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Abstract

We empirically test the hypothesis that the discounts offered by firms to con-

sumers who purchase tickets in advance increase with the intensity of competi-

tion. We develop a new measure of competition for which we use the proximity (in

departure time) of a given flight to its competitors to infer the intensity of com-

petition and estimate the impact of competition on advance purchase discounts

(APDs) and the dynamic pricing of airlines by exploiting plausibly exogenous

changes in the flight schedules of airlines that occur during the booking period.

We find strong support for the theoretical prediction that APDs are larger when

the intensity of competition is higher using a sample of airline fare quotes. Our

results also suggest that airline price dispersion increases with the intensity of

competition.
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1 Introduction

Dynamic pricing strategies are commonly used by firms that sell a perishable good and

face aggregate demand uncertainty. Dynamic pricing enables these firms to change

prices based on available inventory and time to perishability, a common practice in

the pricing of airline tickets, hotel rooms, car rentals and tickets for music or sports

events. A frequently used form of dynamic pricing in this context is to offer advance

purchase discounts (APDs), where firms charge lower prices at the beginning of the

fixed period of time in which the good is available for purchase. APDs can be an

optimal pricing strategy for firms selling a perishable good, mainly for two reasons.

First, they can assist in covering the large fixed costs of holding (potentially unused)

inventories and in improving capacity utilisation (Dana, 1999)1. Second, they can

facilitate intertemporal price discrimination when consumers are heterogeneous with

respect to their preferences to purchase and uncertain about their own demand. This is

because APDs induce consumers with weak preferences or low demand uncertainty to

purchase in advance and consumers with strong preferences or high demand uncertainty

to postpone purchasing (Dana, 1998).

An important concern in this context is understanding how the presence and in-

tensity of competition may affect APDs. Previous theoretical literature shows that

offering APDs can be an optimal pricing strategy both in the presence and absence

of market power (Gale and Holmes, 1992; Dana, 1998; Möller and Watanabe, 2010),

but finds that competition between firms affects the size of the discounts (Gale, 1993;

Dana, 1999; Möller and Watanabe, 2016). These studies predict that firms will offer

1Improving capacity utilisation in this context is also the subject of the extensive operations re-
search literature on revenue management initiated by Gallego and van Ryzin (1994) and Bitran and
Mondschein (1997) that considers the problem of dynamically pricing perishable goods over a finite
time horizon under different assumptions on market structure, demand uncertainty, product homo-
geneity and strategic consumer behaviour (e.g., Zhao and Zheng, 2000; Su, 2007; Levin et al, 2009;
Mart́ınez-de-Albéniz and Talluri, 2011; Gallego and Hu, 2014).
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higher APDs under oligopolistic competition compared to a profit-maximising monop-

olist. This result is driven by firms’ incentive to capture consumers with more certain

demands who are willing to purchase early and to prevent losing them to their rivals in

the future. Dana (1999) also shows that prices in this setting become more dispersed

as a market becomes more competitive, which may suggest that the size of APDs may

be positively related to the intensity of competition2. Despite the extensive theoretical

predictions on the effect of competition on APDs, empirical evidence is still missing.

This paper attempts to fill this gap in the literature by studying how competition af-

fects the dynamic pricing (in general) and APDs (in particular) of carriers in the U.S.

airline industry.

The airline industry arguably provides a good empirical setting since it closely ap-

proximates the context in the models of Gale (1993), Dana (1998, 1999) and Möller and

Watanabe (2016). First, airlines choose the number of tickets they would like to offer in

advance and any unsold inventory perishes at the time of departure. Capacity, which

is also chosen in advance, is relatively costly to modify throughout the booking period.

Second, there is individual demand uncertainty and customers are heterogeneous and

learn their preferences over time, which provides scope for (intertemporal) price dis-

crimination. Customers with weak time preferences and/or a more certain demand for

travel (leisure travellers) are more willing to purchase in advance, while customers with

strong time preferences and/or an uncertain demand (business travellers) are willing

to postpone purchasing until they can make a more informed decision.

Studying the effect of competition on dynamic airline pricing is an important topic

2Dana (1999) views a rise in competition, similar to Arrow (1962), as a rise in the number of firms
in the industry and a decrease in market concentration. We use the term intensity of competition
in a similar way to Boone (2000; 2001) and Bonanno and Haworth (1998) to also refer to a rise in
competition given the market structure or number of firms. For example, Aghion, Harris, and Vickers
(1997) view a switch from Cournot to Bertrand competition as a rise in the intensity of competition.
This is because Cournot competition generally leads to higher prices and lower output compared to
Bertrand competition, so we can think of the latter as a context where competition is more intense
(see also Delbono and Denicolo, 1990; Bester and Petrakis, 1993).
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since the vast majority of airline markets are oligopolistic, while previous empirical

work in the dynamic airline pricing literature focuses on markets in which firms have

monopoly power (Lazarev, 2013; Williams, 2018). Other recent empirical work on

airline pricing studies the effect of changes in stochastic demand and available seats

on the temporal profile of fares, i.e. the development of prices over time during the

booking period (Escobari and Gan, 2007; Escobari, 2012; Alderighi et al, 2015). This

work provides evidence for two common regularities in airline pricing, namely that

fares monotonically increase with flight occupancy and as the departure date nears.

While an increasing temporal profile of fares is evidence for the use of APDs, the

effect of competition has not yet been studied directly in this context. Some of the

above empirical work only looks at differences between routes with different market

structures at a descriptive level or studies potential moderating effects of competition.

For example, Alderighi et al (2015) study whether market concentration is a moderator

of the effect of available seats on the temporal profile of airline fares.

For our analysis, we collect a unique panel dataset of airline fare quotes for more

than 2,300 flights in the 100 busiest U.S. domestic routes based on the number of yearly

transported passengers reported by the Bureau of Transportation Statistics (BTS).

This comprises a significant share of the U.S. domestic market (approximately 40%

of the total passengers transported). The dataset allows us to track the listed prices

of all carriers operating flights in those routes for 95 days prior to the departure and

additional information at the flight and ticket level, such as the departure time, fare

class and aircraft type. Our dataset differs from previous empirical research on airline

price discrimination that uses average quarterly data from the BTS (e.g., Borenstein

and Rose, 1994; Gerardi and Shapiro, 2009), but also from previously collected dynamic

price data that focuses on a single carrier or offers variation in flights between but not

within routes (e.g., Escobari, 2012; Alderighi et al, 2015).
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Since markets in our dataset (and the airline industry) are to a large extent oligopolis-

tic, it is arguably better to measure competition by looking at its intensity while taking

market structure as given3. The detailed structure of our data allows us to develop a

new measure of competition for which we use the proximity (in departure time) of a

given flight to its competitors to estimate the intensity of competition between firms.

This measure is inspired by the Hotelling model of spatial competition (Hotelling,

1929), where the distance in space becomes equivalent to the distance in time between

flights. Measuring competition in this way has several advantages. First, conceptually,

it better captures interfirm rivalry and customer stealing motives that may lead to an

increase in APDs, which is the underlying mechanism in the models of Gale (1993) and

Möller and Watanabe (2016). Second, practically, directly measuring competition by

looking at the proximity to rivals eliminates the need to make indirect inferences about

the intensity of competition based on the market structure (e.g., market concentration

or number of firms).

Our empirical analysis exploits plausibly exogenous changes in flight schedules (i.e.

departure time changes or flight cancellations) during the booking period to estimate

the impact of competition on APDs and the temporal profile of airline fares. These

changes are arguably unrelated to carriers’ dynamic pricing decisions but lead to shifts

in the relative proximity of competing flights in a day. This has an impact on the av-

erage temporal distance of flights (i.e. the average distance in time of a given flight to

all competing flights in a day), which is our measure of competition. Furthermore, we

analyse the temporal profile of airline fares at the flight level, which allows us to con-

trol for route-specific (e.g., route size and airport or route dominance), carrier-specific

3In the airline industry, the difference between legacy and low-cost carrier competition is a well-
known example of a different intensity of competition for a given market structure. In a recent
empirical study of airline fares, Brueckner et al (2013) find, for example, that most forms of legacy
carrier competition have a weak effect on average fares, while low-cost carrier competition impacts
fares dramatically.
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(e.g., cost efficiency and customer loyalty) and flight-specific (e.g., departure time pref-

erences) time-invariant characteristics by means of panel fixed effect techniques. This

way we can capture a significant part of the unobserved heterogeneity in prices.

Our work contributes to multiple strands of literature. First, it builds on the exten-

sive theoretical literature on APDs in the dynamic pricing of perishable goods under

demand uncertainty (Gale and Holmes, 1992; Gale, 1993; Dana, 1998; 1999; Möller

and Watanabe, 2010; 2016) to provide novel empirical evidence of APDs increasing

with the intensity of competition. Second, it extends the empirical literature on dy-

namic airline pricing by studying oligopolistic markets and the effect of competition

on the temporal profile of airline prices (Escobari, 2012; Lazarev, 2013; Alderighi et al,

2015; Williams, 2018). Finally, it has implications for the airline price discrimination

literature, which studies the effect of competition on price dispersion using average

prices and finds mixed results (Borenstein and Rose, 1994; Gerardi and Shapiro, 2009;

Gaggero and Piga, 2011; Dai et al, 2014).

The remainder of this paper is structured as follows. Section 2 discusses the rele-

vant theoretical and empirical literature on APDs and the airline industry. Section 3

discusses the data collection process and introduces our measure of competition and

the empirical methodology. Section 4 reports the empirical results of the main and

robustness analyses. Finally, Section 5 concludes.

