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Abstract

We introduce a novel model for the dynamics of fat-tailed (realized) covariance-

matrix-valued time series using the new F -Riesz distribution. The model allows for

different tail behavior across the coordinates of the covariance matrix via two vector-

valued degrees of freedom parameters, thus generalizing the familiar Wishart and

matrix-F distributions by introducing heterogeneous tail behavior. We show that the

filter implied by the new model is invertible and that a two-step targeted maximum

likelihood estimator is consistent. Applying the new F -Riesz model to U.S. stocks,

both tail-heterogeneity and tail-fatness are empirically relevant and produce large in-

sample and out-of-sample likelihood increases and lower ex-post portfolio standard

deviations compared to static models or models with homogeneous tail behavior.
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1 Introduction

Covariance matrix modeling and estimation play an important role in many areas of

economics and statistics, such as financial risk assessment and decision making under

uncertainty (Markowitz, 1991; Engle et al., 2019). Today’s data-rich environment has led

to a shift in ambition from estimating static covariance matrices to estimating covariance

matrices on a frequent basis over many short spans of data, also known as realized

covariance matrix estimation. Examples include Andersen et al. (2003); Barndorff-Nielsen

and Shephard (2004); Chiriac and Voev (2011); Lunde et al. (2016); Callot et al. (2017);

Bollerslev et al. (2018, 2020) and the references cited therein.

An important challenge is to design parsimonious yet flexible time-series models for such

series of realized covariances that can be used for forecasting and decision purposes. A

complication is that the time-series observations are matrix-valued (rather than vector-

valued), have positive (semi)-definite outcomes only, and may be subject to fat-tailed

behavior and outliers. Most of the models currently available cannot cope with all of these

challenges simultaneously or are highly restrictive. Recent work on tensor-valued time-series

such as Wang et al. (2019) and Chen et al. (2022) can deal with matrix valued time series, but

not with restrictions on positive definiteness of the observations or with the fat-tailed nature

of these data in many applications. Other approaches that can deal with positive definite

random matrices are typically highly restrictive. For instance, the often used Wishart or

inverse Wishart distributions for matrix-valued time series only feature two parameters: a

matrix-valued mean, and a single scalar-valud degrees of freedom parameter to describe

the tail behavior across all coordinates (Golosnoy et al., 2012; Jin and Maheu, 2013, 2016).

Similarly restrictive, the matrix-F distribution only features two tail parameters for any k×k

realized covariance matrix (Konno, 1991; Opschoor et al., 2018). While such distributions

might be suitable for low-dimensional cases, in moderate to high dimensions the implied

constraints on tail behavior in the cross-section are typically too restrictive empirically.

The typical approach from the literature to flexibilize multivariate distributions by

splitting them into the marginal distributions and a copula (see for instance Patton, 2009; Oh

and Patton, 2017, 2018; Opschoor et al., 2021) cannot easily be applied here. Most copula

methods relate to vector-valued observations and cannot deal with the positive definiteness
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of covariance-matrix-valued observations. Second, many copula structures available in the

literature are also tightly parameterized with very little heterogeneity in the tail-dependence

structure, such as the Gaussian, (skewed) Student’s t, and Archimedean copulas.

In this paper, we therefore introduce the dynamic F -Riesz distribution to model

sequences of realized covariance matrices. We do so by building on (and correcting) the

beta type II Riesz distribution of Dı́az-Garćıa (2016). We then introduce dynamics for the

key scale parameter of this distribution and derive the invertibility of the filter and the

consistency properties of the maximum likelihood estimator for the static parameters of

this model. A key property of the F -Riesz distribution is that it allows for different tail-

heterogeneity in each of its coordinates. It does so by replacing the two scalar degrees of

freedom parameters of the matrix-F distribution of Konno (1991) by two vectors of degrees

of freedom parameters. If each of these vectors is scalar (i.e., has the same elements), then

the F -Riesz model reduces to the matrix-F model (see Konno, 1991; Opschoor et al., 2018).

In our empirical study, we show that the F -Riesz outperforms other well-known matrix

distributions both in terms of density forecasts and in terms of global minimum variance

portfolios. This illustrates that both tail-fatness and tail-heterogeneity are empirically

relevant.

We obtain the F -Riesz distribution by mixing a Riesz distribution (Hassairi and Lajmi,

2001; Dı́az-Garćıa, 2013) and Inverse Riesz distribution (Tounsi and Zine, 2012; Louati

and Masmoudi, 2015), both of which are generalizations of the Wishart and Inverse

Wishart distributions.The Riesz distribution has mainly been used in the physics literature

(Andersson and Klein, 2010). In economic statistics, Gribisch and Hartkopf (2022) also

recently apply the Riesz distribution to financial data. They introduce a state-space version

of the dynamic Riesz distribution and estimate the model using Bayesian techniques. We

differ from their approach in two important ways. First, we use the more flexible and fat-

tailed F -Riesz-distribution rather than the Riesz. This allows for additional distributional

flexibility, which appears empirically relevant in our application. Second, we use an

observation-driven rather than a parameter-driven approach to model the dynamics of

realized covariance matrices. As a result, we can obtain the likelihood in closed form and

can stick to standard maximum likelihood rather than simulation-based techniques for the

estimation of model parameters.
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We apply the F -Riesz distribution to a sample of daily realized covariance matrices of

dimensions 5 and 15 using U.S. stock data over the period 2001–2019. The results indicate

that both the tail heterogeneity and fat-tailedness of the F -Riesz distribution are empirically

relevant compared to tail heterogeneity only (Riesz) or fat-tailedness only (matrix-F ). We

strongly reject both the Riesz and the matrix-F distributions for the dynamics of realized

covariance matrices, despite each of these already being substantially better than the

Wishart and inverse Wishart distributions. Moreover, the predicted covariance matrices

from the F -Riesz distribution also result in statistically lower ex-post portfolio standard

deviations when performing a global minimum variance portfolio strategy. We conclude

that F -Riesz distributions can prove useful for the statistical analysis of covariance-matrix-

valued time-series, both in a classical framework as in this paper, or in a Bayesian framework

as in Gribisch and Hartkopf (2022).

The rest of this paper is set-up as follows. In Section 2 we introduce the model. Section 3

considers filter invertibility and the consistency properties of the two-step targeted maximum

likelihood estimator and also studies the new model’s performance in a simulated setting.

Section 4 presents the empirical results. Section 5 concludes. An appendix gathers all the

technical results. As a general notational guide, scalars are denoted in normal type face,

vectors are bolded, and matrices are bolded and capitalized.1

2 The Conditional Autoregressive F -Riesz model

2.1 The F -Riesz distribution

The family tree of the F -Riesz distribution considered in this paper is provided in Figure 1.

The Wishart and to a lesser extent the matrix-F distributions are assumed to be sufficiently

well-known. The Riesz distribution, however, may be less familiar. Therefore, we first briefly

recapitulate the basics of the Riesz distribution before deriving the F -Riesz distribution. A

more extensive introduction to the different distributions and some more technical results

can be found in the online appendix.

The Riesz distribution is characterized by two parameters: a positive definite scaling

1We number theorems, propositions, definitions, and assumptions consecutively within each section for
easier reference.
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F -Riesz

Riesz

Wishart

matrix-F inverse-Riesz

inverse-
Wishart

Figure 1: Family of matrix distributions
This figure shows a family tree of the F -Riesz distributions. Connected lines mean that distributions are
related by generalization.

matrix Σ = LL⊤ with lower triangular Cholesky decomposition L, and a vector of degrees

of freedom parameters ν = (ν1, . . . , νk)
⊤, with νi > i − 1 for i = 1, . . . , k. Arguably the

easiest way to introduce the Riesz distribution is via its so-called Bartlett decomposition,

which is a familiar simulation device for the standard Wishart distribution; see Anderson

(1962). Consider a random matrix G ∈ Rk×k, defined as

G =



√
χ2
ν1

0 · · · 0

N (0, 1)
. . . 0

...
... N (0, 1)

. . . 0

N (0, 1) · · · N (0, 1)
√

χ2
νk−k+1

 , (1)

where all elements of G are independent random variables. Then Y = LGG⊤L⊤ has a

so-called Riesz distribution of type I, where type I relates to the fact that we have taken a

lower triangular Cholesky decomposition in the Bartlett decomposition. We denote this as

Y ∼ RI(Σ,ν). Type-II versions of the distribution based on an upper triangular Cholesky

decomposition also exist and we refer to the online appendix for details.

Given the use of the Cholesky decomposition, it is clear that the ordering of the variables

matters. This is a well-known and accepted feature in the Riesz literature, as the order of the

variables can also be recovered from the data under the assumption of correct specification

by maximizing the likelihood also over the order of the variables in the system, rather than

over Σ and ν only. In small dimensions this can be done by full enumeration. For moderate
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dimensions, we provide a heuristic algorithm in appendix E that works well in our simulated

and empirical setting. Empirically, we find that the first-order dominant increases in the

likelihood are obtained by introducing tail-heterogeneity, i.e., by generalizing the Wishart

to the Riesz and the matrix-F to the F -Riesz distribution. The different orderings provide

a further second-order (though non-negligible) improvement compared to this dominant

first-order effect.

If ν = (ν, . . . , ν) for some ν > k − 1, the Riesz distribution collapses to the well-

known Wishart distribution with ν degrees of freedom. In that case, the degrees of freedom

parameters νi on the diagonal of the Bartlett decomposition G in (1) all have the same

value ν. In contrast to the Wishart, the Riesz distribution thus allows for heterogeneous tail

behavior in the cross section. Tail-fatness, however, is left unaffected and is still exponential

(thin) in all directions.

To introduce fatter tails for the Riesz distribution, we draw the analog between the

Wishart and matrix-F distribution; Konno (1991). If Y has a Wishart distribution,

Y ∼ W(Ik, ν), and X given Y also has a Wishart distribution, X | Y ∼ W(Y −1, µ),

then the unconditional distribution of X is a matrix-F : X ∼ F(Ik, µ, ν). Replacing the

Wishart distribution by its generalization, the Riesz, we might expect that a similar result

can be obtained that allows for both fat and heterogeneous tails. We confirm this in our

first theorem, which we prove in the online appendix.

To formulate the theorem, we first need to define the concepts of the generalized (lower

and upper) gamma function and the (lower and upper) power weighted determinant.

Definition 2.1 (generalized multivariate gamma functions). The lower generalized

multivariate gamma function for a vector-valued argument ν = (ν1, . . . , νk)
⊤ ∈ Rk×1 is

defined as

Γ(ν) = πk(k−1)/4

k∏
i=1

Γ

(
νi +

1− i

2

)
, (2)

with 2νi > i− 1 for i = 1, . . . , k.
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The upper generalized multivariate gamma function is defined similarly as

ΓU(ν) = πk(k−1)/4

k∏
i=1

Γ

(
νi +

i− k

2

)
= Γ(ν + γ̃), (3)

for 2νi > k − i for i = 1, . . . , k, and

γ̃ = 1
2
(k + 1)−

(
k, k − 1, . . . , 1

)⊤
=
(
−1

2
(k − 1) , . . . , 1

2
(k − 1)

)⊤
. (4)

The upper and lower generalized multivariate gamma functions enter the integrating

constant of the Riesz and F -Riesz distributions. If ν = (ν, . . . , ν)⊤ in (2), then Γ(ν) = Γk(ν),

where Γk(ν) is the standard multivariate gamma function.

Next, we introduce the Lower Power Weighted Determinant (LPWD) and Upper Power

Weighted Determinant (UPWD). These power weighted determinants take a similar role in

the expressions for the density of the F -Riesz distribution as standard determinants do for

the Wishart and the matrix-F .

Definition 2.2 (power weighted determinants). Consider the vector ν ∈ Rk×1 and

a positive definite matrix Y . Let L and U be the (unique) lower and upper triangular

Cholesky decompositions of Y , i.e., Y = LL⊤ = UU⊤, with L and U a lower and upper

triangular matrix, respectively, each with positive diagonal elements. Then the Lower Power

Weighted Determinant (LPWD) |Y |ν and Upper Power Weighted Determinant (UPWD)

U |Y |ν of Y are given by

|Y |ν =
k∏

i=1

L2νi
i,i , U |Y |ν =

k∏
i=1

U 2νi
i,i . (5)

In the physics literature, the power weighted determinants are commonly introduced via

so-called weight functions; see for instance Gross and Richards (1987). In this paper, we

instead use the notation of power weighted determinants as it is closer to the econometric

literature and stresses the simplification of the Riesz to the Wishart and of the F -Riesz to

the matrix-F if ν = νιk. Lemma B.1 in the online appendix provides manipulation rules for

power weighted determinants. Note that the power weighted determinant is not a regular

determinant. Properties like |A ·B| = |A| · |B| for matrices A,B ∈ Rk×k either do no hold
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or hold in modified form for power weighted determinants.

We can now formulate our first main result.

Theorem 2.3 (F -Riesz distribution).

(i) If X|Y ∼ RI (Y ,µ) has a conditional Riesz type-I distribution, and Y ∼ iRII (Σ,ν)

has an inverse Riesz type-II distribution, then X is FRI(Σ,µ,ν) distributed with

density function

pFRI (X;Σ,µ,ν) =
ΓU

(
µ+ν
2

)
· |Σ|0.5ν

ΓU

(
ν
2

)
Γ
(
µ
2

) |X|0.5(µ−k−1) |Σ+X|−0.5(µ+ν) .

(ii) If X|Y ∼ RII (Y ,µ) and Y ∼ iRI (Σ,ν), then X is FRII(Σ,µ,ν) distributed with

density function

pFRII (X;Σ,µ,ν) =
Γ
(
µ+ν
2

)
· U |Σ|0.5ν

Γ
(
ν
2

)
ΓU

(
µ
2

) U |X|0.5(µ−k−1) U |Σ+X|−0.5(µ+ν) .

