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1. Introduction

Cooperative game theory provides a mathematical framework for allocating the worth generated by a

group of cooperating players. A cooperative game with transferable utility (TU-game henceforth) consists

of a set of players and a characteristic function that specifies a worth for each coalition of players. The

equal division (ED) value and the equal surplus division (ESD) value are two well-known egalitarian values

for TU-games. In particular, the ED value, the ESD value, and the class of their affine combinations

have been given a number of axiomatic characterizations. This paper develops new characterizations.

Our characterizations involve a new axiom relying on the separatorization due to Zou et al. (2020).

Separatorization of a player refers to the complete loss of productive potential of cooperation, in the sense

that the worth of any coalition containing this player equals the sum of the stand-alone worths of the

players in this coalition, while the worth of any coalition without her remains unchanged. This operation

is in line with ‘veto-ification’ introduced in van den Brink and Funaki (2009), dummification introduced

in Béal et al. (2018), and nullification studied in Béal et al. (2016); Ferrières (2017); Kongo (2018, 2019,

2020). The difference among them lies in which role that a player acts as. Specifically, veto-ification,

dummification, nullification, and separatorization, respectively, suppose a player becoming a veto player,

a dummy player, a null player, and a separator (also known as a dummifying player in Casajus and

Huettner (2014a)) in a TU-game. There exist several axioms which evaluate the consequences of the

aforementioned operations in TU-games. Assuming the same change in payoff for all other players under

such operation, van den Brink and Funaki (2009) suggest the veto equal loss property for the ED value,

and Ferrières (2017) and Kongo (2018) independently suggest the nullified equal loss property for the ED

value, the ESD value and the class of their convex combinations. Similarly, we define the axiom of equal

loss under separatorization imposing the same requirement, except that a player becomes a separator.

In this paper, we show that equal loss under separatorization and efficiency yield a family of values

that all have in common that they equally split the worth of the grand coalition. This family is not

identical to the family implied by the axioms of the nullified equal loss property and efficiency as given

by Ferrières (2017). We characterize the class of affine combinations of the ED and ESD values by using

the two axioms in addition to fairness (van den Brink, 2002) and homogeneity. While Ferrières (2017)

characterizes the class of affine as well as convex combinations of the ED and ESD values involving the

nullified equal loss property, we highlight that replacing the nullified equal loss property by equal loss

under separatorization yields a new characterization. Moreover, parallel to the axiomatic results in Kongo

(2018), we provide characterizations of both the ED value and the ESD value.

This paper is organized as follows. Section 2 provides basic definitions and notation. Section 3

introduces the notion of equal loss under separatorization. Section 4 presents main results. Section 5

concludes.
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2. Basic definitions and notation

Let N = {1, 2, . . . , n} be a finite and fixed set of players such that n ≥ 3. The cardinality of any

set S is denoted by |S| or s. A TU-game is a pair (N, v) where N is a set of players and v : 2N → R

is a characteristic function with v(∅) = 0. A subset S ⊆ N is a coalition, and v(S) is the worth of this

coalition. The class of all TU-games with player set N is denoted by GN .

A TU-game (N, v) is additive if v(S) =
∑

j∈S v({j}) for all S ⊆ N . A TU-game (N, v) is superadditive

if v(S∪T ) ≥ v(S) +v(T ) for all S, T ⊆ N with S∩T = ∅. A TU-game (N, v) is monotone if v(S) ≤ v(T )

for all S, T ⊆ N with S ⊆ T . The null game is the game (N, v0) given by v0(S) = 0 for all S ⊆ N .

For S ⊆ N , S 6= ∅, the unanimity TU-game (N, uS) is given by uS(T ) = 1 if T ⊇ S, and uS(T ) = 0

otherwise. Given (N, v), (N,w) ∈ GN and a, b ∈ R, the TU-game (N, av + bw) ∈ GN is given by

(av + bw)(S) = av(S) + bw(S) for all S ⊆ N .