2 Background

2.1 Advance purchase discounts

Prescott (1975) first developed a model of hotel competition to describe a competitive

equilibrium when homogeneous goods are perishable, aggregate demand is uncertain

and firms set prices before demand is realised. In this model, which was later for-
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malised by Eden (1990), firms sell goods at several prices, so interfirm and intrafirm

price dispersion arises in equilibrium. The Prescott model and its extensions are still

frequently used to describe price dispersion in markets where prices vary over time,

such as the airline, hotel and car rental industry. Dana (1998) extends the Prescott

model and considers firms that offer advance purchase discounts (APD) in a compet-

itive market with heterogeneous consumers and individual demand uncertainty. He

shows that APDs may be an optimal (intertemporal) price discrimination strategy for

firms even in the absence of market power. The reason that price discrimination arises

in equilibrium is that consumers with relatively certain demands and lower valuations

have an incentive to purchase the good in advance because the presence of consumers

with higher valuations and uncertain demands increases the likelihood of the former

being rationed in the spot market4. In equilibrium, firms exploit this heterogeneity

in preferences and screen consumers based on their demand uncertainty to reduce the

costs of holding potentially unused inventory.

Existing literature on APDs also extends these findings from a competitive market

to a monopoly (Gale and Holmes, 1992; 1993; Dana, 1999; 2001; Möller and Watanabe,

2010; Nocke et al, 2011). Similar to other price discrimination practices, APDs may

promote efficiency by increasing output in markets with elastic demand and assist

firms in covering large fixed costs. Gale and Holmes (1992) examine the optimisation

problems of a social planner and an unregulated monopolist and find that APDs arise in

both solutions and can assist in the efficient allocation of fixed capacity. The authors

also show in a different paper that APDs are a profit-maximising pricing strategy

because they can help airline monopolists divert demand from peak to off-peak periods

(Gale and Holmes, 1993). Möller and Watanabe (2010) show that APDs are part

of the monopolist’s optimal pricing strategy when consumers face a positive risk of

4The term spot market is used in a similar way to Dana (1998) to differentiate the immediate pur-
chase from the advance purchase market and is not necessarily related to a market clearing situation.
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becoming rationed and provide conditions under which APDs are rational to use in

equilibrium. Two relevant conditions for the airline industry are that APDs are found

to be profitable when monopolists can implement capacity limits during the purchase

period and when capacity is relatively costly and must be chosen in advance.

Previous theoretical work also compares the monopoly equilibrium to a situation

with oligopolistic competition, which is relevant for our empirical analysis. These stud-

ies show that the use of APDs is a profitable pricing strategy for both monopolists and

oligopolists and suggest that the size of the discounts is positively related to the in-

tensity of competition. Gale and Holmes (1992) develop a model that compares the

use of APDs in an airline route with two flights in the following situations: (i) both

flights are operated by a profit-maximising monopolist, (ii) both flights are operated

by a welfare-maximising social planner, and (iii) each one of the flights is operated

by a non-cooperative duopolist. They consider equilibria with and without capacity

constraints and show that duopolists always have an incentive to employ APDs be-

cause that allows them to expand output. In the case of no capacity shortage, they

find that duopolists will offer APDs to compete for consumers with elastic demand,

while the monopoly and social planner equilibria do not involve APDs. Gale (1993)

provides further intuition for that result by comparing a non-cooperative duopoly with

a monopoly in a similar setting (i.e. multiple flights on a route departing at different

times in a day). He shows that competition to conquer less time-sensitive travellers is

stronger in an oligopoly compared to a monopoly. As a result, prices at the lower-end

of the fare distribution decrease with competition, which implies that firms implement

larger APDs. Möller and Watanabe (2016) also prove this by considering differentiated

products in a model of oligopolistic competition with individual demand uncertainty.

In their model, firms offer APDs in equilibrium and these discounts are larger in the

case of oligopolistic competition compared to a monopoly. The intuition behind this
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result is similar to Gale (1993), namely firms trying to capture customers in advance

and prevent losing them to their rival in the future. Finally, Dana (1999) finds evi-

dence for intrafirm price dispersion due to APDs in both the monopoly and oligopoly

equilibrium and shows that price dispersion increases as the market becomes more

competitive, which is in accordance with patterns documented in the airline indus-

try (Borenstein and Rose, 1994; Stavins, 2001).

2.2 The airline industry

The airline industry provides a natural setting to examine the impact of competition

on APDs for several reasons. First, the assumptions in the models of Gale and Holmes

(1992; 1993), Gale (1993), Dana (1998; 1999) and Möller and Watanabe (2016) are to

a large extent satisfied in this context: (i) airline prices are set in advance and tickets

have a clear expiration date, changes and cancellations are costly and resale is not

possible (perishability), (ii) airlines choose their capacity in advance and adjustment

throughout the booking period is relatively costly (high marginal cost of capacity), and

(iii) customers can be divided into two distinct categories with respect to their cer-

tainty to fly and departure time preferences, i.e. leisure (business) passengers with a

relatively certain (uncertain) demand to fly and low (high) time sensitivity (customer

heterogeneity and individual demand uncertainty). Second, there is robust empirical

evidence of airlines using APDs in their pricing strategies and APDs partly explain

(together with the impact of available seats and revenue management) the increas-

ing temporal profile of fares documented in previous literature (Alderighi et al, 2015;

Williams, 2018). Third, while airlines compete in oligopolistic settings, the effect of

competition on dynamic pricing and APDs has not been previously studied empirically.

Moreover, studying the effect of competition on airline price dispersion is incom-

plete without taking into account the impact of APDs. An increase in APDs due to
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more competition would partially contribute towards a positive relationship between

competition and price dispersion. This occurs since fares at the lower-end of the price

distribution, usually offered by carriers at the beginning of the booking period, decrease

as competition increases. Existing empirical literature on the effect of competition on

airline price dispersion has so far not explicitly considered the intertemporal dimen-

sion and APDs, mainly due to the lack of available dynamic pricing data. This is a

likely explanation for the mixed results previously reported. For example, Borenstein

and Rose (1994) study price dispersion by using average price data and report sub-

stantial variation in airline fares, which they interpret as indirect evidence for price

discrimination. The authors find that the dispersion in prices is higher on routes with

more competition or lower flight density. Stavins (2001) also finds that price dispersion

decreases with market concentration by using ticket restrictions (e.g., Saturday-night

stayovers or advance purchase requirements) as a proxy for price discrimination. Ger-

ardi and Shapiro (2009) study the effect of carrier entry on price dispersion by using

a panel of average price data and provide evidence of the opposite effect, namely that

price dispersion decreases with competition. Gaggero and Piga (2011) also report a

similar finding. These authors argue that increased competition and a loss in market

power hinder the ability of firms to price discriminate between business and leisure

travellers, leading to lower fares at the higher-end of the price distribution.

3 Data and methodology

3.1 Data collection

Our data was collected using a web scraper that extracted listed price data of airline

tickets from two online sources: (i) ITA Matrix, which is an airline ticket price aggre-

gator website and (ii) the official website of Southwest Airlines, since Southwest does
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not publish its fares on other platforms. The web scraper was programmed to collect

the cheapest available economy class ticket prices for all departures of all carriers op-

erating flights in the 100 busiest U.S. domestic routes based on the number of yearly

transported passengers in 2017, as reported by the Bureau of Transportation Statistics

(BTS)5. The data was collected between July and October 2018 and all flights depart

on Monday, October 22nd, 2018. The web scraper collected data every day at the same

time starting from 95 days prior to the departure date and up until the day before depar-

ture. The carriers in our dataset are Alaska, American, Delta, Frontier, Hawaiian, Jet-

Blue, Mokulele, Southwest, Spirit and United. Our final panel dataset consists of 2,338

direct, non-stop, one-way flight departures operated by those carriers in the 100 routes

(origin and destination airport pairs) and 95 observations over time for each flight. In

addition to the listed ticket price, we also collected the following information: flight

departure time, flight arrival time, flight duration, fare class and operating aircraft6.

The structure of the collected data allows us to consistently examine the effect of

competition on the temporal profile of fares and control for confounding sources of

variation in airline prices. First, by using one-way rather than round-trip tickets, we

control for the price variation resulting from ticket restrictions such as Saturday-night

stayovers, or minimum/maximum stay requirements. Second, by only using direct, non-

stop flights, we control for potential price variation due to more complex itineraries

that are not likely to be viewed as perfect substitutes by consumers (e.g., connecting

flights). Third, by restricting tickets in our sample to the cheapest available economy

class and excluding business and first class tickets, we limit the available classes of

fares and reduce price variation due to cost-related reasons. Fourth, by recording

5A detailed list of all routes used in our sample can be found in the Appendix of this paper.
6We also collected data for two more departure dates that we use in robustness analyses. The data

was collected using the procedure that is described in Section 3.1. The additional departure dates are
Monday, January 28th, 2019, and Thursday, January 31st, 2019. All dates were selected so that they
do not coincide with (or are close to) any public holidays or other significant events.
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Figure 1 Temporal profile of the average fare in routes with a different number of operating carriers.

