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Abstract

We propose new empirical models to capture the dynamics of the variance and skew-

ness in realized volatility measures. We find that time-variation in variance and skew-

ness of realized measures is a key empirical feature, even after accounting for well-

known stylized facts of realized measures such as long-memory-type persistence and

incidental large observations. Using a broad range of 89 U.S. stocks across different

sectors over the period 2001-2019, we show that these phenomena are not incidental

phenomena of a few stocks, but are widely shared. Accounting for dynamics in the

variance and skewness of realized measures results in significantly better in-sample fit

and out-of-sample unconditional density and quantile forecasts.
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1 Introduction

Volatility is a key ingredient for asset pricing, volatility trading, and risk management; see

for instance Sinclair (2013) and (Caporin et al., 2017). Due to the availability of High-

Frequency (HF) data, modern empirical volatility models use (direct) measurements of the

daily volatility, such as the realized variance (Andersen and Bollerslev, 1998) or realized

kernel (Barndorff-Nielsen et al., 2008). Examples include the HAR model of Corsi (2009),

the MEM model of Engle and Gallo (2006), or the multivariate CAW model of Golosnoy

et al. (2012). Also hybrid models based on both returns and realized measures have been put

forward, such as the univariate and multivariate HEAVY models of Shephard and Sheppard

(2010) and Noureldin et al. (2012).

Stylized facts for realized volatility measures include long memory features, fat-tailedness

and a right skew. The fat-tailedness and right skew can be attributed to turbulent market

periods and price jumps, even within the day (e.g. the Flash Crash in May 2011). Very

few studies take the fat-tailedness of realized measures directly into account. Examples

include Caporin et al. (2017) and Opschoor et al. (2018). Caporin et al. (2017) extend

the MEM model of Engle and Gallo (2006) by including jumps under the assumption of a

mixture of Gamma distributions for the realized variance to capture the skewed right tail

of the volatility density. Opschoor et al. (2018) propose a matrix F distribution for realized

covariance matrices, which is a continuous mixture of Wishart distributions. All of these

models, however, are static in terms of their variance (vol-of-vol) and skewness (skew-of-vol).

Intuitively, it is clear that higher order moments of volatility such as the variance and

skewness need not be constant over time. Relating volatility to the flow of information as

in the seminal work of Andersen (1996), there is no ex-ante reason why the accelleration or

decelleration of the flow of information should be constant over relatively calm versus more

turbulent periods, such as the burst of the Internet bubble, the Global Financial Crisis,

or the Sovereign debt crisis. Corradi et al. (2013) indeed show that volatility-of-volatility

is time-varying and varies with the business cycle. Furthermore, Huang et al. (2019) and
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Baltussen et al. (2018) document that volatility risk is time-varying and matters for asset

pricing. Still, empirical models for realized volatility measures have been mainly static and

failed to look into the dynamics of the variance and skewness and the possible time-varying

acceleration of the information flow.

This paper develops new empirical models for volatility that allow the shape parameters

and thus the implied variance and skewness of volatility to be time-varying. By modeling

these two moments implicitly via the distribution’s parameters, the model remains appli-

cable even during periods where the (implied) higher order moments such as skewness do

not exist. The goal is to create more flexibility in the variance (also abbreviated as the

vol-of-vol) and the skewness patterns of the volatility distribution, and thus to allow the

information flow to accelerate or decelerate over time. We measure volatility through the

realized kernel of Barndorff-Nielsen et al. (2008). We model the dynamic behavior of the

kernel using a score-driven time-series model, allowing simultaneously for time-variation in

the mean volatility level and the shape parameters; see Creal et al. (2013). To the best

of our knowledge, time-varying tail shape parameters have been rarely studied before, and

then only for return distributions rather than for (realized) volatilities (see for instance

Gerlach et al., 2013; Lucas and Zhang, 2016). Our approach has a closed-form expression

for the likelihood function, which allows for straightforward estimation and inference by

maximum likelihood. In addition, as the method is observation-driven in the classification

of Cox (1981), we can easily allow standard stylized facts into the model, such as the long-

memory-type persistence of volatility using the HAR approach of Corsi (2009). Combined

with the optimality results for score-driven models of Blasques et al. (2015), our framework

can thus substantially reduce the Kullback-Leibler divergence between the model and the

unknown data generating process for realized volatility dynamics.

Our model for realized kernels builds on a scaled F distribution, where we impose score-

driven dynamics for the time-varying mean as well as for the two degrees of freedom (DoF)

parameters. The fat tail of the F distribution appears to substantially improve the fit of

the model to empirical time-series of realized kernels; see for instance the matrix version

3



of this distribution in Opschoor et al. (2018). Although the variance and skewness of the

F distribution depend on both DoF parameters, we show that the second DoF parameter

mostly affects the tail shape (skewness) of the distribution, while the first DoF mostly affects

the dispersion (or variance). Evidence that this dispersion or vol-of-vol can be time-varying

is found in for instance Corsi et al. (2008).

