at the true parameter value θ0. The weak regularity conditions needed for this result are met

here, because the observational density function is continuously differentiable and its derivative

with respect to θ can be uniformly bounded in all its arguments by some finite constant, which

implies Leibniz integral rule can be applied.

Finally, we show that the second moment of `′t(θ0) is finite, i.e. E‖`′t(θ0)‖2 < ∞, where

‖ · ‖ denotes the L1-norm. This is equivalent to showing that ‖`′t(θ0)‖2 < ∞ , where ‖ · ‖n ≡
(E‖ · ‖n)1/n, which is sub-additive if n ≥ 1 . Hence:

‖`′t(θ0)‖2 ≤
∥∥∥`θ(gt(θ0),ψ0)

∥∥∥
2

+

∥∥∥∥`g(gt(θ0),ψ0)
∂gt(θ0)

∂θ

∥∥∥∥
2

,

where `θ and `g are defined in the proof of Lemma 6. By Lemma TA.1 we know that the first

derivative has n/2 bounded moments, where n ≥ 4 are the number of bounded moments of gt(θ)

by the assumptions in Theorem 2 and the results in Proposition 2. Hence, the expectation is

finite. For the second term, we can use the generalized Hölder’s inequality, which says that for
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random variables x and y, ‖x · y‖1 ≤ ‖x‖p‖y‖q, where p, q > 0 are such that n = p ∗ q/(p+ q).

It follows that ‖x · y‖n ≤ ‖x‖np‖y‖nq. Hence, we can bound the absolute second moment of the

separate elements of the term as follows:∥∥∥∥`g(gt(θ0),ψ0)
∂gt(θ0)

∂θi

∥∥∥∥
2

≤ ‖`g(gt(θ0),ψ0)‖4
∥∥∥∥∂gt(θ0)

∂θi

∥∥∥∥
4

.

Both terms on the right hand side are finite, because ∂gt(θ0)/∂θ has n ≥ 4 bounded moments

by the assumptions in Theorem 2 and the results in Proposition 2, and the other term also

has n bounded moments, as is argued in Lemma TA.1. Alternatively, we could have used that

gt(θ0) = εt almost surely, and that `g(εt,ψ0) and ∂gt(θ0)/∂θ are independent. This finishes

the proof.

Lemma 9. Let the assumptions of Theorem 2 hold. Then:

√
T sup
θ∈Θ

∥∥∥L̂′T (θ)− L′T (θ)
∥∥∥ a.s.→ 0 as T →∞ ,

see Technical Appendix C.3 for the expression of the log-likelihood derivative. ‖·‖ is the L1-norm.

Proof. For notational convenience, define the sup-norm as ‖ · ‖Θ ≡ supθ∈Θ ‖ · ‖. Similar to

Lemma A.6 of Gorgi and Koopman (2021), we will show that the convergence result holds, by

showing that

‖ˆ̀′t(θ)− `′t(θ)‖Θ e.a.s.→ 0 , (B.17)

as t→∞, as this implies that

T
∥∥∥L̂′T (θ)− L′T (θ)

∥∥∥Θ
≤

T∑
t=2

sup
θ∈Θ
‖ˆ̀′t(θ)− `′t(θ)‖Θ <∞ ,

almost surely, by the subadditivity of the sup-norm and Lemma 2.1 of Straumann and Mikosch

(2006). This in turn implies the final result
√
T‖L̂′T (θ)− L′T (θ)‖Θ a.s→ 0 .

To show the result in (B.17), consider the expression given in Technical Appendix C.3 and

using the subadditivity of the sup-norm bound it as follows:

‖ˆ̀′t(θ)− `′t(θ)‖Θ ≤
∥∥∥`θ(ĝt(θ),ψ)− `θ(gt(θ),ψ)

∥∥∥Θ
(B.18)

+

∥∥∥∥`g(ĝt(θ),ψ)
∂ĝt(θ)

∂θ
− `g(gt(θ),ψ)

∂gt(θ)

∂θ

∥∥∥∥Θ

, (B.19)

where `g and `θ are defined in the proof of Lemma 6. Hence, it suffices to show that both terms

on the right hand side vanish e.a.s. as t→∞. For the second term, we use Corollary TA.16 of

Blasques et al. (2021), which says it suffices to show that

‖`g(ĝt(θ),ψ)− `g(gt(θ),ψ)‖Θ e.a.s.→ 0 , and

∥∥∥∥∂ĝt(θ)

∂θ
− ∂gt(θ)

∂θ

∥∥∥∥Θ
e.a.s.→ 0 ,
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as long as `g(gt(θ),ψ) and ∂gt(θ)/∂θ are stationary and ergodic and have a finite log+ ‖ · ‖
moment, which is the case here. In particular, ∂gt(θ)/∂θ is stationary and ergodic and has

n ≥ 4 finite moments by the assumptions in Theorem 2 and the results in Proposition 2.

Furthermore, `g(gt(θ),ψ) is also stationary and ergodic by (Krengel, 1985, Proposition 4.3)

and also has n ≥ 4 moments by the bounding result given in Lemma TA.1. The convergence

of the first derivative ∂ĝt(θ)/∂θ to the stationary limit ∂gt(θ)/∂θ also follows directly from

Proposition 2. Finally, use the mean value theorem in order to see that:

‖`g(ĝt(θ),ψ)− `g(gt(θ),ψ)‖Θ ≤ sup
θ∈Θ

sup
g∈R
|`gg(g,ψ)| · ‖ĝt(θ)− gt(θ)‖Θ e.a.s.→ 0 ,

where the convergence result follows from the fact that `gg(g,ψ) is uniformly bounded in g and

θ, see Lemma TA.1, and ‖ĝt(θ)− gt(θ)‖Θ converges to zero e.a.s.