Player i ∈ N is a null player in (N, v) if v(S ∪ {i}) = v(S) for all S ⊆ N\{i}; player i ∈ N is a

separator or dummifying player in (N, v) if v(S) =
∑

j∈S v({j}) for all S ⊆ N with i ∈ S; player i ∈ N

is a nullifying player in (N, v) if v(S) = 0 for all S ⊆ N with i ∈ S. Players i, j ∈ N are symmetric in

(N, v) if v(S ∪ {i}) = v(S ∪ {j}) for all S ⊆ N\{i, j}.

A value on GN is a function ψ that assigns a payoff vector ψ(N, v) ∈ RN to every TU-game (N, v) ∈

GN . The equal division value (ED value) is given by

EDi(N, v) =
1

n
v(N), for all (N, v) ∈ GN , i ∈ N.

The equal surplus division value (ESD value) (Driessen and Funaki, 1991) is given by

ESDi(N, v) = v({i}) +
1

n
[v(N)−

∑
j∈N

v({j})], for all (N, v) ∈ GN , i ∈ N.

We recall the following axioms and results.

• Efficiency, E. For all (N, v) ∈ GN ,
∑

i∈N ψi(N, v) = v(N).

• Linearity, L. For all (N, v), (N,w) ∈ GN and a, b ∈ R, ψ(N, av + bw) = aψ(N, v) + bψ(N,w).

• Additivity, A. For all (N, v), (N,w) ∈ GN , ψ(N, v + w) = ψ(N, v) + ψ(N,w).

• Symmetry, S. For all (N, v) ∈ GN and all i, j ∈ N being symmetric in (N, v), ψi(N, v) = ψj(N, v).

• Desirability, D. For all (N, v) ∈ GN and all i, j ∈ N such that v(S ∪ {i}) ≥ v(S ∪ {j}) for all

S ⊆ N\{i, j}, ψi(N, v) ≥ ψj(N, v).

• Superadditive monotonicity, SM. For every superadditive and monotone TU-game (N, v) ∈ GN

and all i ∈ N , ψi(N, v) ≥ 0.
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• Nullified equal loss property, NEL. For all (N, v) ∈ GN , all h ∈ N and all i, j ∈ N\{h},

ψi(N, v) − ψi(N, v
h
0 ) = ψj(N, v) − ψj(N, v

h
0 ), where (N, vh0 ) is given by vh0 (S) = v(S\{h}) for all

S ⊆ N .

Theorem 1 (see Ferrières (2017)). A value ψ on GN satisfies E, NEL, L, and S if and only if there is

β ∈ R such that ψ = βESD + (1− β)ED.

Theorem 2 (see Ferrières (2017)). A value ψ on GN satisfies E, NEL, A, D, and SM if and only if

there is β ∈ [0, 1] such that ψ = βESD + (1− β)ED.

• Null game property, NG. For the null game (N, v0) ∈ GN and all i ∈ N , ψi(N, v
0) = 0.

• Grand coalition monotonicity, GM (Casajus and Huettner, 2014b). For all (N, v), (N,w) ∈ GN

with v(N) ≥ w(N) and all i ∈ N , ψi(N, v) ≥ ψi(N,w).

• Id+sur monotonicity, ISM (Yokote and Funaki, 2017). For all (N, v), (N,w) ∈ GN and i ∈ N

such that v(N)−
∑

j∈N v({j}) ≥ w(N)−
∑

j∈N w({j}) and v({i}) ≥ w({i}), ψi(N, v) ≥ ψi(N,w).

Theorem 3 (see Kongo (2018)). Let ψ be a value on GN that satisfies E, NEL, and NG. Then,

(i) ψ satisfies GM if and only if ψ = ED.

(ii) ψ satisfies ISM if and only if ψ = ESD.

3. Equal loss under separatorization

Given a TU-game, separatorization (Zou et al., 2020) of a player means that the worth of any coalition

containing this player becomes equal to the sum of the stand-alone worths of the players in this coalition.

