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Abstract

The heteroscedastic logit model is useful to describe choices of individuals when the ran-

domness in the choice-making varies over time. For example, during surveys individuals may

become fatigued and start responding more randomly to questions as the survey proceeds.

Or when completing a ranking amongst multiple alternatives, individuals may be unable to

accurately assign middle and bottom ranks. The standard heteroscedastic logit model accom-

modates such behavior by allowing for changes in the signal-to-noise ratio via a time-varying

scale parameter. In the current literature, this time-variation is assumed equal across indi-

viduals. Hence, each individual is assumed to become fatigued at the same time, or assumed

to be able to accurately assign exactly the same ranks. In most cases, this assumption is

too stringent. In this paper, we generalize the heteroscedastic logit model by allowing for

differences across individuals. We develop a multinomial and a rank-ordered logit model in

which the time-variation in an individual-specific scale parameter follows a Markov process.

In case individual differences exist, our models alleviate biases and make more efficient use of

data. We validate the models using a Monte Carlo study and illustrate them using data on

discrete choice experiments and political preferences. These examples document that inter-

and intra-individual heteroscedasticity both exist.

Key words: Scale, Heterogeneity, Markov, Logit scaling, Logit mixture, Dynamics, Conjoint,

Fatigue, Markov switching.
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1. Introduction

Understanding and predicting choices of individuals is important for numerous applications.

These applications include predicting product demand, designing effective policies, and con-

structing meaningful product recommendations. In many cases, individuals are observed

while making repeated choices over time. For example when responding to survey questions,

choosing supermarket products across different visits, or completing a ranking by consecu-

tively choosing best, second best, et cetera. To deduce an individual’s preferences based on

observed discrete choices, the (multinomial) logit model is often employed.

The logit model is based on a utility framework: an individual obtains utility from

choosing a certain alternative/option and chooses the alternative which gives the highest

utility (Manski, 1977). The utility is comprised of an explained part (the preferences/signal)

and an unexplained part (the noise). The noise captures that the actual choice can differ

from the choice that yields the highest signal. Hence, the noise can capture that (i) the

signal fails to capture all preferences of an individual, and/or (ii) an individual can make

‘mistakes’ and choose an alternative that does not accord with her underlying preferences.

Logit models assume an extreme value distribution for the noise.

The logit model has been extended in many ways to realistically capture certain aspects of

individual behavior. One such aspect of behavior is that the randomness in the choice-making

of individuals may vary over time. For example, during surveys, individuals may become

fatigued and start responding more randomly to questions as the survey proceeds. Or when

completing a ranking amongst multiple alternatives, individuals may be unable to accurately

assign middle and bottom ranks, due to the required cognitive effort or lack of information.

For supermarket purchases, an individual that is new to a certain product category (e.g.

diapers) may at first pick alternatives quite randomly after which the preferences are learned

and choices are more and more based on the underlying preferences.

The heteroscedastic logit model is able to estimate individual preferences while accounting

for changes in the randomness in choices (Hausman and Ruud, 1987, Bradley and Daly,

1994). For this purpose, the model explicitly allows for changes in the relative importance of

the explained and the unexplained part of utility (the signal-to-noise ratio). When choices

become more random, this can be captured in the unexplained part becoming more dominant.

Mathematically, the heteroscedastic logit model allows for changes in the signal-to-noise ratio

via a time-varying scale parameter in the unexplained part of the utility specification.

The main drawback of the standard heteroscedastic logit model is that the scale param-

eter is specified at the population-level. Hence, the model assumes that the changes in the
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randomness in decision-making is equal across individuals, thereby only allowing for within-

individual (intra-individual) heteroscedasticity. In the context of the earlier examples, this

implies that each individual is assumed to become fatigued at the same time, or assumed to

be able to accurately assign exactly the same ranks.

In this paper, we generalize the heteroscedastic logit model by allowing for differences

across individuals in the changes in the scale parameter. That is, we allow for intra- and inter-

individual heteroscedasticity (or heterogeneous heteroscedasticity): each individual has her

own sequence of scale parameters over time, and the time-variation in the scale parameters

can differ across individuals. For example, for some individuals the scale parameters may

stay constant, for others the scale parameters may increase several times, and for again some

others the scale parameters may first decrease and then increase.

In case such individual differences exist, using an individual-level instead of a population-

level approach is beneficial for several reasons. First, existing population-level approaches

generally lead to biased estimators for the preference parameters. That is, there will be a

bias towards zero, because at each time period a number of individuals could be answering

more randomly.1 Second, population-level approaches make inefficient use of data. This is

because it is assumed that at each time period, each individual provides the same amount

of information in her choices. Finally, population-level approaches only give insight into

the average time-variation in the scale parameter. In some cases, one might find a con-

stant average scale parameter while in reality there is heterogeneous heteroscedasticity. An

individual-level approach also gives more insight into the behavior of different individuals.

To allow for individual differences, some structure is needed to model the heteroscedastic

process.

We develop a multinomial logit model (MNL) and a rank-ordered logit model (ROL)

that allow for heterogeneous heteroscedasticity. For this purpose, we include individual- and

time/rank-specific scale parameters. We let the dynamics in the sequence of an individual’s

scale parameters be governed by a Markov process. We also allow for unobserved prefer-

ence heterogeneity. For inference, we develop a maximum simulated likelihood estimation

approach.

The Markov process assumes that, for subsequent choices to make or for consecutive

ranks to assign, an individual can go through a number of phases. Each phase is marked

1Even when no individual differences exist, the existing estimators for the preference parameters in the
heteroscedastic logit model (Bradley & Daly, 1994) are often biased away from zero, because the preference
parameters are scaled such that the time period with lowest estimated signal-to-noise ratio has a scale of
one. The estimator for our proposed model does not suffer from this shortcoming.
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by a different scale parameter. When an individual moves to a phase with higher scale,

the choices become more random. When an individual moves to a phase with lower scale,

the choices become more predictable and more in line with the underlying preferences. For

the example of fatigue during surveys, there may exist phases with a rather high scale.

Respondents who become fatigued, enter these phases with high scale and answer more

randomly as the survey proceeds. Respondents that do not become fatigued, remain in a

phase with low scale.

In the literature, a related individual-level ROL has been proposed in Fok et al. (2012).

They propose a latent class ROL where they allow for individuals to have different rank-

ing abilities: different individuals may be able to assign a different number of top ranks

accurately. When applied to the ROL, our approach can be seen as a generalization of Fok

et al. (2012). First, we allow for unobserved preference heterogeneity and allow the model

to be used for panel data. Especially in the context of non-constant scale, allowing for

heterogeneity is important to avoid spurious findings. That is, when preference heterogene-

ity is unaccounted for, an individual who has preferences that deviate from the “average”

individual is likely falsely classified as having a large scale parameter. Second, Fok et al.

(2012) allow for individuals to assign a specific rank either accurately or completely ran-

domly. Instead, our model allows for the decisions of individuals to be more in between,

which is also possible in the standard heteroscedastic ROL. As a consequence, our model is

a generalization of the heteroscedastic ROL, whereas the latent class ROL is not. Finally,

our model straightforwardly and parsimoniously allows for individuals that might rank the

middle ranks randomly, but both the top and bottom ranks accurately. This possibility was

already provided as an extension in Fok et al. (2012) but requires work on top of the basic

model specification.

We illustrate the usefulness of the newly proposed hidden Markov model specifications

using a Monte Carlo study and two empirical applications. In the Monte Carlo study, we find

that our proposed model works well and that the estimator seems unbiased in various set-

tings. Furthermore, this study clearly illustrates the bias in the estimator for the preference

parameters for the standard heteroscedastic logit model. Depending on the data generating

process, the bias is either towards zero due to neglecting individual differences, or away from

zero due to scaling the preference parameters based on the minimum of the estimated scale

parameters. Furthermore, the estimator for the standard MNL is biased towards zero in

case heteroscedasticity is present, because heteroscedasticity leads to more random-looking

choice-making of respondents. Our proposed estimator and model alleviate these biases.
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In the first empirical application, we consider binomial choices during a discrete choice

experiment on healthy food choices. We allow for multiple phases to capture possible learn-

ing and fatigue effects. We find that accounting for individual differences in learning and

fatigue leads to a much better fit of the data, while needing less free model parameters

than the standard heteroscedastic logit model. In the second empirical application, we con-

sider rank-ordered data from a survey on political preferences to capture possible differential

capabilities in ranking. Again, allowing for individual differences in the dynamics of the

heteroscedasticity leads to a much better fit of the data.

This paper is set up as follows. In Section 2, we discuss the background and related

literature. In Section 3, we develop the hidden Markov MNL and ROL, and discuss iden-

tification and estimation. In Section 4, we report the results of a Monte Carlo study. In

Sections 5 and 6, we report the results of the two empirical applications. Finally, we provide

a discussion and conclude.

2. Background

In this section, we discuss the additive random utility framework (ARUM) we employ in our

paper. This framework is central in deciding how to model individual-specific dynamics in

the signal-to-noise ratio. We illustrate the identification problem that may arise, and discuss

related papers that have proposed solutions to this. We also indicate how our approach differs

from current specifications dealing with individual-specific dynamics in the signal-to-noise

ratio.

The additive random utility framework of Manski (1977) is a useful and popular tool to

model choices of individuals. It relies on the assumption that an individual obtains utility

from a certain alternative and that an individual chooses the alternative that gives the

highest utility. The utility is assumed to be an additive function of the signal (based on

observed variables and unobserved parameters) and some noise

Utility = Signal + Noise.

Mathematically, we can write this utility specification in a general form as

Uitj = x′itjβit + σitεitj, (1)

where Uitj is the (unobserved) utility that individual i obtains from choosing alternative j
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at time t, xitj is a vector of covariates representing the attributes of alternative j, βit is a

vector with preference parameters of individual i at time t, σit > 0 is a scale parameter for

individual i at time t, and εitj is an i.i.d. error term with fixed variance.2 The individual

chooses the alternative that gives the highest utility. The multinomial logit and probit

models are special cases of the ARUM.

Because only choices are observed and not utility, and the scale parameter does not vary

over alternatives, we obtain an equivalent model for choices by rescaling the utility

U∗itj = x′itj
βit
σit

+ εitj, (2)

where now the alternative is chosen with the highest scaled utility U∗itj = Uitj/σit. The

equivalence between the utility specifications in Equations (1) and (2) imply that only the

signal-to-noise ratio (βit/σit) is identified, and not the absolute values of the signal and the

noise. Hence, if we would allow for both βit = βi and σit = σi to be individual-specific,

separate identification of the two parameters can only come from distributional assumptions

on these two parameters (Hess & Rose, 2012). The same holds when we allow both βit = βt

and σit = σt to be time-dependent.

Therefore, for identification, the proposed models in the literature often allow for het-

erogeneity and time-variation in either βit or σit. For example, the heteroscedastic multi-

nomial and rank-ordered logit models allow for a (possibly) individual-specific βi and a

time-dependent scale σt (Hausman and Ruud, 1987, Bradley and Daly, 1994, DeSarbo et al.,

2004).