In our empirical application, we use the new model to describe daily realized kernels of

a broad range of 89 U.S. stocks across industries over the period January 2001 to December

2019. In-sample, the statistical fit increases significantly when allowing for time-varying

DoF parameters compared to benchmarks such as the MEM model (with HAR dynamics)

of Engle and Gallo (2006), the univariate GAS F model with HAR dynamics of Opschoor

et al. (2018), or model specifications for the logarithm of the realized kernel. The latter

are interesting strong benchmark models, as modeling the logarithm of the realized kernel

immediately reduces the fat-tailedness of the distribution; see for instance the HAR log

volatility of Corsi (2009), the Realized log GARCH model of Hansen et al. (2012) or the

multivariate VARFIMA model used by Chiriac and Voev (2011).

Out-of-sample, we assess the economic significance of our results by considering 1-step

ahead density forecasts and Volatility-at-Risk (VolaR) predictions. Our new model strongly

outperforms all other models in terms of unconditional density forecasts: it is part of the

model confidence set (Hansen et al., 2011) in 87 of the 89 cases. As a comparison, the MEM

model with the Gamma distribution enters the set only 11 times. The results strongly sup-

port that it is important to allow for time-varying shape parameters in order to produce an

adequate unconditional VolaR. The time-variation in the variance and skewness of volatility

is widely shared and does not appear to be limited to just a few assets. In terms of con-

ditional density forecasts and conditional VolaR predictions, all models considered in this

paper face challenges. The score-driven models proposed in this paper require more than one

signal to disentangle fat-tailedness from increases in volatility, which results in a first order

autocorrelation and rejection of standard tests for conditional coverage. The autocorrela-

tion is, however, short-lived and disappears already at the second partial autocorrelation.
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By contrast, the standard conditional tests mask some of the more problematic behavior of

thin-tailed models: the resulting transformed probability integral transforms (PITs) exhibit

sequences of influential observations that induce under-rejection of serial correlation tests.

We discuss these features in detail.

The rest of this paper is set up as follows. In Section 2, we introduce the new model for

the dynamic shape parameters of the realized kernel distribution, as well as its competing

benchmarks. In Section 3, we give a brief overview of the data used and cover the empirical

application. We conclude in Section 4.

2 Modeling realized volatility

2.1 The model for static shape parameters

As our measure of realized volatilityRKt ∈ R for days t = 1, . . . , T , we use the realized kernel

as computed following Barndorff-Nielsen et al. (2009). To allow for fat-tailed behavior of

RKt, we follow Opschoor et al. (2018) and assume RKt follows a conditional F distribution:

p(RKt|µt,Ft−1; ν1, ν2) =
Γ((ν1 + ν2)/2)

Γ(ν1/2)Γ(ν2/2)

RK
(ν1−2)/2
t

 ν1

µt(ν2 − 2)


ν1/2

1 +
ν1

ν2 − 2

RKt

µt


(ν1+ν2)/2

, (1)

where Ft−1 denotes the information set containing all realized kernels up to and including

time t − 1, µt contains the time-varying mean of RKt, and ν1 and ν2 are the degrees

of freedom (DoF) parameters. We assume that ν2 > 2, such that the conditional mean

E[RKt|Ft−1] = µt exists.
1 When ν2 → ∞, the F distribution collapses to the χ2 or Wishart

1We have chosen to parameterize the distribution such that µt coincides with the mean; hence the
division by ν2 − 2 and the requirement that the mean exists. We could make the model even more flexible
by not requiring the first moment to exist. That would replace the divisions by ν2 − 2 (twice) in the
density expression by ν2 and consequently slightly change the density expression and subsequent scores.
We would then only require ν2 > 0 rather than ν2 > 2. The parameter µt would then become a generic
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distribution. By an appropriate choice of µt, this also covers the Gamma distribution used

by Engle and Gallo (2006) and Caporin et al. (2017), among others.

The corresponding (conditional) variance and skewness of the F distribution are given

by

Var[RKt|Ft−1] = 2
(ν1 + ν2 − 2)

ν1(ν2 − 4)
µ2
t , (2)

Skew[RKt|Ft−1] =
(ν2 − 2)3(2ν1 + ν2 − 2)

√
8(ν2 − 4)

ν32(ν2 − 6)
√
ν1(ν1 + ν2 − 2)

µ3
t , (3)

where the conditional variance and skewness exist if ν1 > 0, and if ν2 > 4 (vol-of-vol) and

ν2 > 6 (skewness), respectively. Note that even if the conditional skewness (or vol-of-vol)

does not exist, the model remains applicable as long as ν2 > 2 given we estimate ν1 and

ν2 and only treat vol-of-vol and skewness as implied by the underlying model parameters.