(iii) Let Σ = LL⊤ = UU⊤ for lower and upper triangular matrices L and U , respectively.

If X ∼ FRI(Σ,µ,ν) then L−1X(L⊤)−1 ∼ FRI(Ik,µ,ν). Similarly, if X ∼

FRII(Σ,µ,ν) then U−1X(U⊤)−1 ∼ FRII(Ik,µ,ν).

Theorem 2.3 corrects a result from Dı́az-Garćıa (2016) on the generalized Beta II

distribution. The former result is only valid for Σ = Ik, and incorrect otherwise. The

correction is therefore crucial for our application later on, where we allow the non-unit

scaling matrix Σ to vary over time as Σt.

Interestingly, except for the use of the non-standard generalized gamma functions and

power weighted determinants, the density expression of the F -Riesz one-on-one mirrors

and generalizes that of the standard matrix-F (and even the scalar F ) distribution. The

following corollary establishes this link and shows that the matrix-F distribution of Konno

(1991) as used by Opschoor et al. (2018) is a special case of the F -Riesz distribution.

Corollary 2.4. Under the conditions of Theorem 2.3 part (i) or (ii), if we assume µ = µ·ιk
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and ν = ν · ιk, then X has a matrix-F distribution F(µ, ν), and

pFRI (X;Σ, µ · ιk, ν · ιk) = pF(X;Σ, µ, ν) =
Γk

(
µ+ν
2

)
· |Σ|0.5ν

Γk

(
ν
2

)
Γk

(
µ
2

) · |X|0.5(µ−k−1)

|Σ+X|0.5(µ+ν)
, (6)

where Γk( · ) is the multivariate gamma function.

The corollary makes clear that it is possible to test whether the F -Riesz collapses to the

matrix-F distribution by testing whether all elements in µ are the same, as well as all

elements in ν.

Similar to the scalar or matrix-F distributions, the expectation of the F -Riesz does

not always exist. The conditions for the existence and the expressions for the expectation

are formulated in the following theorem. These moments turn out to be useful for re-

parameterizing the dynamic model formulation and for designing a two-step targeting

approach to estimation in the next sections.

Theorem 2.5 (Expectation of the F -Riesz distribution).

(i) Let Y ∼ FRI(I,µ,ν), then E[Y ] = Ak, where Ak is a diagonal matrix with ith

diagonal element ai equal to

ai =


µ1

ν1−k−1
, for i = 1,

1
νi−k+i−2

(
µi +

∑i−1
i=1 ai

)
, for i = 2, . . . , k,

provided µi > 0 and νi > k + 2− i for i = 1, . . . , k.

(ii) Let Y ∼ FRII(I,µ,ν), then E[Y ] = Bk, where Bk is a diagonal matrix with ith

diagonal element bi equal to

bi =


1

νi−i−1

(
µi +

∑k
i=i+1 bi

)
, for i = 1, . . . , k − 1,

µk

νk−k−1
, for i = k,

provided µi > 0 and νi > i+ 1 for i = 1, . . . , k.

Combining this result with Theorem 2.3.(iii), the expectation of a general FRI(Σ,µ,ν)

random variable equals LAkL
⊤ for Σ = LL⊤, with L lower triangular. Similarly, the
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expectation of a FRII(Σ,µ,ν) random variable equals UBkU
⊤ for Σ = UU⊤, with U

upper triangular.

2.2 The Conditional Autoregressive F -Riesz model

We define he Conditional Autoregressive F -Riesz model2 (CAFr) as

Xt | Ft−1 ∼ FRI(Σt,µ,ν), Σt = Lt L
⊤
t (7)

Vt = E[Xt | Ft−1] = Lt M(µ,ν)L⊤
t , (8)

Vt+1 = (1− A−B)Ω+ AXt +B Vt, (9)

where Xt denotes a time series of realized covariance matrices, Ft−1 = {X1, . . . ,Xt−1}

contains the lagged observations, and M (µ,ν) is a diagonal matrix-valued function

containing the expectation of the standard (Σt = Ik) F -Riesz type I distribution. Note

that for a given Vt, µ and ν, we easily obtain Σt via the mapping Lt = LVt M (µ,ν)−1/2,

where LVt is a lower triangular matrix such that Vt = LVt
L⊤

Vt
.

The parameter matrix Ω is symmetric and positive definite. For simplicity, we take A

and B as scalar parameters like in the original DCC of Engle (2002), but generalizations of

this can easily be accommodated.

If we consider the Wishart rather than the F -Riesz distribution in (7), the model

resembles the Conditional Autoregressive Wishart (CAW) model of Golosnoy et al. (2012)

For the Wishart case, the model also collapses to one of the two core equations of the

Multivariate HEAVY model of Noureldin et al. (2012). More complex dynamic structures

in (9) can easily be allowed for. For instance, in the empirical application in Section 4

we incorporate the HAR type dynamics (Corsi, 2009) to better capture the possible long-

memory behavior of realized covariance matrices.

Model (7)–(9) is observation-driven and thus allows for easy parameter estimation

via maximum likelihood using a standard prediction error decomposition. To reduce the

dimensionality of the optimization, we use a targeting approach to pre-estimate Ω. This

works as follows. Assuming stationarity and existence of an unconditional first moments, we

2We formulate the model for the type-I F -Riesz, but a similar model can be constructed for the type-II
F -Riesz.
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can take unconditional expectations on both sides of (9) to obtain V = E[Vt] = E[Xt] = Ω.

We use this to estimate Ω by the sample average, Ω̂ = n−1
∑n

t=1 Xt. The likelihood then

only depends on the remaining parameters A, B, µ, and ν.

3 Theory and simulation evidence

In Section 3.1, we establish the invertibility of the conditional autoregressive F -Riesz

(CAFr) filter for the dynamic parameters Vt and the consistency of the maximum likelihood

estimator (MLE) of the static parameters Ω, µ, and ν. In Section 3.2, we then study

the performance of the MLE and of the heuristic algorithm introduced in Section 2 in a

simulated setting.

3.1 Filter invertibility and MLE consistency

To establish the consistency of the MLE for the unknown static parameter θ of the CAFr

model,3 we follow the usual two-step targeting approach that is typically found in empirical

work. We first estimate Ω using a simple sample mean of Xt. Next, fixing this estimate of

Ω, we estimate the remaining parameters by non-linear maximum likelihood optimization.

We make the following assumptions for consistent estimation of Ω.

Assumption 3.1. The sequence {Xt}t=1,...,T is generated by (7)-(9) under some

(Ω0, A0, B0,µ0,ν0) for every t = 1, ..., T .

Assumption 3.2. Ω0 is positive definite, µ0,j > K+1 ∀ j, ν0,i > i+1 ∀ i, A0 > 0, B0 ≥ 0,

and |A0 +B0| < 1.

Assumption 3.1 is a standard assumption on correct specification. Assumption 3.2 then

allows us to establish stationarity and ergodicity of the model as a data generating process.

The strong consistency of the sample average Ω̂ = n−1
∑n

t=1Xt to Ω0 then follows by an

application of the ergodic theorem.

Proposition 3.3. Let assumptions 3.1-3.2 hold. Then Ω̂ = T−1
∑T

t=1Xt
a.s.→ Ω0 as T → ∞.

3For the i.i.d. case we provide a separate set of conditions and results in online Appendix C.

11



The consistent estimate of Ω can be used as a plug-in for a targeted estimation approach

for the remaining static parameters of the model.

We now turn to the invertibility of the filtering equation (9). To do so, we first

introduce some new notation. Let V̂t(θ) denote the filtered sequence from (9), initialized

at some point V̂1, and evaluated at some parameter vector θ ∈ Θ. Following the literature

(e.g., Straumann and Mikosch, 2006; Wintenberger, 2013), invertibility ensures that the

filter ‘forgets’ the possibly incorrect initialization; i.e. the filtered sequence {V̂t(θ)}t∈N
converges path-wise and exponentially fast to a unique stationary and ergodic limit sequence

{Vt(θ)}t∈N. This means that for every θ in the parameter space Θ there is a c > 1 such

that ct∥V̂t(θ) − Vt(θ)∥
a.s.→ 0 as t → ∞, regardless of the initialization V̂1. We also write

V̂t = V̂t(θ0) and Vt = Vt(θ0), such that the filter asymptotically recovers the true Vt series

from the data generating process if the filter is evaluated at the true static parameter θ0.

In the current setting, filter invertibility can be obtained by ensuring that the following

conditions hold: (i) stationarity of the data {Xt}t∈Z; (ii) a logarithmic bounded moment for

Xt ∀ t; (iii) a contraction condition for the filtering equation. The stationarity of the data

in (i), and the logarithmic moment in (ii) follow directly from assumptions 3.1–3.2. The

contraction condition for the filtering equation, however, requires additional restrictions on

the parameter space Θ. Assumption 3.4 ensures that the filtered V̂t(θ) matrices are positive

definite and that the stochastic filtering equation is contracting in the appropriate sense.

It also ensures identification of the ordering of the variables in the system by requiring the

degrees of freedom parameters to be different across coordinates i and j.

Assumption 3.4. The parameter space Θ is compact and satisfies A ≥ 0, B ≥ 0,

supB |B| < 1, and minj infµj
(µj − K − 1) > 0, mini infνi(νi − i − 1) > 0, µi ̸= µj for

i ̸= j, and (µi + νi) ̸= (µ+ j + νj) for i ̸= j.

Proposition 3.5 now establishes the invertibility of the initialized filter V̂t(θ) for its stationary

and ergodic limit Vt(θ) and opens the door to the consistency of the MLE.

Proposition 3.5. Let assumptions 3.1-3.4 hold. Then the filter {V̂t(θ)}t∈N is invertible.

We are now ready to formulate our consistency result of the MLE (ÂT , B̂T , µ̂T , ν̂T ) for the

vector (A0, B0,µ0,ν0). This MLE takes the form of a targeted two-step estimator as it
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depends on the first-step estimator for Ω0. As is common for filtering models, the log-

likelihood depends directly on the properties of the filter V̂t(θ), which is itself a function

of the estimated Ω̂T , the parameters A and B, and the initialization V̂1 as noted above.

To make this clearer in the notation, we write explicitly V̂t(Ω̂T , A,B) rather than V̂t(θ).

In addition, we write ôT as the ordering of coordinates that maximizes the log-likelihood.

Putting all elements together, we define the MLE as the maximizer of the plug-in log-

likelihood log p̃FRI (Xt; V̂t(Ω̂T , A,B),µ,ν) for a specific ordering o,

(ÂT , B̂T , µ̂T , ν̂T , ôT ) = arg max
(A,B,µ,ν,o)

T∑
t=2

log p̃FRI (Xt; V̂t(Ω̂T , A,B),µ,ν). (10)

Theorem 3.6. Let assumptions 3.1-3.4 hold. Then for T → ∞ the targeted MLE

(ÂT , B̂T , µ̂T , ν̂T , ôT ) defined in (10) satisfies

(ÂT , B̂T , µ̂T , ν̂T , ôT )
a.s.→ (A0, B0,µ0,ν0, o0).

Theorem 3.6 provides the consistency of the MLE. Though the simulation results

in Table 1 below suggest that the ML estimator for the static parameters can be well

approximated by a normal distribution in finite samples, we instead choose to focus on

the predictive performance of the model using Diebold-Mariano (DM) tests (Diebold and

Mariano, 1995) rather than on the behavior of the static parameters. The latter is typically

deemed of less interest in dynamic parameter models such as the CAFr, where the focus is

mostly on the filtered paths of V̂t and the model’s predictive performance. Note that the

consistency of the filtered paths V̂t follows directly from the consistency of the MLE and

the filter invertibility established earlier.

We use the DM test based on two loss functions. First, we use the log-scoring rule

dt = ℓ1t − ℓ2t , where ℓ1t and ℓ2t are the log-likelihood contributions of two different model

specifications. The test requires dt to be a finite variance martingale difference series under

the null of equal model performance. The existence of a second moment of the log-likelihood

for the F -Riesz distribution is easily obtained using similar arguments as for the consistency

proof, where a bounded first moment of the log-likelihood was established. Second, we use a

more economic perspective to compare the different models by constructing global minimum
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Table 1: Parameter estimations of CAFr model
This table shows Monte Carlo averages and standard deviations (in parentheses) of parameter estimates of
simulated covariance matrices from the five-dimensional CAFr model of (9). Guided by empirical results,
we set µ = (16.64, 27.15, 41.61, 58.18, 86.67) and ν = (20.05, 18.72, 19.36, 20.59, 14.61). We estimate Ω by
targeting in a first step, while A, B and the DoF parameters are estimated in a second step by maximum
likelihood. The table reports the true values, the mean and standard deviation of the estimated coefficients,
as well as the mean of the computed standard error using the inverse of the Hessian. Results are based on
1000 Monte Carlo replications.

Coef. True mean std mean(s.e.)
A 0.1600 0.1596 0.0048 0.0044
B 0.8300 0.8296 0.0049 0.0049

µ1 16.64 16.69 1.125 1.128
µ2 27.15 27.07 1.567 1.544
µ3 41.61 41.52 2.284 2.229
µ4 58.18 58.03 3.073 3.030
µ5 84.67 84.12 4.402 4.381

ν1 20.05 20.45 1.584 1.510
ν2 18.72 18.94 0.957 0.880
ν3 19.36 19.57 0.780 0.722
ν4 20.59 20.85 0.782 0.734
ν5 14.61 14.77 0.512 0.442

variance portfolios and comparing their ex-post portfolio variance performance using the DM

test. See Section 4.3 for further details.

3.2 Simulation experiment

This section presents the results of a Monte Carlo study for the statistical properties of

the maximum likelihood estimator (MLE) of the conditional autoregressive F -Riesz (CAFr)

model. We simulate from a k = 5 dimensional version of the CAFr model with empirically

relevant values for the static parameters. We do so 1000 times, and for each simulated series

estimate the static parameters of the model by MLE, as well as their standard errors.