We generalize the heteroscedastic multinomial logit model by allowing for the time-

variation in the scale to be different across individuals (σit). We allow for individual-specific

preference parameters in βi, but exclude time-variation in this parameter. We ensure identi-

fication by letting the sequence of scale parameters of an individual {σi1, σi2, ...} be governed

by a Markov process with the scale of one state normalized at one, as will be shown later.3

Alternatively, one can allow for individual-specific heteroscedasticity by letting βit be

2A more general specification can be obtained by allowing for correlation across the error terms εitj over
individuals, time periods, and/or alternatives.

3Bhat and Castelar (2002) propose a multinomial logit model with individual-specific preference pa-
rameters βi and individual- and time-specific scale parameters σit. However, their formulation is highly
restrictive. The scale parameter σit can take on only one of two values and which of the two values it takes
on is determined deterministically: σit = 1 in case observation t of individual i corresponds to a revealed
preference observation, and σit = λ in case it corresponds to a stated preference observation, with λ a pa-
rameter to be estimated. Hence, the variation in scale parameters only allows for the scale to be different
across different types of data.
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individual- and time-specific, and keeping σit = σ constant over individuals and time. An

advantage of this alternative approach is that it can model the change in the signal-to-noise

ratio to be different across attributes, and can thus capture choice strategies where choices are

made based on different subsets of attributes as time progresses or where preferences change

over time. The main disadvantage is that, in small T settings, estimation uncertainty and

overfitting become problematic.

There are three papers that propose discrete choice models with individual-specific time-

variation in βit: Hess and Rose (2009), Bhat and Sidharthan (2011), and Danaf et al. (2020).

These three papers all propose a model with constant scale σ and preference parameters of

the form βi + βit. Both βi and βit are allowed to follow arbitrary distributions, with the

restriction that the unconditional mean of βit is zero. The papers differ in the type of model

(logit versus probit), estimation approach and the distributional form used for βi and βit.

These approaches are quite general, but have the main disadvantage that they assume an

additive specification βi + βit. For individual-specific heteroscedasticity in discrete choice

models, a multiplicative specification via βiβit (or βi/σit) is more suitable, as choices becom-

ing more random directly affect the signal-to-noise ratio. That is, increased randomness in

choice-making leads to signal-to-noise ratios that become closer to zero. In a multiplicative

specification, this can be modeled by a low βit (or a high σit). Instead, with an additive

specification, a given βit could shrink the βi + βit of one individual to zero, whereas for an-

other individual it can make it more extreme or let it flip signs. Due to the additive nature

of these approaches, they are less suited to model heterogeneous heteroscedasticity. Instead,

we use a multiplicative specification.

A related strand of literature considers (time-invariant) scale heterogeneity: some indi-

viduals may choose more randomly throughout the observed period than others. Fiebig et al.

(2010) propose a so-called generalized multinomial logit model that includes both individual-

specific preferences βi and an individual-specific scale parameter σi. Separate identification

of the two parameter is achieved by imposing parametric population distributions on βi and

σi (Hess & Rose, 2012). Our approach differs crucially as we focus on the time-variation in

the scale parameter, to allow for changes in individual behavior over time.

3. Methodology

In this section, we develop the hidden Markov multinomial logit model and the hidden

Markov rank-ordered logit model to capture inter- and intra-individual heteroscedasticity.

The methods are highly similar, the main difference is that for the MNL the heteroscedas-
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ticity refers to the change in the scale parameter as time progresses, and for the ROL the

heteroscedasticity refers to the change in the scale parameter across consecutive ranks for

the same ranking task.

Let us introduce some basic notation. We index the individuals by i = 1, ..., N , the

observations for individual i by t = 1, ..., T , and the alternatives that individual i can choose

between, or need to rank, at time t by j = 1, ..., J .4 Furthermore, we denote by xitj a (K×1)

vector of covariates representing the attributes of alternative j at time t for alternative j,

and by βi a (K × 1) vector with individual-specific preference parameters corresponding to

xitj.

3.1. Hidden Markov multinomial logit model

For the multinomial logit model, we let the scalar yit ∈ {1, 2, ..., J} denote the alternative

that individual i chooses at time t, and let Yit denote the corresponding random variable.

The latent utility that individual i obtains from choosing alternative j at time t is given by

Uitj = x′itjβi + σitεitj, (3)

where σit > 0 is an individual- and time-specific scale parameter and the error terms εitj

follow independent type I extreme value distributions with location 0 and scale 1. In case

the scale parameter is equal across individuals (σit = σt), we obtain the heteroscedastic

multinomial logit model. In case the scale parameter is also equal over time (σit = σ = 1),

we obtain the standard (mixed) multinomial logit model.

At each time t, an individual chooses the alternative that yields the highest utility.

Given the utility specification in Equation (3), it follows that the conditional probability

that individual i chooses alternative j at time t is given by (McFadden, 1973)

Pr[Yit = j|βi, σit] =
exp

(
1
σit

(x′itjβi)
)

∑J
l=1 exp

(
1
σit

(x′itlβi)
) . (4)

The scale parameter σit captures heteroscedasticity. The higher σit, the lower the signal-

to-noise ratio and the more random the choice of individual i at time t becomes. For example,

when an individual becomes tired during a survey and starts to answer more randomly, this

can be modeled by a sequence of scales {σit}Tt=1 that increases over time. In the extreme

4In this notation, the number of observations T is equal across individuals and the number of alternatives
J is equal across observations and individuals. These assumptions can be easily relaxed.
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case that σit tends to infinity, the choice becomes completely random. In the other extreme

case that σit is close to 0, the choice can be perfectly explained by the signal x′itjβi.

We let the time variation in the sequence of an individual’s scale parameters {σit}Tt=1

be governed a Markov process. Such a process assumes that while an individual is making

choices, she can go through a number of phases. Each phase is marked by a different scale

parameter. When an individual moves to a phase with higher scale, the choices become more

random. When an individual moves to a phase with lower scale, the choices become more

predictable and more in line with the underlying preferences. For the example of fatigue

during surveys, there may exist phases with a rather high scale. Respondents who become

fatigued, enter these phases with high scale as they answer more randomly as the survey

proceeds. Respondents that do not become fatigued, remain in a phase with low scale.

Let M denote the number of possible phases an individual can go through, with M set by

the researcher. The number of different scale parameters is equal to M : σit ∈ {σ̃1, σ̃2, ..., σ̃M}.
Let sit denote the phase that an individual i is in at time t. Then we have

σit = σ̃sit . (5)

For parameter identification, the scale parameter of one of the phases needs to be fixed.

This fixed scale parameter can be set to 1, such that the preference parameters βi can be

interpreted with respect to the corresponding phase.

The phase indicators {sit}Tt=1 describe how individual i moves through the M phases.

These indicators are unobserved. We let the time variation in {sit}Tt=1 follow a first-order

Markov process (Goldfeld & Quandt, 1973). Such a process describes how individuals move

from one phase to another using transition probabilities. We denote the transition probabil-

ities by

qmnt ≡ Pr[Si,t+1 = n|Sit = m], (6)

which is the probability that individual i is in phase n at time t + 1 given that she was in

phase m at time t, and where Sit denotes the random variable associated with outcome sit,

for m,n = 1, ..,M and t = 1, .., T − 1. We have that 0 ≤ qmnt ≤ 1 and
∑M

n=1 qmnt = 1.

Finally, we denote the initial phase probabilities by

πm ≡ Pr[Si1 = m], (7)

with 0 ≤ πm ≤ 1 and
∑M

m=1 πm = 1.

Depending on the information in the data and the type of application, it may be desired
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to impose restrictions on the parameters of the Markov process. For example, one can restrict

the transition probabilities such that an individual can either stay in the current phase or

move one phase up, also known as a change-point model (Chib, 1998). Furthermore, one

may wish to restrict (some of) the values of the M different scale parameters. In case the

dataset contains relatively few observations per individual, it is important to have only few

phases M , e.g. M ≤ 4. This helps to avoid overfitting, in particular finding a perfect fit

phase in which the choices can be seemingly perfectly explained by the signal.

Finally, the parameters in βi capture the preferences of individual i for the attributes

in xitj. We let βi follow some distribution with density f(βi|θ) where θ denotes the set of

population parameters to be estimated. The type of distribution for βi should be set by

the practitioner. Examples are the multivariate normal distribution (where θ represents the

mean and covariance matrix), lognormal distribution, a mixture of discrete distributions,

and a mixture of normal distributions. The parameters of the distribution could also be

allowed to depend on individual-specific characteristics. Moreover, in case one has large T

per individual, one can directly estimate βi without imposing a population distribution.

For identification, with sufficient variation in the variables xitj, a sufficient condition for

θ to be identified is that the total number of observations in the phase with fixed variance

exceeds the number of parameters in θ. Additional observations in each phase are needed to

identify the parameters of the Markov process.

3.2. Hidden Markov rank-ordered logit model

Next, we generalize the hidden Markov multinomial logit model in Section 3.1 to allow for

rank-ordered choices. That is, we now model a partial or complete ranking over the alterna-

tives instead of only the most preferred alternative. As the ROL uses more information than

the MNL, the ROL allows for more efficient use of data. We provide the model specification

for panel data but the model can also be used for cross-sectional data with T = 1.

Let the vector yit denote the complete ranking provided by individual i at time t out of the

J alternatives, and Yit the corresponding random variable.5 That is, yit = (yit1, yit2, ..., yitJ)′,

and yitj denotes the alternative that was ranked jth. For example, in case alternative three

was ranked first, we have that yit1 = 3. Note that the MNL only models the first-ranked

alternative yit1.

In the rank-ordered logit model, jointly modeling the complete ranking of alternatives

5The specification can be easily extended to problems in which only the top J∗ alternatives out of J
alternatives need to be ranked.

10



(yit) is equivalent to modeling the sequential ranking from the highest rank (yit1) to the

lowest rank (yitJ) (Beggs et al., 1981, Chapman and Staelin, 1982). For each rank h, the

choice between the “remaining” alternatives {yitl}Jl=h can be modeled with a multinomial

logit model. That is, the probability of observing yit has the form

Pr[Yit = yit|βi] =
J−1∏
h=1

Pr[Yith = yith|yit1, ..., yit,h−1, βi]

=
J−1∏
h=1

exp
(
x′ityithβi

)∑J
l=h exp

(
x′ityitlβi

) .
To allow for intra-individual heteroscedasticity — individuals may be more or less capable

to assign the top ranks as compared to the middle and bottom ranks — Hausman and Ruud

(1987) propose a heteroscedastic ROL. For this purpose, they introduce a scale parameter σh

that may differ over ranks h.6 More specifically, in the heteroscedastic ROL the probability

of observing yit is given by

Pr[Yit = yit|βi, σ1, σ2, ..., σJ−1] =
J−1∏
h=1

exp
(

1
σh

(x′ityithβi)
)

∑J
l=h exp

(
1
σh

(x′ityitlβi)
) .