The first term of the right hand side of B.18 needs a more intricate treatment, because not

all terms of the derivative vector `θg(g,ψ) are uniformly bounded. To be more precise, all the

terms are bounded except for the term corresponding to σ2
1. For the terms that are uniformly

bounded, we can again apply the mean value theorem in the same way. So it is not hard to

see, that it now suffices to show that also ∂`(ĝt(θ),ψ)/∂σ2
1 converges to ∂`(gt(θ),ψ)/∂σ2

1 e.a.s.

uniformly over Θ. The expression of ∂`(g,ψ)/∂σ2
1 is given by

∂`(g,ψ)

∂σ2
1

=

[
(g−c1)2

σ2
1
− 1
]
w1

2σ3
1

1 +
∑J

j=2
wj

σj
exp

(
−
(

(g−cj)2

2σ2
j
− (g−c1)2

2σ2
1

)) .

Notice that the denominator cannot be smaller than one given Assumption PS. Denote the

numerator by N(g;ψ) and the denominator by D(g;ψ). We can apply Corollary TA.16 of

Blasques et al. (2021) to show that N(ĝt(θ);ψ) converges e.a.s. to N(gt(θ);ψ) uniformly over

Θ and the same for the inverse of D(g;ψ). We namely know that both factors are stationary

and ergodic if evaluated at gt(θ) by (Krengel, 1985, Proposition 4.3) and they both have a

finite moment, because gt(θ) has n ≥ 4 bounded moments by Proposition 2, Θ is compact by

Assumption PS and D(g;ψ) is never smaller than 1 given Assumption PS. For the convergence

of the numerator:

‖N(ĝt(θ);ψ)−N(gt(θ);ψ)‖Θ =

∥∥∥∥[(ĝt(θ)− c1)2

σ2
1

− 1

]
w1

2σ3
1

−
[

(gt(θ)− c1)2

σ2
1

− 1

]
w1

2σ3
1

∥∥∥∥Θ

= C
∥∥(ĝt(θ)− c1)2 − (gt(θ)− c1)2

∥∥Θ e.a.s.→ 0 ,

where C is some finite constant and where the convergence result follows from another ap-

plication of Corollary TA.16 of Blasques et al. (2021), since ‖ĝt(θ) − c1 − (gt(θ) − c1)‖Θ =

‖ĝt(θ)− gt(θ)‖Θ e.a.s.→ 0 . Finally, to show that the inverse of D(ĝt(θ);ψ) converges e.a.s. to the

inverse of D(gt(θ);ψ), the mean value theorem approach from above can be applied, since it is

straightforward to see that ∂(1/D(g;ψ))/∂g is uniformly bounded over θ ∈ Θ and g ∈ R, since:

∂

∂g

(
1

D(g;ψ)

)
=

∂

∂g

1

1 +
∑J

j=2
wj

σj
exp

(
−
(

(g−cj)2

2σ2
j
− (g−c1)2

2σ2
1

))
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=

∑J
j=2

wj

σj

[
g−cj
σ2
j
− g−c1

σ2
1

]
exp

(
−
(

(g−cj)2

2σ2
j
− (g−c1)2

2σ2
1

))
[
1 +

∑J
j=2

wj

σj
exp

(
−
(

(g−cj)2

2σ2
j
− (g−c1)2

2σ2
1

))]2 ,

which can be uniformly bounded given the parameter restrictions in Assumption PS, in partic-

ular because σ2
1 < σ2

j for all j 6= 1. This finishes the proof.
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Technical Appendix

C. Derivatives

C.1. Derivatives of model expressions

In this section we will give the derivatives of s(g;ψ) and `(g,ψ) with respect to ψ and g and argue how

they can be bounded. Let

F (g;ψ) =

J∑
j=1

wj
σj

exp

(
− (g − cj)2

2σ2
j

)
, (C.20)

and let

G(g;ψ) = −∂F (g;ψ)

∂g
=

J∑
j=1

g − cj
σ2
j

wj
σj

exp

(
− (g − cj)2

2σ2
j

)
,

such that `(g,ψ) = logF (g,ψ) and s(g;ψ) = −∂`(g,ψ)/∂g = G(g;ψ)/F (g;ψ) . Let Gk(g;ψ) :=

∂G(g;ψ)/∂k where k can be g or the vector ψ, and use similar notation for the function F and for the

second and third derivatives. Then we have:

∂s(g;ψ)

∂ψ
=
Gψ(g;ψ)

F (g;ψ)
− G(g;ψ)Fψ(g;ψ)

F (g;ψ)2
,

∂2s(g;ψ)

∂ψ∂ψ′
=
Gψψ′(g;ψ)

F (g;ψ)
− Fψ(g;ψ)Gψ′(g;ψ)

(F (g;ψ))2
− Gψ(g;ψ)Fψ′(g;ψ)

(F (g;ψ))2
− G(g;ψ)Fψψ′(g;ψ)

(F (g;ψ))2

+ 2
G(g;ψ)Fψ(g;ψ)Fψ′(g;ψ)

(F (g;ψ))3
,

∂s(g;ψ)

∂g
=
Gg(g;ψ)

F (g;ψ)
+

(G(g;ψ))2

(F (g;ψ))2
,

∂2s(g;ψ)

∂g2
=
Ggg(g;ψ)

F (g;ψ)
+

3G(g;ψ)Gg(g;ψ)

(F (g;ψ))2
+

2(G(g;ψ))3

(F (g;ψ))3
,

∂3s(g;ψ)

∂g3
=
Gggg(g;ψ)

F (g;ψ)
+

4G(g;ψ)Ggg(g;ψ)

(F (g;ψ))2
+

3(Gg(g;ψ))2

(F (g;ψ))2
+

12(G(g;ψ))2Gg(g;ψ)

(F (g;ψ))3
+

6(G(g;ψ))4

(F (g;ψ))4
,

∂2s(g;ψ)

∂ψ∂g
=
Gψg(g;ψ)

F (g;ψ)
+

2G(g;ψ)Gψ(g;ψ)

