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Abstract

In this paper, we introduce a new approach to measure the dissatisfaction for coalitions
of players in cooperative transferable utility games. This is done by considering affine
(and convex) combinations of the classical excess and the proportional excess. Based
on this so-called α-excess, we define new solution concepts for cooperative games, such
as the α-prenucleolus and the α-prekernel. The classical prenucleolus and prekernel are
a special case. We characterize the α-prekernel by strong stability and the α-balanced
surplus property. Also, we show that the payoff vector generated by the α-prenucleolus
belongs to the α-prekernel.

Keywords: α-excess; α-prenucleolus; α-prekernel; α-balanced surplus

1. Introduction

The excess of a coalition at a given payoff vector in transferable utility (TU) games
represents the gain or loss of the coalition if its members withdraw from the game in
order to form their own coalition. Usually, the excess of a coalition can be viewed as
the dissatisfaction of the coalition at the proposed payoff vector. The classical excess is
defined by the difference between the worth of a coalition and the payoff assigned to the
coalition members. The most popular solutions such as the core [2], the Shapley value [12],
the nucleolus [11], the prenucleolus [15] and the (pre)kernel [6, 5] can be characterized on
the basis of this classical excess. Especially, Peleg [9] provided an axiomatization of the
prekernel, which avoids any reference to interpersonal comparison of utilities. He verified
that there is a unique solution on the set of all TU-games that satisfies nonemptiness,
Pareto optimality, covariance under strategic equivalence, the equal treatment property, a
reduced game property, and the converse reduced game property. In view of the stability of a
preimputation, which means that no player has incentives to move from the preimputation,
Calvo and Gutiérrez [1] first defined the strong stability property. The least core of a
TU-game is characterized using this property. They also proposed the balanced surplus

Email addresses: xzhang@mail.nwpu.edu.cn (Xia Zhang), j.r.vanden.brink@vu.nl (René van den
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property similar to the balanced contributions property of Myerson [7]. By means of these
two properties, they gave a new characterization of the prekernel of a TU-game.

Thereafter, Lemarire [4] presented the relative excess to measure the dissatisfaction of
any coalition as the quotient of the usual excess and the coalitional value, and defined
the proportional nucleolus. In addition, Yanovskaya [16] defined proportional solutions
for the class of positive TU-games with all nonempty coalitional values strictly positive,
depending only on the proportional excess, which is defined as the quotient of the coalitional
value and the coalitional payoff. Actually, the relative excess is ordinally equivalent to
the proportional excess. Successively, the proportional prenucleolus and nucleolus were
characterized by Naumova [8].

Which definition of excess is most appropriate, depends on the application one has in
mind. To avoid ignoring some player’s benefit for the general case, our aim in this paper
is to define a more general excess (called α-excess) by considering affine combinations of
the classical excess and the proportional excess for the class of positive TU-games. Based
on this α-excess, we modify solutions like the core, ε-core, least core, (pre)nucleolus and
prekernel for positive TU-games. In this way, corresponding α-solutions for positive TU-
games are obtained. First, we show that the core and the α-core coincide for positive
TU-games. However, we will see that this is not the case for the modifications of the
prekernel, the least core, and the prenucleolus. Second, we prove that the α-prenucleolus
is always contained in the α-prekernel. Third, we characterize the α-prekernel by strong
stability and an α-balanced surplus property.

The rest of this paper is organized as follows. In Section 2, we recall some related pre-
liminaries about cooperative game theory. Section 3 introduces the α-excess of a coalition,
defines modifications of solutions using this modified excess, and characterizes the α-least
core and α-prekernel by strong stability and α-balanced surplus properties. In Section 4,
we define the α-prenucleolus and α-nucleolus. Also, we verify that the α-prenucleolus is
contained in the α-prekernel. Section 5 concludes with a brief summary.

2. Preliminaries

A cooperative game with transferable utility (TU-game) is a pair (N, v) consisting of
a finite set N = {1, 2, · · · , n} of n players, and a characteristic function v : 2N → R,
where 2N denotes the family of all subsets or coalitions of N , such that v(∅) = 0. For each
coalition S ⊆ N , v(S) represents the worth that coalition S achieves when its members
cooperate. The number of players in any coalition S ⊆ N is denoted by s and the set of
all TU-games with player set N is denoted by GN . A vector x ∈ Rn will be called a payoff
vector, and we denote x(S) =

∑
i∈S xi for any coalition S. Since the set of players is fixed,

we often shortly write v instead of (N, v). For a game v, we say that a payoff vector x ∈ Rn

is

• efficient if x(N) = v(N);

• individually rational if xi ≥ v({i}) for all i ∈ N ;

2



• coalitionally rational if x(S) ≥ v(S) for all S ⊆ N .