Refer to the legend in the figure for information on the different groups.

fare class information, we are able to control for potential price variation resulting

from tickets with a higher degree of flexibility that may not be comparable to the

(usually) inflexible APD tickets. Finally, selecting a fixed departure date limits the

variation in demand that may arise by, for example, comparing flights in the same

route that depart at different dates. A unique feature of our data is that it combines

information on all flights on the selected routes with a fixed departure date, which

implies that all carriers and flights in a given route are exposed to the same demand

shocks at every given point in the booking period.
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Figure 2 Temporal profile of the average fare in routes with a different Herfindahl-Hirschman Index

(HHI). Refer to the legend in the figure for information on the different groups.

3.2 Descriptive evidence of APDs increasing with competition

In this section, we provide descriptive evidence of the effect of competition on APDs

by looking at the temporal profile of fares in routes with a different market structure.

Figure 1 plots the temporal profile of the average fare in 5 groups of routes, each with

a different number of operating carriers. Figure 2 plots the average fare in 4 groups

of routes with a different Herfindahl-Hirschman Index (HHI). We observe that average

fares exhibit an increasing temporal profile, with a relatively steady development until

about 20 days before departure and a steep increase in the remaining days before

departure. Similar to previous empirical work in dynamic airline pricing, there is

clear evidence of carriers using APDs irrespective of the market structure. Moreover,

an increase in competition appears to have a significant impact on the size of those
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discounts. Prices in routes with more carriers and routes with lower concentration, as

measured by the HHI, are lower early in the booking period (until about 20 days before

departure). After that point fares begin to converge and there is no clear ordering based

on the market structure neither for the number of carriers nor the HHI groups7. As a

result, intertemporal price dispersion appears to be increasing with competition.

3.3 Measuring the intensity of competition

While the above evidence does provide some insight into the effect of competition

on APDs, a cross-sectional comparison of routes with a different market structure is

problematic in this context for two reasons. First, it is subject to several confounding

factors that could bias the analysis and are difficult to measure, such as customer

heterogeneity, departure time preferences and route-specific carrier pricing strategies.

A solution to this issue would be to perform an analysis at the flight level in order to

control for time-invariant route, carrier and flight characteristics by means of panel fixed

effects techniques. However, this is not possible with existing measures of competition,

such as market structure indicators and concentration indices, because these are fixed

at the route level. Second, economic theory of oligopolistic competition and empirical

evidence from the airline industry suggest that it may not always be correct to assume

there is a one-to-one relationship between the intensity of competition and market

structure or concentration8. As a result, using indicators of market structure would

only allow making indirect inferences about the intensity of competition and may fail

to capture the interfirm rivalry and customer stealing motives that drive the effect of

7An exception in this classification is the lowest HHI group (0 ≤ HHI < 0.2). The average price
of that group remains significantly lower compared to the other HHI groups, also during the final 20
days before departure.

8An example with different intensities of competition for a given market structure from the theory
of oligopolistic competition is discussed in Footnote 2. An example from the empirical airline literature
is discussed in Footnote 3.
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competition on APDs in the models of Gale (1993) and Möller and Watanabe (2016).

To address the above issues, we develop a new measure for the intensity of compe-

tition by exploiting information on the departure time of each flight, which is a unique

feature of our dataset. The idea of this measure is based on the Hotelling model of

spatial competition (Hotelling, 1929), which we extrapolate to the temporal dimen-

sion. Borenstein and Netz (1999) use a similar application of the Hotelling model to

airline flight departures to study the effect of competition on differentiation. In the

original Hotelling model, firms compete in prices and must decide where to locate on

a linear stretch with uniformly distributed consumers. In this setting, firms face a

trade-off between locating close to their competitors in order to steal customers and

locating farther away from their competitors in order to increase differentiation and

reduce price competition. Different assumptions explored by the main theory and

extensions of the Hotelling model (e.g., Eaton and Lipsey, 1976; d’Aspremont et al,

1979; Osborne and Pitchik, 1985; Anderson, 1987) cause either one of these forces to

dominate, leading to a location choice with minimum differentiation and maximum

price competition (i.e. close to competitors) or maximum differentiation and minimum

price competition (i.e. far away from competitors).

In our context, airline competition can be analysed using the spatial Hotelling

framework, where the location of each flight is equivalent to the time of departure in a

24-hour time frame and the distance to competitors is equivalent to the temporal dis-

tance between flights in minutes. Consumers are not located physically, but over time

by having preferred departure times (Douglas and Miller, 1974). In our application,

we are not concerned with the location choice of a particular firm but take that as

given and use it to infer the intensity of price competition with other firms. Location

choice is not relevant in our analysis, since airlines announce their schedules in advance

of the booking period and compete in prices given their predetermined choice. Once
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the booking period has started, location choice is no longer a strategic variable for

airlines since intermediary changes are (prohibitively) costly9.

To construct our competition measure we calculate pairwise the temporal distance

of a given flight to all other flights on a route and then compute the average of those

distances, which we define as the average temporal distance (ATD) of a flight. This is

different from Borenstein and Netz (1999), which looks at flight density (i.e. whether

flights are evenly distributed over the day) by computing the average distance be-

tween flights. Our measure is therefore a flight-level measure of the relative temporal

proximity to competition. We assume that the intensity of competition monotonically

increases as the temporal distance to competing flights decreases. The advantage of

our setting is that airline departures within a day are relatively homogeneous after

controlling for departure time preferences and carrier specific unobservables (e.g., cost

heterogeneity or customer loyalty). This implies that any remaining difference in prices

can be attributed to the effect of competition, which we can measure with the ATD.

The average temporal distance (ATD) of a given flight i on a route k, is calculated as

follows:

ATDik =
1

n− 1

n−1∑
i=1

n∑
j>1

min

[
| di − dj |, 24− | di − dj |

]
(1)

where n denotes the number of daily flight departures on the route, d denotes the

departure time and j denotes other flights on the route during the day10. An example

of the calculation of the ATD is given in Figure 3. In this example, there are 5 flights

on a route departing at 7am, 11am, 12pm, 4pm and 8pm. To find the ATD of the early

morning flight, we compute the temporal difference (in hours) of that flight with each

one of the other departing flights on the route (4, 5, 9 and 13 hours, respectively) and

then calculate the average, which is equal to 7.75 hours. This procedure is repeated

9We further elaborate on the assumption that scheduling changes during the booking period are
prohibitively costly for airlines in Section 3.4.

10The number 24 appears in Equation 1 because this is the number of hours in a day.
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Rank 1 2 3 4 5 
LR-ATD  3.15 
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5h 
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Figure 3 Example of flight departures on a route for the calculation of the ATD, LR-ATD and

ER-ATD. The value of the respective measure for each flight is reported below each departure time.

for each one of the departing flights on the route. The ATDs of the remaining flights

in the example are reported below the departure time of each flight in Figure 3.

The ATD measure in Equation 1 has a number of limitations. First, all flight pairs

are given equal weight in the calculation of the average. While it may be reasonable

to assume that all same-day flights on a route compete with each other, it is not likely

that they all compete to the same extent. For example, a flight scheduled at 8am likely

competes with other morning departures at 10am and 11am but may not compete

with evening departures scheduled at 7pm and 9pm. Second, flights departing early

in the morning or late in the evening have significantly higher ATDs since they only

face one-sided competition (i.e. competition from flights later/earlier during the day,

respectively). The ATDs of flights departing in between those times are significantly

lower on average since they face two-sided competition (i.e. competition from both
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earlier and later flights)11. This problem is exacerbated by the fact that our data con-

cerns a specific departure date, which means we miss information on flights departing

on the previous and following day. This type of censoring is especially important for

the early morning and late evening flights. For example, a flight departing at 11:30pm

on Monday, October 22nd likely competes with another flight departing at 12:30am

on Tuesday, October 23rd, which is not in our dataset.

We address these issues by adding weights to the calculation of the ATD. These

weights are designed in such a way that the distance to immediate neighbours of a

given flight becomes more important in the calculation of the average12. First, we

rank all competing flight departures based on their distance to a given flight in as-

cending order. This implies that the closest competing flight departure is ranked

first and the farthest competing flight departure is ranked last13. In the example of

Figure 3, flights are therefore ranked as follows: 11am (1st), 12pm (2nd), 4pm (3rd)

and 8pm (4th). Second, we use one of the following weights for each departure time

difference pair | di − dj | depending on the rank r:

Linear rank : max
[

0 , 1− α · r
]

α∈
[
0, 1
]

Exponential rank : β r β∈
[
0, 1
]

We define the following two ATD measures, which we use in our main and robust-

ness analyses: (i) the Linear Rank Average Temporal Distance measure (LR-ATD),

11This should not be surprising since the ATD is designed to measure the temporal proximity to
competition. Early morning and late evening flights are further away from other competing flights
during the day, which will be captured by the measure. However, the problem in this case is that
calculating the ATD in Equation 1 leads to highly dispersed ATD values and large outliers (i.e. the
early morning and late evening flights) in the distribution of ATDs in a particular route.

12Borenstein and Netz (1999) also look at two measures in which immediate neighbours become
more important in the calculation of their (route-level) measure of the average distance between flights.

13In the case that several competing flights depart at the same time, they are all assigned the same
rank (and thus weight) in the calculation of the average.
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which uses the linear weight, and (ii) the Exponential Rank Average Temporal Dis-

tance measure (ER-ATD), which uses the exponential weight. The parameters α and

β measure the extent to which same-day flight departures compete with each other.

When α is near 0 (β is near 1) then all same-day flight departures are assumed to

compete equally and have a similar weight in the calculation of the average. As α

is approaching 1 (β is approaching 0), direct neighbours in departure time become

increasingly more important in the calculation of the average14.