Formally, for (N, v) ∈ GN and h ∈ N , we denote by (N, vh) the TU-game from (N, v) if player h becomes

a separator: For every S ⊆ N ,

vh(S) =


∑

j∈S v({j}) if h ∈ S,

v(S) otherwise.

Notice that (vi)j = (vj)i for every pair i, j ∈ N . Thus, for every coalition S ⊆ N , (N, vS), where

the players in S became separators, is well-defined and does not depend on the order in which the

players become separators.1 Note that (N, vN ) is the corresponding additive TU-game of (N, v), namely

vN (S) =
∑

j∈S v({j}) for all S ⊆ N .

The following new axiom imposes that if a player becomes a separator, all other players should be

affected equally.

1Formally, vS(T ) =
∑

j∈T v({j}) if T ∩S 6= ∅, and vS(T ) = v(T ) otherwise, is obtained by sequentially separatizing the

players in S in any order.
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• Equal loss under separatorization, ELS. For all (N, v) ∈ GN , all h ∈ N and all i, j ∈ N\{h},

ψi(N, v)− ψi(N, v
h) = ψj(N, v)− ψj(N, v

h). (1)

4. Main results

4.1. Axiomatizations of the class of affine combinations of ED and ESD

Before stating the characterizations, we derive a useful property implied by the combination of E and

ELS.

Lemma 1. If a value ψ on GN satisfies E and ELS, then for all (N, v) ∈ GN and i ∈ N ,

ψi(N, v)− ψi(N, v
N ) =

1

n
[v(N)−

∑
j∈N

v({j})]. (2)

Proof. The proof is divided into three steps.

Step 1. By ELS, (1) is satisfied for any triple of players. Taking h ∈ N and i ∈ N\{h}, summing

(1) over j ∈ N\{h} and using E yields that for all (N, v) ∈ GN , h ∈ N and i ∈ N\{h},

ψi(N, v)− ψi(N, v
h) =

1

n− 1

 ∑
j∈N\{h}

ψj(N, v)−
∑

j∈N\{h}

ψj(N, v
h)


=

1

n− 1
[v(N)− ψh(N, v)− vh(N) + ψh(N, vh)]. (3)

Step 2. Next, we show that for all (N, v) ∈ GN and S ⊆ N with 1 ≤ |S| ≤ n− 1,

ψ(N, vS) = ψ(N, vN ). (4)

We derive the assertion by an induction on the number of separators.

Initialization. Since (N, vN\{h}) = (N, vN ) for any h ∈ N , then ψ(N, vS) = ψ(N, vN ) for all S ⊆ N

with |S| = n− 1,

Induction hypothesis (IH). Assume that ψ(N, vT ) = ψ(N, vN ) holds for all T ⊆ N with |T | = t, 2 ≤

t ≤ n− 1.

Induction step. Consider (N, vS) ∈ GN and S ( N such that |S| = t−1. Since vS(N) = vS∪{h}(N) =∑
k∈N v({k}) and vS({k}) = vS∪{h}({k}) = v({k}) for all k ∈ N , then by (3) applied to (N, vS) we

obtain that for all i 6= h,

ψi(N, v
S)− ψi(N, v

S∪{h}) =
1

n− 1
[−ψh(N, vS) + ψh(N, vS∪{h})]. (5)

Pick any j ∈ N \ S and i ∈ N \ (S ∪ {j}) (which is possible since |S| ≤ n− 2). We obtain

ψi(N, v
S)− ψi(N, v

S∪{j})
(5)
=

1

n− 1
[−ψj(N, v

S) + ψj(N, v
S∪{j})]
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IH
=

1

n− 1
[−ψj(N, v

S) + ψj(N, v
N )]

IH
=

1

n− 1
[−ψj(N, v

S) + ψj(N, v
S∪{i})]

5
=

1

n− 1

[ 1

n− 1
[ψi(N, v

S)− ψi(N, v
S∪{i})]

]
IH
=

1

(n− 1)2
[ψi(N, v

S)− ψi(N, v
S∪{j})].