A solution is a function ϕ that assigns to any game v ∈ GN a set of n-dimensional
payoff vectors. A solution ϕ is s ingle-valued if ϕ(N, v) consists of only one payoff vector
for every game (N, v). In that case, we usually write it as a function ϕ : GN → Rn with
ϕ(N, v) ∈ Rn being the unique payoff vector assigned to the game. Efficient payoff vectors
are also called preimputations. The preimputation set of a game v ∈ GN is given by

I ∗(N, v) = {x ∈ Rn | x(N) = v(N)},

and consists of all efficient payoff vectors. The imputation set of a game v ∈ GN is given
by

I (N, v) = {x ∈ Rn | x(N) = v(N) and xi ≥ v({i}) ∀i ∈ N},
and consists of all efficient and individually rational payoff vectors. The core of a game
v ∈ GN is given by

C (N, v) = {x ∈ Rn | x(N) = v(N) and x(S) ≥ v(S) ∀S ⊆ N},

and consists of all efficient and coalitionally stable payoff vectors. For any payoff vector
x ∈ Rn and any nonempty coalition S, the excess of S at x is

e(S, x) = v(S)− x(S). (1)

The excess e(S, x) can be viewed as the gain (or loss, if it is negative) experienced by
coalition S if its members depart from an agreement that yields x as payoff vector, and
form their own coalition. The core of a game v ∈ GN can be written as

C (N, v) = {x ∈ I ∗(N, v) | e(S, x) ≤ 0 ∀S ⊆ N}.

The core is stable in the sense that each of its elements cannot be blocked by any coalition.
For any ε ∈ R, Shapley and Shubik [13, 14] introduced the strong ε-core of a game

v ∈ GN given by

Cε(N, v) = {x ∈ I ∗(N, v) | e(S, x)− ε ≤ 0 ∀S ∈ 2N \ {∅}},

and thus allows coalitions to get ‘a bit’ less than their worth. Using this, the least core of
a game v ∈ GN is defined as Cλ(N, v), where λ = min{ε ∈ R | Cε(N, v) 6= ∅}. We denote
the least core of game v by L C (N, v).

Another well-known solution is the prekernel [6], which tries to balance the payoffs of
players in a pairwise comparison. We denote by Γij(N) the set of all coalitions containing
player i but not player j, that is, Γij(N) = {S ⊆ N | i ∈ S, j /∈ S}. If there is no confusion
about the player set, we will shortly write Γij instead of Γij(N). To formally define the
prekernel of a game, we first need to calculate the maximal surplus of player i over another
player j at x ∈ Rn in the game v ∈ GN :

svij(x) = max
S∈Γij

e(S, x) (2)

3



is the maximal surplus (in terms of excess) that player i can obtain in a coalition without
player j. The prekernel PK (N, v) of a game v ∈ GN balances, within the preimputation
set, the surpluses by equalizing for every pair of players the maximal surplus of one player
over the other. Formally,

PK (N, v) = {x ∈ I ∗(N, v) | svij(x) = svji(x) for all i, j ∈ N, i 6= j}. (3)

Before defining the prenucleolus and nucleolus of a game, we need to introduce some
concepts. Consider the 2n-dimensional vector θ(x) whose components, correspond to x
and are arranged in nonincreasing order, that is, θk(x) ≥ θl(x), 1 ≤ k ≤ l ≤ 2n. The
lexicographic order ≤L on R2n is used to compare θ(x) and θ(y) by taking into account
their largest components or, if such should be the case, their second largest components
and so on. More precisely, for any x, y ∈ Rn,

(i) θ(x) <L θ(y) if there exists an integer 1 ≤ l ≤ 2n such that θk(x) = θl(y) for 1 ≤ k < l,
and θl(x) < θl(y).

(ii) θ(x) ≤L θ(y) if either θ(x) = θ(y) or θ(x) <L θ(y).

Finally, for any game v ∈ GN , the prenucleolus PN (N, v), respectively the nucle-
olus N (N, v), minimizes the excess e(S, x) of any coalition over the preimputation set,
respectively the imputation set. Formally,

PN (N, v) = {x ∈ I ∗(N, v)|θ(e(S, x)S⊆N) ≤L θ(e(S, y)S⊆N) ∀y ∈ I ∗(N, v)}.

and

N (N, v) = {x ∈ I (N, v)|θ(e(S, x)S⊆N) ≤L θ(e(S, y)S⊆N) ∀y ∈ I (N, v)},

where e(S, x)S⊆N denotes the 2n−1-dimensional vector which components are the excesses
of the coalitions at payoff vector x. In the remaining, we consider the class GN+ of positive
TU-games where all worths of nonempty coalitions are positive:

GN+ = {(N, v) | v(S) > 0 ∀S ⊆ N,S 6= ∅}.

Positive versions of solutions are defined in such a way that they only consider positive
payoff vectors. Specifically, the positive preimputation set of a game v ∈ GN is given by

I ∗
++(N, v) = {x ∈ Rn

++ | x(N) = v(N)}.

The positive imputation set of a game v ∈ GN is given by

I++(N, v) = {x ∈ I ∗
++(N, v) | xi ≥ v({i}) ∀i ∈ N}.

The positive core of a game v ∈ GN is given by

C++(N, v) = {x ∈ I ∗
++(N, v) | x(S) ≥ v(S) ∀S ⊆ N}.
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Yanovskaya [16] considers a proportional excess function, where the dissatisfaction of a
coalition is measured as the ratio between the worth of a coalition and the assigned payoff.
Formally, for v ∈ GN+ , x ∈ Rn

++ and S ⊆ N , the proportional excess of S at x is

e(S, x) =
v(S)

x(S)
.