We calculate below the LR-ATD and ER-ATD of the early morning flight from the

example in Figure 3, assuming that α = 1
5

and β = 1
2
, respectively:

LR-ATD07:00 =
1

4

[
4

5
|7− 11|+ 3

5
|7− 12|+ 2

5
|7− 16|+ 1

5
|7− 20|

]
= 3.1

ER-ATD07:00 =
1

4

[
1

2
|7− 11|+ 1

4
|7− 12|+ 1

8
|7− 16|+ 1

16
|7− 20|

]
' 1.3

The LR-ATD and ER-ATD of all other flights in the example are also reported under

each departure time in Figure 3. The dispersion in ATDs is significantly reduced

as a result of the introduction of the weights.

Our measure is highly flexible and the introduction of weighting offers many pos-

sibilities for accurately measuring the intensity of competition. For example, we can

exclude flights of the same carrier from the calculation of the ATD of a given flight

(interfirm weighting). This is likely important since many routes in our sample have

a large number of daily departures but only a few operating carriers. Not account-

ing for the fact that flights of the same carrier likely do not compete with each other

may erroneously give the impression that competition is high when in fact it is not.

Similarly, our measure can take strategic alliances into account by excluding flights

14When α = 0 or β = 1, all competing flights receive the same weight and the two measures become
equivalent to the ATD in Equation 1. In the extreme case when α = 1 or β = 0, all competing flights
receive zero weight irrespective of their distance to a given flight. This can be interpreted as flights
only competing with other flights departing at the exact same time during the day.
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operated by alliance partners of a given carrier from the calculation of the ATD (al-

liance weighting). Another option is to take into account the type of competitor in the

calculation of the ATD. For example, previous literature in airline competition finds

low-cost carrier competition to have a dramatic impact on average fares in contrast

to most forms of legacy carrier competition, which is found to have weak effects on

fares (e.g., Brueckner et al, 2013). Giving different weights to competing flights de-

pending on the type of competitor (e.g., legacy or low-cost carrier) would be a way to

incorporate that in the calculation of the ATD (competitor-type weighting).

3.4 Empirical strategy

3.4.1 Changes in flight schedules

To perform an analysis at the flight level, we exploit plausibly exogenous changes in

flight schedules that occur during the booking period, such as departure time changes

and flight cancellations15. Scheduling changes that occur throughout the booking pe-

riod are likely related to carrier or airport specific operational reasons (e.g., aircraft

availability, network coordination or slot availability) and are unlikely to be related

to carrier pricing strategy decisions. Rescheduling flight departures throughout the

booking period is (prohibitively) costly for carriers for many reasons, such as admin-

istrative costs for dealing with passengers who have already booked a ticket, customer

dissatisfaction, and increased risk of cancellations and compensation claims. Figure

4 presents the frequency of changes in the ATD of a flight throughout the booking

period. A large number of changes is concentrated at the beginning and the end of

15The ATD measures are flight-level measures and will be constant in the time period of 95 days
until departure in our sample when the relative position of competing flights does not change. To
ensure there is variation in ATD at the flight level, it is thus necessary that flights change position
(i.e. departure time) in the time span in which our data is collected. In this case, this happens as a
result of changes in the schedules of flights.
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the booking period, but there is a sufficient number of changes occurring during the

entire time span of our sample16. By definition, a change in the schedule of one flight

will alter the ATDs of all same-day flights on a route. As a result, the 321 changes

in departure time that occur throughout the booking period in our sample lead to

many more exogenous shocks to our measure of competition, which helps to identify

the effect of competition on the temporal profile of fares and APDs17. The changes

in departure time in our sample are approximately 15 minutes on average and 95%

of those departure time changes is less or equal to an hour.

3.4.2 Main empirical specification

To study how airline prices change with competition during the booking period, we

estimate the following reduced-form pricing equation:

Ln(P)ikt = c+
T−1∑
t=1

λ1t BDt +
T∑
t=1

λ2t (LR-ATDikt × BDt) + ηik + εikt (2)

16Three types of events may cause the ATD of a given flight to change: (i) the departure time of
that flight or (at least) one of its competing flights changes, (ii) (at least) one of its competing flights
is cancelled, (iii) (at least) one of its competing flights is fully booked (i.e. economy class tickets are no
longer available). Since we observe the departure time of a flight, we can distinguish changes in ATD
due to departure time changes from flight cancellations and fully booked flights. However, we can
not distinguish flight cancellations from fully booked flights because a flight would exit our dataset in
both cases. Fully booked flights are likely the reason for the large increase in the frequency of changes
in the ATD during the last 5 days before departure. Flight cancellations are likely random events and
thus not expected to be concentrated at a specific time during the booking period. We use all three
types of events in our main analyses and control for non-departure time related changes in ATD in
robustness analyses, which yield the same qualitative results.

17Changes due to flight cancellations and fully booked flights are not included in this number.
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Figure 4 Frequency of changes in the average temporal distance (ATD) of flights throughout the

booking period. The changes in ATD are grouped into periods of 10 days.

where i denotes a flight-carrier combination, k denotes a route, t denotes the day of

the booking period and T the total number of days during which we track prices18.

The dependent variable Ln(P)ikt is the logarithm of the listed price at the route-

carrier-flight level and competition is measured by LR-ATDikt (as in Equation 2) or

ER-ATDikt, which also vary at the route-carrier-flight level. We use interfirm weighting

and thus assume that same-day departures of the same carrier do not compete with

each other19. BDt is an indicator variable for each day of the booking period (e.g.,

BD1 = 1 if t = 1 and is equal to 0 otherwise). These indicator variables are used to

model a baseline temporal profile of fares20. We interact LR-ATDikt (or ER-ATDikt)

18We start tracking prices 95 days prior to the departure, which implies that t∈{1, 2, . . . , 95} and
T = 95.

19We further assume that α = 1
5 and β = 1

2 for the calculation of the LR-ATD and ER-ATD,
respectively. We change the values of α and β in robustness analyses and find the same qualitative
results.

20This approach is similar to previous empirical work in airline dynamic pricing, such as Escobari
(2012) and Alderighi et al (2015).
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with the booking day dummies to allow the estimated effect of competition on the

temporal profile of fares to be different throughout the booking period. Finally, term

ηik denotes the (route-carrier-flight) fixed effects, c is a constant term and εikt is an

error term. The included fixed effects allow us to control for time-invariant route,

carrier and flight characteristics that may affect ticket prices. Route specific effects

include the size and distance of a route, local population and income, and airport or

hub dominance at origin and destination. Carrier specific effects include brand loyalty,

carrier type (e.g., legacy or low-cost) and cost structure. Flight specific effects include

operating aircraft and load factor efficiency, and customer preferences with respect to a

given departure time. Departure time preferences are important to take into account as

they may impact the demand for a particular flight. While a flight that is positioned

far away from competitors may experience less direct price competition, the lack of

neighbouring flight departures may also indicate an unpopular departure time. This

confounding effect is controlled for in our analysis since our coefficients are estimated by

using the variation at the flight level, i.e. holding departure time preferences constant.

Another challenge in the dynamic pricing context is taking into account the effect

of available seats on fares. Prices in the airline industry are simultaneously determined

by fares responding to both time to departure and available seats at the moment of

purchase (Alderighi et al, 2015; Williams, 2018). To control for the effect of available

seats on fares, real-time capacity data at the flight level would be necessary. However,

available capacity data is carrier sensitive information and is to our knowledge not

possible to obtain, especially for a large sample of routes, carriers and flight departures

that would be required for the analysis of competition. Previous research has relied on

online seat maps to estimate available seats at any given point in time (e.g., Escobari

2012, Alderighi et al, 2015; Williams, 2018). This approach has two drawbacks. First,

collecting seat map data for many routes and flights is cumbersome and costly as the
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information is only available through paid airline global distribution systems, such as

Amadeus or SABRE. Second, and more importantly, seat map data is not likely to

be a good indicator of real-time available flight capacity21. The reason is that carriers

nowadays commonly charge an additional fee for an advance seat selection. As a result,

many travellers select their seats during check-in, i.e. only a couple of days to hours

before the flight departure. This type of measurement error likely leads to a systematic

overestimation of the number of available seats throughout the booking period.

In our analysis, controlling for the effect of available capacity on fares is less impor-

tant. Since the identification of the effect of competition on dynamic pricing and APDs

is based on plausibly exogenous changes in flight schedules, it is arguably sufficient to

ensure that these changes are not also related to changes in the availability of seats.

An example of this would be carriers changing the departure time of a flight in order

to use a bigger or smaller aircraft, which would also affect the number of available

seats. To ensure that changes in schedules are not related to changes in aircraft and

the available capacity, we extend Equation 2 with two types of control variables: (i)

aircraft-type fixed effects, and (ii) a (route-carrier-flight level) indicator variable for

changes in operating aircraft that occur during the booking period. Finally, to further

capture the effect of available capacity on fares, we include fare class fixed effects in

Equation 2 to control for the lowest available fare class at a given day during the book-

ing period22. The available fare class is related to the number of available seats due to

fencing, i.e. booking limits that airlines implement as a result of revenue management

21The issue that online seat maps may not accurately represent real-time flight loads and lead to a
measurement error is also acknowledged by Williams (2018).