(F (g;ψ))2
− Fψ(g;ψ)Gg(g;ψ)

(F (g;ψ))2
− 2(G(g;ψ))2Fψ(g;ψ)

(F (g;ψ))3
,

∂3s(g;ψ)

∂ψ∂g2
=
Gψgg(g;ψ)

F (g;ψ)
+

3G(g;ψ)Gψg(g;ψ)

(F (g;ψ))2
− Fψ(g;ψ)Ggg(g;ψ)

(F (g;ψ))2
+

3Gg(g;ψ)Gψ(g;ψ)

(F (g;ψ))2

+
6(G(g;ψ))2Gψ(g;ψ)

(F (g;ψ))3
− 6G(g;ψ)Fψ(g;ψ)Gg(g;ψ)

(F (g;ψ))3
− 6(G(g;ψ))3Fψ(g;ψ)

(F (g;ψ))4
,

∂3s(g;ψ)

∂ψ∂ψ′∂g
=
Gψψ′g(g;ψ)

F (g;ψ)
+

2G(g;ψ)Gψψ′(g;ψ)

(F (g;ψ))2
− Fψ(g;ψ)Ggψ′(g;ψ)

(F (g;ψ))2
− Ggψ(g;ψ)Fψ′(g;ψ)

(F (g;ψ))2

− Gg(g;ψ)Fψψ′(g;ψ)

(F (g;ψ))2
+

2Gψ(g;ψ)Gψ′(g;ψ)

(F (g;ψ))2
− 2(G(g;ψ))2Fψψ′(g;ψ)

(F (g;ψ))3

− 4G(g;ψ)Fψ(g;ψ)Gψ′(g;ψ)

(F (g;ψ))3
− 4G(g;ψ)Gψ(g;ψ)Fψ′(g;ψ)

(F (g;ψ))3

+
2Fψ(g;ψ)Fψ′(g;ψ)Gg(g;ψ)

(F (g;ψ))3
+

6(G(g;ψ))2Fψ(g;ψ)Fψ′(g;ψ)

(F (g;ψ))4
.

The derivatives of the log likelihood function are given by

∂`(g,ψ)

∂ψ
=
Fψ(g;ψ)

F (g;ψ)
,
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∂2`(g,ψ)

∂ψ∂ψ′
=
Fψψ′(g;ψ)

F (g;ψ)
− Fψ(g;ψ)Fψ′(g;ψ)

(F (g;ψ))2
,

and the other derivatives of interest of the log likelihood function `(g,ψ) are already known given the

derivatives of s(g;ψ) above:

∂`(g,ψ)

∂g
= −s(g;ψ) ,

∂2`(g,ψ)

∂g2
= − ∂

∂g
s(g;ψ) ,

∂3`(g,ψ)

∂g3
= − ∂2

∂g2
s(g;ψ) ,

∂2`(g,ψ)

∂ψ∂g
= − ∂

∂ψ
s(g;ψ) ,

∂3`(g,ψ)

∂ψ∂g2
= − ∂2

∂ψ∂g
s(g;ψ) ,

∂3`(g,ψ)

∂ψ∂ψ′∂g
= − ∂2

∂ψ∂ψ′
s(g;ψ) .

We will now list all the derivatives of F and G that occur above. We have to take into account that wJ

and cJ are determined by the other weights and means in the derivatives. Remember that by Assumption

PS we have that wJ = 1 −∑J−1
j=1 wj and that cJ = −

∑J−1
j=1 wjcj

wJ
, which implies that for every integer

1 ≤ i ≤ J − 1:

∂wJ
∂wi

= −1 ,
∂cJ
∂wi

=
1

wJ
(cJ − ci) ,

∂cJ
∂ci

= − wi
wJ

.

To keep the expressions readable, we introduce the notation fi(g) := exp
(
−(g − ci)2/(2σ2

i )
)
. Note that

∂fi(g)/∂ci = (g − ci)fi(g)/σ2
i , ∂fi(g)/∂σ2

i = (g − ci)2fi(g)/(2σ4
i ) and ∂fi(g)/∂g = −(g − ci)fi(g)/σ2

i .

Hence, the elements of Fψ(g;ψ) are given by:

wi : i ≤ J − 1, Fwi(g;ψ) =
1

σi
fi(g)−

(
1− g − cJ

σ2
J

(cJ − ci)
)

1

σJ
fJ(g) ,

ci : i ≤ J − 1, Fci(g;ψ) =
g − ci
σ2
i

wi
σi
fi(g)− g − cJ

σ2
J

wi
σJ
fJ(g) ,

σ2
i : i ≤ J, Fσ2

i
(g;ψ) =

(
(g − ci)2

σ2
i

− 1

)
wi
2σ3

i

fi(g) .

The elements of Fψψ′(g;ψ) are given by:

wi, wj : i, j ≤ J − 1, Fwiwj (g;ψ) =

(
(g − cJ)2

σ2
J

− 1

)
(cJ − ci)(cJ − cj)

wJσ3
J

fJ(g) ,

ci, ci : i ≤ J − 1, Fcici(g;ψ) =

(
(g − ci)2

σ2
i

− 1

)
wi
σ3
i

fi(g) +

(
(g − cJ)2

σ2
J

− 1

)
w2
i

σ3
JwJ

fJ(g) ,

ci, cj : i, j ≤ J − 1, j 6= i, Fcicj (g;ψ) =

(
(g − cJ)2

σ2
J

− 1

)
wiwj
σ3
JwJ

fJ(g) ,

σ2
i , σ

2
i : i ≤ J, Fσ2

i σ
2
i
(g;ψ) =

(
3− 6

(g − ci)2
σ2
i

+
(g − ci)4

σ4
i

)
wi
4σ5

i

fi(g) ,

σ2
i , σ

2
j : i, j ≤ J, j 6= i, Fσ2

i σ
2
j
(g;ψ) = 0 ,

wi, ci : i ≤ J − 1, Fwici(g;ψ) =
g − ci
σ3
i

fi(g) +

(
1− (g − cJ)2

σ2
J

)
wi(cJ − ci)
wJσ3

J

fJ(g)− g − cJ
σ3
J

fJ(g) ,

wi, cj : i, j ≤ J − 1, j 6= i, Fwicj (g;ψ) =

(
1− (g − cJ)2

σ2
J

)
(cJ − ci)wj
wJσ3

J

fJ(g) ,

wi, σ
2
i : i ≤ J − 1, Fwiσ2

i
(g;ψ) =

(
(g − ci)2

σ2
i

− 1

)
1

2σ3
i

fi(g)