The higher σh, the more random the assignment to rank h. Hence, a high σh indicates that

individuals find it relatively difficult to assign an alternative to rank h.

We extend the approach of Hausman and Ruud (1987) to additionally allow for inter-

individual heteroscedasticity: the ranking capabilities may differ across individuals. More

specifically, we let the probability of observing a complete ranking yit be given by

Pr[Yit = yit|βi, σi1, σi2, ..., σi,J−1] =
J−1∏
h=1

exp
(

1
σih

(x′ityithβi)
)

∑J
l=h exp

(
1
σih

(x′ityitlβi)
) , (8)

where intra- and inter-individual heteroscedasticity is allowed for via the rank- and individual-

specific scale parameter σih.

As with the hidden Markov MNL in Section 3.1, we let the sequence of an individual’s

scale parameter {σih}J−1
h=1 be governed by a Markov process. This implies that we explicitly

allow for “blocks” of consecutive ranks to be assigned based on the same amount of ran-

domness. The sizes and locations of these blocks may differ across individuals. For example,

6In their paper, Hausman and Ruud (1987) use the notation σh to denote the inverse of the scale
parameter.
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some individuals may assign the top three and bottom three ranks accurately and the middle

ranks more randomly. Others, may assign the top two ranks and the lowest rank accurately,

and the remainder more randomly. Our model allows for all these individual differences.

We let βi follow a distribution with density f(βi|θ) and use a Markov process with M

phases to govern the dynamics in {σih}J−1
h=1 . That is, we have the latent phase indicator sih

denoting the phase that individual i is in when assigning rank h, and we have that σih = σ̃sih .

We let sih follow a first-order Markov process with transition and initial phase probabilities

qmnh ≡ Pr[Si,h+1 = n|Sih = m], (9)

πm ≡ Pr[Si1 = m], (10)

with 0 ≤ qmnh ≤ 1,
∑M

n=1 qmnh = 1 for m = 1, ..,M and h = 1, .., J − 2, 0 ≤ πm ≤ 1 and∑M
m=1 πm = 1.

Our hidden Markov ROL generalizes the latent class ROL of Fok et al. (2012). To see the

equivalence: the latent class ROL has a parameter pj denoting the proportion of individuals

that can rank exactly the first j alternatives correctly and the remaining J − j alternatives

randomly. Hence, the hidden Markov ROL is equivalent to the latent class ROL in case we

take two phases with σ̃1 = 1 and σ̃2 =∞, and do not allow individuals to move from phase

two to phase one (q22h = 1 for all h). Then p0 = π2, p1 = π1q121 and pj = π1q12j

∏j−1
h=1 q11h

for j = 2, ..., J − 1. Also, equivalently to testing for an empty class in the latent class ROL

(pj = 0) one can test π1 = 0 (class 0) or q11,j−1 = 1 (classes 1 up to J − 1). Moreover,

with the hidden Markov ROL one can test for equal transition probabilities across ranks

(q11,j = q11,j+1).

3.3. Parameter estimation

To estimate the parameters of the hidden Markov MNL (HM-MNL) in Equations (3)-(7)

and of the hidden Markov ROL (HM-ROL) in Equations (8)-(10), we rely on maximum

12



simulated likelihood estimation. The likelihood functions of the models are given by

p(y|θ, q, π, σ̃) =
N∏
i=1

p(yi|θ, q, π, σ̃)

=
N∏
i=1

[∫
p(yi|βi, q, π, σ̃)f(βi|θ)dβi

]

=
N∏
i=1

∫ ∑
s∗i∈S

Pr[Si = s∗i |q, π]p(yi|βi, σ̃, s∗i )

 f(βi|θ)dβi

 , (11)

where yi = {yit}Tt=1, y = {yi}Ni=1, si = {sit}Tt=1 (HM-MNL), si = {sih}J−1
h=1 (HM-ROL), S is a

set of all possible sequences of phases si ∈ S, and

p(yi|βi, σ̃, si) =


∏T

t=1

exp

(
1

σ̃sit
(x′itjβi)

)
∑J
l=1 exp

(
1

σ̃sit
(x′itlβi)

) , (HM-MNL),

∏T
t=1

∏J−1
h=1

exp

(
1

σ̃sih
(x′ityith

βi)

)
∑J
l=h exp

(
1

σ̃sih
(x′ityitl

βi)

) , (HM-ROL).

The expression to sum over all possible sequences s∗i ∈ S in Equation (11) seems computa-

tionally intensive. However, it can be rewritten as a sequential filter which is computationally

efficient (Hamilton, 1989), see Equations (12) and (13) in Appendix A. Moreover, the prob-

ability of observing a sequence s∗i is a straightforward function of q and π.

For a general density f(βi|θ), the integral in the likelihood function in Equation (11)

cannot be solved analytically. To approximate the integral, we use Monte Carlo integration.

That is, we obtain R draws β
(r)
i from a distribution with density f(βi|θ) and approximate

the integral by the average of p(yi|β(r)
i , q, π, σ̃) over these R draws, see appendix A for more

details. We use scrambled Halton draws to ensure good coverage of f(βi|θ) (Bhat, 2003,

Bhat, 2001, Braaten and Weller, 1979). In case the distribution over βi is taken to be

discrete, the integral over βi can be written as a sum and the log-likelihood function can be

directly maximized without needing Monte Carlo integration.

The use of the sequential filter allows us to directly maximize the (simulated) log-

likelihood function without needing to augment the likelihood function with sit (or sih)

to enable an Expectation Maximization (EM) type of algorithm (Dempster et al., 1977,

Hamilton, 1990). This direct maximization requires less computations in a single iteration

of the optimization than an EM algorithm, and also does not depend on a given draw of sit

(or sih) which may possibly slow down convergence due to the extra iterations needed.
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Specialized code is written in C++ and R (R Core Team, 2013, Eddelbuettel and François,

2011) to obtain the scrambled Halton draws and to evaluate the (simulated) log-likelihood

function and compute its analytic gradients. The details are given in Appendix A. We

take the standard errors equal to the square root of the diagonal elements of the inverse of

the negative Hessian of the log-likelihood function. We approximate the Hessian using the

outer-product-of-gradients approximation.

The probability that an individual i is in a phase m at time t conditional on observed

choices yi, Pr[Sit = m|yi, θ, q, π, σ̃], can be computed after the maximum likelihood estimates

have been obtained. Details are in Appendix B.

4. Monte Carlo study

In this section, we illustrate the performance of our hidden Markov multinomial logit model

with a Monte Carlo study. The study consists of two parts. We first evaluate the small-

sample performance of the model and estimator under correct model specification. Next, we

evaluate the performance of the model under model misspecification.

For the first part of the study, we consider three data generating processes (DGPs). We

use 1,000 Monte Carlo replications per DGP. For each DGP, we consider 1,000 individuals,

15 observations per individual, and 2 alternatives per observation. We consider three ex-

planatory variables: x1itj, x2itj from a standard normal distribution and x3itj from a Bernoulli

distribution with probability 0.5 of outcome one. Furthermore, in the DGPs we draw the

individual-specific preference parameters from a multivariate normal distribution

βi ∼MVN(b,Σβ),

where Σβ is a positive definite covariance matrix.

In the first DGP, the HM-MNL is the true model. In this DGP, we aim to mimic the

possible learning and fatigue behavior that individuals may experience when completing a

survey. We use three phases σ̃ = (∞, 1,∞). Individuals in the first phase still need to

learn (e.g. about their preferences) and answer randomly, individuals in the second phase

answer most accurately according to their true preferences (the minimum variance phase),

and individuals in the third phase answer randomly due to fatigue. We consider initial phase

probabilities π = (0.2, 0.7, 0.1), and transition probabilities q11t = 0.50 and q22t = 0.99 for all

t. Based on π and q, the percentage of observations in phases one to three are 2.7%, 81.6%,

and 15.8%, respectively. Furthermore, 21.5% of individuals reach phase three. At t = 5,
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the percentage of individuals in the minimum variance phase (phase 2) is largest: 85.6%.

Finally, we take Σβ diagonal.

The second and third DGPs are altered versions of the first DGP. In DGP two, the true

model is the MNL: we set π2 = 1 and q22t = 1 for all t. In DGP three, instead of a diagonal

covariance matrix as in DGP one, we add correlation across the preference parameters by

letting Σβ be a full positive definite covariance matrix with implied correlations ρβ. These

correlations can capture time-invariant scale heterogeneity: some individuals may choose

more randomly throughout the survey than others. Time-invariant scale-heterogeneity shows

itself in preference parameters of the same individual to either all tend to more extreme values

than b or to all tend to 0. To incorporate time-invariant scale-heterogeneity in the DGP, we

let the implied correlations have an absolute level of 0.7. That is, when two b parameters

are both positive or both negative we set the correlation to 0.7, when one of them is positive

and the other negative we set the correlation to -0.7.

For each replication, we estimate the parameters of three models: (i) a MNL, (ii) a

heteroscedastic MNL (H-MNL)7, and (iii) our HM-MNL. For all three models, we let βi ∼
MVN(b,Σβ) and use 250 scrambled Halton draws per individual. For the H-MNL, we fix

σ1 = 1 during estimation and, for each replication, after estimation we scale b and Σβ such

that the lowest scale parameter is equal to one. For the HM-MNL, in estimation we use three

phases with known scales σ̃ = (∞, 1,∞). We restrict the transition probabilities such that

individuals can only stay in the current phase or move one phase up and let the transition

probabilities be equal over time.

In the second part of the study, we check the robustness of our model to misspecification

of the Markov process. We consider three extra DGPs (DGPs four to six) in which there are

more phases in the DGP’s Markov process to capture more complex forms of heterogeneous

heteroscedasticity. The details of the DGPs and the results are in Appendix C.

4.1. Results

The results of the first part of the Monte Carlo study are given in Table 1. We report

the mean across replications of the parameter estimates and the corresponding root mean

squared error (RMSE) in parentheses. We do this for the three models estimated: the

standard (mixed) MNL, the heteroscedastic MNL and the hidden Markov MNL.

In the first DGP, the HM-MNL is the true model with Σβ diagonal. For this DGP,

7The heteroscedastic MNL (Bradley & Daly, 1994) incorporates time-dependent scale parameters {σt}Tt=1

that are freely estimated except for one. We set the first scale parameter equal to one: σ1 = 1.
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Table 1: Mean and RMSE (in parentheses) of the parameter estimates for the Monte Carlo study. Based on 1,000 Monte Carlo replications
per DGP.