22We create three fare class groups for economy tickets in our dataset: Economy Low, Economy
Medium and Economy High. Each carrier’s fare classes (in most cases more than 10) are then allocated
to those groups based on information about ticket flexibility (e.g., whether tickets can be changed),
ticket restrictions (e.g., whether ticket cancellations are refundable) and ticket privileges (e.g., whether
tickets offer additional frequent flyer points) from each carrier’s website. This information is not
publicly available for three carriers in our sample: Frontier, Mokulele and Spirit.
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practices, but can also help control for ticket heterogeneity since it likely captures some

of the variation in prices due to ticket restrictions and flexibility.

4 Empirical analysis

4.1 Main results

Table 1 presents the results of our main analysis on the effect of competition on the

dynamic pricing of airlines23. To facilitate the interpretation of the estimated coef-

ficients, we normalise the LR-ATD (ER-ATD) with interfirm weighting that is used

in our analyses. Since the dependent variable is the logarithm of the listed price of

a given flight, we can interpret coefficients as percentage changes in price. The vari-

ables reported in Table 1 are the interaction terms of the LR-ATD (ER-ATD) with the

booking day dummy variables (BD). Instead of using a dummy variable for each day

of the booking period, we arrange days into 10 booking day subperiods. This allows

us to reduce noise and estimate the effect of the LR-ATD (ER-ATD) on prices more

efficiently, since scheduling changes, which are necessary for the identification, may not

take place on every single day of the booking period. All booking day subperiods con-

sist of 10 days, except from the last subperiod that consists of 6 days (refer to Table 1

for the exact composition of the booking day subperiods). All specifications in Table 1

also include the booking day dummy variables (BD), which implies that the LR-ATD

(ER-ATD) interaction coefficients measure the additional effect of competition at a

given point in time during the booking period. Finally, we gradually introduce the

control variables discussed in Section 3.4. The first specification reports the results

of our baseline model (Equation 2), the second specification includes the aircraft type

23You may refer to Table 6 in the Appendix of this paper for summary statistics on the variables
used in the main and robustness analyses.
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Table 1: Add title and legend. 
 
 

 (1) (2) (3) 
 LR-ATD ER-ATD LR-ATD ER-ATD LR-ATD ER-ATD 
95 – 86 days 0.448*** 0.406*** 0.444*** 0.402*** 0.460*** 0.408*** 
 (0.155) (0.151) (0.154) (0.151) (0.140) (0.132) 
85 – 76 days  0.462*** 0.419*** 0.459*** 0.416*** 0.475*** 0.423*** 
 (0.155) (0.152) (0.155) (0.151) (0.141) (0.133) 
75 – 66 days 0.499*** 0.457*** 0.496*** 0.454*** 0.537*** 0.487*** 
 (0.153) (0.149) (0.152) (0.149) (0.139) (0.130) 
65 – 56 days 0.525*** 0.488*** 0.523*** 0.487*** 0.559*** 0.515*** 
 (0.151) (0.147) (0.150) (0.147) (0.138) (0.131) 
55 – 46 days 0.479*** 0.440*** 0.476*** 0.438*** 0.509*** 0.469*** 
 (0.150) (0.147) (0.150) (0.147) (0.137) (0.130) 
45 – 36 days 0.418*** 0.380*** 0.415*** 0.377*** 0.446*** 0.406*** 
 (0.148) (0.145) (0.147) (0.144) (0.134) (0.126) 
35 – 26 days 0.373*** 0.327** 0.370*** 0.324** 0.396*** 0.345*** 
 (0.143) (0.138) (0.143) (0.137) (0.130) (0.120) 
25 – 16 days 0.316** 0.271* 0.313** 0.268* 0.341** 0.290** 
 (0.149) (0.148) (0.149) (0.148) (0.135) (0.129) 
15 – 6 days 0.175 0.149 0.172 0.146 0.212 0.183 
 (0.155) (0.156) (0.154) (0.156) (0.139) (0.136) 
6 – 0 days 0.0821 0.0740 0.0795 0.0719 0.0636 0.0396 
 (0.160) (0.163) (0.160) (0.163) (0.146) (0.143) 
Control variables       
Route-flight FE  Yes Yes Yes Yes Yes Yes 
Aircraft changes No No Yes Yes Yes Yes 
Fare class No No No No Yes Yes 
Observations 220,557 220,557 220,557 220,557 220,557 220,557 
R-Squared 0.534 0.533 0.535 0.534 0.592 0.591 
Number of flights 2,338 2,338 2,338 2,338 2,338 2,338 

Table 1 Main results on the effect of competition on dynamic airline pricing. The reported coefficients

are interactions of the LR-ATD and ER-ATD with the booking day subperiod dummies. FE denotes

the fixed effects. Flight-level clustered standard errors are reported in parentheses. Significance levels

are indicated by: *** p < 0.01, ** p < 0.05, * p < 0.1.

fixed effects and the indicators for changes in operating aircraft during the booking

period, and the third specification also includes the fare class controls.

The estimated coefficients are similar across specifications for both the LR-ATD
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and the ER-ATD. We therefore use the output of the third specification, which in-

cludes all control variables, to interpret the estimated coefficients. The coefficients of

the LR-ATD (ER-ATD) interactions are found to be positive and significant in the first

8 booking day subperiods, i.e. until approximately two weeks before departure. This

implies that flights facing less competition (higher temporal distance) exhibit higher

prices during that period compared to flights facing more competition (lower temporal

distance). The coefficients of the last two booking day subperiods are estimated much

closer to zero and are not statistically significant, suggesting that prices are similar in

the last two weeks before departure irrespective of competition24. We interpret these

findings as evidence for larger APDs in more competitive settings. The estimated dif-

ference in APDs is not only statistically but also economically significant. For example,

the estimated coefficient of the LR-ATD between 55 and 46 days before departure is

equal to 0.523. An increase in LR-ATD from 0 (maximum intensity of competition)

to 1 (minimum intensity of competition) would thus increase prices by approximately

52%. The normalised LR-ATD with interfirm weighting has a mean of approximately

0.11 and a standard deviation of approximately 0.10 in our sample. A one standard

deviation increase in LR-ATD (i.e. decrease in the intensity of competition) would

therefore increase listed prices by approximately 5.2%.

The estimated coefficients of the LR-ATD (ER-ATD) interactions exhibit an in-

verse U-shaped temporal pattern. This can be seen in Figure 5, in which we plot the

estimated coefficients of the LR-ATD interactions together with 95% confidence inter-

vals. The coefficients reach a peak during the fourth booking day subperiod (65-56

days before departure), after which point they start to decrease. This gives rise to

non-monotonic temporal profiles of fares for certain values of the LR-ATD (ER-ATD).

24The included control variables in the second and third specification yield statistically significant
coefficients. However, the estimated coefficients for the LR-ATD (ER-ATD) interactions do not sig-
nificantly differ across specifications. This suggests that scheduling changes are not likely related to
changes in aircraft, which could also have an effect on available seats.

27



 

0
-0

.2
0.

2
0.

4
0.

6
0.

8
Co

effi
cie

nt

95-86 85-76 75-66 65-56 55-46 45-36 35-26 25-16 15-6 6-0
Days to departure

Figure 5 Plot of the estimated coefficients and 95% confidence intervals for the interaction terms of

the LR-ATD with the booking day subperiod dummies.

Figure 6 plots the estimated temporal profile of fares when LR-ATD is 0 (which is

equivalent to the baseline temporal profile of fares without the additional effect of

competition) and LR-ATD is 1 (minimum intensity of competition). The coefficients

are estimated using the first day of the booking period in our dataset as the refer-

ence category25. The baseline temporal profile of fares we estimate (LR-ATD = 0)

is similar to previous empirical literature (Escobari and Gan, 2007; Escobari, 2012;

Alderighi et al, 2015); prices are relatively flat at the beginning of the booking period,

sharply increase during the final weeks before departure and monotonically increase

throughout the booking period. However, the estimated temporal profile of fares for

minimum intensity of competition (LR-ATD = 1) is non-monotonic. Prices exhibit

a decreasing trend between approximately 60 and 25 days to departure, after which

25The first day of the booking period is 95 days before the departure date. This means that the
estimated coefficients can be interpreted as percentage differences in price with respect to that date.

28



 
 
 

0

1

1.5

0.5

Co
effi

cie
nt

90 80 70 60 50 40 30 20 10
Days to departure

Figure 5. Add title and legend. 

LR-ATD = 0 
LR-ATD = 1 
 95% Confidence Interval 

Figure 6 Estimated temporal profile of fares with and without the additional effect of competition.

The temporal profile of fares is the result of estimating Equation 2 including the control variables

described in Section 3.4. The reference category is the first day of the booking period.

point they begin to (sharply) increase. Similar U-shaped price dynamics are also re-

ported in previous empirical literature on the dynamic pricing of airlines (Escobari

and Gan, 2007; Bilotkach et al, 2010; Alderighi et al, 2015).

A decreasing pattern in the dynamic pricing of fares is attributed to the declining

option value of unsold seats as the departure date approaches (Gallego and van Ryzin,

1994; Bitran and Mondschein, 1997). This simply reflects the trade-off that airlines face

when waiting for customers with a higher willingness to pay but less certain demands at

the risk of having unsold seats at the time of departure. Our findings suggest that de-

creasing patterns in fares are more prominent when the intensity of competition is low.