wi, σ
2
j : i, j ≤ J − 1, j 6= i, Fwiσ2

j
(g;ψ) = 0 ,

wi, σ
2
J : i ≤ J − 1, Fwiσ2

J
(g;ψ) =

(
1− 3

(g − cJ)(cJ − ci)
σ2
J

−
(

1− (g − cJ)(cJ − ci)
σ2
J

)
(g − cJ)2

σ2
J

)
1

2σ3
J

fJ(g) ,

ci, σ
2
i : i ≤ J − 1, Fciσ2

i
(g;ψ) =

(
(g − ci)2

σ2
i

− 3

)
(g − ci)wi

2σ5
i

fi(g) ,

ci, σ
2
j : i, j ≤ J − 1, j 6= i, Fciσ2

j
(g;ψ) = 0 ,
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ci, σ
2
J : i ≤ J − 1, Fciσ2

J
(g;ψ) =

(
3− (g − cJ)2

σ2
J

)
(g − cJ)wi

2σ5
J

fJ(g) .

The elements of Gψ(g;ψ) are given by:

wi : i ≤ J − 1, Gwi(g;ψ) =
g − ci
σ3
i

fi(g)−
(
g − ci −

(g − cJ)2

σ2
J

(cJ − ci)
)

1

σ3
J

fJ(g) ,

ci : i ≤ J − 1, Gci(g;ψ) =

(
(g − ci)2

σ2
i

− 1

)
wi
σ3
i

fi(g)−
(

(g − cJ)2

σ2
J

− 1

)
wi
σ3
J

fJ(g) ,

σ2
i : i ≤ J, Gσ2

i
(g;ψ) =

(
(g − ci)2

σ2
i

− 3

)
(g − ci)wi

2σ5
i

fi(g) .

The elements of Gψψ′(g;ψ) are given by:

wi, wj : i, j ≤ J − 1, Gwiwj (g;ψ) =

(
(g − cJ)2

σ2
J

− 3

)
(cJ − ci)(cJ − cj)(g − cJ)

σ5
JwJ

fJ(g) ,

ci, ci : i ≤ J − 1, Gcici(g;ψ) =

(
(g − ci)2

σ2
i

− 3

)
(g − ci)wi

σ5
i

fi(g) +

(
(g − cJ)2

σ2
J

− 3

)
(g − cJ)w2

i

σ5
JwJ

fJ(g) ,

ci, cj : i, j ≤ J − 1, j 6= i, Gcicj (g;ψ) =

(
(g − cJ)2

σ2
J

− 3

)
(g − cJ)wiwj

σ5
JwJ

fJ(g) ,

σ2
i , σ

2
i : i ≤ J, Gσ2

i σ
2
i
(g;ψ) =

(
15− 10

(g − ci)2
σ2
i

+
(g − ci)4

σ4
i

)
(g − ci)wi

4σ7
i

fi(g) ,

σ2
i , σ

2
j : i, j ≤ J, j 6= i, Gσ2

i σ
2
j
(g;ψ) = 0 ,

wi, ci : i ≤ J − 1, Gwici(g;ψ) =

(
(g − ci)2

σ2
i

− 1

)
1

σ3
i

fi(g)−
(

(g − cJ)2

σ2
J

− 1

)
1

σ3
J

fJ(g)

+

(
3− (g − cJ)2

σ2
J

)
(g − cJ)(cJ − ci)wi

wJσ5
J

fJ(g) ,

wi, cj : i, j ≤ J − 1, j 6= i, Gwicj (g;ψ) =

(
3− (g − cJ)2

σ2
J

)
(g − cJ)(cJ − ci)wj

wJσ5
J

fJ(g) ,

wi, σ
2
i : i ≤ J − 1, Gwiσ2

i
(g;ψ) =

(
(g − ci)2

σ2
i

− 3

)
g − ci
2σ5

i

fi(g) ,

wi, σ
2
j : i, j ≤ J − 1, j 6= i, Gwiσ2

j
(g;ψ) = 0 ,

wi, σ
2
J : i ≤ J − 1, Gwiσ2

J
(g;ψ) =

(
3(g − ci)− 6

(g − cJ)2(cJ − ci)
σ2
J

)
1

2σ5
J

fJ(g)

−
(

1− (g − cJ)(cJ − ci)
σ2
J

)
(g − cJ)3

2σ7
J

fJ(g) ,

ci, σ
2
i : i ≤ J − 1, Gciσ2

i
(g;ψ) =

(
3− 6

(g − ci)2
σ2
i

+
(g − ci)4

σ4
i

)
wi
2σ5

i

fi(g) ,

ci, σ
2
j : i, j ≤ J − 1, j 6= i, Gciσ2

j
(g;ψ) = 0 ,

ci, σ
2
J : i ≤ J − 1, Gciσ2

J
(g;ψ) = −

(
3− 6

(g − cJ)2

σ2
J

+
(g − cJ)4

σ4
J

)
wi

2σ5
J

fJ(g) .