Since n2−2n
(n−1)2 6= 0, then ψi(N, v

S) = ψi(N, v
S∪{j}) for all i ∈ N \ (S ∪ {j}). Pick any k ∈ S. By

ELS, we have ψk(N, vS) − ψk(N, vS∪{j}) = ψi(N, v
S) − ψi(N, v

S∪{j}) = 0, which implies ψk(N, vS) =

ψk(N, vS∪{j}). Since vS(N) = vS∪{j}(N), E then implies ψj(N, v
S) = ψj(N, v

S∪{j}). There exists such

j ∈ N for each S ( N , so that ψ(N, vS) = ψ(N, vS∪{j})
IH
= ψ(N, vN ).

Step 3. By (4), ψ(N, vh) = ψ(N, vN ) for all h ∈ N . Then (3) implies that for two distinct players

i, h ∈ N ,

ψi(N, v)− ψi(N, v
N ) =

1

n− 1
[v(N)− ψh(N, v)− vN (N) + ψh(N, vN )].

Summing the above equality over h ∈ N\{i} yields

(n− 1)[ψi(N, v)− ψi(N, v
N )]

=
1

n− 1

[
(n− 1)[v(N)− vN (N)]−

∑
h∈N\{i}

(ψh(N, v)− ψh(N, vN ))

]
E
=

1

n− 1

[
(n− 2)[v(N)− vN (N)] + [ψi(N, v)− ψi(N, v

N )]
]
.

It follows that n(n−2)
n−1 [ψi(N, v)− ψi(N, v

N )] = n−2
n−1 [v(N)− vN (N)], which implies (2) since n−2

n−1 6= 0 (by

n ≥ 3).

Remark 1. Lemma 1 indicates that any value on GN satisfying E and ELS is uniquely determined by

an efficient value determined on additive TU-games since vN (S) =
∑

j∈S v({j}) for all (N, v) ∈ GN and

S ⊆ N . This means that, E and ELS in addition to some axiom(s) that determine the payoff allocation

for additive TU-games, characterize a unique value on GN .

Remark 2. Any value with the form of (2) satisfies ELS, but need not satisfy E. For example, the value

ψ = ED + a, where a ∈ RN is such that
∑

j∈N ai 6= 0, satisfies (2) but not E.

To characterize the class of affine combinations of the ED and ESD values, we introduce the well-

known axioms of fairness and homogeneity.

• Fairness, F (van den Brink, 2002). For all (N, v), (N,w) ∈ GN and all i, j ∈ N such that i and j

are symmetric in (N,w), ψi(N, v + w)− ψi(N, v) = ψj(N, v + w)− ψj(N, v).

• Homogeneity, H. For all (N, v) ∈ GN and all c ∈ R, ψ(N, cv) = cψ(N, v).
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Theorem 4. A value ψ on GN satisfies E, ELS, F, and H if and only if there is β ∈ R such that

ψ = βESD + (1− β)ED.

Proof. Existence is obvious. For the uniqueness part, let ψ be a value on GN that satisfies the four

axioms. By Lemma 1 and Remark 1, we have to show that ψ(N, v) = βESD(N, v) + (1− β)ED(N, v),

β ∈ R, for all additive games (N, v). Let D(N, v) = {i ∈ N | v({i}) 6= 0}. We prove uniqueness by

induction on d(N, v) = |D(N, v)|.

Initialization. If d(N, v0) = 0, i.e. (N, v0) is the null game, then H implies that ψi(N, v
0) = 0 for all

i ∈ N .