Whereas the classical excess (see (1)) of a coalition that exactly gets its worth is equal to
0, for such a coalition the proportional excess is equal to 1.

3. The α-prekernel in TU-games

We begin with an example that illustrates the difference between the classical and
proportional excesses introduced before.

Example 1. Let N = {1, 2, 3} be three companies. Assume that these three companies
lost money in cooperation. Let v be defined by v({1, 2, 3}) = 1194, v({1}) = 10, v({2}) =
v({3}) = 1000, and v(S) = ρ otherwise, ρ being a sufficiently small positive number. For
the given payoff vector (2, 992, 200), it holds that e({1}, x) = e({2}, x) = 8, e({3}, x) = 800,
however, ē({1}, x) = ē({3}, x) = 5, ē({2}, x) = 125

124
.

Considering Example 1, now comes the question, which excess is better to measure the
dissatisfaction of the companies at the payoff vector (2, 992, 200)? The rich company can
“tolerate” a moderate or small loss more than the poor company. However, it does not
“tolerate” a very large loss either. From our perspective, it is not obvious that one should
consider either the classical excess or the proportional excess. In such cases, an affine (or
convex) combination of these two excesses might be more reasonable. Consequently, also
variations of solutions, such as the prekernel and the prenucleolus, based on an affine or
convex combination of these two excesses, might be reasonable solution concepts.

Definition 1. Given α ∈ R, a game v ∈ GN+ , a positive payoff vector x ∈ Rn
++ and a

coalition S ⊆ N , S 6= ∅, the α-excess of coalition S with respect to x is given by

eαv (S, x) = α
v(S)

x(S)
+ (1− α)(v(S)− x(S)). (4)

For S = ∅, we define eαv (∅, x) = 0 for all v ∈ GN+ and x ∈ Rn
++.

If there is no confusion about the game v ∈ GN+ , we will shortly write eα(S, x) instead
of eαv (S, x). Specifically, when α ∈ [0, 1], we speak about a convex combination of the
classical and proportional excess. Observe that we obtain the classical excess as a special
case of α-excess by taking α = 0, and the proportional excess as special case when taking
α = 1. Similar as the classical and proportional excess, the α-excess represents the gain
(or loss, if it is less than 1) to the coalition S if its members depart from an agreement that
yields x in order to form their own coalition, but allow a trade-off between the classical
and proportional excess.
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In view of the concept of α-excess, the definition of the core of a positive game v ∈ GN+

could be modified by considering those imputations which α-excess is at most equal to α,
i.e. one could consider

C α(N, v) = {x ∈ I ∗
++(N, v) | eα(S, x) ≤ α, ∀S ⊆ N}.

However, it turns out that for any α ∈ [0, 1] this coincides with the classical core as long
as we consider only positive payoff vectors.

Proposition 1. For every α ∈ [0, 1] and v ∈ GN+, we have C α(N, v) = C (N, v).

Proof. Notice that for v ∈ GN+ , C (N, v) = C++(N, v) since v({i}) > 0 ∀i ∈ N . For every
α ∈ [0, 1], v ∈ GN+ , and x ∈ Rn

++, we have

eα(S, x) ≤ α ⇔ α
v(S)

x(S)
+ (1− α)(v(S)− x(S)) ≤ α

⇔ αv(S) + (1− α)(v(S)− x(S))x(S)

x(S)
≤ α

⇔ αv(S) + (1− α)(v(S)− x(S))x(S) ≤ αx(S)

⇔ α(v(S)− x(S)) + (1− α)(v(S)− x(S))x(S) ≤ 0

⇔ (v(S)− x(S))(α + (1− α)x(S)) ≤ 0

⇔ v(S)− x(S) ≤ 0⇔ e(S, x) ≤ 0

where the last but one equivalence follows since α + (1− α)x(S) > 0 for all x ∈ Rn
++.

From this proposition, we can conclude that considering different α-excesses from our
class to measure the dissatisfaction of coalitions, has no effect on the definition of the core.
However, we will see that it does affect the definition of the prekernel, the least core, and
the prenucleolus.

First, modifying the ε-core of a game v ∈ GN+ , we obtain the αε-core given by

C α
ε (N, v) = {x ∈ I ∗

++(N, v) | eα(S, x)− ε ≤ α, ∀S ⊆ N,S 6= ∅},

and the α-least core of a game v ∈ GN+ being C α
λ (N, v), where λ = λv,α = min{ε ∈ R |

C α
ε (N, v) 6= ∅}. We denote the α-least core of game v by L C α(N, v). If there does not

exist a minimal ε ∈ R such that C α
ε (N, v) 6= ∅, then L C α(N, v) = ∅.

Example 2. Consider the 3-person game v defined as v({1, 2, 3}) = 1, v({1, 2}) =
v({1, 3}) = 1

2
, and v(S) = ρ otherwise, ρ being a sufficiently small positive number. The

symbol conv indicates the convex hull excluding the boundary points with a component of
0. We find out that

C++(N, v) =

{
x ∈ R3

++ | x1 + x2 + x3 = 1, x2 ≤
1

2
, x3 ≤

1

2

}
= conv

{
(1, 0, 0), (

1

2
,
1

2
, 0), (

1

2
, 0,

1

2
), (0,

1

2
,
1

2
)

}
,
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Fig. 1. The positive core C+(N, v) of Example 2

see the area ABCD in Fig.1. We show that the αε-cores are different for the classical and
proportional excess. For α = 0, we have

C 0
ε (N, v) =

{
x ∈ R3

++ | x1 + x2 + x3 = 1, x1 ≥ −ε,−ε ≤ x2 ≤
1

2
+ ε ,

−ε ≤ x3 ≤
1

2
+ ε

}
.