This is important, as the existence of higher order moments for high-frequency data may

sometimes be problematic.

Equations (2) and (3) show that both the variance and skewness depend on µt, i.e., on

the conditional expected level of RKt. Hence by allowing for a time-varying level µt of the

volatility distribution, the skewness and kurtosis change mechanically as well, even if the

DoF parameters are constant through time. Furthermore, both the conditional variance and

skewness of the F distribution depend on ν1 and ν2. It is therefore not immediately clear

how these parameters affect each of these quantities separately. To disentangle these effects,

Figure 1 shows a surface plot for the variance and skewness for different combinations of

ν1 and ν2 while keeping µt constant. We obtain two important insights. First, the variance

is decreasing in ν2 and ν1. However, if both values become small, the variance increases

relatively more due to ν1 compared to ν2. Second, the skewness is decreasing in both ν2

and ν1, but for small values of ν1 and ν2 the impact of ν2 on the skewness is larger than the

impact of ν1. We therefore label ν2 as the ‘tail shape’ or ‘skewness’ parameter and ν1 as the

’dispersion’ or ‘vol-of-vol’ parameter.

scale parameter rather than the expectation of RKt. As the existence of variances in financial applications
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Figure 1: Variance and Skewness of the F distribution.
This figure shows the variance and skewness of an F distributed random variable with unit mean as a
function of ν1 and ν2.

Our modeling framework starts with the univariate version of the multivariate HEAVY

GAS model of Opschoor et al. (2018) endowed with the HAR dynamics for µt to accommo-

date the long-memory-type persistence of the realized kernels; see Corsi (2009). The dynam-

ics of the volatility process µt follow the generalized autoregressive score (GAS) framework

of Creal et al. (2013). We obtain

RKt = µtϵt, ϵt ∼ F (1, ν1, ν2), (4)

µt+1 = ωµ + αµ sµ,t + βµ,1 µl1,t + βµ,2 µl2,t + βµ,3 µl3,t, (5)

sµ,t = St∇t = St
∂ log p(RKt|µt,Ft−1; ν1, ν2)

∂µt

(6)

=
ν1

ν1 + 1

(
ν1+ν2
ν2−2

RKt

(1 + ν1
ν2−2

RKt

µt
)
− µt

)
,

where ∂ log pRK(RKt|µt,Ft−1; ν1, ν2)/∂µt denotes the score with respect to µt, St is a scal-

ing factor, µl,t = l−1
∑l−1

i=0 µt−i, and l1 = 1, l2 = 12, and l3 = 60.2 Following Op-

is mostly accepted, we stick to the current parameterization for easier interpretability.
2Here we deviate from the original specification of Corsi (2009) for two reasons. First, we put the HAR

dynamics on µt rather than on the score sµ,t. This makes sense as the scores are a martingale difference
sequence. The difference is also smaller than one might think at first sight once we note that the original
Corsi model can be written as

RKt = ω + β1RKl1,t + β2RKl2,t + β3RKl3,t + et,

= ω + β1µl1,t + β2µl2,t + β3µl3,t + α1(RKl1,t − µl1,t) + α2(RKl1,t − µl2,t) + α3(RKl1,t − µl3,t) + et.

where αj = βj . The right-hand side now contains the lag polynomial on µt as in (5) and three martingale
differences RKlj ,t − µlj ,t, the first of which also enters the right-hand side of (5). The remaining two have
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schoor et al. (2018), we scale the score by 2µ2
t/(ν1 + 1) to account for the curvature of

log pRK(RKt|µt,Ft−1; ν1, ν2) with respect to µt. This quantity is proportional to the inverse

conditional Fisher information with respect to µt. In the remainder of this paper, we label

this model the GAS-HAR model.

The scaled score (6) has an appealing interpretation for the dynamics of µt. It is the

difference between a weighted value of RKt and µt, where the weight accounts for the fat-

tailedness of RKt. That is, large values of RKt imply a low weight, such that the impact

of a large RKt on µt+1 will be mitigated. Figure 2 visualizes this property of the score.

The figure can be interpreted as a news impact curve. Small values of RKt decrease the

expected value µt. As RKt increases, the score increases as well, but the increase levels off

and becomes flat for large values of RKt, refraining µt+1 from increasing unboundedly as

long as ν2 is finite.

Also note that the existence of higher order moments for high-frequency data may be

problematic. The current framework with the F distribution and GAS dynamics accom-

modates this more easily than standard MEM type dynamics. In particular, note that the

score-driven recursion (6) does not consider RKt directly, but rather a weigthed version.