DGP 1: HM-MNL (ρ = 0) DGP 2: MNL DGP 3: HM-MNL (ρ 6= 0)

Parameter True MNL H-MNL HM-MNL True MNL H-MNL HM-MNL True MNL H-MNL HM-MNL

b1 1.00 0.76 0.94 1.00 1.00 1.00 1.17 1.02 1.00 0.76 0.94 1.00

(0.24) (0.09) (0.06) (0.03) (0.18) (0.03) (0.24) (0.08) (0.06)

b2 0.30 0.23 0.28 0.30 0.30 0.30 0.35 0.30 0.30 0.22 0.27 0.30

(0.07) (0.03) (0.03) (0.02) (0.06) (0.02) (0.08) (0.04) (0.03)

b3 -0.50 -0.38 -0.48 -0.50 -0.50 -0.50 -0.58 -0.51 -0.50 -0.37 -0.46 -0.50

(0.12) (0.06) (0.05) (0.04) (0.10) (0.04) (0.13) (0.06) (0.05)

σβ,1 0.50 0.52 0.65 0.49 0.50 0.50 0.59 0.49 0.50 0.52 0.65 0.49

(0.03) (0.15) (0.06) (0.03) (0.10) (0.04) (0.03) (0.15) (0.06)

σβ,2 0.40 0.33 0.41 0.40 0.40 0.40 0.47 0.40 0.40 0.33 0.41 0.40

(0.07) (0.04) (0.03) (0.03) (0.08) (0.03) (0.07) (0.04) (0.03)

σβ,3 0.70 0.59 0.72 0.70 0.70 0.70 0.81 0.70 0.70 0.58 0.71 0.70

(0.12) (0.07) (0.07) (0.05) (0.13) (0.05) (0.13) (0.07) (0.07)

ρβ,12 0.00 0.21 0.21 -0.02 0.00 0.00 0.00 -0.03 0.70 0.69 0.69 0.71

(0.22) (0.22) (0.15) (0.08) (0.08) (0.10) (0.07) (0.07) (0.10)

ρβ,13 0.00 -0.20 -0.20 0.02 0.00 0.00 0.00 0.03 -0.70 -0.68 -0.68 -0.71

(0.21) (0.22) (0.14) (0.09) (0.09) (0.10) (0.08) (0.08) (0.10)

ρβ,23 0.00 -0.10 -0.10 0.00 0.00 -0.01 -0.01 0.00 -0.70 -0.72 -0.72 -0.70

(0.14) (0.15) (0.12) (0.09) (0.09) (0.09) (0.10) (0.10) (0.10)

π1 0.200 0.204 0.000 0.014 0.200 0.207

(0.047) (0.027) (0.046)

π2 0.700 0.699 1.000 0.978 0.700 0.696

(0.055) (0.035) (0.054)

π3 0.100 0.097 0.000 0.008 0.100 0.097

(0.042) (0.015) (0.042)

q11 0.500 0.477 - 0.003 0.500 0.483

(0.170) (0.163)

q22 0.990 0.990 1.000 0.999 0.990 0.990

(0.003) (0.001) (0.004)
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the standard MNL underestimates the mean of the preference parameters b. This is as

expected, as heteroscedasticity leads to more random-looking choice making of individuals.

The H-MNL also slightly underestimates the preference parameters. Hence, the bias towards

zero, due to 14.4% of individuals choosing randomly at the minimum variance task 5, seems

stronger than the bias away from zero, due to scaling back to the minimum variance task. The

parameter estimator for the HM-MNL seems to have negligible small sample bias. Hence, the

model seems well able to capture and distinguish between the individual-specific preferences

and heteroscedasticity.

Interestingly, the MNL and H-MNL spuriously find a positive correlation between b1 and

b2 (ρβ,12 > 0) and negative correlations ρβ,13 and ρβ,23. This implies that individuals with

an extremer value for b1 also tend to have extremer values for b2 and b3, and vice versa.

These correlations thus try to capture part of the individual-specific time-variation in the

scale parameter via (spurious) individual-specific time-invariant correlations.

In the second DGP, the standard MNL is the true model. The estimator for the standard

MNL seems to be unbiased. In contrast, the H-MNL clearly overestimates the preference

parameters b. This illustrates that the parameter estimator for the H-MNL is biased away

from zero due to estimation uncertainty in {σt}Tt=1 of which the lowest is used to scale the

preference parameters. The estimator for the HM-MNL seems almost unbiased: there is

a slight bias away from zero. This is because the model assigns, on average, a small 2.2%

fraction of individuals to start in phases one and three. The mean of the estimated probability

of staying in the minimum variance phase (q22) is close to the true 1. The RMSEs indicate

that the loss in efficiency in estimating the HM-MNL instead of the correctly specified MNL

is almost negligible.

Finally, in DGP 3, the HM-MNL is the true model and there is correlation across the

preference parameters to allow for time-invariant scale heterogeneity. The estimator for the

HM-MNL seems to be unbiased for both the mean of the preference parameters (b) and the

covariance matrix (Σβ), indicating that this model can distinguish between time-invariant

scale heterogeneity and time-varying scale heterogeneity.

To summarize, the parameter estimator for the preference parameters in the H-MNL

specification seems biased for all three DGPs. Depending on the DGP and whether individual

differences exist, the bias can be towards zero or away from zero. Also, the estimator for the

standard MNL specification is biased towards zero in case heteroscedasticity is present. The

HM-MNL alleviates these biases.

The results of the second part of the study, the performance of the HM-MNL under
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misspecification of the Markov process, are in Appendix C. In the three DGPs considered,

the true Markov process contains more phases than the three used in estimation, and in many

of the phases the scale parameter is between one and infinity. Such a Markov process could

be more realistic than the process assumed in estimation. We find that the estimators for the

three models all underestimate the preference parameters. The bias towards zero is largest

for the standard MNL, followed by the H-MNL. The estimator for the HM-MNL is most

accurate in estimating the preference parameters. This indicates that our proposed HM-

MNL works comparatively well when the true underlying Markov process is more complex

than assumed in the model.

5. Case study I: learning and fatigue during discrete choice ex-

periments

In this section, we illustrate our hidden Markov multinomial logit model with data obtained

from a discrete choice experiment (DCE). During DCEs, respondents are repeatedly asked to

make a hypothetical choice among a set of alternatives, where each alternative is described

by a number of attributes (Green, 1974, Louviere and Woodworth, 1983). These experiments

are used to elicit the preferences of respondents. The results can be used in product design

and in predicting product demand (Rao, 2014). During DCEs, respondents might still need

to learn about their preferences or the choice task at hand (Plott, 1993, Braga and Starmer,

2005), or may become tired, bored, or irritated while completing the choice tasks (Lavrakas,

2008). This latter process is known as fatigue. Due to learning and fatigue, a respondent may

respond more randomly at some tasks. This randomness will lead to unpopular products to

be more often selected and, if unaccounted for in the model, overestimation of their potential

demand.

The papers that have examined the presence of learning and fatigue during discrete choice

experiments have so far only used population-level approaches for the learning and fatigue

process.8 Using different datasets, they find mixed results: some find evidence of learning

8The only exception is the individual-level model of Campbell et al. (2015), which is a rather restrictive
model. Campbell et al. (2015) a priori divide the choice tasks into early (E), middle (M) and late (L) tasks.
To model the choices for the three different types of tasks, they specify a latent class model with seven
classes. There are three different vectors of preference parameters βE , βM , βL and three scale parameters
σE , σM and σL. The first class of the latent class model has constant preferences βM and constant scale
σM for early, middle and late tasks (hence, no learning and fatigue). Classes 2 to 4 have a constant σM but
different combination of β’s: class 2 has βE for early tasks and βM for the remaining tasks (only learning),
class 3 has βL for late tasks and βM for the remaining tasks (only fatigue), and class 4 has βE for early tasks,
βM for middle tasks and βL for late tasks (learning and fatigue). Classes 5 to 7 have a constant βM and a
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(DeSarbo et al., 2004, Holmes and Boyle, 2005, Czajkowski et al., 2014), some of fatigue

(Bradley and Daly, 1994, Koppelman and Sethi, 2005, Savage and Waldman, 2008) and some

of neither (Savage and Waldman, 2008, Hess et al., 2012). Because of the population-level

approaches, these papers only provide insight into the aggregate scale per choice task, and

thus cannot distinguish between different respondents at the same choice task: those that

answer accurately, those that need to learn, and those that are fatigued. Hence, findings

based on an individual-level model may totally differ.

To examine learning and fatigue during DCEs, we use data obtained from a discrete

choice experiment on food choices conducted in the Netherlands (Koç & van Kippersluis,

2017).9 During the experiment, the respondents had to complete 18 choice tasks. At each

choice task, a respondent was asked to choose between two meals: “Which of the two meals

would you eat regularly (at least twice a week)?”.

The meals were described by the attributes price, taste, cooking time, and health conse-

quences. Each attribute could take on three levels, with a clear ordering between the levels.

For example, the price of the meal was either 2 Euro, 6 Euro, or 10 Euro. The respondents

were divided into three groups. The groups differed in the attributes and information they

obtained during the DCE about the health consequences of the meal. For the first respon-

dent group, the health consequences of the meal were described by one explicit attribute: a

meal could either be healthy, health neutral, or unhealthy. For the second and third group,

the health consequences were described by three implicit health attributes: number of calo-

ries, grams of saturated fat, and grams of sodium. Furthermore, group 2 obtained health

information describing what levels of these attributes constitute a healthy meal. Group 3

did not obtain this health information. For an overview of the attributes and corresponding

levels per respondent group, see Table 2. The ordering of the tasks within each respondent

group were randomized over the respondents and there was no overlap of respondents across

groups.

We retain all respondents who filled in at least two choice tasks, also when a respondent

dropped out. The three respondent groups contain the responses of 1,206, 1,154 and 1,185

respondents, respectively. In the model, we include the attribute levels as different dummy

variables. For each attribute, we take the baseline level to be the first attribute level.

We consider three models: (1) a MNL, (2) a heteroscedastic MNL (H-MNL) (Bradley

similar combination of σ as classes 2 to 4 have for β. This model does not allow for unobserved preference
heterogeneity and the timing of learning and fatigue is fixed across respondents by a priori dividing the
tasks into three sets.

9The dataset was obtained from the LISS (Longitudinal Internet Studies for the Social sciences) panel
administered by CentERdata (Tilburg University, The Netherlands).
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Table 2: Attributes and attribute levels for the three respondent groups. The final column indicates
which respondents groups (1,2 or 3) obtained which attributes in the choice experiment.

Attribute Attribute levels Groups

Price 2 Euro 6 Euro 10 Euro 1, 2, 3

Cooking time 10 min 30 min 50 min 1, 2, 3

Taste OK Good Very good 1, 2, 3

Health consequence Unhealthy Health neutral Healthy 1

Number of kilocalories 800 1,100 1,400 2, 3

Grams of saturated fat 10 20 30 2, 3

Milligrams of sodium 900 1,200 1,500 2, 3

& Daly, 1994), and (3) our HM-MNL. For all three models, we take a multivariate normal

distribution for βi as given by

βi ∼MVN(b,Σβ),

where Σβ is a full positive definite covariance matrix. In estimation, we use 250 scrambled

Halton draws per respondent and 30 starting values per model.10

For the HM-MNL, we consider two specifications. Both specifications have three phases

σ̃ = (∞, 1,∞): respondents in the first phase still need to learn and answer randomly, re-

spondents in in the second phase (the minimum variance phase) answer most accurately,

and respondents in the third phase answer randomly due to fatigue. We restrict the transi-

tion probabilities such that a respondent can either stay in the current phase or move one

phase up. For the first specification, we let the transition probabilities be equal over tasks:

q11t = q11 and q22t = q22 for all t. For the second specification, we allow for the transition

probabilities from the minimum variance phase to the fatigue phase to be different over

tasks.