The framework on APDs offers a potential explanation, since firms that offer smaller

APDs may also face a greater risk of having unsold seats at the time of departure. This
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would occur if planes fill up slower compared to a situation in which firms compete (by

means of larger APDs) to capture consumers with certain demands who are willing to

purchase early. Firms offering smaller APDs may therefore have incentives to decrease

fares in the middle of the booking period to attract price-sensitive consumers who

would not book their flights very early in advance due to high demand uncertainty.

4.2 Additional analyses

4.2.1 Carrier type analysis

To further explore the effect of competition on dynamic airline pricing and APDs, we

run an additional specification that takes into account the type of carrier. We dis-

tinguish between two types of carriers, namely legacy carriers (NLCs) and low-cost

carriers (LCCs)26. NLCs differ from LCCs in many aspects, such as network type

and operating cost structure27. Previous literature finds significant differences in the

strategic behaviour of the two carrier types and the resulting competitive outcomes

(e.g., Goolsbee and Syverson, 2008; Brueckner et al, 2013), but has not yet studied the

effect of competition on their dynamic pricing strategies28. To incorporate the type of

carrier in our analysis, we interact the booking day dummy variables and the LR-ATD

interactions (i.e. the terms BDt and LR-ATDikt×BDt in Equation 2, respectively) with

a dummy variable indicating whether a certain carrier is a low-cost carrier (LCC = 1 if

a carrier is low-cost and 0 otherwise). The temporal profile of fares and the additional

26The legacy carriers in our sample are: Alaska, American, Delta, Hawaiian, Mokulele and United.
The low-cost carriers in our sample are: Frontier, JetBlue, Southwest and Spirit.

27Legacy carriers usually operate hub-and-spoke networks, in which one (or multiple) airport hubs
are connected to all points in the network (i.e. the spokes) by direct flights. This implies that
passengers travelling between two spokes will have to take a connecting flight through the hub. Low-
cost carriers usually operate point-to-point networks, in which all points in the network are connected
with each other by direct flights.

28Alderighi et al (2015) study the effect of capacity utilisation on the dynamic pricing of a European
low-cost carrier (Ryanair), but do not have any data on legacy or other low-cost carriers to study
potential differences in pricing strategies between the two carrier types.
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Table 2: Add title and legend. 
 

 (1) (2) 
LR-ATD All carriers Legacy Low-cost 
95 – 86 days 0.460*** 0.409*** 0.423 
 (0.140) (0.138) (0.682) 
85 – 76 days  0.475*** 0.415*** 0.395 
 (0.141) (0.138) (0.676) 
75 – 66 days 0.537*** 0.483*** 0.366 
 (0.139) (0.136) (0.674) 
65 – 56 days 0.559*** 0.507*** 0.441 
 (0.138) (0.135) (0.676) 
55 – 46 days 0.509*** 0.461*** 0.543 
 (0.137) (0.134) (0.684) 
45 – 36 days 0.446*** 0.441*** 0.543 
 (0.134) (0.130) (0.679) 
35 – 26 days 0.396*** 0.440*** 0.365 
 (0.130) (0.127) (0.674) 
25 – 16 days 0.341** 0.383*** 0.597 
 (0.135) (0.131) (0.683) 
15 – 6 days 0.212 0.258* 0.675 
 (0.139) (0.136) (0.641) 
6 – 0 days 0.0636 0.104 0.804 
 (0.146) (0.145) (0.627) 
Control variables    
Route-flight FE  Yes Yes 
Aircraft changes Yes Yes 
Fare class Yes Yes 
Observations 220,557 220,557 
R-Squared 0.534 0.606 
Number of flights 2,338 2,338 

Table 2 Carrier type analysis on the effect of competition on dynamic airline pricing. The reported

coefficients are interactions of the LR-ATD with the booking day subperiod dummies. FE denotes

the fixed effects. Flight-level clustered standard errors are reported in parentheses. Significance levels

are indicated by: *** p < 0.01, ** p < 0.05, * p < 0.1.

effect of competition are therefore estimated separately per carrier type. This implies

that the LR-ATD interaction coefficients can be interpreted as the additional effect of

competition on each carrier type’s prices at a given point in time during the booking
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period. The results of the carrier type specification are presented in Table 2. The first

column reports the results of our main specification to facilitate comparison, while the

second and third column report the estimated coefficients of the LR-ATD interactions

for legacy and low-cost carriers, respectively. The estimated coefficients for legacy car-

riers are similar in direction and magnitude to the results of our main specification, so

interpretation remains the same as in Section 4.1. However, the estimated coefficients of

the LR-ATD interactions for low-cost carriers are positive but statistically insignificant.

The estimated standard errors in the third column are significantly higher compared to

the first and second column, which suggests large differences in the employed dynamic

pricing strategies of low-cost carriers29. Our carrier type analysis thus reveals that the

effect of competition on the temporal profile of airline fares and APDs discussed in

Section 4.1 is purely driven by the dynamic pricing strategies of legacy carriers.

4.2.2 Alternative values of α and β

As described in Section 3.3, parameters α and β measure the extent to which same-

day flight departures compete with each other. In our main results, we assume that

α = 0.2 and β = 0.5 to calculate the weights of the LR-ATD and ER-ATD, respectively.

We rerun our main specification (Equation 2 including the aircraft-type fixed effects,

indicators for changes in aircraft during the booking period and fare class fixed effects)

for different values of α and β to test the robustness of our main results. The results

of those robustness analyses are reported in Tables 3 and 4. Table 3 reports the LR-

ATD interaction coefficients for α equal to 0.1, 0.2 (main results), 0.3, 0.4 and 0.5.

The specifications in this table yield the same qualitative results as our main analysis.

Parameter β∈[ 0 , 1 ] is by construction better to use in order to test our assumption

29In line with previous literature on the Southwest effect (Windle and Dresner, 1995; 1997; Goolsbee
and Syverson, 2008), we also run a specification where we separate Southwest from other low-cost
carriers. This specification yields the same qualitative results as Table 2.
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Table 3: Add title and legend. 
 

 (1) (2) (3) (4) (5) 
LR-ATD α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 
95 – 86 days 0.364** 0.460*** 0.389*** 0.353*** 0.339*** 
 (0.146) (0.140) (0.129) (0.122) (0.115) 
85 – 76 days 0.376** 0.475*** 0.403*** 0.366*** 0.351*** 
 (0.146) (0.141) (0.130) (0.122) (0.115) 
75 – 66 days 0.427*** 0.537*** 0.469*** 0.432*** 0.409*** 
 (0.145) (0.139) (0.128) (0.119) (0.111) 
65 – 56 days 0.450*** 0.559*** 0.495*** 0.457*** 0.432*** 
 (0.144) (0.138) (0.127) (0.119) (0.112) 
55 – 46 days 0.417*** 0.509*** 0.443*** 0.411*** 0.398*** 
 (0.143) (0.137) (0.126) (0.118) (0.112) 
45 – 36 days 0.344** 0.446*** 0.389*** 0.366*** 0.366*** 
 (0.141) (0.134) (0.121) (0.113) (0.107) 
35 – 26 days 0.307** 0.396*** 0.332*** 0.304*** 0.298*** 
 (0.139) (0.130) (0.115) (0.105) (0.0975) 
25 – 16 days 0.255* 0.341** 0.280** 0.255** 0.258** 
 (0.142) (0.135) (0.124) (0.117) (0.114) 
15 – 6 days 0.230 0.212 0.146 0.143 0.168 
 (0.145) (0.139) (0.131) (0.127) (0.126) 
6 – 0 days 0.183 0.0636 -0.0310 -0.0313 0.000808 
 (0.148) (0.146) (0.139) (0.136) (0.135) 
Control variables      
Route-flight FE Yes Yes Yes Yes Yes 
Aircraft changes Yes Yes Yes Yes Yes 
Fare class Yes Yes Yes Yes Yes 
Observations 220,557 220,557 220,557 220,557 220,557 
R-Squared 0.591 0.592 0.591 0.591 0.590 
Number of flights 2,338 2,338 2,338 2,338 2,338 

Table 3 Robustness analyses of the main specification for different values of α. The reported coef-

ficients are interactions of the LR-ATD with the booking day subperiod dummies. FE denotes the

fixed effects. Flight-level clustered standard errors are reported in parentheses. Significance levels are

indicated by: *** p < 0.01, ** p < 0.05, * p < 0.1.

that all same-day flight departures are not likely to compete in the same way30. We

30Note that for α ≥ 0.5 flights with a rank r ≥ 2 will all receive zero weight in the calculation of
the LR-ATD. The calculated LR-ATDs are thus similar above that value of α, which is not a problem
when using the exponential weight β.
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Table 4: Add title and legend. 