This weighted version is uniformly bounded in RKt. This considerably relaxes the condi-

tions needed to ensure proper convergence of the recursion and the existence of moments of

µt, even if RKt itself is very fat-tailed with 1 < ν2 < 2; see also Blasques et al. (2021). This

stands in sharp contrast with usual MEM dynamics which depend on unweighted versions

of RKt and typically require much stricter conditions for good asymptotic properties.

variances which are a factor l1/l2 and l1/l3 lower due to the averaging operators, and are therefore ignored
in (5). An empirical check confirms that the fit hardly improves if these last two martingale differences
are added to the model specification. Finally note that RKt and et on the left-hand and right-hand side
of the Corsi model have a similar effect as the absence of an additional error term in (5) combined with
the conditional F assumption in (4). Our choice of l1, l2, l3 follows Jin and Maheu (2016), who also apply
the HAR dynamics on the filtered (co)variance and empirically find l2 ≈ 13 and l3 = 60. We confirmed
empirically that our full-sample fit increases when using l1 = 1, l2 = 12, and l3 = 60 instead of the original
values suggested by Corsi (2009). The methodology could of course be further extended by introducing a
data-driven way to select the averages to include in the transition equation (5) as in for instance Audrino
and Knaus (2016).
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Figure 2: Score of the F distribution with respect to µt
This figure shows the score of the F distribution (given in (6)) with respect to µt for various values of RK.
The score is computed by setting ν1 = 18, ν2 = 10 and µt to 7.

2.2 A dynamic model for the shape parameters

The flexibility of the GAS framework is that we can easily handle time-variation in other

parameters than µt. This includes parameters describing the skewness and variance of

ϵt. As argued in the introduction, we can also expect time-variation in parameters like

ν1 and/or ν2. For instance, during crisis periods one might expect information gathering

to accelerate much more quickly than during calm times. In terms of the parameters this

means that we might expect the conditional tail shape of RKt to become relatively fat during

turbulent times, while in calm periods RKt might have lighter conditional tails, implying

time-variation in ν2.

We consider the following two time-varying parameter models for the DoF parameters.

9



In the first model, we allow for a time-varying dispersion parameter ν1,t,

f1,t+1 = ων1 + αν1sν1,t + βν1f1,t, ν1,t = 2 + exp(f1,t), (7a)

sν1,t =
∂ log p(RKt|µt,Ft−1; ν1,t, ν2)

∂ν1,t

∂ν1,t
∂f1,t

=

[
1

2
ψ

(
ν1,t + ν2

2

)
− 1

2
ψ
(ν1,t

2

)
+

1

2

(
log

(
ν1,t
ν2 − 1

)
+ 1

)
+

1

2
log

(
RKt

µt

)
−

1

2
log

(
1 +

ν1,t
ν2 − 2

RKt

µt

)
− ν1,t + ν2

2

1
ν2−2

RKt

µt

(1 + ν1,t
ν2−2

RKt

µt
)

]
(ν1,t − 2), (7b)

where ψ denotes the digamma function ψ(x) = ∂ log Γ(x)/∂x. We label this the GAS-HAR-

ν1 model. As we have seen before, this model focuses on modeling the vol-of-vol (see also

Corsi et al., 2008). In the second model, we consider time-variation in the tail shape via

the parameter ν2. We have

f2,t+1 = ων2 + αν2sν2,t + βν2f2,t, ν2,t = 2 + exp(f2,t), (8a)

sν2,t =
∂ log p(RKt|µt,Ft−1; ν1, ν2,t)

∂ν2,t

∂ν2,t
∂f2,t

=

[
1

2
ψ

(
ν1 + ν2,t

2

)
− 1

2
ψ
(ν2,t

2

)
− 1

2

ν1
ν2,t − 1

− 1

2
log

(
1 +

ν1
ν2,t − 2

RKt

µt

)
+

ν1 + ν2,t
2

ν1
(ν2,t−2)2

RKt

µt

(1 + ν1
ν2,t−2

RKt

µt
)

]
(ν2,t − 2). (8b)

The parameterization ν2,t = 2 + exp(f2,t) ensures that ν2,t > 2 for all f2,t ∈ R, such that

the mean of RKt always exists.
3 We label this model the GAS-HAR-ν2. Note that we can

easily combine models (7a)–(7b) and (8a)–(8b) into a model with both time-varying mean,

vol-of-vol, and tail shape. We call this combined model the GAS-HAR-ν1−2 model.