Next, Gg(g;ψ), Ggg(g;ψ) and Gggg(g;ψ) are given by:

Gg(G;ψ) =

J∑
j=1

(
1− (g − cj)2

σ2
j

)
wj
σ3
j

fj(g) ,

Ggg(G;ψ) =

J∑
j=1

(
(g − cj)2

σ2
j

− 3

)
(g − cj)wj

σ5
j

fj(g) ,

Gggg(G;ψ) =

J∑
j=1

(
−3 + 6

(g − cj)2
σ2
j

− (g − cj)4
σ4
j

)
wj
σ5
j

fj(g) .
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The elements of Gψg(g;ψ) are given by

wi, g : i ≤ J − 1, Gwig(g;ψ) =

(
1− (g − ci)2

σ2
i

)
1

σ3
i

fi(g)− 1

σ3
J

fJ(g)

+

(
g − cJ +

(
3− (g − cJ)2

σ2
J

)
(cJ − ci)

)
g − cJ
σ5
J

fJ(g) ,

ci, g : i ≤ J − 1, Gcig(g;ψ) =

(
3− (g − ci)2

σ2
i

)
(g − ci)wi

σ5
i

fi(g)−
(

3− (g − cJ)2

σ2
J

)
(g − cJ)wi

σ5
J

fJ(g) ,

σ2
i , g : i ≤ J, Gσ2

i g
(g;ψ) =

(
−3 + 6

(g − ci)2
σ2
i

− (g − ci)4
σ4
i

)
wi
2σ5

i

fi(g) .

The elements of Gψgg(g;ψ) are given by

wi, g, g : i ≤ J − 1, Gwigg(g;ψ) =

(
(g − ci)2

σ2
i

− 3

)
g − ci
σ5
i

fi(g) + 3
cJ − ci
σ5
J

fJ(g)

+

(
3− 6

(g − cJ)(cJ − ci)
σ2
J

−
(

1− (g − cJ)(cJ − ci)
σ2
J

)
(g − cJ)2

σ2
J

)
g − cJ
σ5
J

fJ(g) .

ci, g, g : i ≤ J − 1, Gcigg(g;ψ) = 3
wi
σ5
i

fi(g)−
(

6− (g − ci)2
σ2
i

)
(g − ci)2wi

σ7
i

fi(g)

− 3
wi
σ5
J

fJ(g)−
(

6− (g − cJ)2

σ2
J

)
(g − cJ)2wi

σ7
J

fJ(g) ,

σ2
i , g, g : i ≤ J, Gσ2

i gg
(g;ψ) =

(
15− 10

(g − ci)2
σ2
i

+
(g − ci)4

σ4
i

)
(g − ci)wi

2σ7
i

fi(g) .

Finally, the elements of Gψψ′g(g;ψ) are given by

wi, wj , g : i, j ≤ J − 1, Gwiwjg(g;ψ) =

(
−3 + 6

(g − cJ)2

σ2
− (g − cJ)4

σ4

)
(cJ − ci)(cJ − cj)

σ5
JwJ

fJ(g) ,

ci, ci, g : i ≤ J − 1, Gcicig(g;ψ) =

(
−3 + 6

(g − ci)2
σ2
i

− (g − ci)4
σ4
i

)
wi
σ5
i

fi(g)

+

(
−3 + 6

(g − cJ)2

σ2
J

− (g − cJ)4

σ4
J

)
w2
i

σ5
JwJ

fJ(g) ,

ci, cj , g : i, j ≤ J − 1, j 6= i, Gcicjg(g;ψ) =

(
−3 + 6

(g − cJ)2

σ2
J

− (g − cJ)4

σ4
J

)
wiwj
σ5
JwJ

fJ(g)

σ2
i , σ

2
i , g : i ≤ J, Gσ2

i σ
2
i g

(g;ψ) =

(
15− 45

(g − ci)2
σ2
i

+ 15
(g − ci)4

σ4
i

− (g − ci)6
σ6
i

)
wi
4σ7

i

fi(g)

σ2
i , σ

2
j , g : i, j ≤ J, j 6= i, Gσ2

i σ
2
j g

(g;ψ) = 0 ,

wi, ci, g : i ≤ J − 1, Gwicig(g;ψ) =

(
3− (g − ci)2

σ2
i

)
g − ci
σ5
i

fi(g)−
(

3− (g − cJ)2

σ2
J

)
g − cJ
σ5
J

fJ(g)

+

(
3− 6

(g − cJ)2

σ2
J

+
(g − cJ)4

σ4
J

)
(cJ − ci)wi
wJσ5

J

fJ(g) ,

wi, cj , g : i, j ≤ J − 1, j 6= i, Gwicjg(g;ψ) =

(
3− 6

(g − cJ)2

σ2
J

+
(g − cJ)4

σ4
J

)
(cJ − ci)wj
wJσ5

J

fJ(g) ,

wi, σ
2
i , g : i ≤ J − 1, Gwiσ2

i g
(g;ψ) =

(
−3 + 6

(g − ci)2
σ2
i

− (g − ci)4
σ4
i

)
1

2σ5
i

fi(g)

wi, σ
2
j , g : i, j ≤ J − 1, j 6= i, Gwiσ2

j g
(g;ψ) = 0 ,

wi, σ
2
J , g : i ≤ J − 1, Gwiσ2

Jg
(g;ψ) =

(
1− (g − cJ)

σ2
J

(2(g − ci) + 3(cJ − ci))
)

3

2σ5
J

fJ(g)

+

(
(g − ci) + (cJ − ci)

(
9− (g − cJ)2

σ2
J

))
(g − cJ)3

2σ9
J

fJ(g) ,
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ci, σ
2
i , g : i ≤ J − 1, Gciσ2

i g
(g;ψ) =

(
−15 + 10

(g − ci)2
σ2
i

− (g − ci)4
σ4
i

)
(g − ci)wi

2σ7
i

fi(g) ,

ci, σ
2
j , g : i, j ≤ J − 1, j 6= i, Gciσ2

j g
(g;ψ) = 0 ,

ci, σ
2
J , g : i ≤ J − 1, Gciσ2

Jg
(g;ψ) = −

(
−15 + 10

(g − cJ)2

σ2
J

− (g − cJ)4

σ4
J

)
(g − cJ)wi

2σ7
J

fJ(g)