Then, for ε ≥ 0, we have

C 0
ε (N, v) = conv

{
(1, 0, 0), (

1

2
− ε, 1

2
+ ε, 0), (

1

2
− ε, 0, 1

2
+ ε), (0,

1

2
− ε, 1

2
+ ε) ,

(0,
1

2
+ ε,

1

2
− ε)

}
,

see the area ABCDE in Fig.2. If ε < 0,

C 0
ε (N, v) = conv

{
(1 + 2ε,−ε,−ε), (1

2
,
1

2
+ ε,−ε), (1

2
,−ε, 1

2
+ ε) ,

(−2ε,
1

2
+ ε,

1

2
+ ε)

}
,

see the area ABCD in Fig.3. Moreover, C 0
ε (N, v) 6= ∅ iff ε ≥ −1

4
. Thus, L C 0(N, v) =

{(1
2
, 1

4
, 1

4
)}.

Next, consider the case that α = 1.

C 1
ε (N, v) =

{
x ∈ R3

++ | x1 + x2 + x3 = 1, x1 ≥
−ε
ε+ 1

, x2 ≤
2ε+ 1

2(ε+ 1)
, x3 ≤

2ε+ 1

2(ε+ 1)

}
.
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Fig. 2. The 0ε-core, C 0
ε (N, v), when ε ≥ 0

If ε ≥ 0,

C 1
ε (N, v) = conv

{
(1, 0, 0), (

1

2(ε+ 1)
,

2ε+ 1

2(ε+ 1)
, 0), (

1

2(ε+ 1)
, 0,

2ε+ 1

2(ε+ 1)
) ,

(0,
1

2(ε+ 1)
,

2ε+ 1

2(ε+ 1)
), (0,

2ε+ 1

2(ε+ 1)
,

1

2(ε+ 1)
)

}
.

Now, the shape of C 1
ε (N, v) is the same as that of C 0

ε (N, v) when ε ≥ 0 in Fig.2, but it is
determined by different extreme points. If −1 < ε < 0,

C 1
ε (N, v) = conv

{
(1, 0, 0), (

1

2(ε+ 1)
,

2ε+ 1

2(ε+ 1)
, 0), (

1

2(ε+ 1)
, 0,

2ε+ 1

2(ε+ 1)
) ,

(
−2ε

2(ε+ 1)
,

2ε+ 1

2(ε+ 1)
,

2ε+ 1

2(ε+ 1)
)

}
,

see the area ABCD in Fig.4. Hence, C 1
ε (N, v) 6= C 0

ε (N, v) as long as ε 6= 0 or ε 6= −1
2
.

Also, C 1
ε (N, v) 6= ∅ iff ε > −1

2
. Thus, L C 1(N, v) = ∅ 6= L C 0(N, v).

Example 2 indicates that the αε-core and the α-least core are different for different α.
To define the α-prekernel, we first adapt the definition of maximal surplus.

Recall that Γij = {S ⊆ N | i ∈ S, j /∈ S}.

Definition 2. Given α ∈ [0, 1], v ∈ GN+ , and x ∈ Rn
++, the maximal α-surplus of player

i over another player j at x in the game v is given by

sv,αij (x) = max
S∈Γij

eα(S, x). (5)
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Fig. 3. The 1ε-core, C 0
ε (N, v), when ε < 0

Notice that a maximal surplus not less than (respectively not greater than) 1 of i over
j at a payoff vector x can be interpreted as the maximal (respectively minimal) amount
that player i can gain (respectively lose) without cooperation with j. Consequently, the
maximum α-surplus can be regarded as another measure of the power of player i to threaten
player j at the preimputation x.

Definition 3. Given α ∈ [0, 1], and x ∈ I ∗
++(N, v), the α-prekernel PK α(N, v) of the

game v ∈ GN+ is the set of preimputations x given by

PK α(N, v) = {x ∈ I ∗
++(N, v) | sv,αij (x) = sv,αji (x) for all i, j ∈ N, i 6= j}. (6)

Obviously, for α = 0, the closure of the α-prekernel coincides with the traditional
prekernel. Similar as the prekernel, for any α ∈ [0, 1], the corresponding α-prekernel
balances the surpluses pairwise, but using the modified α-excess where dissatisfaction is
measured by a mix of the difference and the ratio of potential and realized payoffs v(S),
respectively x(S).

We illustrate that the α-prekernel is different for different α with the following example.