Table 1 presents the results. We see that all parameters are estimated near their true

values. This holds both for the dynamic parameters A and B, as well as for the degrees of

freedom parameters µ and ν, underlining the consistency result from Section 3. We also

note that the Monte Carlo standard deviation of the MLE across simulations (in the std

column) is close to the average of the estimated standard errors using the inverse Hessian

(in the mean(s.e.) column).
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Table 2: The matrix F vs the F -Riesz distributions
This table shows Monte Carlo results on the difference between the F -Riesz and the matrix-F distribution.
Panel A lists results on simulating 1000 matrices from a FRI(Σ, µ̃, ν̃) distribution with µ̃ = µ̄ιk +λµrange

and ν̃ = ν̄ιk + λνrange for λ = (0, 0.02, . . . , 0.08, 0.10) with µ̄ = 69.2, ν̄ = 23.3, µrange = µ − µ̄ιk and
νrange = ν − ν̄ιk and µ = (18.7, 35.8, 58.2, 89.4, 143.9)⊤ and ν = (22.8, 24.3, 28.6, 22.3, 18.2)⊤. We estimate

the parameters assuming a matrix-F or FRI distribution. For each value of λ we perform a likelihood ratio
test on the null-hypothesis µ = µ̄ιk and ν = ν̄ιk. Panel A lists the percentage rejections of this hypothesis
for different values of λ. Further, Panel B reports results on the estimated degrees-of-freedom parameters
of the matrix- F and/or F -Riesz I distribution for the case λ = 0. The panel reports the true values,
the mean and standard deviation of the estimated coefficients. All results are based on 1000 Monte Carlo
replications.

Panel A: Matrix F vs F -Riesz I
λ 0 0.02 0.04 0.06 0.08 0.10
rejection rate 0.084 0.126 0.311 0.594 0.839 0.980

Panel B: DoF parameters when λ = 0
matrix-F µ̄ ν̄

true 69.20 23.25
mean 69.25 23.33
sd 5.72 0.63

F -Riesz I µ1 µ2 µ3 µ4 µ5

true 69.20 69.20 69.20 69.20 69.20
mean 69.60 69.47 69.54 69.44 69.42
sd 7.26 6.52 6.29 6.05 5.83

ν1 ν2 ν3 ν4 ν5

true 23.25 23.25 23.25 23.25 23.25
mean 23.36 23.32 23.34 23.40 23.42
sd 0.99 0.91 0.99 1.17 1.52

The second simulation experiment investigates the statistical gain of the F -Riesz

distribution over the matrix F distribution. Guided by the empirical application,

we focus on a 5-variate F -Riesz I distribution with degrees of freedom vectors µ =

(18.7, 35.8, 58.2, 89.4, 143.9)⊤ and ν = (22.8, 24.3, 28.6, 22.3, 18.2)⊤. We define µ̄ = 69.2

and ν̄ = 23.3 as the average values of the vectors µ and ν respectively and µrange = µ− µ̄ιk

and νrange = ν − ν̄ιk. The simulation experiment now consists of the following steps.

First, we simulate 1000 matrices Xt from a FRI(Σ, µ̃, ν̃) with µ̃ = µ̄ιk + λµrange and

ν̃ = ν̄ιk + λνrange for λ = (0, 0.02, . . . , 0.08, 0.10). Note that if λ = 0, the FRI distribution

collapses to a matrix-F distribution with µ̄ and ν̄ degrees of freedom. Second, we estimate

Σ (using the targeting approach) and the degrees of freedom parameters assuming a matrix

F or FRI distribution. For each λ we test the null-hypotheses µ = µ̄ιk and ν = ν̄ιk. This

boils down to Likelihood-Ratio test with 2∗k−2 degrees of freedom. We repeat this exercise

1000 times.
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Table 2 shows the results. In Panel A, we see that if we simulate from a matrix-F

distribution (i.e. λ = 0), the likelihood ratio test has been rejected in 8.4 % of all cases.

Further, when we deviate slightly from the matrix-F setting, we immediately reject the

null-hypothesis of a scalar µ and ν in all cases. Panel B lists that the correct matrix-F

parameters are indeed estimated back on average. Also the average parameter estimates of

the F -Riesz I corresponds to the simulated values of 69.2 and 23.25.

In online Appendix F we present further results of a much more elaborate simulation

study, where we show that (i) the targeting approach and full estimation approach for Ω

perform similarly well; (ii) all distributions (from Wishart to F -Riesz) can be adequately

estimated by MLE, similar to Table 1; and (iii) the heuristic algorithm from Appendix E

performs well in recovering the ordering of the variables in the (F)Riesz from the data.

4 Empirical application

4.1 Data and set-up

In this section, we apply the F -Riesz distribution to an empirical data set of 45 U.S. equities

from the S&P 500 index over the period January 2, 2001, until December 6, 2019, a total of

4,696 trading days. We extract transaction prices from the Trade and Quote (TAQ) database

and clean the high-frequency data in line with Brownlees and Gallo (2006) and Barndorff-

Nielsen et al. (2009). After this cleaning procedure, we construct realized covariance matrices

Xt using 5 minute returns.

We consider six different matrix distributions with a time-varying mean Vt for the

realized covariance matrices: the Wishart, the Riesz, the inverse Wishart, the inverse Riesz,

the Matrix-F , and the F -Riesz distribution. For the Riesz related distributions, we only

consider the type I version. The type II version of these distributions yields very similar

results. The dynamic specification is as in (7)–(9), with only equation (7) modified for the

distribution at hand. In addition, we consider an extended version by including HAR-type

dynamics, changing (9) into

Vt+1 = (1− A1 − A2 − A3 −B)Ω+ A1Xt + A2X
w
t + A3X

m
t +B Vt (11)
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Figure 2: AIC improvements
The figure shows the difference between the AIC of the Wishart and that of the other distributions for the
models in Table 3 (black bars) and their HAR extension of (11) (white bars). The left panel of the graph
depicts results of a random initial ordering of the constructed realized covariance matrices. The right panel
is based on the optimized ordering using the algorithm from Section E.

with Xw
t = (1/5)

∑4
i=0 Xt−i and Xm

t = (1/22)
∑21

i=0Xt−i respectively.

We use the two-step targeting approach from Section 2.2 to estimate Ω, and the

algorithm from Appendix E with 10 random starting values to determine the optimal

ordering of the different stocks. We do so for the CAFr model and use the same ordering

for the other models.

4.2 Full sample results

Table 3 and Figure 2 report the results for full-sample estimation of dimensions 5 and 15.

For each dimension, we have randomly chosen stocks (without replacement) from our pool of

45 assets. We only show parameter estimates corresponding to equation (9) and summarize

the comparison to the HAR specification graphically later on.

The results provide four main take-aways. First, the maximized log-likelihood values

show that the model with the F -Riesz distribution performs better than all the other
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Table 3: Parameter estimates, likelihoods and information criteria
This table reports maximum likelihood parameter estimates of the conditional autoregressive model (7)–
(9), assuming a Wishart, Riesz type I, Inverse Wishart, Inverse Riesz type I, matrix-F , or F -Riesz type
I distribution in (7). Data consist of realized covariance matrices with the optimal ordering based on the
algorithm from Appendix E with p = 10 on the CAFr model. Panels A, B and C list results for a randomly
chosen subset of 5 and 15 different assets, respectively. Standard errors are provided in parentheses. We
report the likelihood L, the AIC and the number of estimated parameters. The sample goes from January
2, 2001 until December 12, 2019 (T = 4696 trading days).

Distribution A B µmin µmax νmin νmax L AIC ♯para
Panel A: AA/BA/CAT/GE/KO
Wishart 0.260 0.725 15.66 -45,594 91,194 3

(0.004) (0.004) (0.073)
Riesz 0.252 0.734 8.54 20.37 -43,997 88,009 7

(0.004) (0.004) (0.170) (0.164)
i-Wishart 0.191 0.800 18.10 -39,504 79,014 3

(0.003) (0.003) (0.065)
i-Riesz 0.189 0.803 11.89 20.71 -38,811 77,635 7

(0.003) (0.003) (0.198) (0.158)
F 0.209 0.782 55.87 25.30 -38,485 76,979 4

(0.003) (0.004) (1.340) (0.263)
F-Riesz 0.163 0.830 16.64 84.67 14.61 20.59 -33,905 67,835 12

(0.003) (0.003) (0.496) (1.762) (0.200) (0.313)

Panel B: AA/AXP/BA/CAT/GE/HD/HON/IBM/JPM/KO/MCD/PFE/PG/WMT/XOM
Wishart 0.176 0.810 27.83 96,115 -192,224 3

(0.001) (0.001) (0.041)
Riesz 0.157 0.828 6.02 36.07 115,573 -231,112 17

(0.001) (0.001) (0.119) (0.147)
iWishart 0.100 0.895 32.10 143,001 -285,995 3

(0.001) (0.001) (0.030)
iRiesz 0.096 0.899 9.85 35.19 152,760 -305,486 17

(0.001) (0.001) (0.156) (0.109)
F 0.116 0.879 78.25 46.26 159,642 -319,276 4

(0.001) (0.001) (0.473) (0.145)
FRiesz 0.089 0.906 11.98 102.93 13.92 48.24 185,586 -371,107 32

(0.001) (0.001) (0.260) (0.685) (0.271) (0.544)
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specifications, including the Riesz distribution advocated by Gribisch and Hartkopf (2022).

This is most clearly seen in Figure 2, which shows the AIC improvements of all models

compared to the Wishart specification for both the original (9) and the extended HAR

specification (11). The gain of the F -Riesz specification increases substantially with the

dimension of the system as can be seen from the scales of the vertical axes of the different

panels. For example, the difference between the F -Riesz and the matrix-F distribution

equals 4600 and 25 000 log-likelihood points for dimensions 5 and 15 respectively. This

increase is striking and suggests substantial heterogeneity and fatness of the tails. The AIC

values further support the usefulness of the F -Riesz distribution: the large differences in

likelihoods persist if we correct for the number of estimated parameters.

Second, tail heterogeneity and tail fatness both play an important role at all levels

of the analysis. When relaxing the Wishart to the Riesz specification, the AIC improves

substantially for all dimensions considered, irrespective of the ordering of the assets; see

Figure 2. This underlines the importance of tail-heterogeneity. The same holds when

relaxing the inverse Wishart to the inverse Riesz. Tail-fatness is also clearly important:

the AIC improvement for the matrix-F is large compared to the Wishart. With only 2

parameters, the matrix-F succeeds in having a similar or higher AIC improvement as the

inverse Riesz with 5 and 15 parameters for the different values of k, respectively. This is the

more interesting result given that the matrix-F already heavily outperforms the Wishart,

inverse Wishart, Riesz, and to a lesser extent also the inverse Riesz distributions. Including

tail heterogeneity in the matrix-F by using the F -Riesz distribution provides a further major

step forward in terms of likelihood and AIC. Tail heterogeneity thus appears important for

both the thin and fat-tailed distributional specifications.

Third, the importance of allowing for tail heterogeneity is confirmed by looking at the

estimates of the degrees of freedom parameters. To save space, the table only reports the

minima and maxima of the elements of µ and ν. Still, the picture is clear. For example,

the estimate of µ in Panel A for the matrix-F is around 55, while the elements of µ of the

F -Riesz distribution vary from around 16 to 85. The pattern persists for the other panels

in the table, as well as for the ν parameters. The Riesz and F -Riesz distributions also solve

an empirical puzzle for the (inverse) Wishart and matrix-F distributions. As we can see

in Table 3, increasing the dimension of the system from 5 to 15 increases the estimated
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degrees of freedom for the (inverse) Wishart and matrix-F . We can understand this by

looking at the spreads of µ and ν for the F -Riesz distribution. These reveal that the tail

fatness (low µ and ν values) persists across dimensions, as µmin and νmin remain relatively

constant across panels A and B. By contrast, µmax and νmax increase if we consider more

stocks, indicating that some of the realized volatilities exhibit thinner tail behavior. As

the (inverse) Wishart/matrix-F can only accommodate this by using some sort of average

degrees of freedom across all assets due to their one/two parameter set-up, the degrees of

freedom for these two distributions increases empirically when increasing the number of

assets. By contrast, the F -Riesz (and also the (inverse) Riesz) distributions do not show

this behavior.

Fourth, we see that the heterogeneity biases discussed above spill over into biases in

the estimated persistence of Xt. This holds in particular for dimensions 5 and 15. The B

of the F -Riesz distribution is higher across all dimensions than that of the other models,

while its A parameter is lower. This results in a much smoother pattern of Vt for the F -

RieszȦgain, this is the accumulation of two effects: fat tails of Xt, and tail heterogeneity.

Fatter tails for Xt in the model imply the dynamics of Vt react less violently to incidental

outliers in Xt, similar to the effect of using a Student’s t distribution in a GARCH model.

This explains why the F -Riesz results in more persistence than the Riesz or inverted Riesz.

The second effect is that of tail heterogeneity. Because the (inverse) Wishart and matrix-F

only have one or two degrees of freedom parameters, they fail to describe the heavy-tailed

behavior in some of the realized volatilities. Empirically, this typically leads to a lower

estimated persistence due to the more frequent unexpected occurrence of incidental large

observations; compare Creal et al. (2013) and Harvey (2013) for the univariate volatility

setting. This explains why the F -Riesz and Riesz have higher persistence compared to the

matrix-F and Wishart, respectively.