The resulting expressions of the derivatives of s and l typically do not simplify to convenient forms,

so we will refrain from filling in the derivatives of F and G to obtain them. However, it is straightforward

to check whether the expressions can be bounded by a constant or by a|g|k + b for some k as follows. By

Assumption PS we namely have that σ2
1 is the largest component variance. So if we write the derivatives

of s and l as one big fraction and we divide and multiply the resulting expression by f1(g) to the power

of F in the denominator, say k, then the resulting denominator is bounded away from zero. It is clear

that the only terms of the resulting numerator that can cause one of the derivatives to not be uniformly

bounded, are the terms containing f1(g) k times. We namely know that gpfj(g)/f1(g) will converge to

zero as |g| → 0 for any p ∈ R and any j > 1, because fj(g)/f1(g) will go to zero at an exponential

rate. Hence, all of the derivatives with respect to wi, ci and σ2
i for i > 1 can be disregarded, because

they can be trivially bounded in this way, as they do not have f1(g) in their numerator k times. For the

derivatives with respect to w1, c1 and/or σ2
1 that do contain f1(g) k times in the numerator, it turns out

that the terms containing f1(g) are often canceled out in the derivatives of s and l.

The following lemma states how each of the derivatives can be bounded uniformly over Θ. We will

not show the derivations of this, because it is straightforward, yet tedious, but it can be checked using

e.g. Mathematica.

Lemma TA.1. The derivatives of the log likelihood `(g,ψ) and the score function s(g;ψ) can be bounded

as follows:

� supψ |s(g;ψ)| = supψ |∂`(g,ψ)/∂g| ≤ d1 +d2|g| for some finite constants d1 and d2. See the proof

of Proposition 1 for a derivation.

� supg,ψ |∂s(g;ψ)/∂g| = supg,ψ |∂2`(g,ψ)/∂g2| ≤ d1 , see the proof of Proposition 1 for a derivation.

� supg,ψ |∂2s(g;ψ)/∂g2| = supg,ψ |∂3`(g,ψ)/∂g3| ≤ d1 ,

� supg,ψ |∂3s(g;ψ)/∂g3| ≤ d1 ,

� The elements of ∂`(g,ψ)/∂ψ can be uniformly bounded by d1, except for:

– supψ |∂`(g,ψ)/∂c1| ≤ d1 + d2|g| ,

– supψ |∂`(g,ψ)/∂σ2
1 | ≤ d1 + d2|g|2 ,

� The elements of ∂2`(g,ψ)/∂ψ∂ψ′ can be uniformly bounded by d1, except for:

– supψ |∂2`(g,ψ)/∂(σ2
1)2| ≤ d1 + d2|g|2 ,

– supψ |∂2`(g,ψ)/∂c1∂σ
2
1 | ≤ d1 + d2|g| ,

� The elements of ∂s(g;ψ)/∂ψ and thus of ∂2`(g,ψ)/∂ψ∂g can be uniformly bounded by d1, except

for:

– supψ |∂s(g;ψ)/∂σ2
1 | = supψ |∂2`(g,ψ)/∂σ2

1∂g| ≤ d1 + d2|g| ,

� The elements of ∂2s(g;ψ)/∂ψ∂g and thus of ∂3`(g,ψ)/∂ψ∂g2 can all be uniformly bounded by

d1.
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� The elements of ∂3s(g;ψ)/∂ψ∂g2 can all be uniformly bounded by d1.

� The elements of ∂2s(g;ψ)/∂ψ∂ψ′ and thus of ∂3`(g,ψ)/∂ψ∂ψ′∂g can be uniformly bounded by

d1, except for:

– supψ |∂2s(g;ψ)/∂(σ2
1)2| = supψ |∂3`(g,ψ)/∂(σ2

1)2∂g| ≤ d1 + d2|g|

� The elements of ∂3s(g;ψ)/∂ψ∂ψ′∂g can all be uniformly bounded by d1.

If evaluated at gt(θ), where gt(θ) has n bounded moments, the derivatives that can be uniformly

bounded by a constant have bounded moments of any order. The derivatives that can be bounded by

d1 + d2|g|p where p = 1 or 2, have bounded moments of order n and 1
2n respectively.

C.2. Derivatives of prediction error process

In this section we give the first and second derivative of gt(θ) with respect to θ. We use the same

notation as in Technical Appendix D.2 of Blasques et al. (2021). Considering the updating equation of

gt(θ) in (7), it follows that:

∂gt+1(θ)

∂θ
= A

(1)
t +

∂gt(θ)

∂θ
Bt

where

A
(1)
t = A(1)(θ; gt(θ)) =

∂ω

∂θ
− ∂α

∂θ
s(gt(θ);ψ)− α∂s(g;ψ)

∂θ

∣∣∣∣∣
g=gt(θ)

,

Bt = B(θ; gt(θ)) = 1− αs′(gt(θ);ψ) .

For the second derivative process we get:

∂2gt+1(θ)

∂θ∂θ′
= A

(2)
t +

∂2gt(θ)

∂θ∂θ′
Bt ,

where

A
(2)
t = A(2)(θ; gt(θ), ∂gt(θ)/∂θ) =

∂A
(1)
t

∂θ′
+
∂A

(1)
t

∂gt

∂gt(θ)

∂θ′
+
∂gt(θ)

∂θ

∂Bt

∂θ′
+
∂gt(θ)

∂θ

∂Bt
∂gt

∂gt(θ)

∂θ′

= −

∂α
∂θ

∂s(g;ψ)

∂θ′

∣∣∣∣∣
g=gt(θ)

+
∂s(g;ψ)

∂θ

∣∣∣∣∣
g=gt(θ)

∂α

∂θ′
+ α

∂2s(g;ψ)

∂θ∂θ′

∣∣∣∣∣
g=gt(θ)


−

∂α
∂θ

∂s(g;ψ)

∂g

∣∣∣∣∣
g=gt(θ)

+ α
∂2s(g;ψ)

∂θ∂g

∣∣∣∣∣
g=gt(θ)

 ∂gt(θ)

∂θ′

− ∂gt(θ)

∂θ

∂s(g;ψ)

∂g

∣∣∣∣∣
g=gt(θ)

∂α

∂θ′
+ α

∂2s(g;ψ)

∂g∂θ′

∣∣∣∣∣
g=gt(θ)

− α∂2s(g;ψ)

∂g2

∣∣∣∣∣
g=gt(θ)

∂gt(θ)

∂θ

∂gt(θ)

∂θ′
.