Even though ν1,t and ν2,t relate to the higher order moments of the conditional distri-

bution, the score expressions in equations (7b) and (8b) show that the dynamics of f1,t and

f2,t are not driven by high order powers of RKt such as RKk
t for k ≥ 3. A similar result

is found by Lucas and Zhang (2016), who model the tails of asset returns by varying the

3Alternatively, one could set ν2,t = 6 + exp(f2,t) to ensure skewness always exists. As argued earlier,
such a restriction is not needed for the GAS-HAR model.
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Figure 3: Score of the F distribution with respect to ν1 and ν2
This figure shows the score of the F distribution (given in (8b)) with respect to ν1 (blue line) and ν2 (red
line) for various values of RK. The former (latter) score is computed by setting ν1 = 17 (19), ν2,t = 13 (17)
and µt to 7.

degrees of freedom parameter of a (skewed) t distribution. The fact that the time-varying

parameters ν1,t and ν2,t react to RKt logarithmically rather than as a power function lends

this model considerable stability, particularly for noisy data; see also Blasques et al. (2021)

for stability of score models. Also note that we model ν1,t and ν2,t rather than the vol-of-vol

and the skew-of-vol. This implies that when ν2,t falls below 6 or even 4, the skew-of-vol

respectively vol-of-vol may no longer exist. The failure of these moments to exist at certain

times, however, does not invalidate the validity or stability of the recursions in (7b) or (8b),

as these only require a logarithmic moment of RKt. Also, the time-variation in ν1,t and ν2,t

remains valid, even though the higher order moments implied by these parameters may not

exist at particular time points.

Figure 3 visualizes the impact of the score on both ν1,t and ν2,t by varying RKt. The

figure clearly shows that when RK becomes large, both scores become more negative, and

hence the values of ν1,t and ν2,t decrease. Note that the impact of large values of the realized
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kernel on ν2,t is much larger than for ν1,t. This is in line with Figure 1, which confirms our

finding that ν2,t is more related to the tail of the distribution and changes more than the

vol-of-vol related parameter ν1,t for large RKt. However, the rate of change is much more

moderate than compared to a power RKk
t of RKt for k ≥ 3. As mentioned, this robustness

feature is very important for the time-series dynamics of ν1,t and ν2,t, which will react much

less violently to incidental large observations.

Figure 1 also shows that small values (near zero) of RKt result in lower values of ν1,t and

ν2,t. The reason is that for low values of these parameters the F distribution also exhibits

more leptokurtosis, i.e., a higher peak near zero, coinciding with more realizations of RKt

close to zero.

The static parameters in all models can be estimated by maximum likelihood using a

standard prediction error decomposition. We first estimate the benchmark GAS model with

only µt time-varying and ν1 and ν2 constant. Next, we make ν1,t and/or ν2,t time-varying.

We parameterize the intercept ω for the GAS-HAR models as (1− β) · f̄ , where f̄ denotes

unconditional mean of the time-varying parameter ft, and estimate f̄ rather than ω.

2.3 Modeling the logarithm of the realized kernel

A different route to model the realized kernel volatility is to propose model specifications for

the logarithm of the realized kernel. Examples of log-specifications for volatility are Corsi

(2009), Hansen et al. (2012) and Chiriac and Voev (2011), amongst others. Modeling the

logarithm has some advantages, such as off-setting large observations by the log operation,

ensuring positivity of the variance and cutting the right-skewness of the realized kernel

distribution. In addition, a model for the log volatility using a more standard normal

density for the innovations could arguably be labeled as a simpler alternative to a model

for RKt directly using the more non-standard F distribution.

To endow the model for log volatility with sufficient dynamic flexibility, we use a score-

driven time-varying mean (again including HAR dynamics to account for the long-memory-

type persistence of the log volatility process) and vol-of-vol, following Corsi et al. (2008).
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The model is given by

logRKt = µt + ϵt = µt + σtut, ut ∼ N(0, 1), (9a)

µt+1 = ωµ + αµsµ,t + βµ,1 µl1,t + βµ,2 µl2,t + βµ,3 µl3,t,

σ2
t+1 = ωσ + ασsσ2,t + βσσ

2
t , (9b)

sµ,t = Sµ,t
∂ log p(logRKt|µt,Ft−1; ν0)

∂µt

= ϵt − µt, (9c)

sσ2,t = Sσ2,t

∂ log p(logRKt|µt, σ
2,Ft−1; ν0)

∂σ2
t

= ϵ2t − σ2
t , (9d)

where σ2
t denotes the vol-of-vol, and Sµ,t and Sσ2,t are the conditional inverse Fisher infor-

mation matrices. We also estimate a restricted version of this model with static vol-of-vol

σ2
t = σ2. The models are labeled GAS-HAR-log-N -VoV and GAS-HAR-log-N for the model

with dynamic and static vol-of-vol, respectively. Note that we assume a conditional Normal

distribution for ut. This implies that logRKt is also conditionally Normal distributed and

henceforth RKt follows a log-Normal distribution with known analytical expressions for the

probability density function (pdf) and cumulative density function (cdf). Of course, the

model can also allow for fat-tails by assuming for instance a conditional Student’s t distri-

bution for logRKt. However, this would imply that no integer conditional moments exist

for RKt itself, as it would be the exponential of a Student’s t random variable. Since the

existence of first moments of RKt is key in our forecasting procedure, we do not incorporate

such generalizations here and stick to the normal distribution. Note that this problem does

not occur in our new GAS-HAR-F : as we model RKt directly as having a conditional F

distribution, first, second, and third conditional moments exist if ν2 > 2, 4, 6, respectively,

which follows immediately from equations (2) and (3).