4.3 Out-of-sample results

We also apply our new model in an out-of-sample exercise. First, we perform 1-step-ahead

density forecasts using the HAR type specifications (11) for Vt as this specification turns out

to statistically outperform the regular specification (9) in a preliminary analysis. Second,
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Table 4: Out-of-sample log-scores and ex-post portfolio volatilities
This table shows the mean of log scores, defined in (13), and the average ex-post portfolio standard deviation
based on 1-step ahead predictions of the covariance matrix, according to the Conditional Autoregressive
model with HAR dynamics, assuming a Wishart (W), Inverse Riesz I (iR), matrix-F (F), or a F -Riesz I
(FR) distribution. The left part of the table shows results on density forecasts, the right part lists results
on the global minimum variance portfolios. Panel A shows results of the model applied to three disjunct
sets of five assets, Panel B shows results corresponding to three disjunct sets of 15 equities respectively. The
highest (lowest) value of the predictive log-score (ex post realized portfolio standard deviation) across the
models are marked bold. In addition, we report HAC based test-statistics on the difference in predictive
ability (DMDF ) and the average ex-post portfolio standard deviation (DMGMV ) between the CAFr model
and the other considered models. Positive (negative) statistics indicate that the CAFr model has superior
density forecasts (the lowest ex-post portfolio standard deviations). The out-of-sample period goes from
January 2005 until December 2019 and contains 3696 observations.

Stock Density Forecasts GMV portfolios
set W iR F FR W iR F FR

Panel A: 3 sets of dimension k = 5
#1 Sls(Xt) -8.723 -7.012 -6.961 -6.057 σ̂p 0.9321 0.9312 0.9314 0.9310

DMDF (14.66) (23.99) (26.59) DMGMV (-5.654) (-2.533) (-3.464)

#2 Sls(Xt) -1.135 0.513 0.549 1.300 σ̂p 0.7016 0.7006 0.7008 0.7004
DMDF (11.32) (20.39) (23.70) DMGMV (-9.256) (-4.034) (-5.773)

#3 Sls(Xt) 0.827 2.693 2.670 3.455 σ̂p 0.6400 0.6395 0.6396 0.6393
DMDF (9.62) (20.46) (25.89) DMGMV (-5.849) (-3.410) (-3.849)

Panel B: 3 sets of dimension k = 15
#1 Sls(Xt) 35.24 49.11 50.74 55.00 σ̂p 0.5810 0.5803 0.5802 0.5803

DMDF (18.55) (34.29) (34.13) DMGMV (-4.075) (-0.127) (0.490)

#2 Sls(Xt) 20.79 37.86 40.15 45.21 σ̂p 0.5948 0.5937 0.5936 0.5933
DMDF (9.83) (20.19) (32.27) DMGMV (-6.779) (-5.426) (-2.584)

#3 Sls(Xt) -17.67 -2.483 -0.138 4.322 σ̂p 0.6387 0.6376 0.6377 0.6376
DMDF (22.25) (30.73) (35.12) DMGMV (-5.306) (-0.869) (-1.175)

we perform an economic application by considering Global Minimum Variance portfolios

(GMVP) as in for example Engle et al. (2019). Both the density forecasts and the GMVP

weights directly depend on the 1-step-ahead forecasts of Vt.

We use a moving-window approach in the forecasting exercise with an in-sample period

of 1 000 observations. This corresponds roughly to four calendar years. To avoid that results

being driven by a particular selection of stocks, we choose three disjoint sets of stocks for

each of the settings k = 5, 15.

The out-of-sample period contains P = 3696 observations including the Great Financial

Crisis and the European Sovereign Debt crisis. The period, therefore, provides an important

test for the robustness of the model. We re-estimate the models after each 250 observations,
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which roughly corresponds to updating the parameters annually.4 Based on Table 3, we

consider a subset of four distributions: the classical Wishart distribution as a benchmark,

the inverse Riesz, the matrix-F, and the F -Riesz distribution.

We use the log scoring rule (see Mitchell and Hall, 2005; Amisano and Giacomini, 2007)

to differentiate between the density forecasts of the different models. Define the difference

in log score between the two density forecasts M1 and M2 corresponding to the realized

covariance matrix Xt as

dls,t = Sls,t(Xt,M1)− Sls,t(Xt,M2), (12)

for t = R,R+1, . . . T−1 with R the length of the rolling estimation window and Sls,t(Xt,Mj)

(j = 1, 2) the log score of the density forecast corresponding to model Mj at time t,

Sls,t(Xt,Mj) = log pt(Xt|Vt,Ft−1,Mj), (13)

where pt(·) is one of the densities discussed. The null hypothesis of equal predictive ability

is given by H0 : E[dls] = 0 for all T − R out-of-sample forecasts. This hypothesis can be

tested using a Diebold and Mariano (1995) (DM) statistic given by

DMls =
d̄√

σ̂2/(T −R)
, (14)

with d̄ the out-of-sample average of the log score differences and σ̂2 a HAC-consistent

variance estimator of the true variance σ2 of dls,t. Under the assumptions of the framework of

Giacomini and White (2006), DMls asymptotically follows a standard normal distribution.

A significantly positive value means that model M1 has a superior forecast performance over

model M2.

The Global Minimum Variance Portfolio application is motivated by the mean-variance

optimization setting of Markowitz (1952). Assuming that the investor aims at minimizing

the 1-step-ahead portfolio volatility at time t subject to a fully invested portfolio, we have

4Since Figure 2 points out that the differences between AIC values are rather small when comparing the
original order with the optimal order, we stick to the original order of the constructed realized covariance
matrices.
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the quadratic problem

minw⊤
t+1|tVt+1wt+1|t, s.t. w⊤

t+1|tι = 1, (15)

with solution

wt+1|t =
V −1

t+1|tι

ι⊤V −1
t+1|tι

. (16)

We assess the predictive ability of the different models by comparing the results to the

ex-post portfolio volatility σp,t+1 =
√
w′

t+1|tXt+1wt+1|t. Again, we use a DM test-statistic

to test whether the portfolio standard deviations of the different models are significantly

different.

Table 4 shows the average values of the log score and the average ex-post portfolio

standard deviations over the out-of-sample period for three sets of 5 assets (panel A), as

well as three sets of 15 (panel B). In addition, we provide corresponding t-statistics for

the difference in (1) the log predictive density scores of the realized covariance matrix and

(2) ex-post portfolio standard deviation between the CAFr-HAR model and competing

models. Positive (negative) values mean that the density forecasts (ex-post portfolio

standard deviation) of the CAFr model are superior against its competitor.

The density forecasts confirm our earlier full-sample analysis: the F -Riesz distribution

clearly outperforms the other distributions, even at a 1% significance level. This result

is robust across all three considered dimensions, and across different sets of assets. The

differences in the mean log-score increase with the dimension k.

The economic application to Global Minimum Variance Portfolios shows that in general,

the F -Riesz leads to lower ex-post portfolio standard deviations from its competitors. For

k = 15, the F -Riesz clearly and significantly outperforms the Wishart. Differences with

the inverse Riesz or matrix-F , however, are only statistically significant for set 2, but not

for set 1 and 3. For k = 5 by contrast, the F -Riesz is clearly and significantly the winner

in all cases. In sum, the F -Riesz distribution performs well both in-sample and out-of-

sample compared to all competitors, indicating it can capture both tail heterogeneity and

tail fatness of realized covariance matrices. In terms of density forecasts, the F -Riesz always

wins, whereas in terms of GMVP the F -Riesz shows the best performance most of the time,

but not always statistically significantly so.
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5 Conclusions

In this paper, we introduced the new conditional autoregressive F -Riesz model for capturing

the dynamics of matrix-valued random variables. The F -Riesz distribution was obtained by

mixing the Riesz distribution (Hassairi and Lajmi, 2001) with an inverse Riesz distribution

(Tounsi and Zine, 2012), thus allowing for much more heterogeneity in tail behavior

compared to well-known matrix distributions like the thin-tailed Wishart, the inverse

Wishart, or the fat-tailed matrix-F distribution. While the latter distributions depend on

one or two degrees-of-freedom parameters, the new distribution allows vector-valued degrees

of freedom parameters. These can easily be estimated by a two-step targeted maximum

likelihood approach.

An empirical application to realized covariance matrices of dimensions 5 and 15 and

different samples of U.S. stocks over 19 years of daily data showed a remarkably high increase

in the likelihood of the F -Riesz distribution compared to the (inverse) Wishart, (inverse)

Riesz, and matrix-F distributions. The margin of outperformance was significant, both in-

sample and out-of-sample. Also, the degrees of freedom parameters varied significantly over

the different coordinates. Overall these results show that there is strong heterogeneity of

tail behavior of realized covariance matrices, as well as fat-tailedness and that the F -Riesz

distribution can be a helpful vehicle to obtain better empirical models.
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A Proofs of main results in the paper

Proof of Theorem 2.3:

Part (i): Let us define the pdf of X as

p(X) =

∫
p(X|Y )p(Y ) dY , (A.1)

where p(X|Y ) follows a Riesz type I distribution with parameters Y and µ as in (B.11), and p(Y ) follows

an inverse Riesz type II distribution with pdf as in (B.15). Then (A.1) can be written as

p(X) =
|X|0.5(µ−k−1)

U |Σ−1|0.5ν · Γ (µ/2) · ΓU (ν/2) · 2(µ+ν)⊤ιk/2
·
∫

U |Y −1|0.5(ν+k+1)

|Y |0.5µ
etr
(
− 1

2 (Σ+X)Y −1
)
dY

(A.2)

We focus on the integral in (A.2). By applying Lemma B.1, we obtain

∫
U |Y −1|0.5(ν+k+1)

|Y |0.5µ
etr
(
− 1

2 (Σ+X)Y −1
)
dY

=

∫
U |Y −1|0.5(ν+k+1) |Y |−0.5µ etr

(
− 1

2 (Σ+X)Y −1
)
dY

=

∫
U |Y −1|0.5(ν+k+1) U |Y −1|0.5µ etr

(
− 1

2 (Σ+X)Y −1
)
dY

=

∫
U |Y −1|0.5(µ+ν+k+1) etr

(
− 1

2 (Σ+X)Y −1
)
dY ,

= U |(Σ+X)−1|0.5(µ+ν) ΓU ((µ+ ν) /2) 2(µ+ν)⊤ιk/2.

Equation (A.2) thus becomes

p(X) =
|X|0.5(µ−k−1)

U |Σ−1|0.5ν · Γ (µ/2) · ΓU (ν/2)
· U | (Σ+X)

−1 |0.5(µ+ν) ΓU ((µ+ ν) /2)

Lemma B.1(iii)
=

ΓU ((µ+ ν) /2)

Γ (µ/2) · ΓU (ν/2)
· |X|0.5(µ−k−1) · U |Σ−1|−0.5ν · U | (Σ+X)

−1 |0.5(µ+ν)

Lemma B.1(iv)
=

ΓU ((µ+ ν) /2)

Γ (µ/2) · ΓU (ν/2)
· |X|0.5(µ−k−1) · |Σ|0.5ν · | (Σ+X) |−0.5(µ+ν) .

Part (ii): Using (A.1), with p(X|Y ) a Riesz type II distribution with parameters Y and µ as in (B.13)

and p(Y ) an inverse Riesz type I distribution as in (B.14), we have the following pdf for X:

p(X) =
U |X|0.5(µ−k−1)

|Σ−1|0.5ν · Γ (ν/2) · ΓU (µ/2) · 2(ν⊤+µ⊤)ιk/2
·
∫ |Y −1|0.5(ν+k+1)

U |Y |0.5µ
etr
(
− 1

2 (Σ+X)Y −1
)
dY .

(A.3)
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Focusing on the integral in (A.3) and by using Lemma B.1(ii)-(iv), we obtain

∫ |Y −1|0.5(ν+k+1)

U |Y |0.5µ
etr
(
− 1

2 (Σ+X)Y −1
)
dY

=

∫
|Y −1|0.5(ν+k+1) U |Y |−0.5µ etr

(
− 1

2 (Σ+X)Y −1
)
dY

=

∫
|Y −1|0.5(ν+k+1) |Y −1|0.5µ etr

(
− 1

2 (Σ+X)Y −1
)
dY

=

∫
|Y −1|0.5(µ+ν+k+1) etr

(
− 1

2 (Σ+X)Y −1
)
dY

= |(Σ+X)−1|0.5(µ+ν) Γ ((µ+ ν) /2) 2(µ+ν)⊤ιk/2.

Equation (A.3) can now be rewritten as

p(X) =
U |X|0.5(µ−k−1)

|Σ−1|0.5ν · Γ (ν/2) · ΓU (µ/2)
· | (Σ+X)

−1 |0.5(µ+ν) Γ ((µ+ ν) /2)

Lemma B.1(iii)
=

Γ ((µ+ ν) /2)

Γ (ν/2) · ΓU (µ/2)
· U |X|0.5(µ−k−1) · |Σ−1|−0.5ν · | (Σ+X)

−1 |0.5(µ+ν)

Lemma B.1(iv)
=

Γ ((µ+ ν) /2)

Γ (ν/2) · ΓU (µ/2)
· U |X|0.5(µ−k−1) · U |Σ|0.5ν · U | (Σ+X) |−0.5(µ+ν) .

Part (iii): Let X ∼ FRI(Σ,µ,ν) with Σ = LL⊤ and L lower triangular, and consider the transformation

Y = L−1X(L⊤)−1 with Jacobian |L|k+1 = |Σ|0.5(k+1) = |Σ|0.5(k+1) , then the pdf of Y becomes

pY (Y ) = pFRI (LY L⊤; Σ,µ,ν)

=
ΓU ((µ+ ν) /2)

Γ (µ/2) · ΓU (ν/2)
· |LY L⊤|0.5(µ−k−1) · |Σ|0.5ν · |Σ+LY L⊤|−0.5(µ+ν) · |Σ|0.5(k+1)

Lemma B.1(v)
=

ΓU ((µ+ ν) /2)

Γ (µ/2) · ΓU (ν/2)
· |Y |0.5(µ−k−1) · |Σ|0.5(µ−k−1) · |Σ|0.5ν · |Σ+LY L⊤|−0.5(µ+ν) · |Σ|0.5(k+1)

=
ΓU ((µ+ ν) /2)

Γ (µ/2) · ΓU (ν/2)
· |Y |0.5(µ−k−1) · |Σ|0.5(µ+ν) · |L (Ik + Y )L⊤|−0.5(µ+ν)

Lemma B.1(v)
=

ΓU ((µ+ ν) /2)

Γ (µ/2) · ΓU (ν/2)
· |Y |0.5(µ−k−1) · |Σ|0.5(µ+ν) · |Ik + Y |−0.5(µ+ν) · |Σ|−0.5(µ+ν)

=
ΓU ((µ+ ν) /2)

Γ (µ/2) · ΓU (ν/2)
· |Y |0.5(µ−k−1) · |Ik + Y |−0.5(µ+ν) .