Example 3. Let N = {1, 2, 3, 4} and let v be defined by v({1, 2, 3, 4}) = v({1, 2}) =
v({3, 4}) = 1, v({2}) = v(4) = 2ρ and v(S) = ρ otherwise, ρ being a sufficiently small
positive number. For α = 0, we find that e({12}, x) = 1−x1−x2, e({34}, x) = 1−x3−x4,
e({2}, x) = 2ρ− x2, e({4}, x) = 2ρ− x4, e(S, x) = v(S)− x(S) otherwise. Thus,

sv,013 (x) = sv,014 (x) = max{ρ− x1, 1− x1 − x2},

sv,023 (x) = sv,024 (x) = max{2ρ− x2, 1− x1 − x2},

9



Fig. 4. The 1ε-core, C 1
ε (N, v), when −1 < ε < 0

sv,031 (x) = sv,032 (x) = max{ρ− x3, 1− x3 − x4},

sv,041 (x) = sv,042 (x) = max{2ρ− x4, 1− x3 − x4},

sv,034 (x) = ρ− x3, s
v,0
43 (x) = 2ρ− x4,

sv,012 (x) = ρ− x1, s
v,0
21 (x) = 2ρ− x2.

Following from the definition of the 0-prekernel, i.e., sv,0ij (x) = sv,0ji (x) for all i, j ∈ N, i 6= j,
and ρ being a sufficiently small positive number, we know that the 0-prekernel is the set

{x ∈ I++(N, v) | x1 = x3 =
1

4
− 1

2
ρ and x2 = x4 =

1

4
+

1

2
ρ}.

For α = 1, it is found that ē({12}, x) = 1
x1+x2

, ē({34}, x) = 1
x3+x4

, ē({2}, x) = 2ρ
x2

,

ē({4}, x) = 2ρ
x4

, ē(S, x) = ρ
x(S)

otherwise. Thus,

sv,113 (x) = sv,114 (x) = max{ ρ
x1

,
1

x1 + x2

},

sv,123 (x) = sv,124 (x) = max{2ρ

x2

,
1

x1 + x2

},

sv,131 (x) = sv,132 (x) = max{ ρ
x3

,
1

x3 + x4

},

sv,141 (x) = sv,142 (x) = max{2ρ

x4

,
1

x3 + x4

},

sv,134 (x) =
ρ

x3

, sv,143 (x) =
2ρ

x4

,
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sv,112 (x) =
ρ

x1

, sv,121 (x) =
2ρ

x2

.

By the definition of the 1-prekernel, sv,1ij (x) = sv,1ji (x) for all i, j ∈ N, i 6= j, and ρ being a
sufficiently small positive number, it holds that x4 = 2x3, x2 = 2x1 and x1 = x3. Therefore,
the 1-prekernel is (1

6
, 1

3
, 1

6
, 1

3
), which is different from the 0-prekernel as long as ρ 6= 1

6
.

Now, given v ∈ GN+ and α ∈ R, we define the α-surplus function of player i as the
map sv,αi : I ∗

++(N, v)→ Rn with

sv,αi (x) = max{eα(S, x) | S ⊂ N, i ∈ S} for all i ∈ N, x ∈ I ∗
++(N, v),

i.e., sv,αi (x) is the maximum α-surplus that player i can obtain by cooperation given payoff
vector x. Recall that sv,αij (x) gives the potential gain of player i with respect to player
j (see Definition 2). Thus, sv,αij (x) is a relational surplus comparing the positions of two
players in a game, whereas the α-surplus of player i, sv,αi (x), is an individual measure for
player i’s position in the game. We call a preimputation α-strongly stable if the individual
α-surplusses are equal for all players.

Definition 4. Given α ∈ [0, 1], the preimputation x ∈ I ∗
++(N, v) is said to be α-strongly

stable for game v ∈ GN+ if sv,αi (x) = sv,αj (x) for all i, j ∈ N .

For any α ∈ [0, 1], we now provide another characterization of the α-least core L C α(N, v)
for a positive game, by showing that it consists of all α-strongly stable payoff vectors. For
notational convenience, we often write λ instead of λv,α if there is no confusion about v
and α.

Theorem 2. For any α ∈ [0, 1] and v ∈ GN+, x ∈ L C α(N, v) if and only if x ∈ I ∗
++(N, v)

and λv,α = sv,αi (x)− α, ∀i ∈ N .

Proof. Take α ∈ [0, 1] and v ∈ GN+ .
‘Only if’: Assume that x ∈ L C α(N, v). Then, by definition x(N) = v(N) and

eα(S, x) ≤ α + λ, for any S ∈ 2N \ {∅, N}. In addition, owing to the definition of
λ = λv,α, there is a coalition T ∈ 2N \ {∅, N} such that eα(T, x) = α + λ. Denote
T = {T ∈ 2N \ {∅, N} | eα(T, x) = α + λ}. We assert that for any i ∈ N , there exists
T ∈ T , such that i ∈ T . On the contrary, assume that ∃i ∈ N such that eα(S, x) < α+ λ,
for every S ⊂ N, S 6= N with i ∈ S. Let β1 = max{eα(S, x) | i ∈ S, S 6= N} < α + λ, and
let y ∈ Rn

++ be defined by

yk =

{
xk − β2, if k = i,

xk + β2
n−1

if k 6= i,
(7)

where 0 < β2 < min
S∈2N\{∅,N}

{λ−β1
1−α ,

(n−1)xx(S)
(n−s)(v+x)

}, x = min
S∈2N\{∅,N}

x(S), and v = max
S∈2N\{∅,N}

v(S).