 (1) (2) (3) (4) (5) 
ER-ATD β = 0.2 β = 0.4 β = 0.5 β = 0.6 β = 0.8 
95 – 86 days 0.318*** 0.387*** 0.408*** 0.403*** 0.212 
 (0.108) (0.125) (0.132) (0.138) (0.143) 
85 – 76 days 0.331*** 0.403*** 0.423*** 0.417*** 0.213 
 (0.108) (0.125) (0.133) (0.139) (0.144) 
75 – 66 days 0.380*** 0.465*** 0.487*** 0.480*** 0.265* 
 (0.105) (0.123) (0.130) (0.137) (0.142) 
65 – 56 days 0.404*** 0.493*** 0.515*** 0.508*** 0.297** 
 (0.106) (0.124) (0.131) (0.136) (0.142) 
55 – 46 days 0.371*** 0.448*** 0.469*** 0.463*** 0.267* 
 (0.107) (0.123) (0.130) (0.135) (0.140) 
45 – 36 days 0.346*** 0.396*** 0.406*** 0.393*** 0.193 
 (0.104) (0.119) (0.126) (0.132) (0.138) 
35 – 26 days 0.276*** 0.330*** 0.345*** 0.340*** 0.169 
 (0.0946) (0.112) (0.120) (0.127) (0.135) 
25 – 16 days 0.239** 0.279** 0.290** 0.283** 0.128 
 (0.112) (0.124) (0.129) (0.134) (0.139) 
15 – 6 days 0.146 0.165 0.183 0.200 0.144 
 (0.124) (0.132) (0.136) (0.139) (0.143) 
6 – 0 days -0.0163 0.00324 0.0396 0.0869 0.145 
 (0.133) (0.140) (0.143) (0.146) (0.148) 
Control variables      
Route-flight FE Yes Yes Yes Yes Yes 
Aircraft changes Yes Yes Yes Yes Yes 
Fare class Yes Yes Yes Yes Yes 
Observations 220,557 220,557 220,557 220,557 220,557 
R-Squared 0.591 0.591 0.591 0.591 0.591 
Number of flights 2,338 2,338 2,338 2,338 2,338 

Table 4 Robustness analyses of the main specification for different values of β. The reported coef-

ficients are interactions of the ER-ATD with the booking day subperiod dummies. FE denotes the

fixed effects. Flight-level clustered standard errors are reported in parentheses. Significance levels are

indicated by: *** p < 0.01, ** p < 0.05, * p < 0.1.

rerun the main specification and let β approach 1, which would imply that all same-

day flight departures receive the same weight in the calculation of the average temporal

distance and are therefore assumed to compete equally. Table 4 reports the ER-ATD
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interaction coefficients for β equal to 0.2, 0.4, 0.5 (main results), 0.6 and 0.8. For

β < 0.8 we find the same qualitative results as in our main analysis31. For β ≥ 0.8, the

estimated coefficients of the ER-ATD interactions are significantly lower in magnitude

and are found to be statistically insignificant. This confirms our expectation that

same-day flight departures are not likely to be competing equally and that weights

that prioritise direct neighbours in the calculation of the average are important in

order to measure the intensity of competition correctly32.

4.2.3 Alternative departure dates

We collect booking period data for two more departure dates and replicate our main

analysis to check the robustness of the main results. The data for the additional

departure dates was also collected using the procedure that is described in Section 3.1.

The additional departure dates are Monday, January 28th, 2019 and Thursday, January

31st, 2019. These dates were selected so that they do not coincide with (or are close to)

any public holidays or other significant events, which is also the case with the departure

date in our main analysis, Monday, October 22nd, 2018. The LR-ATD (ER-ATD)

interaction coefficients from the different departure date specifications are reported in

Table 5. All specifications yield the same qualitative results. These results are also

similar to the ones in our main analysis. The main difference with respect to the effect of

competition on APDs is that the LR-ATD (ER-ATD) interactions in the specifications

31The estimated coefficients for β ≤ 0.2 are smaller in magnitude compared to the results of our
main specification with β = 0.5, but still significantly different from 0. As β is approaching 0, direct
neighbours in departure time become increasingly more important in the calculation of the average. In
the extreme case when β = 0, all competing flights with a different departure time receive zero weight
irrespective of their distance to a given flight. Flights are thus assumed to be competing only with
other flights departing at the exact same time during the day. This underestimates the true intensity
of competition, which likely explains why the estimated coefficients of the ER-ATD interactions are
smaller in magnitude.

32The estimated coefficient of the ER-ATD interaction with the fourth booking day subperiod (65-
56 days before departure) is the only coefficient that is statistically significant at the 5% level for
β = 0.8. The estimated coefficients of the ER-ATD interactions for β = 0.9 are found to be much
closer to 0 and are all statistically insignificant.
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Table 5: Add title and legend. 

 

 28th January 2019 31st January 2019 
 LR-ATD ER-ATD LR-ATD ER-ATD 
95 – 86 days 0.719** 0.478* 0.665*** 0.499*** 
 (0.296) (0.260) (0.159) (0.174) 
85 – 76 days  0.791*** 0.576** 0.593*** 0.415** 
 (0.298) (0.263) (0.159) (0.174) 
75 – 66 days 0.770*** 0.546** 0.535*** 0.336* 
 (0.298) (0.264) (0.159) (0.174) 
65 – 56 days 0.805*** 0.595** 0.594*** 0.413** 
 (0.298) (0.263) (0.157) (0.170) 
55 – 46 days 0.832*** 0.631** 0.624*** 0.451*** 
 (0.297) (0.261) (0.156) (0.168) 
45 – 36 days 0.775*** 0.555** 0.701*** 0.540*** 
 (0.297) (0.262) (0.157) (0.168) 
35 – 26 days 0.855*** 0.646** 0.837*** 0.697*** 
 (0.298) (0.265) (0.158) (0.171) 
25 – 16 days 0.983*** 0.804*** 0.931*** 0.823*** 
 (0.299) (0.267) (0.155) (0.167) 
15 – 6 days 0.772*** 0.571** 0.712*** 0.571*** 
 (0.293) (0.258) (0.150) (0.161) 
6 – 0 days 0.175 -0.114 0.178 -0.0388 
 (0.280) (0.239) (0.134) (0.133) 
Control variables     
Route-flight FE  Yes Yes Yes Yes 
Aircraft changes Yes Yes Yes Yes 
Fare class Yes Yes Yes Yes 
Observations 196,954 196,954 196,359 196,359 
R-Squared 0.587 0.587 0.535 0.535 
Number of flights 2,219 2,219 2,215 2,215 

Table 5 Robustness analyses of the main specification for different departure dates. The reported

coefficients are interactions of the LR-ATD and ER-ATD with the booking day subperiod dummies.

FE denotes the fixed effects. Flight-level clustered standard errors are reported in parentheses. Sig-

nificance levels are indicated by: *** p < 0.01, ** p < 0.05, * p < 0.1.

in Table 5 are positive and significant up until the 9th booking day subperiod, i.e.

approximately a week before departure (in contrast to approximately two weeks before

departure in our main analysis). The estimated coefficients are comparable in relative
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magnitude to the ones in our main analysis. The reason that the coefficients are

estimated larger in absolute terms is that the LR-ATD (ER-ATD) has a smaller range

in the two additional samples (refer to Table 6 in the Appendix of this paper for

summary statistics). Furthermore, changes in flight departures, which is the source

of our identification, are also smaller in these samples. In the samples of Monday,

January 28th, 2019 and Thursday, January 31st, 2019, changes in departure time are

approximately 10 minutes on average (15 minutes in the main sample) and 95% of those

departure time changes is less or equal to 35 minutes (1 hour in the main sample).

5 Conclusion

This paper builds on the extensive theoretical literature on APDs in the dynamic

pricing of perishable goods under demand uncertainty to test the hypothesis that the

discounts offered by firms increase with the intensity of competition. Both the de-

scriptive and econometric evidence from a sample of airline fare quotes provide strong

support for this theoretical prediction. Flights facing more competition consistently

exhibit lower prices than flights facing less competition in the period from about 3

months to 2 weeks before the flight departure. In the final two weeks before departure,

prices are similar regardless of the intensity of competition. The effect of competi-

tion on APDs is economically significant; airline fare quotes increase by approximately

5.2% for a one standard deviation decrease in the intensity of competition based on

our measure of temporal proximity to rivals. This indicates that competition is an im-

portant determinant of the temporal profile of airline fares. Our carrier-type analysis

suggests that these results are likely driven by the dynamic pricing of legacy carriers.

There is insufficient econometric evidence to conclude that competition also has an

effect on the temporal profile of fares of low-cost carriers.
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Our results suggest that airline price dispersion increases with the intensity of com-

petition. Price dispersion is greater when there is more competition because fares

decrease at the beginning of the booking period (due to larger APDs), while fares

towards the end of the booking period remain the same. We therefore find no evi-

dence of firms extracting more surplus from consumers with more inelastic demands

(last-minute bookers) when there is less competition, which would be the prediction

of textbook theory on price discrimination. These findings suggest that the analy-

sis of the effect of competition on airline price discrimination is incomplete without

considering the intertemporal dimension and APDs. This may explain the mixed re-

sults in previous literature on airline price dispersion that has studied the effect of

competition by using average price data (Borenstein and Rose, 1994; Stavins, 2001;

Gerardi and Shapiro, 2009; Dai et al, 2014).

A practical implication that follows from our analysis is that the relative position

of flights with respect to competitors can have significant impact on the employed

dynamic pricing strategies. Flights that are relatively far from competitors are likely

to enjoy some benefits from being alone, which are reflected by the premium these

firms are able to charge during the beginning of the booking period. Although the

location of flights is predetermined in our analysis, airlines are able to choose their

departure times to a certain extent in the long term. Our results therefore highlight

the importance of taking into account the relative proximity of flights to competition

during the slot allocation process. Our average temporal distance measure may assist

in keeping that in check. This is especially important in settings where carriers could

potentially exercise a lot of influence to secure a favourable outcome, such as their

hubs or airports in which their presence is dominant.