The proof for the F -Riesz type II is completely similar.

Proof of Corollary 2.4:
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For µ = µ · ιk and ν = ν · ιk, we have the following sequence of equalities:

pFRI (X;Σ,µ,ν) =
ΓU ((µ+ ν) /2)

Γ (µ/2) · ΓU (ν/2)
· |X|0.5(µ−k−1) · |Σ|0.5ν · |Σ+X|−0.5(µ+ν)

=
ΓU ((µ+ ν) · ιk/2)

Γ (µ · ιk/2) · ΓU (ν · ιk/2)
· |X|0.5(µ−k−1)ιk · |Σ|0.5νιk · |Σ+X|−0.5(µ+ν)ιk

=
Γk ((µ+ ν) /2)

Γk (µ/2) · Γk (ν/2)
· |X|0.5(µ−k−1) · |Σ|0.5ν · |Σ+X|−0.5(µ+ν)

=
Γk ((µ+ ν) /2)

Γk (µ/2) · Γk (ν/2)
· |X|0.5(µ−k−1) · |Σ|0.5ν · |Σ+X|−0.5(µ+ν)

= pF (X;Σ, µ, ν).

Proof of Theorem 2.5:

Part (i): As in the proof of Theorem D.3, first note that we can write X ∼ FRI(Ik,µ,ν) as X = LX1L
⊤

for lower triangular L, with X1 ∼ RI(I,µ) and X2 = LL⊤ ∼ iRII(I,ν) and X1 and X2 independent.

Moreover, as X−1
2 ∼ RII(I,ν), we have L = (U⊤)−1, with UU⊤ ∼ RII(I,ν) due to the uniqueness of the

choleski decompositions.

We define the (i× i) matrices Ui as the upper left (i× i) block of the matrix U , where the elements and

random structure of U were defined earlier as H in equation (B.12). We also define ui as the ith diagonal

element of U . We have

Ui =

Ui−1 N⊤

0 ui

 , (U⊤
i )−1 =

 (U⊤
i−1)

−1 0

−u−1
i N⊤ (U⊤

i−1)
−1 u−1

i

 ,

where N ∈ Rk×1 is a vector with independent (from Ui−1 and ui) standard normal random variables.

Define Ai as the upper (i× i) block of E[X] = E[(U⊤)−1X1U
−1], and define Di as a diagonal matrix

with (µ1, . . . , µi) on the diagonal. Due to the independence of X1 and U , we have Ak = E[(U⊤)−1DkU
−1].

Furthermore, due to the lower triangular structure of (U⊤)−1 and the independence of ui, Ui−1, and N ,
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we have

Ai = E

(Ii 0i×(k−i)

)
(U⊤)−1 D U−1

 Ii

0(k−i)×i


= E

[
(U⊤

i )−1 Di U
−1
i

]
= E

 (U⊤
i−1)

−1 0

−u−1
i N⊤ (U⊤

i−1)
−1 u−1

i

Di−1 0

0 µi

U−1
i−1 −U−1

i−1 N u−1
i

0 u−1
i


= E

 (U⊤
i−1)

−1Di−1U
−1
i−1 −(U⊤

i−1)
−1Di−1U

−1
i−1 Nu−1

i

−u−1
i N⊤ (U⊤

i−1)
−1Di−1U

−1
i−1

µi+N⊤ (U⊤
i−1)

−1Di−1U
−1
i−1 N

u2
i


=

Ai−1 0

0 E
[
µi+N⊤ (U⊤

i−1)
−1Di−1U

−1
i−1 N

u2
i

]
=

Ai−1 0

0 E
[
µi+trace(N⊤ (U⊤

i−1)
−1Di−1U

−1
i−1 N)

u2
i

]
=

Ai−1 0

0 E
[
µi+trace((U⊤

i−1)
−1Di−1U

−1
i−1 NN⊤)

u2
i

]
=

Ai−1 0

0 E
[
µi+trace((U⊤

i−1)
−1Di−1U

−1
i−1)

u2
i

]
=

Ai−1 0

0 E
[
u−2
i

]
E
[
µi + trace

(
(U⊤

i−1)
−1Di−1U

−1
i−1

)]


=

Ai−1 0

0 E
[
u−2
i

]
(µi + trace (Ai−1))


=

Ai−1 0

0 µi+trace(Ai−1)
νi−k+i−2

 .

To start these recursions, it is easy to check that A1 = µ1/(ν1 − k − 1). The proof for the type II F -Riesz

is completely similar, with the only difference we partition all matrices from the bottom right rather than

from the top left.

Proof of Proposition 3.3: Note that the set-up of the autoregressive specification for Vt in Boussama

et al. (2011) is the same as equation (9), where Boussama et al. use a multivariate GARCH specification,

thus replacing Xt by a rank one matrix εtε
⊤
t for a vector valued random variable εt. Under assumptions

3.1-3.2, we ensure that the regularity conditions required by Theorem 2.4 of Boussama et al. (2011) hold,

which is most easily seen by subtracting the conditional mean of Xt; compare the line of proof in Asai

and So (2021). As a result, the random sequences {Vt}t∈Z and {Xt}t∈Z are strictly stationary and ergodic

and satisfy E|Vt| < ∞ and E|Xt|2 < ∞. Finally, the almost sure convergence of Ω̂ follows immediately by
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application of the ergodic theorem.

Proof of Proposition 3.5: Define the unfolded limit process as

Vt =
(1−A−B)

1−B
Ω+A

∞∑
j=0

Bj Xt−j .

Unfold the filter V̂t back to its initial condition V̂1 at time t = 1,

V̂t =

t−1∑
j=0

Bj(1−A−B)Ω+A

t−2∑
j=0

Bj Xt−1−j +Bt−1V̂1

Next, we note that

lim
t→∞

sup
B∈B

∥V̂t − Vt∥ ≤ lim
t→∞

sup
B∈B

∣∣∣ t−1∑
j=0

Bj(1−A−B)− (1−A−B)

1−B

∣∣∣∥Ω∥

+ lim
t→∞

|A| sup
B∈B

∥∥∥ t−2∑
j=0

Bj Xt−1−j −
∞∑
j=0

Bj Xt−j

∥∥∥+ lim
t→∞

∥X1∥ sup
B∈B

|Bt−1| = 0.

It is clear that

lim
t→∞

sup
B∈B

∣∣∣ t−1∑
j=0

Bj(1−A−B)− (1−A−B)

1−B

∣∣∣ = 0

as the series is geometrically declining to zero for |B| < 1. Furthermore,

lim
t→∞

|A| sup
B∈B

∥∥∥ t−2∑
j=0

Bj Xt−1−j −
∞∑
j=0

Bj Xt−j

∥∥∥ = 0

holds as |B| < 1 and {Xt}t∈Z is strictly stationary with a logarithmic moment (see e.g. Lemma 2.1 in

Straumann and Mikosch, 2006). Finally, limt→∞ ∥X1∥ supB∈B |Bt−1| = 0 as X1 has a logarithmic moment

and |B| < 1 (see also Lemma 2.1 in Straumann and Mikosch, 2006).

Proof of Theorem 3.6: Application of Theorem 5.14 in van der Vaart (2000) to strictly stationary data

follows as long as a pointwise law of large numbers still holds for the log likelihood. We thus proceed to

obtain the consistency of our estimator by verifying:

(i) the upper semi-continuity of the criterion function log p̃FRI (Xt; V̂t(Ω̂T , ·, ·), ·, ·);

(ii) the upper boundedness of the limit criterion

E sup
(A,B,µ,ν)∈A×B×U×V

log p̃FRI (Xt;Vt(Ω0, A,B),µ,ν) < ∞

for every sufficiently small A× B × U × V, and
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(iii) the pointwise convergence in probability of the sample criterion

lim
T→∞

1

T

T∑
t=1

log p̃FRI (Xt; V̂t(Ω̂T , A,B),µ,ν) = E log p̃FRI (Xt;Vt(Ω0, A,B),µ,ν),

for every (A,B,µ,ν) ∈ A× B × U × V such that E log p̃FRI (Xt;Vt(Ω0, A,B),µ,ν) > −∞.5

The upper semi-continuity of log p̃FRI (Xt; V̂t(Ω̂T , ·, ·), ·, ·) in (i) follows easily from the continuity of

the filter V̂t on all parameters.

The upper boundedness of the limit criterion in (ii) follows from the uniform boundedness of p̃FRI over

the parameters in the admissible parameter space as detailed in Assumption 3.2.

Note that the convergence in (iii) holds for parameter values (A,B,µ,ν) for which

E| log p̃FRI (Xt;Vt(Ω0, A,B),µ,ν)| < ∞.

Hence, the desired convergence is obtained by noting that,

lim
T→∞

1

T

T∑
t=1

log p̃FRI (Xt; V̂t(Ω̂T , A,B),µ,ν) =

lim
T→∞

1

T

T∑
t=1

[
log p̃FRI (Xt; V̂t(Ω̂T , A,B),µ,ν)− log p̃FRI (Xt; V̂t(Ω0, A,B),µ,ν)

]
+ lim

T→∞

1

T

T∑
t=1

[
log p̃FRI (Xt; V̂t(Ω0, A,B),µ,ν)− log p̃FRI (Xt;Vt(Ω0, A,B),µ,ν)

]
+ lim

T→∞

1

T

T∑
t=1

log p̃FRI (Xt;Vt(Ω0, A,B),µ,ν)

= 0 + 0 + lim
T→∞

1

T

T∑
t=1

log p̃FRI (Xt;Vt(Ω0, A,B),µ,ν)

= E log p̃FRI (Xt;Vt(Ω0, A,B),µ,ν),

since

lim
T→∞

1

T

T∑
t=1

[
log p̃FRI (Xt; V̂t(Ω̂T , A,B),µ,ν)− log p̃FRI (Xt; V̂t(Ω0, A,B),µ,ν)

]
= 0

by the continuity of the filter V̂t in the parameters and the consistency of Ω̂T to Ω0, and

lim
T→∞

1

T

T∑
t=1

[
log p̃FRI (Xt; V̂t(Ω0, A,B),µ,ν)− log p̃FRI (Xt;Vt(Ω0, A,B),µ,ν)

]
= 0,

5We highlight that the existence of parameter values (A,B,µ,ν) for which the loglikelihood is not
−∞, can be taken as given. As noted in van der Vaart (2000), if E log p̃FRI (Xt;Vt(Ω0, A,B),µ,ν) =
−∞ uniformly in (A,B,µ,ν), then A0 × B0 × U0 × V0 = A × B × U × V and there is nothing
to prove. So we can proceed under the assumption that there exists a (A0, B0),µ0,ν0) such that
E log p̃FRI (Xt;Vt(Ω0, A0, B0),µ0,ν0) > −∞, and hence that E| log p̃FRI (Xt;Vt(Ω0, A0, B0),µ0,ν0)| < ∞
by the one-sided bound.
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holds by the invertibility of the filter as established in Proposition 3.5, and

lim
T→∞

1

T

T∑
t=1

log p̃FRI (Xt;Vt(Ω0, A,B),µ,ν) = 0,

holds by the ergodic theorem. Identification of the parameter of interest and of the order holds trivially

in this setting given the linearity of the updating equation, and the identification of the (F)Riesz

distribution ordering and parameters in the static case under different degrees of parameters as assumed in

Assumption 3.4.

B Further proofs related to the Riesz and F -Riesz

We start this appendix with a simple lemma that states some of the manipulation rules for power weighted

determinants. We note these rules can differ from those applicable to standard determinants. For instance,

while properties (i)–(iii) and (v) are intuitive, property (iv) is an important difference with the standard

determinant case. In particular, |Y |ν ̸= |Y −1|−ν in general, whereas for a positive definite Y , non-zero

ν, and a regular determinant we have |Y |ν = |Y −1|−ν .

Lemma B.1. Given a scalar ν, a vector ν = (ν1, . . . , νk)
⊤ ∈ Rk×1, a vector of ones ιk ∈ Rk×1, and

Y ∈ Rk×k a positive definite matrix, then we have the following identities.

(i) If ν = ν · ιk, then |Y |ν·ιk = U |Y |ν·ιk = |Y |ν . As special case, when ν = 1, we have

|Y |ιk = U |Y |ιk = |Y |.

(ii) Let ν1,ν2 ∈ Rk×1 be two vectors of constants, then we have |Y |ν1 · |Y |ν2 = |Y |ν1+ν2 , and

U |Y |ν1
· U |Y |ν2

= U |Y |ν1+ν2
.

(iii) ( |Y |ν )
−1

= |Y |−ν , and ( U |Y |ν )
−1

= U |Y |−ν .

(iv) |Y |ν = U |Y −1|−ν .

(v) If L,Σ ∈ Rk×k, where Σ is positive definite with lower triangular Cholesky decomposition L such

that Σ = LL⊤, then |L−1Y (L−1)⊤|ν = |Y |ν · |Σ|−ν .

Similarly, if U is the upper triangular Cholesky decomposition of Σ with Σ = UU⊤, then

U |U−1Y (U−1)⊤|ν = U |Y |ν · U |Σ|−ν .