Suppose that d(N, v) = 1, i.e. v = v({i})u{i}. Since any j, k ∈ N\{i} are symmetric in (N, u{i}),

F implies that ψj(N, v
0 + u{i}) − ψj(N, v

0) = ψk(N, v0 + u{i}) − ψk(N, v0), and thus ψj(N, u{i}) =

ψk(N, u{i}). E then implies that for all j ∈ N\{i},

ψj(N, u{i}) =
1− ψi(N, u{i})

n− 1
. (6)

Next, pick any i, j ∈ N with i 6= j, and consider (N,−u{i}) and (N, u{i} + u{j}). Since i and j are

symmetric in (N, u{i} + u{j}), F implies that

ψi(N,−u{i} + u{i} + u{j})− ψi(N,−u{i}) = ψj(N,−u{i} + u{i} + u{j})− ψj(N,−u{i}).

By H,

ψi(N, u{j}) + ψi(N, u{i}) = ψj(N, u{j}) + ψj(N, u{i}). (7)

Combining (6) with (7) yields

1− ψj(N, u{j})

n− 1
+ ψi(N, u{i}) = ψj(N, u{j}) +

1− ψi(N, u{i})

n− 1
.

Since

ψi(N, u{i})−
1− ψi(N, u{i})

n− 1
=

(n− 1)ψi(N, u{i})− 1 + ψi(N, u{i})

n− 1
=
n.ψi(N, u{i})− 1

n− 1
,

and similar for j, it follows that

ψi(N, u{i}) = ψj(N, u{j}). (8)

According to (8), setting a = ψi(N, u{i}) for all i ∈ N , and β = na−1
n−1 , for v = v({i})u{i}, we have

β ESDi(N, v) + (1− β)EDi(N, v)

=
na− 1

n− 1

v({i}) +
1

n

v(N)−
∑
j∈N

v({j})

+
n(1− a)

n− 1
· v(N)

n

=
na− 1

n− 1
v({i}) + 0 +

1− a
n− 1

v({i})
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= v({i})a = v({i}ψi(N, u{i})
H
= ψi(N, v).

By (6) and H, ψj(N, v) = 1−a
n−1v({i}) = β ESDj(N, v) + (1− β)EDj(N, v) for all j ∈ N\{i}.

Induction hypothesis. Assume that ψ(N, v′) is uniquely determined whenever d(N, v′) = k, 1 ≤ k ≤

n− 1.

Induction step. Let (N, v) ∈ GN be an additive game such that d(N, v) = k + 1. Take h ∈ D(N, v),

and consider game (N, v′) given by v′ = v− v({h})u{h}. Take a j ∈ N \ {h}. Then, for all i ∈ N \ {j, h},

F implies that

ψi(N, v)− ψj(N, v) = ψi(N, v
′)− ψj(N, v

′), (9)

where the right-hand side is determined by the induction hypothesis.

Take g ∈ D(N, v) \ {h} (which exists since d(N, v) ≥ 2) and j ∈ N \ {g, h} (which exists since n ≥ 3),

and consider v′′ = v − v({g})u{g}. Then F implies

ψh(N, v)− ψj(N, v) = ψh(N, v′′)− ψj(N, v
′′), (10)

where the right-hand side is determined by the induction hypothesis.

Finally, E implies that ∑
i∈N

ψi(N, v) = v(N). (11)

Since the (n − 2) + 1 + 1 = n equations (9), (10) and (11) are linearly independent in the n unkown

payoffs ψi(N, v), these payoffs are uniquely determined.

Thus, the payoffs in any additive game (N, v) ∈ GN are uniquely determined for any choice of

a = ψi(N, u{i}), i ∈ N , and thus for any choice of β. Since the corresponding affine combination of the

ESD and ED values satisfies the axioms, it must be that ψ = βESD + (1− β)ED.

Notice that L implies H, and L and S together imply F. The following corollary is a direct consequence

of Theorem 4.

Corollary 1. A value ψ on GN satisfies E, ELS, L, and S if and only if there is β ∈ R such that

ψ = βESD + (1− β)ED.