If S = {i}, then 0 < β2 < min
S∈2N\{∅,N}

{λ−β1
1−α ,

xxi
(v+x)
}. We obtain that xi > β2 since

xi >
x
v+x

xi and β2 <
x
v+x

xi. Thus, y ∈ I ∗
++(N, v). We show that eα(S, y) < α + λ for any

S ∈ 2N \ {∅, N} establishing a contradiction to the definition of λ.
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In the case that i 6∈ S 6= ∅, it holds that

eα(S, y) =α
v(S)

x(S) + sβ2
n−1

+ (1− α)(v(S)− x(S)− sβ2

n− 1
)

<α
v(S)

x(S)
+ (1− α)(v(S)− x(S))− (1− α)

sβ2

n− 1

=eα(S, x)− (1− α)
sβ2

n− 1

<eα(S, x) ≤ α + λ.

In the case that i ∈ S 6= N , we obtain that

eα(S, y) = α
v(S)

x(S)− β2 + (s−1)β2
n−1

+ (1− α)

(
v(S)− x(S) + β2 −

(s− 1)β2

n− 1

)

= α

(
1 +

n−s
n−1

β2

x(S)− n−s
n−1

β2

)
v(S)

x(S)

+(1− α)

(
v(S)− x(S) + β2 −

(s− 1)β2

n− 1

)
= α

v(S)

x(S)
+ α

(
n−s
n−1

β2

x(S)− n−s
n−1

β2

)
v(S)

x(S)

+(1− α)(v(S)− x(S)) + (1− α)

(
β2 −

(s− 1)β2

n− 1

)
< eα(S, x) + α

n−s
n−1

β2

x(S)− n−s
n−1

β2

v

x
+ (1− α)β2

≤ β1 + α + (1− α)β2 < α + λ,

where the second inequality follows from 0 < α
n−s
n−1

β2

x(S)−n−s
n−1

β2

v
x
< 1 (which follows since, by

definition of β2,
(
x(S)− n−s

n−1
β2

)
x > (x(S) − xx(S)

v+x
)x = xvx(S)

v+x
> n−s

n−1
β2v), and the last

inequality follows from (1− α)β2 < λ− β1.
Hence, eα(S, y) < α+ λ for any S ∈ 2N \ {∅, N}, which contradicts with the definition

of λ. Therefore, sv,αi (x) = α + λ for any i ∈ N .
‘If’: Assume that x ∈ I ∗

++(N, v) and sv,αi (x) = α + λ for any i ∈ N . Then, for any
S ∈ 2N \ {∅, N}, there exists i ∈ S such that eα(S, x) − λ ≤ sv,αi (x) − λ = α. Therefore,
eα(S, x) ≤ λ+ α for any S ∈ 2N \ {∅, N}. That is to say, x ∈ L C α(N, v).

Above, we considered two ways to evaluate the position of a player i in a game (N, v).
First, with respect to every other player j 6= i, the surplus sv,αij (x) compares the relative
position of i with respect to every other player j. In the prekernel, these surpluses are α-
balanced for every pair of players. Second, the α-surplus sv,αi (x) is a measure of the overall
position of player i in the game. Instead of comparing payoff vectors by only the individual
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or pairwise surpluses separately, we combine these surpluses, and compare payoff vectors
by balancing the differences between the pairwise and individual surpluses.

Definition 5. For a given α ∈ [0, 1], x ∈ I ∗
++(N, v) satisfies the α-balanced surplus

property if
sv,αi (x)− sv,αij (x) = sv,αj (x)− sv,αji (x), for any i, j ∈ N.

We can characterize the α-prekernel using α-strong stability and this α-balanced surplus
property.

Theorem 3. Given α ∈ [0, 1], x ∈PK α(N, v) if and only if x ∈ I ∗
++(N, v) is α-strongly

stable and satisfies the α-balanced surplus property.

Proof. ‘Only If:’ Let x ∈PK α(N, v) and take any i, j ∈ N, i 6= j. By the definition of
the α-prekernel, it holds that sv,αij (x) = sv,αji (x). Hence, we get that

sv,αi (x) = max{sv,αij (x),max{eα(T, x) | {i, j} ⊆ T 6= N}}
= max{sv,αji (x),max{eα(T, x) | {j, i} ⊆ T 6= N}}
= sv,αj (x),

which implies that x is α-strongly stable. Since, additionally x ∈ PK α(N, v), and thus
sv,αij (x) = sv,αji (x), x satisfies the α-balanced surplus property.

‘If:’ Let x be α-strongly stable and satisfy the α-balanced surplus property. By x being
α-strongly stable, sv,αi (x) = sv,αj (x) for any i, j ∈ N , i 6= j. Then, since x verifies the
α-balanced surplus property, it holds that sv,αij (x) = sv,αji (x) for any i 6= j, and therefore
x ∈PK α(N, v).

4. The α-prenucleolus and the α-nucleolus

In this section, based on the lexicographical order ≤L, considering the 2n-dimensional
vector θ(eα(S, x)S⊆N), whose components are arranged in nonincreasing order, we propose
the α-prenucleolus and α-nucleolus of a cooperative game as follows.