Proof of Lemma B.1:

Part (i): Note that in this case

|Y |ν·ιk =

k∏
i=1

L2ν
i,i =

(
k∏

i=1

L2
i,i

)ν

=
(
|L|2

)ν
= |Y |ν , (B.1)
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where the last two equalities follow from the triangularity of L and the fact that Y = LL⊤, and thus

|Y | = |LL⊤| = |L| · |L⊤| = |L|2. The proof for the UPWD is similar. The special case ν = 1 follows

directly.

Part (ii): Note that

|Y |ν1
|Y |ν2

=

(
k∏

i=1

L
2ν1,i

i,i

)(
k∏

i=1

L
2ν2,i

i,i

)
=

k∏
i=1

L
2(ν1,i+ν2,i)
i,i = |Y |ν1+ν2

. (B.2)

The proof for the UPWD is similar.

Part (iii): Note that

( |Y |ν )
−1

=

(
k∏

i=1

L2νi
i,i

)−1

=

k∏
i=1

L−2νi
i,i = |Y |−ν . (B.3)

The proof for the UPWD is similar.

Part (iv): Note that for positive definite Y we have Y = LL⊤ where L is unique and lower triangular.

Therefore, Y −1 = (L⊤)−1L−1 = UU⊤, with U = (L⊤)−1 upper triangular and unique. We also note that

the diagonal elements of U = (L⊤)−1 are the inverse of the diagonal elements of L. To see this, note that

the diagonal elements of U and of L−1 are the same, as the first is the transpose of the latter. Also, we

have

1 = Li, ·L
−1
· ,i = Li,i(L

−1)i,i ⇔ (L−1)i,i = Ui,i =
1

Li,i
, (B.4)

where Li, · and L · ,i denote the ith row and column of L, respectively, and where the first equality follows

from the fact that L−1 is the inverse of L, and second equality from the fact that both L and L−1 are lower

triangular. As a result and using these definitions, we obtain

|Y |ν =

k∏
i=1

L2νi
i,i =

k∏
i=1

(
1

Li,i

)−2νi

=

k∏
i=1

U−2νi
i,i = U |UU⊤|−ν = U |Y −1|−ν . (B.5)

Part (v): As in the proof of part (iv), we first note that if L1 and L2 are to lower triangular matrices, then

the ith diagonal element of L1L2 equals L1,i,iL2,i,i, and the ith diagonal element of L−1 equals 1/Li,i. Let

LY denote the unique lower triangular decomposition of Y , and note that the inverse of a lower triangular

matrix is again lower triangular. We then obtain

|L−1Y (L−1)⊤|ν = |L−1LY L⊤
Y (L−1)⊤|ν =

k∏
i=1

(
(L−1)i,iLY ,i,i

)2νi

=

(
k∏

i=1

(
(L−1)i,i

)2νi

)(
k∏

i=1

L2νi

Y ,i,i

)
=

(
k∏

i=1

(Li,i)
−2νi

)(
k∏

i=1

L2νi

Y ,i,i

)
= |Σ|−ν · |Y |ν . (B.6)
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The proof for the UPWD is similar.

This section starts with a brief introduction of the Riesz distribution as an extension of the Wishart

distribution that allows for more tail heterogeneity. We discuss the Riesz distribution’s most important

properties and review some key notation that is also required for the definition of the F -Riesz distribution

in the next section.

The Riesz distribution (Hassairi and Lajmi, 2001) is defined over the space of positive definite matrices.

It generalizes the well-known Wishart distribution, which has probability density function (pdf)

pW(Y ;Σ, ν) =
|Y |0.5(ν−k−1) · etr

(
− 1

2Σ
−1Y

)
|Σ|0.5ν · Γk (ν/2) · 2k·ν/2

, (B.7)

for a positive definite matrix random variable Y ∈ Rk×k, a positive definite scaling matrix Σ ∈ Rk×k, and a

positive scalar degrees of freedom parameter ν, where etr( · ) = exp(trace( · )) denotes the exponential trace

operator, and Γk( · ) is the multivariate gamma function,

Γk (ν) = πk(k−1)/4
k∏

i=1

Γ
(
ν + 1−i

2

)
. (B.8)

A Wishart distributed random variable, denoted as W(Σ, ν), thus has two key parameters: one matrix-

valued, and one scalar. Interestingly, the Wishart distribution can be constructed using the so-called Bartlett

decomposition; see Anderson (1962). Define the lower triangular matrix G ∈ Rk×k with all its elements

independent random variables with G2
ii ∼ χ2

ν−i+1 and Gij ∼ N (0, 1) for i > j, i.e.,

G =



√
χ2
ν 0 · · · 0

N (0, 1)
. . . 0

...
... N (0, 1)

. . . 0

N (0, 1) · · · N (0, 1)
√

χ2
ν−k+1


. (B.9)

Then Y = GG⊤ ∼ W(Ik, ν), and Y = LGG⊤L⊤ ∼ W(Σ, ν) for a matrix L such that Σ = LL⊤. A key

property of the Bartlett decomposition is that the same degrees of freedom parameter ν plays a role in all

the diagonal elements of G in (B.9). The Riesz distribution generalizes the Wishart by instead introducing

a vector ν = (ν1, . . . , νk)
⊤ of degrees of freedom parameters, and inserting it into (B.9). This is done in

Definition B.2 below. A Riesz distribution R(Σ,ν) is thus characterized by a scaling matrix Σ and a vector

ν.

Using the definitions of the generalized gamma function and the power weighted determinant from the

main text, we can now introduce the lower triangular (type-I) and upper triangular (type-II) version of the

Riesz distribution; see also for instance Dı́az-Garćıa (2013) and Louati and Masmoudi (2015).

Theorem B.2 (Riesz distribution type I and II).
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(i) Consider the Bartlett decomposition G ∈ Rk×k, defined as

G =



√
χ2
ν1

0 · · · 0

N (0, 1)
. . . 0

...
... N (0, 1)

. . . 0

N (0, 1) · · · N (0, 1)
√

χ2
νk−k+1


, (B.10)

for νi > i − 1 for i = 1, . . . , k, and let Y = LGG⊤L⊤, where L is the lower triangular Cholesky

decomposition of Σ, such that Σ = LL⊤. Then Y has density function

pRI (Y ;Σ,ν) =
|Y |0.5(ν−k−1) · etr

(
− 1

2Σ
−1Y

)
|Σ|0.5ν · Γ (ν/2) · 2ν⊤ιk/2

, (B.11)

also known as a Riesz type-I density, RI(Σ,ν), where the generalized multivariate Gamma function

Γ( · ) and the Lower Power Weighted Determinant | · |ν were defined in Definitions 2.1 and 2.2,

respectively.

(ii) Let the Bartlett decomposition H ∈ Rk×k be defined as

H =



√
χ2
ν1−k+1 N (0, 1) · · · N (0, 1)

0
. . . N (0, 1)

...
... 0

. . . N (0, 1)

0 · · · 0
√

χ2
νk


, (B.12)

for νi > k − i for i = 1, . . . , k, and let X = UHH⊤U⊤, where U is the upper triangular Cholesky

decomposition of Σ, such that Σ = UU⊤. Then X has density function

pRII (X;Σ,ν) =
U |X|0.5(ν−k−1) · etr

(
− 1

2Σ
−1X

)
U |Σ|0.5ν · ΓU (ν/2) · 2ν⊤ιk/2

, (B.13)

also known as a Riesz type-II density, RII(Σ,ν), with ΓU ( · ) and U | · |ν as defined in Definitions 2.1

and 2.2.

The Riesz distributions of type I and II bear a close resemblance to the Wishart distribution. Using

manipulation rule (i) from Lemma B.1, we directly establish the following corollary.

Corollary B.3. If ν = (ν, . . . , ν)⊤ for some positive scalar ν > k − 1, then the Wishart, Riesz-I, and

Riesz-II densities from (B.7), (B.11), and (B.13), respectively, all coincide.

The Wishart distribution is thus a special case of the Riesz. The Bartlett decompositions in (B.10)

and (B.12), moreover, provide a direct way to simulate from the Riesz-I and Riesz-II distribution. Also
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note that the density expressions in Theorem B.2 are easy to implement for numerical maximization of a

likelihood function to estimate Σ and ν. They only require determinants and Cholesky decompositions.

Finally, like the Wishart, the Riesz distribution also allows for an inverse version, called the inverse Riesz

type-I iRI(Σ,ν) and type II iRII(Σ,ν). This will be important for constructing F -Riesz distributions in

the next section. The definition of the type I and II inverse Riesz distributions is given in the following

definition and theorem.

Definition B.4.

(i) Let Y be a Riesz distribution of type I, RI(Σ−1,ν), and let X = Y −1, then X is inverse Riesz

distributed of type I, iRI(Σ,ν).

(ii) Similarly, if Y ∼ RII(Σ−1,ν), then X = Y −1 is inverse Riesz type II, iRII(Σ,ν).

Theorem B.5. The pdf of an iRI(Σ,ν) distributed random variable X is given by

piRI (X;Σ,ν) =
|X−1|0.5(ν+k+1) · etr

(
− 1

2ΣX−1
)

|Σ−1|0.5ν · Γ (ν/2) · 2ν⊤ιk/2
. (B.14)

The pdf of an iRII(Σ,ν) distributed random variable X is given by

piRII (X;Σ,ν) =
U |X−1|0.5(ν+k+1) · etr

(
− 1

2ΣX−1
)

U |Σ−1|0.5ν · ΓU (ν/2) · 2ν⊤ιk/2
. (B.15)

The first moments of the Riesz and inverse Riesz distributions have been derived by Dı́az-Garćıa (2013)

and Louati and Masmoudi (2015). For completeness, they are included in Appendix D.

C Consistency in the i.i.d. setting

We consider the consistent estimation of the unknown parameters of interest for an i.i.d. random sample

from a F -Riesz distribution using the maximum likelihood estimator (MLE). Assumption C.1 below states

the distributional nature of the data generating process. Assumption C.2 imposes the finiteness of the true

Σ0 as well as restrictions on the parameter space for the vector (µ,ν).

Assumption C.1. The sequence {Xt}t=1,...,T is i.i.d. with Xt ∼ FRI(Σ0,µ0,ν0) for every t = 1, ..., T .

Assumption C.2. The positive definite matrix Σ0 satisfies ∥Σ0∥ < ∞ and (µ,ν) lie on a compact set

satisfying νi > i+ 1 ∀ i, and µj > K + 1 ∀ j and containing (µ0,ν0).

Proposition C.3 now establishes the strong consistency of the sample average as an estimator of V0 = E[Xt].

Proposition C.3. Let assumptions C.1 and C.2 hold. Then V̂T = 1
T

∑T
t=1 Xt

a.s.→ V0 = E[Xt] as the

sample diverges, T → ∞.
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Proof of Proposition C.3: We note that under assumptions C.1 and C.2, we have E∥Xt∥ < ∞ using

Theorem 11, and thus ∥V0∥ < ∞. In particular, the bounded moment E∥Xt∥ < ∞ follows from Theorem

2.5 and the finite ∥Σ0∥ < ∞ imposed in Assumption C.2. The consistency V̂T = 1
T

∑T
t=1 Xt

a.s.→ V = E[Xt]

follows by application of Bernoulli’s law of large numbers for i.i.d. data.

To prove the consistency of the two-step estimation procedure, we reparameterize the model using the fact

that Σ = LV A−1
k L⊤

V , where LV is the (unique) Cholesky decomposition of V . We define p̃FRI as the

reparameterized density function which takes V rather than Σ as an argument, i.e., p̃FRI ( · ;V ,µ,ν) ≡

pFRI ( · ;LV A−1
k L⊤

V ,µ,ν).

Theorem C.4 below establishes the strong consistency of the two-step MLE as T → ∞. Note that in

this two-step estimator (µ̂T , ν̂T ) depends on the first-step estimator for V0. Specifically, we define the MLE

(µ̂T , ν̂T ) as the maximizer of the plug-in estimates log p̃FRI (Xt; V̂T ,µ,ν),

(µ̂T , ν̂T ) = arg max
(µ,ν)∈U×V

1

T

T∑
t=1

log p̃FRI (Xt; V̂T ,µ,ν), (C.1)

rather than of the true log-likelihood contributions log p̃FRI (Xt;V0,µ,ν). In Theorem C.4, we build on

standard M-estimation theory to obtain the strong consistency of our MLE to (µ0,ν0).

Theorem C.4. Let assumptions C.1 and C.2 hold. Then the MLE (µ̂T , ν̂T ) satisfies (µ̂T , ν̂T )
a.s.→ (µ0,ν0)

as T → ∞.

Proof of Theorem C.4: Following Theorem 5.14 in van der Vaart (2000) for i.i.d. data, we obtain the

consistency of the MLE from

(i) the upper semi-continuity of the criterion function log p̃FRI (Xt; V̂T , ·, ·); and

(ii) the upper boundedness of the limit criterion in (µ,ν),

E sup
(µ,ν)∈Ũ×Ṽ)

log p̃FRI (Xt;V0,µ,ν) < ∞

for every sufficiently small Ũ × Ṽ ⊆ U × V. The upper semi-continuity of log p̃FRI (Xt; V̂T , ·, ·)

follows easily as our pdf p̃FRI is continuous in all its parameters. The upper boundedness of

E sup(µ,ν)∈(U,V) log p̃FRI (Xt; V̂T ,µ,ν) < ∞ follows trivially from the fact that p̃FRI (Xt;V ,µ,ν) is

uniformly bounded over the parameters (V ,µ,ν) in the admissible parameter space detailed in Assumption

C.2.

Corollary C.5 builds on the strong consistency of V̂T from Proposition C.3 and the weak consistency of

(µ̂T , ν̂T ) from Theorem C.4 to obtain the consistency of the estimator Σ̂T towards Σ0.

Corollary C.5. Let assumptions C.1 and C.2 hold. Then Σ̂T
p→ Σ0 as T → ∞.