For the expressions of the derivatives of the score function s(g;ψ), we refer to Section C.1.

C.3. Derivatives of log likelihood

Here we give the first and second derivative of the log likelihood function with respect to θ = (ω, α,ψ′)′.

Using the notation

LT (θ) =
1

T

T∑
t=2

`(gt(θ);ψ) , where `(g,ψ) = logF (g;ψ) ,
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and where F is defined in (C.20). The first derivative is ∂LT (θ)/∂θ = 1
T

∑T
t=2 ∂`(gt(θ);ψ)/∂θ, where

∂`(gt(θ),ψ)

∂θ
=
∂`(g,ψ)

∂θ

∣∣∣
g=gt(θ)

+
∂`(g,ψ)

∂g

∣∣∣
g=gt(θ)

∂gt(θ)

∂θ
,

where we know that ∂`(g,ψ)/∂g = −s(g;ψ) and ∂`(g,ψ)/∂θ is equal to

∂`(g,ψ)

∂θ
=


0

0
∂`(g,ψ)
∂ψ

 .

See section C.1 for the derivatives of the `(g,ψ) function and see section C.2 for the derivative process

of gt(θ).

Now for the second derivative we have ∂2LT (θ)/∂θ∂θ′ = 1
T

∑T
t=2 ∂

2`(gt(θ);ψ)/∂θ∂θ′, where

∂2`(gt(θ);ψ)

∂θ∂θ′
=
∂2`(g,ψ)

∂θ∂θ′

∣∣∣
g=gt(θ)

+
∂2`(g,ψ)

∂θ∂g

∣∣∣
g=gt(θ)

∂gt(θ)

∂θ′
+
∂2`(g,ψ)

∂g∂g

∣∣∣
g=gt(θ)

∂gt(θ)

∂θ

∂gt(θ)

∂θ′

+
∂gt(θ)

∂θ

∂2`(g,ψ)

∂g∂θ′

∣∣∣∣∣
g=gt(θ)

+
∂`(g,ψ)

∂g

∣∣∣
g=gt(θ)

∂2gt(θ)

∂θ∂θ′
,

where ∂2`(g,ψ)/∂θ∂θ′ is equal to

∂2`(g,ψ)

∂θ∂θ′
=


0 0

0 0

. . . 0

. . . 0
...

...

0 0

∂2`(g,ψ)
∂ψ∂ψ′

 .

C.4. Fischer Information Matrix expression

Lemma TA.2. Under the assumptions of Theorem 2 the Fischer Information matrix is given by

I = E[`′t(θ0)`′t(θ0)>] =

(
A C

C> B

)

where

A =
1

1− b

(
c2 −d
−d 1+a

α0

)
,

B = D +
α0

1− b

[
cα0 E +

2(α0e− c)
c

FF> − α0(HF> + FH>)

]
,

C =
α0

1− b

(
c G> − d F>
e
c F

> + H>

)
,

where a, b, c, d and e are the scalar-valued:

a = 1− α0E[s′(εt;ψ0)] = 1− α0c ,

b = 1− 2α0E[s′(εt;ψ0)] + α2
0E[s′(εt;ψ0)2] = 1− 2α0c+ α2

0e ,

c = E[s′(εt;ψ0)] = E[s(εt;ψ0)2] ,

d = E[s′(εt,ψ0)s(εt,ψ0)] ,

e = E[s′(εt,ψ0)2] ,
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and where D, E, F , G and H are the matrix and vector-valued:

D = E
[
∂`(εt,ψ0)

∂ψ

∂`(εt,ψ0)

∂ψ′

]
,

E = E
[
s(εt;ψ0)

∂ψ

s(εt;ψ0)

∂ψ>

]
F = E

[
∂s(εt;ψ0)

∂ψ

]
= −E

[
s(εt;ψ0)

`(εt;ψ0)

∂ψ

]
,

G = E
[
s(εt;ψ0)

∂s(εt;ψ0)

∂ψ

]
,

H = E
[
s′(εt;ψ0)

∂s(εt;ψ0)

∂ψ

]
.

Proof. By the information equality, we know that I = E[`′t(θ0)`′t(θ0)>], so it follows from the expression

of the derivative of the log likelihood function in section C.3, that

I =

(
A C

C> B

)

with

A = E[s(εt,ψ0)2] E
[
∂gt(θ0)

∂θ1

∂gt(θ0)

∂θ>1

]
,

B = E
[
∂`(εt,ψ0)

∂ψ

∂`(εt,ψ0)

∂ψ>

]
+ E[s(εt,ψ0)2] E

[
∂gt(θ0)

∂ψ

∂gt(θ0)

∂ψ>

]
− E

[
s(εt,ψ0)

∂`(εt,ψ0)

∂ψ

]
E
[
∂gt(θ0)

∂ψ>

]
− E

[
∂gt(θ0)

∂ψ

]
E
[
s(εt,ψ0)

∂`(εt,ψ0)

∂ψ>

]
C = E

[
∂gt(θ0)

∂θ1

]
E
[
∂`(εt,ψ0)

∂ψ>
s(εt,ψ0)

]
+ E[s(εt,ψ0)2] E

[
∂gt(θ0)

∂θ1

∂gt(θ0)