3 Empirical application

In this section, we first provide a brief overview of the data. We then present an in-sample

analysis by estimating our models using the whole sample to assess the possibly time-
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varying tail-behavior of the realized kernels. Finally, we show the forecasting power of the

new models by computing 1-step-ahead density and Volatility-at-Risk (VolaR) forecasts.

3.1 Data

The data consist of daily realized kernels of 89 U.S. equities from January 2, 2001 until

December 31, 2019. All stocks are chosen across a broad set of different sectors and belong

to the top 10-15% w.r.t. Dec 2019 market capitalization within their sector. Table 1 provides

an overview of the individual stocks. We have T = 4, 713 trading days, after leaving out

days where the market was open for half a day. We retrieve consolidated trades (transaction

prices) from the Trade and Quote (TAQ) database from 9:30 until 16:00. Before 2015, the

time-stamp precision equals one second, after 2015 it increases to one millisecond. After

cleaning the high-frequency data following the guidelines of Barndorff-Nielsen et al. (2009)

and Brownlees and Gallo (2006), we construct realized kernels based on 5-minute returns

following again Barndorff-Nielsen et al. (2009).

Figure 4 shows the evolution of RKt for four random companies: Fluor Corp, KeyCorp,

Boston Properties INC, and Consol Energy Inc. For all stocks, there are quite some peaks

in the data, especially during the 2007 Global Financial Crisis (GFC). The implication is

that the distribution of the realized kernel might be considerably right skewed. Figure 5

illustrates this by plotting the sample skewness of all 89 stocks using the full sample. For

many stocks, the skewness exceeds 10 or more. Such values are typically caused by incidental

very large values of RKt, which in turn can disrupt the estimated dynamic pattern of the

realized kernel (in particular µt) if not properly accounted for.

3.2 In-sample results

Using the full sample 2001-2019, we estimate four different GAS-HAR models for the realized

kernel: a benchmark model with two static DoF parameters, and models where either ν1 or

ν2 or both vary over time. In addition, we augment the MEM model of Engle and Gallo

(2006) with HAR dynamics to provide another competitive benchmark. The MEM model

14



Table 1: S&P 500 constituents
This table lists ticker symbols of our sample of 89 companies listed at the S&P 500 index during the period
January 2, 2001 until December 31, 2019. All Tickers are grouped per sector according to the 2017 NAICS
classification.

Sec Nr. Sector # Comp. Tickers
11 Agriculture 1 WY
21 Mining, oil and gas extraction 6 HAL,PXD,SU,CNX,SLB,OXY
22 Utilities 5 AES,AEP,AEE,DUK,SO

31-33 Manufacturing 34 KO,MO,GIS,CPB,LLY,PFE
XOM,ABT,JNJ,MUR,CVX,MRK,BMY
IP,CL,AVP,EL,LPX,MDT,AA
BA,CAT,GE,BAX,DOV,F,NOC
HPQ,TSM,UTX,A,IR,GD, ATI

42 Wholesale trade 4 HON,PG,SYY,MMM
44-45 Retail trade 6 HD,ANF,WSM,JCP,WMT,TGT

48 Transportation 4 WMB,LUV,NSC,RCL
49 Warehousing 2 UPS,FDX
51 Information 3 TV,VZ,DIS
52 Fin and insurance 17 USB,MTB,MCO,MMC,KEY

MS,GS,BAC,C,AIG,AXP
JPM,COF,WFC,HIG,PNC,CI

53 Real estate, rental/leasing 3 NLY,EQR,BXP
54 Prof, scientific and tech services 2 FLR,IBM
62 Health care 1 THC
72 Accommodation and food services 1 MCD

with HAR dynamics on RKt is given by

RKt = µtϵt, ϵt ∼ Gamma(1, ν1),

µt+1 = ωµ + αµRKt + βµ,1µt + βµ,2RKl2,t + βµ,3RKl3,t, (10)

with RKl,t = l−1
∑l−1

i=0RKt−i, and l2 = 12, and l3 = 60, thus using the same lag lengths

as for the GAS-HAR models. Finally, we estimate two models for the logarithm of the

realized kernel as discussed in Section 2.3: the GAS-HAR-log-N with static and time-

varying variance parameters, respectively.