Definition 6. Let α ∈ [0, 1]. For any game v ∈ GN+ , the α-prenucleolus PN α(N, v)
and the α-nucleolus N α(N, v) which minimize the excess eα(S, x) of any coalition over the
preimputation set, respectively, the imputation set are defined as follows

PN α(N, v) = {x ∈ I ∗
++(N, v)|θ(eα(S, x)S⊆N) ≤L θ(eα(S, y)S⊆N) ∀y ∈ I ∗

++(N, v)}.

and

N α(N, v) = {x ∈ I++(N, v)|θ(eα(S, x)S⊆N) ≤L θ(eα(S, y)S⊆N) ∀y ∈ I++(N, v)}.

Remark 1. Owing to the results obtained by Justman [3], we have the following state-
ments. For any given α ∈ [0, 1],
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(i) If I++(N, v) is nonempty and compact and if all eα(S, x), S ⊆ N , are continuous
with respect to the second variable, then N α(N, v) 6= ∅.

(ii) If I++(N, v) is convex and all eα(S, x), S ⊆ N , are convex with respect to the second
variable, then N α(N, v) is convex and eα(S, x) = eα(S, y) for all S ⊆ N and all
x, y ∈ N α(N, v).

Inspired by the method provided by Peleg and Sudhölter [10], define

I ′
++(N, v) = {x ∈ I ∗

++(N, v)|max
S⊆N

eα(S, x) ≤ max
S⊆N

eα(S, y) ∀y ∈ I ∗
++(N, v)}.

Following from Remark 1, we obtain that the α-nucleolus is a singleton. Also, for any x ∈
I ∗

++(N, v), in the definition of PN α(N, v), we may replace I ∗
++(N, v) by the compact,

nonempty, and convex set I ′
++(N, v). Thus, the α-prenucleolus is also a singleton.

Theorem 4. Given α ∈ [0, 1], for every game v ∈ GN+: (i) the α-nucleolus is a singleton,
and (ii) the α-prenucleolus is a singleton.

From now on, we often write the α-prenucleolus of game v just as its unique element,
and denote it by να(N, v) ∈ Rn

++. Next, we show that the α-prenucleolus is an element of
the α-prekernel.

Theorem 5. For every game v ∈ GN+ and for all α ∈ [0, 1], να(N, v) ∈PK α(N, v).

Proof. Let α ∈ [0, 1] and xα = να(N, v). We show that xα ∈ PK α(N, v). On the
contrary, assume that there exists ᾱ ∈ [0, 1] such that xᾱ /∈ PK ᾱ(N, v). For easiness of
notation, let x = xᾱ. Since x ∈ I ∗

++(N, v), there exist two distinct players i, j ∈ N with
sv,ᾱij (x) > sv,ᾱji (x).

First, we show that there exists δ with 0 < δ < x̂ = min
S∈Γji(N)

x(S) such that

sv,ᾱji (x) = sv,ᾱij (x)− δ − ᾱδv̂

(x̂− δ)x̂
, (8)

where v̂ = max
S∈Γji(N)

v(S). This is equivalent to showing that the second degree equation on

δ

x̂δ2 − [(sv,ᾱij (x)− sv,ᾱji (x))x̂+ x̂2 + ᾱv̂]δ + (sv,ᾱij (x)− sv,ᾱji (x))x̂2 = 0 (9)

has at least one real solution. This is true when the discriminant of the equation is non-
negative, i.e.,

[(sv,ᾱij (x)− sv,ᾱji (x))x̂+ x̂2 + ᾱv̂]2 − 4x̂3(sv,ᾱij (x)− sv,ᾱji (x)) ≥ 0,

or, equivalently after some algebra1,

v̂2ᾱ2 + 2[(sv,ᾱij (x)− sv,ᾱji (x)) + x̂]x̂v̂ᾱ + [(sv,ᾱij (x)− sv,ᾱji (x))− x̂]2x̂2 ≥ 0. (10)

1This follows since [(sv,ᾱij (x)− sv,ᾱji (x))x̂+ x̂2 + ᾱv̂]2− 4x̂3(sv,ᾱij (x)− sv,ᾱji (x)) = (sv,ᾱij (x)− sv,ᾱji (x))2x̂2 +

x̂4 + ᾱ2v̂2 + 2x̂3(sv,ᾱij (x)− sv,ᾱji (x)) + 2(sv,ᾱij (x)− sv,ᾱji (x))x̂v̂ᾱ+ 2x̂2v̂ᾱ− 4x̂3(sv,ᾱij (x)− sv,ᾱji (x)) = (sv,ᾱij (x)−
sv,ᾱji (x))2x̂2−2x̂3(sv,ᾱij (x)−sv,ᾱji (x))+ x̂4 + ᾱ2v̂2 +2(sv,ᾱij (x)−sv,ᾱji (x))x̂v̂ᾱ+2x̂2v̂ᾱ = [(sv,ᾱij (x)−sv,ᾱji (x))x̂−
x̂2]2 + ᾱ2v̂2 + 2[(sv,ᾱij (x)− sv,ᾱji (x))]x̂v̂ᾱ+ 2x̂2v̂ᾱ.
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The formula (10) holds since every term in the inequality is non-negative. Therefore, the
quadratic equation (9) has at least one solution, and therefore there exists δ ∈ (0, x̂) for
which (8) holds.