For the H-MNL, we fix σ1 = 1 during estimation. After estimation, we scale b, Σβ and

{σt}Tt=1 such that the minimum variance task has variance one, that is, min{σt}Tt=1 = 1.

5.1. Results

The results for the first respondent group are shown in Table 3.11 For this group, the meals

were described by four attributes, explicit health information was given in the final attribute

‘health consequences’. With the MNL, we find that individuals, on average, positively value

10The starting values for b and Σβ for the H-MNL and HM-MNL are set equal to the maximum likelihood
estimates of the MNL.

11The detailed results for the covariance matrix Σβ are available upon request.
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a low price and cooking time, a good taste, and a healthy meal.

The H-MNL and HM-MNL find similar patterns as the MNL in the preference parameters,

although they are estimated further away from zero. Hence, learning and fatigue seem to

both be present. For the population-level H-MNL, this is clearly indicated in the time-

variation in the scale parameters. The variance increases at task 2, then decreases, and in

the final couple of tasks increases again. The minimum variance task is estimated to be 14.

Hence, in the first 14 tasks learning seems more prevalent than fatigue, whereafter fatigue

seems more prevalent. The standard errors do imply that there is quite some estimation

uncertainty and the minimum variance task could be anywhere from task 7 to 16.

The first HM-MNL, with transition probabilities restricted over tasks, also finds evidence

of learning and fatigue. An estimated 17.4% of respondents start in the learning phase in

which they reside on average five tasks.12 Fatigue also occurs: 1.2% of respondents are

estimated to answer randomly throughout the survey, and at each task an estimated 0.3%

of respondents in the minimum variance phase gets fatigued. Based on the estimated initial

and transition probabilities, 5.2% of respondents is fatigued at the final choice task.

The less restrictive second HM-MNL finds that an estimated 17.0% of respondents start

in the learning phase and none of the respondents start in the fatigue phase. Furthermore,

mainly after the first and second task, respondents seem to become tired. For tasks 3 up to

15, most respondents in the minimum variance phase seem to stay there, and at the final

three tasks 16 to 18, more respondents seem to become fatigued. At the final choice task,

an estimated 7.2% of respondents is fatigued.

According to the information criteria, both HM-MNL models are preferred over the

standard MNL and the H-MNL. The first HM-MNL model seems the most preferred. Even

though this HM-MNL has 13 parameters less to estimate than the H-MNL, the likelihood

value indicates that it better fits the data. Thus, there seems to be quite some heterogeneity

in learning and fatigue across respondents.

The results for the HM-MNL models indicate that at each task, a number of respondents

answer randomly. This causes a bias towards zero in the preference parameters b in the

H-MNL next to the bias away from zero due to scaling back to the minimum variance task.

For this food choice dataset for the first respondent group, the biases seem to almost cancel

each other with the bias towards zero seeming just a bit more dominant: the preference

parameters b estimated by the H-MNL are slightly closer to zero than those estimated by

the HM-MNL.

12The average number of tasks that someone who starts in the learning phase will remain in the learning
phase is equal to 1/(1− q11).
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Table 3: Parameter estimates and standard errors (in parentheses) for group 1 from the food choice
dataset. Baseline levels are price 2 euro, time 10 minutes, taste OK, and health unhealthy.

MNL H-MNL HM-MNLa HM-MNLb

Price 6 euro -0.74 (0.04) -0.96 (0.07) -0.98 (0.06) -0.99 (0.06)

Price 10 euro -2.15 (0.08) -2.75 (0.18) -2.76 (0.12) -2.77 (0.13)

Time 30 min -0.35 (0.04) -0.44 (0.04) -0.46 (0.05) -0.46 (0.05)

Time 50 min -1.23 (0.06) -1.57 (0.11) -1.59 (0.08) -1.60 (0.08)

Taste good 0.66 (0.04) 0.83 (0.06) 0.85 (0.05) 0.85 (0.05)

Taste very good 1.18 (0.05) 1.51 (0.10) 1.50 (0.07) 1.51 (0.07)

Health neutral 3.50 (0.09) 4.49 (0.28) 4.55 (0.16) 4.58 (0.17)

Healthy 4.96 (0.13) 6.36 (0.39) 6.43 (0.23) 6.48 (0.24)

π1 0.174 (0.024) 0.170 (0.024)

π2 0.814 (0.033) 0.830 (0.039)

π3 0.012 (0.015) 0.000 (0.025)

q11 0.816 (0.043) 0.796 (0.046)

q22 0.997 (0.001)

σ1 1.59 (0.13)

σ2 or q22,1 1.76 (0.14) 0.990 (0.032)

σ3 or q22,2 1.59 (0.13) 0.968 (0.023)

σ4 or q22,3 1.64 (0.15) 1.000 (0.027)

σ5 or q22,4 1.33 (0.11) 1.000 (0.026)

σ6 or q22,5 1.51 (0.14) 1.000 (0.019)

σ7 or q22,6 1.16 (0.11) 1.000 (0.018)

σ8 or q22,7 1.21 (0.12) 1.000 (0.024)

σ9 or q22,8 1.14 (0.11) 1.000 (0.027)

σ10 or q22,9 1.01 (0.10) 1.000 (0.018)

σ22 or q22,10 1.21 (0.11) 0.990 (0.012)

σ12 or q22,11 1.13 (0.11) 1.000 (0.014)

σ13 or q22,12 1.22 (0.13) 1.000 (0.014)

σ14 or q22,13 1.00 - 1.000 (0.019)

σ15 or q22,14 1.10 (0.11) 1.000 (0.022)

σ16 or q22,15 1.20 (0.11) 0.985 (0.015)

σ17 or q22,16 1.25 (0.12) 1.000 (0.021)

σ18 or q22,17 1.24 (0.11) 0.987 (0.021)

average σβ 1.5 1.9 1.9 1.9

# free parameters 44 61 48 64

log-likelihood -10,560 -10,524 -10,483 -10,477

BIC 21,559 21,658 21,446 21,593

AIC3 21,252 21,232 21,111 21,146

AIC2 21,208 21,171 21,063 21,082

a HM-MNL with 3 phases σ̃ = (∞, 1,∞): equal transition probabilities over tasks.
b HM-MNL with 3 phases σ̃ = (∞, 1,∞): transition probability to fatigue different per task.
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Table 4: Parameter estimates and standard errors (in parentheses) for groups 2 and 3 from the food choice dataset. Baseline levels are price
2 euro, time 10 minutes, taste OK, calories 800, saturated fat 10 gram, and sodium 900 mg.

Food 2 Food 3
MNL H-MNL HM-MNLa HM-MNLb MNL H-MNL HM-MNLa HM-MNLb

Price 6 euro -0.61 (0.04) -0.86 (0.06) -0.91 (0.06) -0.92 (0.06) -0.71 (0.04) -1.03 (0.07) -1.03 (0.07) -1.06 (0.07)
Price 10 euro -1.54 (0.08) -2.16 (0.13) -2.19 (0.13) -2.21 (0.13) -1.82 (0.09) -2.64 (0.16) -2.68 (0.14) -2.61 (0.15)
Time 30 min -0.08 (0.04) -0.13 (0.03) -0.15 (0.05) -0.16 (0.05) -0.09 (0.04) -0.14 (0.03) -0.12 (0.05) -0.15 (0.06)
Time 50 min -0.65 (0.06) -0.93 (0.07) -0.92 (0.09) -0.93 (0.09) -0.73 (0.07) -1.08 (0.08) -1.09 (0.09) -1.04 (0.10)
Taste good 0.69 (0.04) 0.99 (0.06) 0.98 (0.06) 0.98 (0.06) 0.89 (0.05) 1.30 (0.08) 1.39 (0.08) 1.40 (0.08)
Taste very good 1.19 (0.06) 1.69 (0.10) 1.64 (0.09) 1.65 (0.09) 1.40 (0.07) 2.08 (0.12) 2.19 (0.12) 2.26 (0.12)
Calories 1100 -0.81 (0.04) -1.10 (0.07) -1.11 (0.07) -1.11 (0.07) -0.58 (0.04) -0.85 (0.06) -0.81 (0.06) -0.92 (0.07)
Calories 1400 -1.59 (0.06) -2.20 (0.13) -2.19 (0.11) -2.20 (0.11) -1.29 (0.06) -1.89 (0.11) -1.86 (0.10) -2.04 (0.11)
Sat fat 20 gram -0.66 (0.04) -0.94 (0.06) -0.94 (0.07) -0.95 (0.07) -0.43 (0.04) -0.61 (0.04) -0.60 (0.06) -0.68 (0.06)
Sat fat 30 gram -1.28 (0.06) -1.78 (0.11) -1.79 (0.09) -1.81 (0.10) -0.91 (0.05) -1.31 (0.08) -1.30 (0.08) -1.44 (0.09)
Sodium 1200mg -0.37 (0.04) -0.52 (0.05) -0.55 (0.06) -0.55 (0.06) -0.33 (0.04) -0.48 (0.04) -0.52 (0.06) -0.55 (0.07)
Sodium 1500mg -0.87 (0.05) -1.21 (0.08) -1.22 (0.08) -1.23 (0.08) -0.72 (0.05) -1.04 (0.07) -1.07 (0.07) -1.11 (0.08)

π1 0.218 (0.030) 0.217 (0.030) 0.273 (0.033) 0.269 (0.032)
π2 0.765 (0.036) 0.782 (0.042) 0.713 (0.035) 0.706 (0.047)
π3 0.017 (0.021) 0.002 (0.030) 0.014 (0.027) 0.025 (0.045)

q11 0.816 (0.042) 0.802 (0.044) 0.838 (0.036) 0.831 (0.037)
q22 0.996 (0.001) 0.995 (0.002)