Table 2 shows summary statistics of the estimated parameters using all observations

for all 89 individual stocks and the models for RKt (Panel A) and logRKt (Panel B),

respectively. We report the means, standard deviations, and the 5th and 95th quantiles

across all assets. Panel A shows the well-known high persistence in RKt, which is measured

by
∑3

j=1 βµ,j in case of the GAS-HAR models, and by αµ +
∑3

j=1 βµ,j for the MEM-HAR
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Figure 4: Realized kernel time series
This figure shows the time series of the realized kernels (RK) of Fluor Corp, KeyCorp, Boston Properties
INC, and Consol Energy Inc. For visual purposes, the vertical axes has been capped. The sample covers
the period January 2, 2001 until December 31 2019 and contains 4,713 observations.
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Figure 5: Sample skewness of 89 stocks
This figure plots the sample skewness of daily realized kernels (RK) of 89 stocks listed at the S&P 500 Index.
The sample covers the period January 2, 2001 until December 31 2019 and contains 4,713 observations.
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model. The results also show strong persistence in the time-varying parameters ν1,t and ν2,t,

with the persistence being particularly strong for the skewness related parameter ν2,t. The

parameter ν1,t, which affects more the vol-of-vol, is slightly less persistent. Panel B confirms

the high persistence in logRKt. In addition, the vol-of-vol persistence (βσ) is somewhat

lower than the persistence of the variance itself (
∑3

j=1 βµ,j). This corresponds with the

slightly lower estimates of βν1 of the GAS-HAR-ν1 model in panel A.

Figure 6 shows differences in the Akaike Criterion, combining the number of estimated

parameters with the maximized log-likelihood. A positive number means that the first

mentioned model has a better statistical fit corrected for the number of parameters. The

four sub-panels have four clear messages. First of all, the large values in the upper left graph

clearly suggests that the conditional F distribution of the GAS-HAR model fits the Realized

Kernel considerably better than the Gamma distribution of the MEM-HAR model. Second,

allowing for time-varying DoF parameters in general increases the statistical fit versus the

static GAS-HAR model, as indicated by the upper-right graph. Third, the bottom-left figure

suggests that allowing for a time-varying vol-of-vol parameter within model specifications

of the log volatility increases the statistical fit for each stock. Finally, the bottom-right

figure indicates that for most stocks modeling the realized kernel itself with time-varying

DoF parameters has better AIC values than modeling the logarithm of the realized kernel

with a time-varying vol-of-vol.

Figure 7 presents fitted values of ν1,t and ν2,t for the GAS-HAR-ν1−2 model for 11 stocks:

PXD, KEY, EQR, JCP, AIG, NOC, SYY, IR, FDX, GIS and GD. The left panel shows

the vol-of-vol path, the right panel depicts the skewness paths, both as implied by the

time-varying ν1,t and ν2,t. The figure shows that indeed the vol-of-vol, or dispersion varies

trough time, confirming the earlier found results of Corsi et al. (2008). For example, the

vol-of-vol of AIG became very large the crisis period 2008-2009. In addition, the lower-left

panel shows quite some commonality in the VoV of certain stocks. Not only the VoV, but

also the skewness shows time-varying behavior, as suggested by the sub-graphs of the right

panel. The skewness is particularly high during turbulent periods, such as the 2001 U.S.

17



T
a
b
le

2
:
F
u
ll
-s
a
m
p
le

p
a
ra

m
e
te
r
e
st
im

a
te
s

T
h
is

ta
b
le

re
p
or
ts

su
m
m
ar
y
st
at
is
ti
cs

of
m
ax

im
u
m

li
ke
li
h
o
o
d
p
a
ra
m
et
er

es
ti
m
a
te
s
o
f
se
ve
ra
l
m
o
d
el
s
fo
r
th
e
le
ve
l
a
n
d
lo
g
a
ri
th
m

o
f
d
a
il
y
re
a
li
ze
d
ke
rn
el
s

of
89

st
o
ck
s
fr
o
m

th
e
S
&
P

50
0
in
d
ex
.
P
an

el
A

li
st
s
re
su
lt
s
of

m
o
d
el
in
g
R
K

t
u
si
n
g
th
e
G
A
S
-H

A
R

m
o
d
el
s
w
it
h
ν 1

a
n
d
ν 2

b
o
th

ti
m
e-
va
ry
in
g
(G

A
S
ν 1

−
2
),

on
ly

ν 1
or

ν 2
ti
m
e-
va
ry
in
g
(G

A
S
ν 1

an
d
G
A
S
ν 2
),
an

d
b
ot
h
sh
a
p
e
p
a
ra
m
et
er
s
st
a
ti
c
(G

A
S
),
a
n
d
th
e
M
E
M
-H

A
R

m
o
d
el

(M
E
M
).
P
a
n
el

B
sh
ow

s
p
a
ra
m
et
er

es
ti
m
at
es

of
th
e
G
A
S
-H

A
R
-l
og
-N

w
it
h
d
y
n
am

ic
(G

A
S
lo
g-
N
-V

o
V
)
o
r
st
a
ti
c
(G

A
S
lo
g
-N

)
vo
l-
o
f-
vo
l
p
a
ra
m
et
er
s,
a
p
p
li
ed

to
th
e
lo
g
a
ri
th
m

o
f
R
K

t
.
W
e
sh
ow

th
e
m
ea
n
,
st
an

d
ar
d
d
ev
ia
ti
on

an
d
th
e
5%

an
d
95
%

q
u
an

ti
le

o
f
th
e
p
a
ra
m
et
er
s
a
cr
o
ss

a
ll
8
9
st
o
ck
s.