∂ψ>

]
,

for θ1 = (α, ω)>, where we use that gt(θ0) is equal to εt almost surely. Notice that we use that the

derivative of `(g,ψ) with respect to g is equal to −s(g;ψ). Proving the equalities that are claimed to

hold in the definitions of the constants c and F , can be done by taking the derivative of E[s(ε;ψ0)]

(which is zero by construction) with respect to εt and ψ respectively and by interchanging the integral

and the derivative, which can be done by a standard argument. For the expectations of the derivatives

of ∂gt(θ0)
∂θ and its square, we can use the derived expressions of section C.2 and the fact that by the

assumptions of Theorem 2 and Proposition 2 we know that these expectations exist and are finite and

that the derivatives are SE. Using the notation a as defined in the Lemma, for the expectation of ∂gt(θ0)
∂θ

we get:

E
[
∂gt(θ0)

∂α

]
=

E[−s(εt;ψ0)]

1− a = 0

E
[
∂gt(θ0)

∂ω

]
=

1

1− a

E
[
∂gt(θ0)

∂ψ

]
= − α0

1− aE
[
∂s(εt;ψ0)

∂ψ

]
= −α0 F

1− a

Similarly, for the expectation of the square of ∂gt(θ0)
∂θ , using the notation defined in the Lemma, we get:

E

[(
∂gt(θ0)

∂α

)2
]

=
E[s(εt;ψ0)2]

1− b =
c

1− b

E

[(
∂gt(θ0)

∂ω

)2
]

=
1 + a

(1− a)(1− b)
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E
[
∂gt(θ0)

∂ψ

∂gt(θ0)

∂ψ>

]
=

α2
0

1− b

[
E
[
∂s(εt;ψ0)

∂ψ

∂s(εt;ψ0)

∂ψ>

]
+

1

1− a

[
2 E

[
∂s(εt;ψ0)

∂ψ

]
E
[
∂s(εt;ψ0)

∂ψ>

]

− α0 E
[
s′(εt;ψ0)

∂s(εt;ψ0)

∂ψ

]
E
[
∂s(εt;ψ0)

∂ψ>

]
− α0 E

[
∂s(εt;ψ0)

∂ψ>

]
E
[
s′(εt;ψ0)

∂s(εt;ψ0)

∂ψ

]]]

=
α2
0

1− b

[
E +

1

1− a
[
2FF> − α0HF

> − α0FH
>]]

E
[
∂gt(θ0)

∂α

∂gt(θ0)

∂ω

]
= − α0

(1− a)(1− b)E[s′(εt;ψ0)s(εt;ψ0)]

= − α0 d

(1− a)(1− b)

E
[
∂gt(θ0)

∂ψ

∂gt(θ0)

∂α

]
=

α0

1− b

[
E
[
∂s(εt;ψ0)

∂ψ
s(εt;ψ0)

]
− α0

1− aE
[
∂s(εt;ψ0)

∂ψ

]
E[s′(εt,ψ0)s(εt,ψ0)]

]
=

α0

1− b

[
G− α0 d

1− aF
]

E
[
∂gt(θ0)

∂ψ

∂gt(θ0)

∂ω

]
=

α0

(1− a)(1− b)

[
−2 E

[
∂s(εt;ψ0)

∂ψ

]
+ α0E

[
∂s(εt;ψ0)

∂ψ
s(εt;ψ0)

]]
=

α0

(1− a)(1− b) [−2 F + α0G]

Plugging these expectations into the expressions of A, B and C, and simlpifying the resulting expressions

leads to the final forms in the lemma.

D. Supplementary Monte Carlo simulation results

To supplement the asymptotic results on the MLE, we consider a Monte Carlo simulation study to

investigate the small sample results of the ML estimator for the model under consideration. Consider

the model with J = 2 and J = 3 components. The chosen parameter values are close to those that were

estimated in the application of Section 5, see Table 5, and just as in the application we set ω = 0. We

simulate 1000 times for sample sizes T = 500, T = 1000 and T = 5000.

The results of the simulation study are reported in Table 5 and Figure 5. Figure 5 displays the

estimated kernel density function for each of the estimated parameters. As the sample size increases, the

average estimates move towards the true values and the standard deviations become smaller. This is also

visible in the kernel density plots, as for most of the parameters the density is symmetric around the true

value and as the sample size increases, the estimates move closer around the true value. Furthermore,

the empirical standard deviation is generally larger than the average asymptotic standard deviation

calculated based on the asymptotic variance matrix of Theorem 2. As the sample size grows, the

two standard deviations move closer together. We also see in Table 5 that the parameters σ2
i and ci

corresponding to components with a small weight wi are estimated less accurately, taking into account

the true value of these parameters might be larger for the component with the smaller weight.

The results for J = 3 components are notably worse than for J = 2; the average estimates are further

away from their true values, especially for the smaller sample sizes. This is also visible in the plotted

kernel densities of Figure 5. What stands out in particular, is that for J = 3 it seems to be difficult to

identify the second component. Namely, for the smaller sample sizes, a part of the estimates of σ2
2 is not

around its true value 10, but around 3, which is the true value of σ2
3 . The second component weight w2

also has a peak around 0.8, while the true value is 0.15. Hence, for J = 3 or more components, it seems

like the ML estimator struggles to distinguish the different components, which has to do with the log

likelihood being ill-behaved. For the sample size T = 5000, this problem is less pronounced, as the weight
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Figure 5. Kernel density estimates of estimated parameters of model with J = 2 (left) and J = 3

(right) components for sample sizes T = 500 (red), T = 1000 (blue) and T = 5000 (green). The results

are based on 1000 Monte Carlo replications. Black dashed line represents true parameter value.

w2 is estimated rather accurately, but still the estimates of σ2
2 are not very precise and there is more

mass left of the true value. In practice, when the number of components increases, the ML estimator

may not be very stable, especially if the sample size is small.
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