σ1 1.80 (0.14) 1.90 (0.14)
σ2 or q22,1 1.96 (0.16) 0.973 (0.040) 2.13 (0.17) 0.993 (0.064)
σ3 or q22,2 1.85 (0.15) 0.983 (0.035) 1.85 (0.14) 0.990 (0.052)
σ4 or q22,3 1.60 (0.15) 0.999 (0.037) 1.88 (0.16) 0.998 (0.046)
σ5 or q22,4 1.21 (0.10) 0.999 (0.035) 1.40 (0.12) 0.992 (0.030)
σ6 or q22,5 1.57 (0.13) 0.998 (0.034) 1.17 (0.10) 0.995 (0.033)
σ7 or q22,6 1.48 (0.12) 0.982 (0.024) 1.70 (0.14) 0.996 (0.029)
σ8 or q22,7 1.30 (0.11) 0.999 (0.028) 1.63 (0.13) 0.997 (0.029)
σ9 or q22,8 1.35 (0.11) 0.999 (0.026) 1.44 (0.13) 0.999 (0.028)
σ10 or q22,9 1.16 (0.10) 0.997 (0.025) 1.29 (0.12) 0.987 (0.026)
σ22 or q22,10 1.51 (0.13) 0.996 (0.026) 1.30 (0.12) 0.990 (0.028)
σ12 or q22,11 1.32 (0.12) 0.999 (0.021) 1.17 (0.10) 0.990 (0.022)
σ13 or q22,12 1.19 (0.11) 0.999 (0.026) 1.25 (0.11) 1.000 (0.022)
σ14 or q22,13 1.00 - 0.995 (0.023) 1.26 (0.11) 0.999 (0.031)
σ15 or q22,14 1.40 (0.12) 0.983 (0.022) 1.13 (0.09) 0.982 (0.022)
σ16 or q22,15 1.10 (0.11) 0.998 (0.025) 1.50 (0.12) 0.993 (0.020)
σ17 or q22,16 1.22 (0.11) 0.999 (0.025) 1.33 (0.12) 0.999 (0.018)
σ18 or q22,17 1.18 (0.12) 0.999 (0.039) 1.00 - 1.000 (0.033)

average σβ 1.1 1.5 1.4 1.4 1.1 1.6 1.5 1.6

# free parameters 90 107 94 110 90 107 94 110
log-likelihood -10,989 -10,946 -10,900 -10,897 -11,474 -11,433 -11,360 -11,354
BIC 22,872 22,955 22,734 22,887 23,844 23,933 23,656 23,804
AIC3 22,248 22,212 22,082 22,124 23,217 23,188 23,001 23,037
AIC2 22,158 22,105 21,988 22,014 23,127 23,081 22,907 22,927

a HM-MNL with 3 phases σ̃ = (∞, 1,∞): equal transition probabilities over tasks.
b HM-MNL with 3 phases σ̃ = (∞, 1,∞): transition probability to fatigue different per task.
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The results for the second and third respondent groups are in Table 4. For these two

groups, health consequences were described by three attributes: (i) number of calories, (ii)

amount of saturated fat, and (iii) amount of sodium. For group two, health information on

the attributes was provided in the text, for group three no health information was provided.

The HM-MNL models find that as the amount of information decreases from group one

to three, the percentage of respondents that start in the learning phase increases from 17%

to 22% to 27%. Moreover, according to the first HM-MNL specification, the probability to

become fatigued once in the minimum variance phase increases from group one to three, from

0.3% to 0.4% to 0.5% per choice task, although there is some uncertainty in these estimates.

Hence, summarizing health information in one attribute or providing health information in

the text seems to reduce the need for learning and the risk of fatigue.

With the H-MNL we also find evidence of learning for respondent groups two and three.

Remarkably, for all three groups, we find an initial increase in the variance from task 1 to

2, after which the variance decreases. This is not due to the order of the choice tasks as

they are randomized over respondents. Hence, it seems that there is a relatively large group

of respondents who try to answer accurately at task 1, but from task 2 onwards do not so

anymore. This behavior can be seen more explicitly by the second HM-MNL specification,

where we find that there is relatively large group of respondents that move to the fatigue

phase after tasks one and two. Combined with the reduction of respondents that need to

learn in these two tasks, the variation in the scale parameters in the H-MNL can be explained.

In summary, the hidden Markov MNLs provide the best fit of the data for all three

respondent groups. Moreover, these models provide interesting and plausible insights into

the presence of learning and fatigue during the discrete choice experiment.

6. Case study II: differential capabilities in ranking

In this section, we illustrate our hidden Markov rank-ordered logit model with rankings ob-

tained from a survey on cultural opinions conducted in the Netherlands (Sociaal en Cultureel

Planbureau, 2004, Fok et al., 2012). One of the questions in the survey asked the respondents

to rank 16 political goals from most to least desired. In total, 2,261 individuals aged sixteen

years and older completed the ranking. The initial presented ordering of the political goals

in the survey was randomized over respondents.

We estimate and compare three models: (1) a ROL, (2) a heteroscedastic ROL (H-ROL)

(Hausman & Ruud, 1987) and (3) our HM-ROL. For all models, we take a multivariate
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normal distribution for βi as given by

βi ∼MVN(b,Σβ),

with full positive definite covariance matrix Σβ.13 In estimation, we use 30 starting values

per model and 250 scrambled Halton draws per respondent. For the H-ROL, we fix σ1 = 1.

For the HM-ROL, we consider three specifications. The first specification is equivalent to

the latent class ROL in Fok et al. (2012), with the addition of allowing for individual-specific

preference parameters. That is, we use two phases σ̃ = (1,∞) and restrict the transition

probabilities such that, between consecutive ranks, a respondent can only move from phase

1 to phase 2 and once in phase 2 stays there. In other words, a respondent can assign all

ranks accurately (all choices based on phase 1), all ranks randomly (all choices based on

phase 2), or the top j ranks accurately and the bottom J − j randomly (in phase 1 for rank

one until j, in phase 2 for ranks j + 1 and higher) for any j.

For the second specification, we also allow for bottom ranks to be assigned accurately.

We use three phases σ̃ = (1,∞, 1) and restrict the transition probabilities such that, between

consecutive ranks, a respondent can only move from phase 1 to phase 2 or from phase 2 to

phase 3, and once in phase 3 stays there. Also, a respondent is restricted to start (assign the

top rank) in either phase 1 or 2. In the third specification, we include a middle phase with

scale to be estimated: σ̃ = (1, σ̃2,∞, 1) to allow for a decrease in the ability of respondents

to assign lower ranks. We restrict the transition and initial phase probabilities such that

a respondent can only move one phase up and can only start in the first and third phase.

For further parsimony, we restrict the transition probabilities to be equal to each other over

ranks h, except for moving from the first to the second phase in the first two tasks (assign

top ranks accurately) and from the third to the final phase in the last two tasks (assign

bottom ranks accurately).

6.1. Results

The results for the political preferences ranking data are given in Table 5. With the standard

ROL we find that individuals seem to attach most value to goals as ‘maintain order’, ‘stable

economy’, ‘fight crime’, ‘freedom of speech’, and ‘social security’. The estimated correlations

across the individual-specific preference parameters in Σβ indicate which goals are often

13For the political preferences ranking data, we have only one observation per individual and quite a
number of free parameters in the (15× 15) matrix Σβ . Therefore, using a low-rank approximation of Σβ or
a Bayesian approach with informative priors might be useful to reduce the risk of overfitting.
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ranked close by (results not shown).14 We find that this holds most strongly for (i) ‘maintain

order’ and ‘fight crime’, (ii) ‘more say politics’ and ‘more say community’, (iii) ‘economic

growth’ and ‘stable economy’, (iv) ‘defence forces’ and ‘cities and countryside’, and (v)

‘humane society’ and ‘ideas > money’.

Table 5: Parameter estimates and standard errors (in parentheses) for the political preferences ranking
dataset. Baseline level is ‘take good care of immigrants’.

ROL H-ROL HM-ROLa HM-ROLb HM-ROLc

maintain order 2.45 (0.05) 4.04 (0.10) 2.82 (0.07) 3.03 (0.08) 3.98 (0.15)

more say politics 1.20 (0.05) 2.32 (0.06) 1.51 (0.06) 1.67 (0.07) 2.29 (0.12)

fight rising prices 1.50 (0.05) 2.82 (0.08) 1.84 (0.07) 2.02 (0.08) 2.78 (0.13)

freedom of speech 2.31 (0.04) 3.84 (0.10) 2.64 (0.06) 2.86 (0.07) 3.77 (0.15)

economic growth 1.44 (0.05) 2.66 (0.07) 1.74 (0.07) 1.92 (0.08) 2.62 (0.13)

defence forces -0.77 (0.05) -2.22 (0.07) -1.39 (0.11) -1.74 (0.17) -1.86 (0.15)

more say community 1.14 (0.05) 2.21 (0.06) 1.43 (0.06) 1.60 (0.07) 2.18 (0.12)

cities and countryside 0.17 (0.04) 0.44 (0.03) 0.29 (0.06) 0.36 (0.07) 0.46 (0.09)

stable economy 2.40 (0.05) 3.97 (0.11) 2.75 (0.06) 2.96 (0.08) 3.92 (0.15)

fight crime 2.40 (0.05) 3.99 (0.11) 2.77 (0.07) 2.99 (0.08) 3.92 (0.15)

humane society 1.67 (0.05) 3.04 (0.08) 1.97 (0.06) 2.17 (0.07) 2.99 (0.13)

ideas > money 0.91 (0.04) 1.82 (0.06) 1.15 (0.06) 1.31 (0.07) 1.81 (0.11)

fight unemployment 2.10 (0.05) 3.64 (0.10) 2.47 (0.06) 2.68 (0.08) 3.59 (0.15)

fight pollution 1.05 (0.04) 2.13 (0.06) 1.33 (0.05) 1.50 (0.07) 2.07 (0.11)

social security 2.31 (0.05) 3.85 (0.10) 2.65 (0.06) 2.88 (0.08) 3.79 (0.15)

σ̃2 2.29 (0.17)

π1 1.00 (0.02) 1.00 (0.02) 0.98 (0.02)

π2 0.00 (0.01) 0.00 (0.01)

π3 0.02 (0.01)

π4

σ1 1.00 -

σ2 or q11,1 1.10 (0.04) 0.99 (0.01) 0.98 (0.01)

σ3 or q11,2 1.23 (0.04) 1.00 (0.01) 0.99 (0.02)

σ4 or q11,3 1.21 (0.04) 1.00 (0.01) 1.00 (0.01)

σ5 or q11,4 1.36 (0.04) 0.99 (0.01) 0.98 (0.01)

σ6 or q11,5 1.58 (0.05) 0.99 (0.01) 0.97 (0.02)

σ7 or q11,6 1.63 (0.05) 0.98 (0.01) 0.96 (0.02)

σ8 or q11,7 1.86 (0.05) 0.99 (0.02) 0.94 (0.03)

σ9 or q11,8 1.90 (0.06) 0.98 (0.02) 0.92 (0.03)

σ10 or q11,9 1.99 (0.06) 0.94 (0.03) 0.89 (0.03)

σ11 or q11,10 2.44 (0.07) 0.96 (0.03) 0.91 (0.05)

σ12 or q11,11 2.78 (0.08) 0.94 (0.03) 0.83 (0.05)

σ13 or q11,12 2.59 (0.08) 0.97 (0.04) 0.94 (0.06)

σ14 or q11,13 3.27 (0.10) 0.87 (0.04) 0.78 (0.07)

σ15 or q11,14 4.54 (0.15) 0.77 (0.05) 0.61 (0.11)

q22,1 0.96 (5.63)

q22,2 0.96 (0.68)

14The detailed results for Σβ are available upon request.
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Table 5: (Continued)

ROL H-ROL HM-ROLa HM-ROLb HM-ROLc

q22,3 0.68 (0.28)

q22,4 0.78 (0.41)

q22,5 0.98 (0.35)

q22,6 0.96 (0.26)

q22,7 0.74 (0.19)

q22,8 0.41 (0.15)

q22,9 0.61 (0.17)

q22,10 1.00 (0.18)

q22,11 0.83 (0.12)

q22,12 0.72 (0.10)

q22,13 1.00 (0.15)

q22,14 0.99 (0.15)

q11,1 0.90 (0.05)

q11,2 1.00 (0.06)

q11,3:14 0.83 (0.02)

q22 0.95 (0.01)

q33,1:12 0.87 (0.04)

q33,13 1.00 (0.15)

q33,14 1.00 (0.16)

average σβ 1.3 2.5 1.6 1.7 2.3

# free parameters 135 149 150 164 144

log-likelihood -62,369 -62,193 -62,207 -62,172 -62,152

BIC 125,781 125,537 125,573 125,610 125,417

AIC3 125,144 124,833 124,865 124,835 124,736

AIC2 125,009 124,684 124,715 124,671 124,592

aHM-ROL with 2 phases σ̃ = (1,∞): accurately assign top ranks.
bHM-ROL with 3 phases σ̃ = (1,∞, 1): accurately assign top and bottom ranks.
cHM-ROL with 4 phases σ̃ = (1, σ̃2,∞, 1): accurately assign top and bottom ranks + decrease in accuracy.