Despite the potential benefits for airlines from the lack of competition, the effect on

total welfare is difficult to determine in this setting. For example, Möller and Watanabe
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(2016) show that the aggregate effect of competition can also be negative under certain

conditions in an oligopolistic setting, due to a mismatch between consumer preferences

and product characteristics (i.e. consumers having to make purchases without full

knowledge of their preferences). Drawing conclusions with respect to total welfare is

thus out of the scope of this paper and is left for future research.

6 Appendix

Table 6 presents summary statistics for the standardised LR-ATD and ER-ATD with

interfirm weighting used in the main and robustness analyses. Table 7 describes the

routes (origin and destination airport pairs) for which the data was collected. These

are the 100 biggest U.S. domestic routes based on the number of yearly transported

passengers in 2017, as reported by the Bureau of Transportation Statistics (BTS). The

routes are presented in order of size.

 

 Mean St. dev. Min Max 
LR-ATD     
22nd October 2018 0.109 0.102 0 1 
28th January 2019 0.092 0.088 0 1 
31st January 2019 0.095 0.092 0 1 
ER-ATD     
22nd October 2018 0.095 0.087 0 1 
28th January 2019 0.076 0.070 0 1 
31st January 2019 0.079 0.074 0 1 

Table 6 Summary statistics for the standardised LR-ATD and ER-ATD with interfirm weighting

used in the main analysis with departure date the 22nd of October 2018 and the robustness analyses

with departure dates the 28th and 31st of January 2019.
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 Origin airport Destination airport 
1. Los Angeles International (LAX) San Francisco International (SFO) 
2.  San Francisco International (SFO) Los Angeles International (LAX) 
3. Los Angeles International (LAX) New York John F. Kennedy (JFK) 
4. New York John F. Kennedy (JFK) Los Angeles International (LAX) 
5 New York LaGuardia (LGA) Chicago O'Hare International (ORD) 
6. Chicago O'Hare International (ORD) New York LaGuardia (LGA) 
7. Los Angeles International (LAX) Chicago O'Hare International (ORD) 
8.  Chicago O'Hare International (ORD) Los Angeles International (LAX) 
9. Las Vegas International (LAS) Los Angeles International (LAX) 
10. Los Angeles International (LAX) Seattle–Tacoma International (SEA) 
11. Orlando International (MCO) Atlanta Hartsfield–Jackson (ATL) 
12. Atlanta Hartsfield–Jackson (ATL) Orlando International (MCO) 
13. Seattle–Tacoma International (SEA) Los Angeles International (LAX) 
14. Los Angeles International (LAX) Las Vegas International (LAS) 
15. Denver International (DEN) Los Angeles International (LAX) 
16. Los Angeles International (LAX) Denver International (DEN) 
17. San Francisco International (SFO) Chicago O'Hare International (ORD) 
18. Fort Lauderdale Hollywood (FLL) Atlanta Hartsfield–Jackson (ATL) 
19. Chicago O'Hare International (ORD) San Francisco International (SFO) 
20. Atlanta Hartsfield–Jackson (ATL) New York LaGuardia (LGA) 
21. New York LaGuardia (LGA) Atlanta Hartsfield–Jackson (ATL) 
22. Atlanta Hartsfield–Jackson (ATL) Fort Lauderdale Hollywood (FLL) 
23. Seattle–Tacoma International (SEA) San Francisco International (SFO) 
24. San Francisco International (SFO) Seattle–Tacoma International (SEA) 
25. Atlanta Hartsfield–Jackson (ATL) Los Angeles International (LAX) 
26. Los Angeles International (LAX) Atlanta Hartsfield–Jackson (ATL) 
27. Las Vegas International (LAS) San Francisco International (SFO) 
28. Honolulu International (HNL) Los Angeles International (LAX) 
29. Los Angeles International (LAX) Honolulu International (HNL) 
30. San Francisco International (SFO) Las Vegas International (LAS) 
31. Denver International (DEN) Phoenix International (PHX) 
32. Dallas Fort Worth (DFW) Los Angeles International (LAX) 
33. Tampa International (TPA) Atlanta Hartsfield–Jackson (ATL) 
34. Phoenix International (PHX) Denver International (DEN) 
35. Los Angeles International (LAX) Dallas Fort Worth (DFW) 
36. Denver International (DEN) San Francisco International (SFO) 
37. Atlanta Hartsfield–Jackson (ATL) Tampa International (TPA) 
38. New York John F. Kennedy (JFK) San Francisco International (SFO) 
39. San Francisco International (SFO) New York John F. Kennedy (JFK) 
40. Kahului Airport (OGG) Honolulu International (HNL) 
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 Origin airport Destination airport 
41. New York Newark (EWR) Orlando International (MCO) 
42. Honolulu International (HNL) Kahului Airport (OGG) 
43. Denver International (DEN) Las Vegas International (LAS) 
44. Chicago O'Hare International (ORD) Denver International (DEN) 
45. Dallas Fort Worth (DFW) Chicago O'Hare International (ORD) 
46. Orlando International (MCO) New York Newark (EWR) 
47. Las Vegas International (LAS) Denver International (DEN) 
48. San Francisco International (SFO) Denver International (DEN) 
49. Chicago O'Hare International (ORD) Dallas Fort Worth (DFW) 
50. Denver International (DEN) Chicago O'Hare International (ORD) 
51. San Francisco International (SFO) New York Newark (EWR) 
52. Seattle–Tacoma International (SEA) Anchorage Ted Stevens (ANC) 
53. Chicago O'Hare International (ORD) Boston Logan International (BOS) 
54. Anchorage Ted Stevens (ANC) Seattle–Tacoma International (SEA) 
55. Atlanta Hartsfield–Jackson (ATL) Boston Logan International (BOS) 
56. Boston Logan International (BOS) Chicago O'Hare International (ORD) 
57. New York Newark (EWR) San Francisco International (SFO) 
58. Boston Logan International (BOS) Atlanta Hartsfield–Jackson (ATL) 
59. Chicago O'Hare International (ORD) Minneapolis Saint Paul (MSP) 
60. Minneapolis Saint Paul (MSP) Chicago O'Hare International (ORD) 
61. Atlanta Hartsfield–Jackson (ATL) Washington National (DCA) 
62. Denver International (DEN) Seattle–Tacoma International (SEA) 
63. Washington National (DCA) Atlanta Hartsfield–Jackson (ATL) 
64. Seattle–Tacoma International (SEA) Denver International (DEN) 
65. Chicago O'Hare International (ORD) Atlanta Hartsfield–Jackson (ATL) 
66. Atlanta Hartsfield–Jackson (ATL) Dallas Fort Worth (DFW) 
67. Atlanta Hartsfield–Jackson (ATL) Chicago O'Hare International (ORD) 
68. Dallas Fort Worth (DFW) Atlanta Hartsfield–Jackson (ATL) 
69 Atlanta Hartsfield–Jackson (ATL) Denver International (DEN) 
70. San Diego International (SAN) San Francisco International (SFO) 
71. Las Vegas International (LAS) Seattle–Tacoma International (SEA) 
72. San Francisco International (SFO) San Diego International (SAN) 
73. Salt Lake City International (SLC) Denver International (DEN) 
74. Denver International (DEN) Atlanta Hartsfield–Jackson (ATL) 
75. Minneapolis Saint Paul (MSP) Denver International (DEN) 
76. Fort Lauderdale Hollywood (FLL) New York Newark (EWR) 
77. Seattle–Tacoma International (SEA) Las Vegas International (LAS) 
78. Denver International (DEN) Minneapolis Saint Paul (MSP) 
79. New York Newark (EWR) Fort Lauderdale Hollywood (FLL) 
80. Phoenix International (PHX) Los Angeles International (LAX) 
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 Origin airport Destination airport 
81. Atlanta Hartsfield–Jackson (ATL) Baltimore Washington (BWI) 
82. Los Angeles International (LAX) New York Newark (EWR) 
83. Baltimore Washington (BWI) Atlanta Hartsfield–Jackson (ATL) 
84. Denver International (DEN) Dallas Fort Worth (DFW) 
85. Dallas Fort Worth (DFW) Denver International (DEN) 
86. Los Angeles International (LAX) Phoenix International (PHX) 
87. Denver International (DEN) Salt Lake City International (SLC) 
88. Miami International (MIA) New York LaGuardia (LGA) 
89. Phoenix International (PHX) Chicago O'Hare International (ORD) 
90. Chicago O'Hare International (ORD) Phoenix International (PHX) 
91. Phoenix International (PHX) Seattle–Tacoma International (SEA) 
92. Atlanta Hartsfield–Jackson (ATL) Detroit Metropolitan (DTW) 
93. Seattle–Tacoma International (SEA) Phoenix International (PHX) 
94. New York LaGuardia (LGA) Miami International (MIA) 
95. New York Newark (EWR) Los Angeles International (LAX) 
96. Detroit Metropolitan (DTW) Atlanta Hartsfield–Jackson (ATL) 
97. Atlanta Hartsfield–Jackson (ATL) Philadelphia International (PHL) 
98. Chicago O'Hare International (ORD) Washington National (DCA) 
99. Philadelphia International (PHL) Atlanta Hartsfield–Jackson (ATL) 
100. Washington National (DCA) Chicago O'Hare International (ORD) 

 
Table 7 Description of the routes (origin and destination airport pairs) for which the data was

collected. These are the 100 biggest U.S. domestic routes based on the number of yearly transported

passengers in 2017, as reported by the Bureau of Transportation Statistics (BTS). The routes are

presented in order of size. These routes capture a significant share of the U.S. domestic market,

comprising approximately 40% of the total passengers transported in 2017.
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