Remark 3. Under E, L, and S, the nullifying player property (NFP) 2 and the dummifying player

property (DFP) 3 characterize the ED value and the ESD value, respectively. Therefore, the difference

among the ED value, the ESD value, and the class of their affine combinations is pinpointed to one axiom.

2 Nullifying player property, NFP (van den Brink, 2007). For all (N, v) ∈ GN and i ∈ N being a nullifying player

in (N, v), ψi(N, v) = 0.
3 Dummifying player property, DFP (Casajus and Huettner, 2014a). For all (N, v) ∈ GN and i ∈ N being a

dummifying player in (N, v), ψi(N, v) = v({i}).
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Mind that, from Remark 1, under E and ELS, DFP characterizes the ESD value, whereas NFP does

not characterize the ED value. Consider, for example, ψi(N, v) = v(N)
n + ai(N, v)v({i}) for all i ∈ N ,

where a : GN → RN is a function such that (i) a(N, v) = a(N,w) of v({i}) = w({i}) for all i ∈ N , and

(ii)
∑

i∈N ai(N, v)v({i}) = 0 for all (N, v) ∈ GN . This value also satisfies the three axioms.

We provide a characterization of the class of convex combinations of the ED and ESD values, whose

proof is omitted since it is similar to that of Theorem 1 in Ferrières (2017).

Theorem 5. A value ψ on GN satisfies E, ELS, A, D, and SM if and only if there is β ∈ [0, 1] such

that ψ = βESD + (1− β)ED.

Corollary 1 and Theorem 5 show that Theorems 1 and 2 are still valid if NEL is replaced by ELS,

although (2) does not coincide with the formula of values satisfying E and NEL (see Formula (3), Ferrières

(2017)).

Remark 4. The axioms invoked in Theorem 4 and Corollary 1 are logically independent:

(i) The value given by ψi(N, v) = 0 for all i ∈ N , satisfies all axioms except E.

(ii) The Shapley value satisfies all axioms except ELS.

(iii) The value given by

ψi(N, v) =
i∑

j∈N j

∑
j∈N

v({j}) +
1

n
[v(N)−

∑
j∈N

v({j})], for all i ∈ N, (12)

satisfies all axioms except S and F.

(iv) Let a ∈ RN be such that
∑

i∈N ai = 0 and a 6= 0. The value given by

ψi(N, v) =
v(N)

n
+ ai, for all i ∈ N, (13)

satisfies all axioms of Theorem 4 except H.

(v) The value given by

ψ(N, v) =

ED(N, v) if v({i}) > 0 for all i ∈ N ;

ESD(N, v) otherwise,

(14)

satisfies all axioms of Corollary 1 except L.

Remark 5. The axioms invoked in Theorem 5 are logically independent:

(i) The value given by ψi(N, v) = 0 for all i ∈ N , satisfies all axioms except E.

(ii) The Shapley value satisfies all axioms except ELS.

(iii) The value defined by (14) satisfies all axioms except A.

(iv) The value ψ = 2ED − ESD satisfies all axioms except D.

(v) The value ψ = 2ESD − ED satisfies all axioms except SM.
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4.2. Axiomatizations of the ED value and the ESD value

Notice that nullification of all players in a TU-game leads to the null game, whereas separatorization

of all players leads to the corresponding additive TU-game. NG requires that all players gain zero for

any null game. This axiom is well adapted to the representation of a special allocation among players

under nullification, but not separatorization. Thus, NG is used in Theorem 3, as well as other axiomatic

results in Kongo (2018, 2019). Interestingly, Theorem 3 is still valid when we use ELS instead of NEL.

To show this, we first characterize the ED value using the axiom of nonnegativity.

• Nonnegativity, N. For all (N, v) ∈ GN with v(N) ≥ 0 and all i ∈ N , ψi(N, v) ≥ 0.

Lemma 2. A value ψ on GN satisfies E, ELS, and N if and only if ψ = ED.