Proof of Corollary C.5: Consistency of L̂V ,T follows from the consistency of V̂T
p→ V0 = LV ,0L

⊤
V ,0

as T → ∞, established in Proposition C.3, since the Cholesky decomposition is unique and continuous for
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positive definite matrices. Consistency of A−1
k (µ̂T , ν̂T ) follows by the consistency of (µ̂T , ν̂T )

p→ (µ0,ν0)

as T → ∞ established in Theorem C.4, and the continuity and non-singularity of Ak(µ0,ν0) under the

maintained assumptions. Note that Σ̂T = Σ̂T (µ̂T , ν̂T ) = L̂T L̂
⊤
T = L̂V ,TA

−1
k (µ̂T , ν̂T )L̂

⊤
V ,T , and thus

L̂T = L̂V ,TA
−1/2
k (µ̂T , ν̂T ) given the uniqueness of the Cholesky decomposition and the diagonality of Ak.

The consistency of Σ̂T to Σ0 now follows naturally by application of the continuous mapping theorem

D Supplementary proofs and theorems

Proof of Theorem B.2:

Part (i): We first derive the expression for the Riesz distribution of type I with Σ = Ik. Let Y
⋆ = GG⊤.

Given the independence of the elements of G, we can write its density as the product of the densities of the

individual elements. We have

p (vech(G)) =
2k ·

(∏k
i=1 G

νi−i
i,i

)
· exp

(
− 1

2vech(G)⊤vech(G)
)

(2π)
k(k−1)/4

Γ
(
ν1

2

)
· · ·Γ

(
νk−k+1

2

)
2(ν1+(ν2−1)+···+(νk−k+1))/2

=
2k · |GG⊤|0.5(ν−m) · exp

(
− 1

2 trace(G
⊤G)

)
Γk (ν/2) · 2ν⊤ιk/2

, (D.1)

where m = (1, 2, . . . , k)⊤. We note that the Jacobian of the transformation from vech(G) to vech(Y ⋆) is

∣∣∣∣ ∂vech(Y ⋆)

∂vech(G)⊤

∣∣∣∣−1

= 2−k ·G−k
1,1 ·G

−(k−1)
2,2 · · ·G−1

k,k = 2−k · |Y ⋆|0.5(m−1−k) .

Multiplying this Jacobian with the density of vech(G) in (D.1), and substituting GG⊤ = Y ⋆, we obtain

p (vech(Y ⋆)) =
2k · |Y ⋆|0.5(ν−m) · exp

(
− 1

2 trace(Y
⋆)
)

Γk (ν/2) · 2ν⊤ιk/2
× 2−k · |Y ⋆|0.5(m−1−k)

=
|Y ⋆|0.5(ν−k−1) · exp

(
− 1

2 trace(Y
⋆)
)

Γk (ν/2) · 2ν⊤ιk/2
.

Now consider Y = LY ⋆L⊤ for LL⊤ = Σ. By applying (11.33.c) from Abadir and Magnus (2005), we note

that the Jacobian of the transformation from vech(Y ⋆) to vech(Y ) is given by∣∣∣∣ ∂vech(Y ⋆)

∂vech(Y )⊤

∣∣∣∣ = |L|−k−1 = |Σ|−0.5(k+1) .

Multiplying this Jacobian with the density of vech(Y ⋆) and substituting Y ⋆ = L−1Y (L−1)⊤, and using
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Lemma B.1(v), we obtain

p (vech(Y )) =
|L−1Y L−1⊤|0.5(ν−k−1) · exp

(
− 1

2 trace(L
−1Y L−1⊤)

)
Γk (ν/2) · 2ν⊤ιk/2

× |Σ|−0.5(k+1)

=
|Σ|−0.5(ν−k−1) · |Y |0.5(ν−k−1) · exp

(
− 1

2 trace(Σ
−1Y )

)
Γk (ν/2) · 2ν⊤ιk/2

× |Σ|−0.5(k+1)

=
|Y |0.5(ν−k−1) · exp

(
− 1

2 trace(Σ
−1Y )

)
|Σ|0.5ν · Γk (ν/2) · 2ν⊤ιk/2

.

The proof for part (ii) of the Theorem is similar.

Proof of Corollary B.3:

If we assume ν = (ν, . . . , ν)⊤ for some positive scalar ν > k − 1, then using Lemma B.1(i) the Riesz-I

distribution becomes

pRI (Y ;Σ, ν) =
|Y | 0.5(ν−k−1) · etr

(
− 1

2Σ
−1Y

)
|Σ| 0.5ν · Γ (ν · ιk/2) · 2kν/2

.

Similarly the Riesz-II distribution becomes

pRII (Y ;Σ, ν) =
|Y | 0.5(ν−k−1) · etr

(
− 1

2Σ
−1Y

)
|Σ| 0.5ν · ΓU (ν · ιk/2) · 2kν/2

.

For ν = ν · ιk with scalar ν, it is easy to check that ΓU (ν · ιk) = Γ(ν · ιk) = Γk(ν). It follows that in this

case the Riesz-I, Riesz-II, and Wishart distribution all coincide.

Proof of Theorem B.5:

Let Y have a Riesz distribution of Type I with hyper-parameters Σ−1 and ν. Then following (B.11), we

have that Y has density

pRI (Y ;Σ−1,ν) =
|Y |0.5(ν−k−1) · etr

(
− 1

2ΣY
)

|Σ−1|0.5ν · Γ (ν/2) · 2ν⊤ιk/2
.

We apply the transformation, X = Y −1 with Jacobian abs(|X|)−k−1; see (13.38b) of Abadir and Magnus

(2005). Combining this Jacobian with the expression for pRI ( · ) above, we obtain

piRI (X;Σ,ν) = pRI (X−1;Σ−1,ν) · |X|−(k+1)

=
|X−1|0.5(ν−k−1) · etr

(
− 1

2ΣX−1
)

|Σ−1|0.5ν · Γ (ν/2) · 2ν⊤ιk/2
· |X|−(k+1)

Lemma B.1(i)–(ii)
=

|X−1|0.5(ν+k+1) · etr
(
− 1

2ΣX−1
)

|Σ−1|0.5ν · Γ (ν/2) · 2ν⊤ιk/2
.

Thus by applying the transformation X = Y −1, we obtain the pdf of the inverse Riesz type I as in B.14.

The proof for the type II inverse Riesz is similar.
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Theorem D.1 (Expectation of (inverse) Riesz distributions; Dı́az-Garćıa (2013) and Louati

and Masmoudi (2015)).

(i) Let Y ∼ RI(I,ν), then E[Y ] = diag(ν) for νi > i− 1 for i = 1, . . . , k.

(ii) Let Y ∼ RII(I,ν), then E[Y ] = diag(ν) for νi > k − i for i = 1, . . . , k.

(iii) Let Y ∼ iRI(I,ν), then E[Y ] =
∑k

i=1 aieie
⊤
i , with ei the ith column from Ik, and

ai =
1

νi − (i+ 1)

k∏
j=i+1

νj − j

νj − (j + 1)
if i = 1, . . . , k − 1,

ai =
1

νi − (i+ 1)
if i = k.

(iv) Let Y ∼ iRII(I,ν), then E[Y ] =
∑k

i=1 aieie
⊤
i , with ei the ith column from Ik, and

ai =
1

νi − (k + 1)
if i = 1,

ai =
1

νi − (k − i+ 2)

i−1∏
j=1

νj − (k − j + 1)

νj − (k − j + 2)
if i = 2, . . . , k.

Lemma D.2. If X ∼ RI(Ik,ν) with lower triangular Bartlett generator L such that X = LL⊤, then L⊤

is the upper triangular Bartlett generator of a RII(I,ν − 2γ̃).

If X ∼ RII(Ik,ν) with upper triangular Bartlett generator U such that X = UU⊤, then U⊤ is the lower

triangular Bartlett generator of a RI(I,ν + 2γ̃).

Proof: The second part follows directly by observing

diag(U⊤) =
(√

χ2
ν1−k+1 , . . . ,

√
χ2
νk

)
=
(√

χ2
ν1+2·(−0.5(k−1)) , . . . ,

√
χ2
(νk−k+1)+2·(0.5(k−1))

)
=
(√

χ2
(ν1+2γ̃1)

, · · · ,
√
χ2
(νk+2γ̃k)−k+1

)
,

whereas the strict lower diagonal part of U⊤ is filled with independent standard normal random variables.

The first part follows similarly from

diag(L⊤) =
(√

χ2
ν1

, . . . ,
√

χ2
νk−k+1

)
=
(√

χ2
(ν1−2γ̃1)−k+1 , · · · ,

√
χ2
(νk−2γ̃k)

)
.

Theorem D.3 below provides the correction for a result derived by Dı́az-Garćıa (2016). The original

result, sadly enough, is incorrect and contains a mistake in the density specification which results in severe
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biases in Σ, µ, and ν if Σt ̸= Ik. This is particularly important in the setting of our paper, where Σt and

Vt are the focal point. The next theorem provides the correct result, using Lemma D.2 above.

Theorem D.3. Assume X1 ∼ RI (I,µ) and X2 ∼ RI (I,ν). Define the lower triangular matrices G and

L such that GG⊤ = X2 and Σ = LL⊤. Then X = LG−1X1G
−⊤

L⊤ follows a type I F -Riesz distribution

with density function

p(X;Σ,µ,ν) =
Γ
(
1
2 (µ+ ν)

)
· |Σ|0.5ν−γ̃

Γ
(
1
2µ
)
Γ
(
1
2ν
) |X|0.5(µ−k−1) |Σ+X|−0.5(µ+ν)+γ̃ , (D.2)

where γ̃ is defined in equation (4). Moreover,

p(X;Σ,µ,ν + 2γ̃) = pFRI (X;Σ,µ,ν). (D.3)

Proof of Theorem D.3: We prove the result for Σ = Ik. For general Σ, one can use the result of

Theorem 2.3 part (iii).

To construct the F -Riesz type I, we generate a X1 ∼ R(I,µ) and an independent X2 ∼ iR(I,ν),

and then use the lower triangular Choleski decomposition L2 of X2 to construct X ∼ FRI(I,µ,ν) as

X = L2 X1 L
⊤
2 based on Theorem 2.3 part (iii).

As X2 is inverse Riesz type II, X−1
2 has a Riesz type II distribution, with upper triangular Bartlett

generator U2 such that U2U
⊤
2 = X−1

2 ∼ RII(Ik,ν). As it also holds that X2 = L2L
′
2, it follows that

L2 = (U⊤
2 )−1 due to the uniqueness of the Choleski decompositions. Based on Lemma D.2 below, U⊤

2 is

the Bartlet generator is of a RI(I,ν + 2γ̃) distribution.

Dı́az-Garćıa generates the F -Riesz type distribution as L−1
DGX1(L

⊤
DG)

−1 with XDG = LDGL
⊤
DG a draw

from a RI(Ik,νDG) distribution. It follows that νDG = ν + 2γ̃.

E Ordering of variables

The order of the variable matters for the specification of Riesz type distributions and can be optimized

over. Enumeration of all possible orders is possible in small dimensions, but quickly becomes unwieldy:

for k = 10 we already would have to estimate and compare more than 3.6M models. To approximate the

optimal ordering, we propose the following heuristic algorithm.

Algorithm E.1 (Approximating the optimal ordering of variables in the system). Let o =

(o1, . . . , ok) be a permutation of the first k integers, indicating the order of the variables in the system that

make up the covariance matrix observations Xt. Also, let θ denote the static parameters that characterize

the model and that need to be estimated by maximum likelihood.

Step 0 Set j = 0.

Step 1 Select a random order o(j) = (o
(j)
1 , . . . , o

(j)
k ).

45



Step 2 Given the ordering o(j), estimate θ and obtain θ̂(j).

Step 3 Loop over asset i, i = 1, . . . , k:

Step 3a Find i⋆ such that i = o
(j)
i⋆ , i.e., find the position of asset i in the current ordering o(j).

Step 3b Swap asset i with each of possible other assets 1, . . . , k, i.e., consider the

permutations (o
(j)
i⋆ , . . . , o

(j)
i⋆−1, o

(j)
1 , o

(j)
i⋆+1, . . . , o

(j)
k ), (o

(j)
1 , o

(j)
i⋆ , . . . , o

(j)
i⋆−1, o

(j)
2 , o

(j)
i⋆+1, . . . , o

(j)
k ), up

to (o
(j)
1 , . . . , o

(j)
i⋆−1, o

(j)
k , o

(j)
i⋆+1, . . . , o

(j)
i⋆ ). Retain the ordering that yields the highest log-likelihood

value for given θ̂(j) and permuted Ω̂, and store it as o(j+1).

Step 3c Increase j to j + 1 and re-estimate θ̂(j).

Step 3d Continue the loop by proceeding to the next asset i+ 1.

Step 4 Repeat steps 1–3 for p different random initial orderings, retaining the final order that yields the

highest log-likelihood. Call this final order o(opt) with corresponding parameter estimate θ̂(opt).

Note that other options in Step 3b are also possible: e.g. one could put the asset i in each of the possible

positions, while keeping the order of the other variables as in o(j). The algorithm above ensures that the

maximized likelihood never decreases when searching over different orderings. Moreover, the algorithm is

efficient since it limits the number of times we re-estimate θ. The latter is costly due to the required non-

linear optimization. The algorithm only re-estimates θ p(k + 1) times, which is substantially smaller than

the full k! enumerated possibilities, thus providing a substantial computational gain. Though no guarantee

is given that we arrive at the true optimum using this heuristic algorithm, the simulation evidence in the

next section shows that non-negligible likelihood increases are obtained and that the algorithm typically

lands close in terms of rank correlations to the correct ordering of the variables.

F Supplementary simulation results

In this appendix we present the results of a further Monte Carlo study to compare the statistical properties

of the maximum likelihood estimator (MLE) for the F -Riesz to its competitors.