We next consider the H-ROL which accounts for the behavior that individuals cannot

rank all alternatives accurately in a homogeneous way across individuals. The estimates for

the mean preference parameters b are further away from zero than for the ROL, and the

scale parameters σh show a gradual increase as the rank h increases. Hence, individuals

seem to be unable to assign all ranks accurately, rendering the estimator for the standard

ROL biased. Moreover, individuals seem to most accurately assign the top ranks, followed

by the middle and then the bottom ranks. The preference ordering of the political goals

stays roughly the same.

The HM-ROL allows for individual differences in the ranking capabilities. The first HM-

ROL specification is equivalent to the latent class ROL in Fok et al. (2012), with the addition

of allowing for preference heterogeneity. We find that all individuals are able to rank the
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first alternative accurately (π1 = 1.0). The probabilities of staying in the minimum variance

phase 1 for consecutive ranks (q11h) are mostly smaller than one, indicating that quite some

individuals find it rather difficult to assign the middle and bottom ranks. Moreover, there

seem to be individual differences in the number of top ranks that can be assigned accurately.

The probabilities of staying in the minimum variance phase one are especially low for the

final couple of ranks. This indicates that a large proportion of respondent who are able to

accurately assign ranks 1 to 9, have more trouble assigning the lower ranks. These findings

mostly agree with the findings Fok et al. (2012), with the exception that they find that 4%

of individuals cannot rank the first alternative accurately. This difference suggests that it is

important to allow for preference heterogeneity when allowing for differential capabilities in

ranking.

The second HM-ROL specification also allows for bottom ranks to be assigned accurately.

The probability of staying in the first phase (q11h) are close to one for the first six ranks, and

quite a bit lower for the subsequent ranks. This indicates that quite some individuals can

accurately assign ranks one to six, but find it more difficult to assign middle ranks from rank

seven onwards. The probability of staying in the second phase (q22h) differ quite a bit over

ranks. These probabilities are often quite low, indicating that indeed some individuals are

able to assign the bottom ranks accurately. Because of the uncertainty in these estimates,

it might be sensible to add restrictions to the transition probabilities. For example, one can

impose them equal across certain (middle) ranks.

In the third HM-ROL specification, we allow for a decrease in accuracy for assigning

alternatives for consecutive ranks, as well as for bottom ranks to be assigned accurately.

The estimated scale parameter for the second phase is equal to 2.3. We find that 10% of

respondent in the minimum variance phase move to the second phase after rank one, 0%

after rank two, and 17% of respondents after each remaining rank. Hence, the information

content in the ranks assigned seems to highly differ across respondents.

The main difference between the three HM-ROL specifications is that the final specifi-

cation allows for a decrease in accuracy in the alternatives assigned to consecutive ranks,

whereas the first two specifications assume that an individual either completely accurately

assigns a rank or completely randomly. According to the three information criteria, the third

HM-ROL specification should be preferred. Hence, for this ranking dataset, it seems more

likely that individuals do not completely randomly assign middle ranks, but that the choice

is more random compared to top ranks.

When comparing all five models, the information criteria indicate that the third HM-
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ROL specification should be most preferred. Even though this model has five parameters

less to estimate than the H-ROL, the likelihood value indicates that it much better fits the

data. The standard ROL should be the least preferred model, followed by the first HM-ROL

specification. The H-ROL and second HM-ROL specification are at a shared second place.

7. Conclusion

The heteroscedastic logit model is useful to describe repeated choices of individuals when

randomness in the choice-making varies over time. For example, due to fatigue, individuals

may respond more randomly to survey questions as the survey progresses. Or when asked

to give a complete ranking amongst multiple alternatives, individuals may more accurately

assign top ranks than middle and bottom ranks.

In this paper, we generalize the standard heteroscedastic logit model to allow for individ-

ual differences in the dynamics in this randomness. In case individual differences exist, this

individual-level approach has three main advantages: (i) it alleviates biases in the preference

parameters, (ii) makes more efficient use of data, and (iii) allows for an analysis of individual

behavior. The generalization amounts to adding an individual- and time/rank-specific scale

parameter to the multinomial and rank-ordered logit model. We let the dynamics in the

sequence of an individual’s scale parameters be governed by a Markov process. Additionally,

we allow for unobserved preference heterogeneity. For inference, we develop a simulated

maximum likelihood estimation approach.

In a Monte Carlo study, we find that our proposed model works well and the proposed

estimator seems unbiased in various settings. For the standard heteroscedastic logit model,

the biases in the estimator for the preference parameters are clearly illustrated: the bias

towards zero due to neglecting individual differences in the dynamics in the scale parameter,

and the bias away from zero due to scaling the preference parameters based on the minimum

of the estimated scale parameters. Depending on the data generating process, one of these

biases may dominate the other. In case of heteroscedasticity, the estimator for the preference

parameters of the standard MNL is clearly biased towards zero, because heteroscedasticity

leads to more random-looking choice-making of respondents. Our proposed model and esti-

mator eliminate these biases. Furthermore, when allowing for preference heterogeneity via

a multivariate normal distribution, both the standard MNL and the heteroscedastic MNL

tend to spuriously capture individual differences in the dynamics in the scale parameter in

time-invariant correlations between preference parameters.

We also illustrate our model with two empirical applications: one using multinomial
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choice data from a discrete choice experiment on food choices to model learning and fatigue

effects, and one on rank-ordered data from a survey to model differential capabilities in

ranking. For the multinomial choices, we find that accounting for individual differences

in learning and fatigue leads to a much better fit of the data, while needing less model

parameters. The same holds for the rank-ordered data.

Our approach has one main limitation: each variable gets scaled with the same factor.

Hence, the model cannot capture choice strategies where choices are made based on different

subsets of attributes as time progresses, or where preferences change over time. The model

could be extended to allow for a different scale parameter per variable, for example, by letting

each scale parameter be governed by its own Markov process. However, for datasets with

limited information per individual, such an approach would be susceptible to overfitting and

estimation uncertainty can become problematic.

We provide three venues for future research. First, in case one wants to impose restrictions

on the minimum number of tasks an individual should be in a phase, one can use a second- or

higher-order Markov process. By using suitable restrictions on the transition probabilities,

no extra parameters need to be estimated. Of course, if desired, one can also allow the

transition probabilities to depend on the duration in a phase using such a higher-order

Markov process. Second, for rank-ordered data, the Markov process over time and over

ranks can be combined, to simultaneously allow for learning and fatigue and for differential

capabilities in ranking.

Third, for the applications, we recommend to use more flexible forms of preference hetero-

geneity then the used multivariate normal. This especially holds when one wants to include

scale parameters between one and infinity. A mixture of multivariate normal distributions

might be able to capture more realistically the differences in preferences across individuals.

One way in which individuals may differ is that some individuals may answer more randomly

throughout the observed period than others, also known as time-invariant scale heterogene-

ity. In the multivariate normal, such behavior is partly captured in the correlations in the

covariance matrix. Using a more flexible form than one multivariate normal could further

reduce the way in which the Markov process can capture part of the time-invariant scale

heterogeneity in case one of the scale parameters is allowed to be between one and infinity.
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A. Maximum simulated likelihood estimation

We use maximum simulated likelihood estimation to estimate the parameters of the hid-

den Markov multinomial and rank-ordered logit model. For this purpose, we maximize the

(approximated) likelihood function directly with respect to θ, q, π, and σ̃ using a quasi

Newton-Raphson algorithm. During optimization, we use analytic gradients of the simu-

lated log-likelihood function and approximate the Hessian with the BFGS algorithm. In

33



this appendix, we provide more details for the estimation approaches including the explicit

likelihood functions for multinomial choices in Section A.1 and for rank-ordered choices in

Section A.2.

A.1. Hidden Markov multinomial logit model

The likelihood function of the HM-MNL can be written as

p(y|θ, q, π, σ̃) =
N∏
i=1

∫ ∑
s∗i∈S

Pr[Si = s∗i |q, π]p(yi|βi, σ̃, s∗i )

 f(βi|θ)dβi


=

N∏
i=1

∫ ∑
s∗i∈S

Pr[Si = s∗i |q, π]
T∏
t=1

exp
(

1
σ̃sit

(x′itjβi)
)

∑J
l=1 exp

(
1
σ̃sit

(x′itlβi)
)
 f(βi|θ)dβi


=

N∏
i=1

[∫ {
π′fi1

(
T−1∏
t=2

Qt−1fit

)
QT−1f̃iT

}
f(βi|θ)dβi

]
, (12)

where Qt is a (M ×M) transition probability matrix with element (m,n) equal to qmnt, and

f̃it is a (M × 1) vector with the likelihood contribution of task t of respondent i given βi and

sit, with element m equal to

f̃itm ≡ Pr[Yit = yit|βi, σ̃, sit = m] =
exp

(
1
σ̃m

(x′itjβi)
)

∑J
l=1 exp

(
1
σ̃m

(x′itlβi)
) .

Furthermore, fit is a diagonal (M ×M) matrix with the diagonal equal to f̃it.

We approximate the likelihood function using Monte Carlo integration:

p(y|θ, q, π, σ̃) ≈
N∏
i=1

[
1

R

R∑
r=1

p(yi|β(r)
i , q, π, σ̃)

]

=
N∏
i=1

[
1

R

R∑
r=1

(
π′f

(r)
i1

(
T−1∏
t=2

Qt−1f
(r)
it

)
QT−1f̃

(r)
iT

)]
,

where β
(r)
i is a draw from a distribution with density f(βi|θ) and f

(r)
it has mth element

Pr[Yit = yit|β(r)
i , σ̃, sit = m] for r = 1, ..., R. The corresponding simulated log-likelihood
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function is given by

log p(y|θ, q, π, σ̃) ≈
N∑
i=1

log

[
1

R

R∑
r=1

(
π′f

(r)
i1

(
T−1∏
t=2

Qt−1f
(r)
it

)
QT−1f̃

(r)
iT

)]
.