Proof. It is clear that ED satisfies E, ELS, and N. Conversely, suppose that ψ is a value on GN that

satisfies the three axioms. For any (N, v) ∈ GN , consider (N,w) ∈ GN such that w({i}) = v({i}) for

all i ∈ N and w(N) = 0. By (2) (see Lemma 1) applied to (N,w) and (N,wN ), we have ψi(N,w) −

ψi(N,w
N ) = − 1

n

∑
j∈N w({j}) for all i ∈ N . It follows that ψi(N,w

N ) = ψi(N,w) + 1
n

∑
j∈N w({j}) ≥

1
n

∑
j∈N w({j}), where the last inequality holds from N. Then, E implies that ψi(N,w

N ) = 1
n

∑
j∈N w({j})

for all i ∈ N . Since (N, vN ) = (N,wN ), then ψi(N, v
N ) = 1

n

∑
j∈N v({j}). Again, by (2) but now applied

to (N, v) and (N, vN ), we have ψi(N, v) = 1
n [v(N)−

∑
j∈N v({j})]+ψi(N, v

N ) = 1
n [v(N)−

∑
j∈N v({j})]+

1
n

∑
j∈N v({j}) = 1

nv(N).

Theorem 6. Let ψ be a value on GN that satisfies E, ELS, and NG. Then,

(i) ψ satisfies GM if and only if ψ = ED.

(ii) ψ satisfies ISM if and only if ψ = ESD.

Proof. (i) Existence is obvious. Uniqueness follows from Lemma 2 and the fact that NG and GM imply

N.

(ii) Existence is obvious. For the uniqueness part, let ψ be a value on GN that satisfies the four axioms.

Consider two additive TU-games (N, v), (N,w) ∈ GN and i ∈ N such that v({i}) = w({i}). By ISM,

ψi(N, v) = ψi(N,w), which means that i’s payoff depends only on her stand-alone worth. Next, consider

the additive TU-game (N, v′) ∈ GN such that v′({i}) = v({i}) and v′({j}) = 0 for all j ∈ N\{i}, and

let (N, v0) ∈ GN be the null game. It holds that ψi(N, v) = ψi(N, v
′)

E
= v({i}) −

∑
j∈N\{i} ψj(N, v

′) =

v({i})−
∑

j∈N\{i} ψj(N, v
0)

NG
= v({i}). The assertion immediately follows from Remark 1.

Remark 6. Theorem 6(i) is still valid if GM is replaced by coalitional monotonicity in van den Brink

(2007), which states that ψi(N, v) ≥ ψi(N,w) for two games (N, v), (N,w) ∈ GN and i ∈ N such that

v(S) ≥ w(S) for all S ⊆ N with i ∈ N .

Remark 7. The axioms invoked in Theorem 6 are logically independent:
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(i) The value given by ψi(N, v) = 0 for all i ∈ N , satisfies all axioms except E.

(ii) The value ψi(N, v) = i∑
j∈N j v(N) for all i ∈ N satisfies E, NG, and GM, but not ELS.

(iii) The value given by ψi(N, v) = v({i}) + i∑
j∈N j [v(N)−

∑
j∈N v({j})] for all i ∈ N satisfies E, NG,

and ISM, but not ELS.

(iv) The value defined by (13) satisfies E, ELS, and GM, but not NG.

(v) The value ψ = ESD+ a, where a ∈ RN is such that
∑

j∈N aj = 0 and a 6= 0, satisfies E, ELS, and

ISM, but not NG.

(vi) The value defined by (12) satisfies all axioms, but neither GM nor ISM.

5. Conclusion

In this paper, we have proposed the axiom of equal loss under separatorization, and have formulized

the family of values satisfying equal loss under separatorization and efficiency. After that, we added other

well-known axioms to characterize (i) the class of affine combinations of the ESD and ED values, (ii) the

class of convex combinations of the ESD and ED values, (iii) the ED value, and (iv) the ESD value.
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