Second, we define y ∈ Rn
++ as

yk =


xk + δ, if k = i,
xk − δ, if k = j,
xk, otherwise,

(11)

and show that y ∈ I ∗
++(N, v) with θ((eα(S, y))S⊆N) <L θ((e

α(S, x))S⊆N).
On the one hand, x ∈ I ∗

++(N, v) implies∑
k∈N

yk =
∑
k∈N

xk = v(N),

while x ∈ I ∗
++(N, v) and 0 < δ < x̂ = min

S∈Γji(N)
x(S) ≤ xj imply yk > 0 for all k ∈ N . Thus,

y ∈ I ∗
++(N, v).

On the other hand, to show θ((eα(S, y))S⊆N) <L θ((eα(S, x))S⊆N), we consider the
following three cases. Denote

S = {S ∈ 2N \ Γij(N) | eα(S, x) ≥ sv,αij (x)} and s̃ = |S|.

(i) First, if S ∈ 2N \ (Γij(N) ∪ Γji(N)) then eα(S, y) = eα(S, x) in view of the form of y
as in (11).

(ii) Second, if S ∈ Γij(N),

eα(S, y) = α
v(S)

x(S) + δ
+ (1− α)(v(S)− x(S)− δ) < eα(S, x).

(iii) Third, if S ∈ Γji(N), then

eα(S, y) =α
v(S)

x(S)− δ
+ (1− α)(v(S)− x(S) + δ)

=α
x(S)

x(S)− δ
v(S)

x(S)
+ (1− α)(v(S)− x(S)) + (1− α)δ

=α

(
1 +

δ

x(S)− δ

)
v(S)

x(S)
+ (1− α)(v(S)− x(S)) + (1− α)δ

=eα(S, x) + α
δ

x(S)− δ
v(S)

x(S)
+ (1− α)δ

≤sv,αji (x) +

(
α

x(S)− δ
v(S)

x(S)
+ 1

)
δ

≤sv,αij (x)− α(vmax − v(S))

(xmin − δ)xmin
δ

<eα(S, x)
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where the first inequality follows by definition of sv,αji (x), and the second from (8)
and the definition of xmin.

Let S1, S2 ∈ 2N be such that eα(S1, x) ≥ eα(S, x) for any S ∈ 2N and eα(S2, y) ≥ eα(S, y)
for any S ∈ 2N . From the above three cases, it holds that eα(S, y) ≤ eα(S, x) for any
S ∈ 2N . Thus, eα(S2, y) ≤ eα(S2, x) ≤ eα(S1, x). Denoting x = (eα(S, x)S⊆N) and
y = (eα(S, y)S⊆N), therefore, it holds that θt(y) ≤ θt(x) for all t ≤ s̃, and θs̃+1(y) <
sv,αij (x) = θs̃+1(x) if θt(y) = θt(x) for all t ≤ s̃, for every α ∈ [0, 1]. That is to say,
θ(y) <L θ(x), and thus x 6= να(N, v) and the desired contradiction has been obtained.

From Theorems 4 and 5, we obtain the following corollary.

Corollary 6. For every game v ∈ GN+ and every α ∈ [0, 1], PK α(N, v) 6= ∅.

5. Conclusions

In this paper, we propose a family of excesses (α-excess) for positive TU-games that
measure the dissatisfaction of any coalition and generalizes the classical and proportional
excesses. Then, the corresponding solutions, such as the α-least core, the α-(pre)nucleolus,
and the α-(prekernel) are defined based on the α-excess. We give a characterization of the
α-prekernel by strong stability and the α-balanced surplus property. Meanwhile, the α-least
core of a positive TU-game can be characterized in terms of strong stability. Finally, we
introduce the α-prenucleolus and α-nucleolus, and showed that, for every game, these are
singletons and the unique α-prenucleolus element belongs to the corresponding α-prekernel.

For future research, we intend to modify the famous Davis and Maschler reduced game
(Davis and Maschler (1965)), taking account of the modified excess. There is a large
literature on reduced game consistency. Reduced game consistency requires that, after
some players leave the game with the payoffs assigned to them by a solution, applying the
same solution on the reduced game on the remaining players gives these remaining players
the same payoff as in the original game. Different solutions can be characterized by different
reduced game properties, where the difference is in the way the reduced game is defined.
For the α-prekernel, we might consider the following reduced game. Let α ∈ [0, 1]. Given
a game v ∈ GN+ , a nonempty coalition S, and a positive payoff vector x, the α-reduced
game on S at x, denoted (S, vαx,S), is the game defined by

vαx,S(T ) =


0, if T = ∅,
v(N)− x(N \ T ), if T = S,

α
α+(1−α)x(T ) max

Q⊆N\S
{v(T∪Q)x(T )

x(T∪Q) }+ (1−α)x(T )
α+(1−α)x(T ) max

Q⊆N\S
{(v(T ∪Q)− x(Q))}, if T ( S.

It can be shown that the α-prekernel satisfies the corresponding reduced game property.
However, a characterization of the α-prekernel using the α-reduced game property is still
an open problem.
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