A.2. Hidden Markov rank-ordered logit model

For the HM-ROL, the likelihood function can be written as

p(y|θ, q, π, σ̃) =
N∏
i=1

∫ ∑
s∗i∈S

Pr[Si = s∗i |q, π]p(yi|βi, σ̃, s∗i )

 f(βi|θ)dβi


=

N∏
i=1

∫ ∑
s∗i∈S

Pr[Si = s∗i |q, π]
T∏
t=1

J−1∏
h=1

exp
(

1
σ̃sih

(x′ityithβi)
)

∑J
l=h exp

(
1

σ̃sih
(x′ityitlβi)

)
 f(βi|θ)dβi


=

N∏
i=1

∫ ∑
s∗i∈S

Pr[Si = s∗i |q, π]
J−1∏
h=1

T∏
t=1

exp
(

1
σ̃sih

(x′ityithβi)
)

∑J
l=h exp

(
1

σ̃sih
(x′ityitlβi)

)
 f(βi|θ)dβi


=

N∏
i=1

[∫ {
π′fi1

(
J−2∏
h=2

Qh−1fih

)
QJ−2f̃i,J−1

}
f(βi|θ)dβi

]
, (13)

where Qh is a (M ×M) transition probability matrix, and f̃ih is a (M × 1) vector with the

likelihood contribution of respondent i at rank h given βi and sih with mth element equal to

f̃ihm ≡
T∏
t=1

Pr[Yith = yith|yit1, ..., yit,h−1, βi, σ̃, sit = m] =
T∏
t=1

exp
(

1
σ̃m

(x′ityithβi)
)

∑J
l=h exp

(
1
σ̃m

(x′ityitlβi)
)

Furthermore, fih is a diagonal (M ×M) matrix with the diagonal equal to f̃ih.

We approximate the likelihood function using Monte Carlo integration:

p(y|θ, q, π, σ̃) ≈
N∏
i=1

[
1

R

R∑
r=1

p(yi|β(r)
i , q, π, σ̃)

]

=
N∏
i=1

[
1

R

R∑
r=1

(
π′f

(r)
i1

(
J−2∏
h=2

Qh−1f
(r)
ih

)
QJ−2f̃

(r)
i,J−1

)]
,

where β
(r)
i is a draw from a distribution with density f(βi|θ) and f

(r)
ih has mth element∏T

t=1 Pr[Yith = yith|yit1, ..., yit,h−1, β
(r)
i , σ̃, sit = m] for r = 1, ..., R. The corresponding simu-
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lated log-likelihood function is given by

log p(y|θ, q, π, σ̃) ≈
N∑
i=1

log

[
1

R

R∑
r=1

(
π′f

(r)
i1

(
J−2∏
h=2

Qh−1f
(r)
ih

)
QJ−2f̃

(r)
i,J−1

)]
.

A.3. Miscellaneous details

The parameters q, π, and σ̃ are constrained, as are possibly several parameters in θ. To ensure

unconstrained optimization of the simulated log-likelihood function, we reparametrize the

constrained parameters in terms of parameters that are unconstrained and optimize over

these unconstrained parameters. Furthermore, to increase the probability of finding a global

maximum, we recommend using multiple starting values and picking the solution with gives

the highest log-likelihood value.

Finally, we compute standard errors using the square root of the diagonal elements of

the inverse of the negative Hessian of the log-likelihood function. We approximate the

Hessian using the outer-product-of-gradients approximation based on the analytic gradient

of the log-likelihood function. For this purpose, we consider the Hessian with respect to

the untransformed, (possibly) constrained parameters in θ, q, π, and σ̃. Moreover, the log-

likelihood function is again approximated using the same draws as used for the optimization.

B. Conditional distribution of Sit

For the hidden Markov multinomial logit model, the distribution of Sit conditional on the

choices yi of individual i is a multinomial distribution with outcomes 1, ...,M with corre-

sponding probabilities that can be computed as follows. It holds that

Pr[Sit = m|yi, θ, q, π, σ̃] =

∫
Pr[Sit = m,βi|yi, θ, q, π, σ̃]dβi

=

∫
Pr[Sit = m|yi, βi, θ, q, π, σ̃]f(βi|yi, θ, q, π, σ̃)dβi

=

∫
Pr[Sit = m|yi, βi, q, π, σ̃]

p(yi|βi, q, π, σ̃)

p(yi|θ, q, π, σ̃)
f(βi|θ)dβi

=
1

p(yi|θ, q, π, σ̃)

∫
Pr[Sit = m|yi, βi, q, π, σ̃]p(yi|βi, q, π, σ̃)f(βi|θ)dβi,
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which can be approximated by

Pr[Sit = m|yi, θ, q, π, σ̃] ≈ 1

p(yi|θ, q, π, σ̃)
× 1

R

R∑
r=1

Pr[Sit = m|yi, β(r)
i , q, π, σ̃]× p(yi|β(r)

i , q, π, σ̃)

=

∑R
r=1 Pr[Sit = m|yi, β(r)

i , q, π, σ̃]× p(yi|β(r)
i , q, π, σ̃)∑M

n=1

∑R
r=1 Pr[Sit = n|yi, β(r)

i , q, π, σ̃]× p(yi|β(r)
i , q, π, σ̃)

,

where for the second equality we use that
∑

m Pr[Sit = m|yi, θ, q, π, σ̃] = 1, and we let

β
(r)
i be a draw from a distribution with density f(βi|θ) for r = 1, ..., R. The probability

Pr[Sit = m|yi, β(r)
i , q, π, σ̃] can be computed with the Hamilton filter (Hamilton, 1989) and

a smoother (Kim, 1994).

The Hamilton filter sequentially computes the filtered probabilities (ξitm|t ≡ Pr[Sit =

m|{yil}tl=1, βi, q, π, σ̃]) and predicted probabilities (ξi,t+1,m|t ≡ Pr[Si,t+1 = m|{yil}tl=1, βi, q, π, σ̃])

using

ξitm|t =
ξitm|t−1Pr[Yit = yit|βi, σit = σ̃m]∑M
n=1 ξitn|t−1Pr[Yit = yit|βi, σit = σ̃n]

,

ξi,t+1,m|t =
M∑
n=1

Qnmξitn|t,

for m = 1, ...,M and t = 1, ..., T . The filter is initialised by ξi1m|0 = Pr[Si1 = m|βi, q, π, σ̃] =

πm. Given the filtered and predicted probabilities up to t = T , the required smoothed

estimates can be computed sequentially using (Kim, 1994)

Pr[Sit = m|yi, βi, q, π, σ̃] =
M∑
n=1

ξi,t+1,n|T
Qm,nξitm|t
ξi,t+1,n|t

,

for t = T − 1, T − 2, ..., 1.

For the hidden Markov rank-ordered logit model, the conditional probabilities that Sih

is equal to a phase m can be computed in a similar fashion.

37



C. Monte Carlo study: results DGPs 4-6

Table 6: Mean and RMSE (in parentheses) of the parameter estimates for the Monte Carlo study for
DGPs 4 to 6. Based on 1,000 Monte Carlo replications per DGP.

DGP 4a DGP 5b DGP 6c

Parameter True MNL H-MNL HM-MNL MNL H-MNL HM-MNL MNL H-MNL HM-MNL

b1 1.00 0.65 0.84 0.97 0.67 0.86 0.91 0.43 0.67 0.86

(0.35) (0.17) (0.07) (0.33) (0.15) (0.10) (0.57) (0.34) (0.16)

b2 0.30 0.20 0.25 0.29 0.20 0.26 0.27 0.13 0.20 0.26

(0.11) (0.05) (0.03) (0.10) (0.05) (0.04) (0.17) (0.10) (0.05)

b3 -0.50 -0.33 -0.43 -0.48 -0.34 -0.43 -0.46 -0.22 -0.34 -0.43

(0.17) (0.09) (0.06) (0.16) (0.08) (0.07) (0.28) (0.17) (0.09)

σβ,1 0.50 0.49 0.64 0.48 0.46 0.59 0.46 0.35 0.52 0.41

(0.03) (0.15) (0.07) (0.05) (0.10) (0.06) (0.16) (0.06) (0.12)

σβ,2 0.40 0.30 0.39 0.39 0.30 0.38 0.37 0.21 0.32 0.34

(0.11) (0.04) (0.04) (0.11) (0.05) (0.05) (0.19) (0.10) (0.08)

σβ,3 0.70 0.52 0.68 0.68 0.52 0.66 0.64 0.37 0.55 0.60

(0.19) (0.08) (0.08) (0.19) (0.08) (0.09) (0.34) (0.17) (0.14)

ρβ,12 0.00 0.25 0.26 -0.02 0.20 0.20 0.00 0.26 0.26 -0.05

(0.26) (0.27) (0.17) (0.22) (0.22) (0.13) (0.29) (0.29) (0.27)

ρβ,13 0.00 -0.25 -0.25 0.01 -0.19 -0.20 0.00 -0.26 -0.26 0.03

(0.26) (0.27) (0.17) (0.21) (0.22) (0.15) (0.30) (0.30) (0.26)

ρβ,23 0.00 -0.12 -0.12 0.01 -0.09 -0.09 0.00 -0.13 -0.13 0.01

(0.17) (0.17) (0.14) (0.15) (0.16) (0.14) (0.23) (0.23) (0.20)

π1 0.280 0.257 0.344

π2 0.593 0.664 0.600

π3 0.127 0.079 0.056

q11 0.378 0.397 0.586

q22 0.981 0.984 0.938

For DGPs 4 to 6, we simulate data from the HM-MNL in Equations (3)-(7) with βi ∼MVN(b,Σβ). In the DGPs, the transition
probabilities are set equal over tasks, and respondents can only move one phase up. More details:
a DGP 4: 5 phases, σ̃ = (∞, 2, 1, 2,∞), π = (0.2, 0.2, 0.4, 0.1, 0.1), q11 = 0.20, q22 = 0.35, q33 = 0.98, and q44 = 0.80.
b DGP 5: 5 phases, σ̃ = (10, 2, 1, 2, 10), π = (0.2, 0.2, 0.4, 0.1, 0.1), q11 = 0.20, q22 = 0.35, q33 = 0.98, and q44 = 0.80.
c DGP 6: 9 phases, σ̃ = (∞, 10, 5, 2, 1, 2, 5, 10,∞), π = (0.1, 0.1, 0.1, 0.1, 0.4, 0.05, 0.05, 0.05, 0.05), q11 = q22 = q33 = q44 = 0.20,
q55 = 0.90, and q66 = q77 = q88 = 0.70
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