The first experiment studies the small sample properties of the MLE for the degrees-of-freedom (DoF)

parameters of the F -Riesz and the parameters in the covariance matrix in a static model setting (A = B = 0).

We simulate covariance matrices Xt of dimension k = 2 from the Riesz, inverse Riesz and F -Riesz

distributions respectively. We set ν = (10, 20) for the Riesz, as well as for the inverse Riesz distribution.

For the F -Riesz distribution, we set µ = (10, 15) and ν = (15, 10).

The second experiment focuses on the estimation of the DoF parameters in a 5-variate case, where

now the elements of V are estimated using a targeting approach as explained in Section 2.2. We set ν =

(10, 15, 20, 14, 12) for the (inverse) Riesz distribution, while µ = (10, 15, 20, 14, 12) and ν = (10, 15, 20, 12, 14)

for the F -Riesz distribution.
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Table F.1: Parameter estimations of (inverse) Riesz and the F -Riesz
distributions
This table shows Monte Carlo averages and standard deviations (in parentheses) of parameter estimates of
simulated covariance matrices from the Riesz, inverse Riesz and F -Riesz distributions of dimensions two
and five. Panel A and B show results of the type I distributions, while panels C and D list results of the
type II distributions. Panels A and C correspond to the bivariate case, where both the (Cholesky elements
L11 (U11), L21 (U21) and L22 (U22) of) Vt as well as the degrees of freedom (DoF) parameters ν and µ are
estimated. Panels B and D shows results of the five-variate case, where the elements of V are estimated by
targeting in a first step, and the DoF parameters are estimated in a second step by maximum likelihood.
The table reports the true values, the mean and standard deviation of the estimated coefficients, as well as
the mean of the computed standard error. Results are based on 1000 Monte Carlo replications.

Panel A: dimension 2 Panel B: dimension 5 (targeting)

Distribution Coef. True mean std mean(s.e.) Coef. True mean std mean(s.e.)
Riesz I L11 2.752 2.752 0.019 0.019 ν1 10 10.02 0.43 0.43

L21 2.125 2.126 0.025 0.026 ν2 20 20.03 0.61 0.60
L22 3.006 3.006 0.015 0.015 ν3 15 15.02 0.35 0.35

ν4 18 18.01 0.37 0.36
ν1 10 10.03 0.43 0.43 ν5 12 12.01 0.18 0.19
ν2 20 20.01 0.60 0.60

Inv Riesz I L11 2.752 2.752 0.019 0.020 ν1 10 10.05 0.42 0.35
L21 2.125 2.126 0.027 0.027 ν2 20 20.01 0.61 0.54
L22 3.006 3.006 0.018 0.018 ν3 15 15.03 0.33 0.28

ν4 18 18.02 0.33 0.29
ν1 10 10.03 0.41 0.44 ν5 12 12.00 0.18 0.11
ν2 20 20.04 0.61 0.61

F -Riesz I L11 2.752 2.752 0.028 0.028 µ1 10 10.02 0.57 0.55
L21 2.125 2.126 0.038 0.037 µ2 15 15.03 0.64 0.62
L22 3.006 3.006 0.036 0.036 µ3 20 20.05 0.73 0.72

µ4 14 14.01 0.40 0.40
µ1 10 10.08 0.87 0.86 µ5 12 12.00 0.28 0.27
µ2 15 15.16 1.17 1.12
ν1 15 15.23 1.85 1.87 ν1 10 10.06 0.54 0.47
ν2 10 10.06 0.72 0.69 ν2 15 15.06 0.73 0.66

ν3 20 20.10 0.96 0.93
ν4 12 12.05 0.43 0.39
ν5 14 14.12 0.75 0.69

Both simulation experiments are based on samples of 1000 observations. We use Maximum Likelihood

to estimate the parameters of interest. In addition, we estimate their standard errors by computing the

inverse of the (negative) Hessian at the optimum. We replicate each experiment 1000 times.

Table F.1 presents the results of the first two simulation experiments. Panels A and B correspond to

the type I distributions, while Panels C and D show results for the type II distributions. In all panels, we

find that all parameters are estimated near their true values. Comparing the Monte-Carlo standard error

of the estimates (std column in Table F.1) with the mean of the estimated asymptotic standard error over

all replications (mean(s.e.) column), we find that the computed standard errors fairly reflect estimation
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(continued from previous page)

Panel C: dimension 2 Panel D: dimension 5 (targeting)

Distribution Coef. True mean std mean(s.e.) Coef. True mean std mean(s.e.)
Riesz II U11 2.247 2.248 0.016 0.016 ν1 10 10.01 0.15 0.14

U21 1.588 1.589 0.023 0.024 ν2 20 20.01 0.39 0.40
U22 3.682 3.681 0.019 0.018 ν3 15 15.02 0.36 0.35

ν4 18 18.03 0.53 0.54
ν1 10 10.02 0.28 0.29 ν5 12 12.02 0.53 0.52
ν2 20 20.07 0.87 0.88

Inv Riesz II U11 2.247 2.247 0.020 0.020 ν1 10 10.01 0.15 0.07
U21 1.588 1.589 0.028 0.029 ν2 20 20.00 0.42 0.34
U22 3.682 3.682 0.027 0.028 ν3 15 15.02 0.35 0.28

ν4 18 17.98 0.58 0.47
ν1 10 10.02 0.29 0.29 ν5 12 12.03 0.53 0.44
ν2 20 20.05 0.89 0.89

F -Riesz II U11 2.247 2.247 0.025 0.025 µ1 10 9.99 0.21 0.20
U21 1.588 1.588 0.039 0.039 µ2 15 14.97 0.44 0.44
U22 3.682 3.682 0.043 0.041 µ3 20 20.00 0.74 0.72

µ4 14 13.98 0.61 0.57
µ1 10 10.06 0.71 0.69 µ5 12 12.00 0.67 0.67
µ2 15 15.14 1.39 1.40
ν1 15 15.29 1.87 1.82 ν1 10 10.06 0.43 0.29
ν2 10 10.08 0.70 0.69 ν2 15 15.11 0.70 0.63

ν3 20 20.17 1.04 0.94
ν4 12 12.05 0.53 0.46
ν5 14 14.14 0.89 0.78

uncertainty. Only the true variability of the ν parameters for the inverse Riesz and F -Riesz appears slightly

higher than estimated by the usual standard errors, but the difference is minor.

The third and fourth simulation experiments are designed to address the different possible orderings

of the variables in the system that make up the covariance matrix Xt. To investigate this sensitivity in

experiment three, we study the full enumeration approach for all available orderings in a low-dimensional

setting. We simulate 1000 matrices Xt from a 5-variate RI(Σ,ν) distribution with ν = (10, 20, 15, 18, 12)⊤

and an arbitrarily chosen matrix Σ. In each simulation run, we consider all 120 possible orderings of the

variables in the system and estimate Σ and ν using the targeting approach. We retain the ordering that has

the highest maximized log-likelihood. We obtain such a final, optimal ordering o(opt) for each simulation

run. To check whether the optimally estimated order coincides with the true DGP ordering, we compute

the rank correlation between o(opt) and o(dgp) in each simulation run, and average across simulation runs.

We also compute the difference between the maximum value of the optimized log-likelihood and the log-

likelihood of the DGP for each simulation run. Finally, we apply Algorithm E.1 on 20 randomly chosen

orders oj and report the final order oopt with the associated maximized log-likelihood.

Results of the third experiment are shown in Panel A of Table F.2. The average rank correlation between
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Table F.2: Simulation results on the ordering of variables
This table shows Monte Carlo results of two simulation experiments. Panels A.1 and A.2 present results
for estimating parameters of a 5-dimensional RI(Σ,ν) distribution across 120 possible orderings of X.
In addition, it lists results of applying Heuristic I with 20 randomly chosen orders oj . Panel A.1 shows
the average rank correlation between the true ordering and 1) the ordering with the highest maximized
log-likelihood, or 2) the final order oopt in case of the Heuristic. Also the percentage of cases that this
ordering matches the ordering of the DGP exactly is shown. Panel A.2 shows summary statistics of the
range of the highest minus the log-likelihood of the DGP across all 120 possible orderings, summarized
over simulation replications. Moreover, we also report the difference between the associated maximized
log-likelihood of the final order of the Heuristic and the DGP. Panel B lists results of applying the Heuristic
to a 15-variate RI distribution with ordering 1, . . . , 15, using p = 50 randomly chosen initial orderings,
labeled as Heu(1). Having obtained the final order and associated maximized log-likelihood, we repeat the
Heuristic with the final order as the starting order. We label this as Heu(2). Panel B.1 shows the average
rank correlation between the true ordering and the optimal ordering estimated using our algorithm once and
twice. In addition, it presents the rank correlation between o(opt) for a pair of two random initial orderings,
averaged across all pairs, and across all simulations. Finally, it lists the percentage of cases that part of
the optimal ordering (1-5), (1-10) and the full ordering (1-15) matches exactly (part of the) ordering of
the DGP. Panel B.2 reports summary statistics of the difference between the optimized log likelihood after
applying Algorithm E.1 and the log likelihood from the correct DGP. We run 1000 Monte Carlo replications
for Panel A, while 500 Monte Carlo replications are used for panel B.

Panel A.1: Rank correlations
FE Heu

average rank corr (o(opt), o(dgp)) 0.999 0.999
perc correct rank (o(opt) = o(dgp)) 0.994 0.994

Panel A.2: Summary statistics on logLmax − logLDGP

mean sd min max
Full Enumeration 2.6 1.6 0.1 10.7
Heuristic 2.6 1.6 0.1 10.7

Panel B.1: Testing Heuristic I on k = 15: rank correlations

Heu(1) Heu(2)
average rank corr (o(opt), o(dgp)) 0.982 0.989
average rank corr of o(opt) across 0.807 0.951

simulation pairs
perc correct rank (o(opt) = o(dgp))(1-5) 0.944 0.966
perc correct rank (o(opt) = o(dgp))(1-10) 0.676 0.784
perc correct rank (o(opt) = o(dgp))(1-15) 0.348 0.510

Panel B.2: Summary statistics on logLopt − logLDGP

mean sd min max
Heuristic(1) 7.10 3.85 -9.53 15.63
Heuristic(2) 8.37 3.05 1.05 16.38

the ordering with the highest log-likelihood and the true ordering is almost 1. Moreover, in more than 99%

of the cases we are able to find the true ordering using the full set of 120 enumerated different orderings.

Interestingly, applying the Heuristic gives exactly the same results, indicating that it works well in this

simulation exercise. Panel A.2 shows that the average difference in log-likelihood between the highest and

the DGP log-likelihood equals 2.6 points on average across all simulations, which is very low.
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In the fourth experiment, we test the performance of Algorithm E.1 in improving the likelihood and

in finding the true variable ordering. In each replication in this experiment, we simulate 1000 matrices Xt

from a 15-variate RI(Σ,ν) distribution with ordering oDGP = (1, . . . , 15) for a given Σ and ν. Note that

for 15 variables there are more than 1.3 trillion possible orderings, such that trying all of them becomes

impractical to impossible. We apply our algorithm for p = 50 different randomly chosen initial orderings.

After obtaining the optimal order o(opt) from the Heuristic, we apply the Heuristic again using this order

as the starting ordering. The final outcome is labeled as Heuristic(2). We report the average (across

replications) of the rank correlation between o(opt) and o(dgp). In addition, we list the percentage of cases

where (part of) the optimal ordering exactly matches (part of) the ordering of the DGP. Moreover, to check

the sensitivity of the algorithm to the p random initial orderings, we also compute the rank correlation of

o(opt) for all pairs of two simulation replications, and then average over all pairs. The closer this number is

to one, the smaller is the dependence on the precise initial random orderings. Also this fourth experiment

is replicated 1000 times.

Panel B of Table F.2 shows the results. Again, we find a very high rank correlation of 0.982 between

the true order of the variables and the optimal estimated order. This implies that the algorithm works

adequately. Second, the average (across all pairs) rank correlation for any combination of o(opt) based on two

different initial random orderings is 0.802. This is high, and indicates that there is limited dependence of the

final optimal ordering o(opt) on the p = 50 random initial orderings. Applying the Heuristic again increases

this number to 0.951, hence the influence of the random initial ordering becomes very small. Furthermore,

panel B.1 also indicates that repeating the Heuristic considerably improves the optimal ordering in the

middle and in the end of the DGP ordering vector, as the percentages of correct rank increases from 0.676

(0.348) to 0.784 (0.510) respectively. As long as p is not chosen too small, the algorithm typically produces

substantial likelihood increases. This pattern is corroborated by the difference between the maximized

likelihood for all 50 different initial orderings and the maximized likelihood based on the DGP ordering

(logLdgp. The range of likelihoods is only 25 points wide (differences ranging form -9.63 to 15.63), and

decreases if we repeat the Heuristic.

A summary result for the 15-dimensional setting is shown in Figure F.1. The red bar in the figure is

positioned (horizontally) at the log-likelihood evaluated at the true parameter and correct ordering of the

variables. The blue bars provide a histogram of the optimized log-likelihood values over 50 different random

orderings. These values are 3000–7000 points below the log-likelihood at the true parameter and correct

ordering. By applying our heuristic algorithm, each of these 50 random orderings is used as a starting point

for improving the ordering. The differences are then reduced to 0-4000 points, with most values in the

0–1000 point range (magenta bars). The differences are reduced further if the algorithm is iterated (yellow

bars). We conclude that optimizing over the ordering can provide substantial increases in the fit for the

(F)Riesz models, and that our algorithm results in substantial improvements over random orderings.
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Figure F.1: Heuristic I: log-likelihood values of the RI distribution
This figure shows a histogram of logL values of the 15-variate RI distribution. The blue bars correspond
to the likelihood values of 50 randomly chosen order before applying Heuristic I, while the green (yellow)
bars show logL values after applying the heuristic (twice). The red bar denotes the log-likelihood with the
correct ordering from the DGP.
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