T
h
e
sa
m
p
le

co
ve
rs

th
e
p
er
io
d
J
a
n
u
a
ry

2
,
2
0
0
1
u
n
ti
l

D
ec
em

b
er

31
,
20
19

an
d
co
n
ta
in
s
4,
71
3
ob

se
rv
at
io
n
s.

m
o
d
el

ω
µ

α
µ

β
µ
,1

β
µ
,2

β
µ
,3

ν 1
ν 2

f̄ 1
α
ν
1

β
ν
1

f̄ 2
α
ν
2

β
ν
2

P
an

el
A
:
m
o
d
el
in
g
R
K

t

G
A
S
ν 1

−
2

m
ea
n

0.
04
1

0.
95
4

0.
84
4

0.
09
7

0
.0
3
7

2
.8
4
8

0
.2
4
0

0
.8
5
9

2
.5
0
6

0
.0
3
9

0
.9
6
1

st
d

(0
.0
24
)

(0
.0
81
)

(0
.0
22
)

(0
.0
2
2
)

(0
.0
1
1
)

(0
.3
9
1
)

(0
.1
8
2
)

(0
.1
7
1
)

(0
.4
1
3
)

(0
.0
3
6
)

(0
.0
8
3
)

5%
0.
02
0

0.
76
9

0.
80
2

0.
06
5

0
.0
2
1

2
.0
4
3

0
.0
1
5

0
.4
7
3

1
.4
6
3

0
.0
0
0

0
.8
4
8

95
%

0.
10
3

1.
00
0

0.
87
5

0.
13
9

0
.0
5
6

3
.2
1
5

0
.5
4
6

0
.9
9
9

2
.9
5
9

0
.1
0
3

1
.0
0
0

G
A
S
ν 1

m
ea
n

0.
04
1

0.
93
3

0.
84
3

0.
10
0

0
.0
3
5

1
6
.4
9

2
.7
4
8

0
.1
9
6

0
.8
7
1

st
d

(0
.0
27
)

(0
.0
96
)

(0
.0
22
)

(0
.0
2
2
)

(0
.0
1
1
)

(3
.6
3
)

(0
.5
1
7
)

(0
.1
4
6
)

(0
.1
6
8
)

5%
0.
01
9

0.
73
0

0.
80
6

0.
06
8

0
.0
1
9

1
1
.2
4

1
.7
2
2

0
.0
3
4

0
.4
8
9

95
%

0.
10
5

1.
00
0

0.
87
5

0.
14
4

0
.0
5
4

2
1
.5
8

3
.1
9
9

0
.4
4
2

0
.9
9
9

G
A
S
ν 2

m
ea
n

0.
03
8

0.
96
0

0.
85
1

0.
09
3

0
.0
3
8

2
1
.4
5

2
.4
9
8

0
.0
5
1

0
.9
2
7

st
d

(0
.0
21
)

(0
.0
73
)

(0
.0
24
)

(0
.0
2
2
)

(0
.0
1
1
)

(3
.5
1
)

(0
.4
7
7
)

(0
.0
3
2
)

(0
.1
8
9
)

5%
0.
01
8

0.
80
3

0.
80
2

0.
06
4

0
.0
2
3

1
5
.9
2

1
.3
1
7

0
.0
0
9

0
.6
7
8

95
%

0.
08
2

1.
00
0

0.
88
5

0.
13
5

0
.0
5
8

2
6
.4
1

2
.9
6
8

0
.1
1
5

1
.0
0
0

G
A
S

m
ea
n

0.
03
8

0.
94
6

0.
84
6

0.
10
0

0
.0
3
7

2
0
.6
9

1
5
.7
6

st
d

(0
.0
24
)

(0
.0
85
)

(0
.0
25
)

(0
.0
2
3
)

(0
.0
1
1
)

(3
.8
4
)

(3
.1
5
)

5%
0.
01
7

0.
76
2

0.
79
9

0.
06
9

0
.0
2
2

1
4
.8
1

1
1
.0
0

95
%

0.
09
6

1.
00
0

0.
87
9

0.
14
6

0
.0
5
6

2
6
.0
1

2
0
.8
4

M
E
M

H
m
ea
n

0.
10
5

0
.5
08

0.
23
2

0.
13
9

0
.0
9
1

3
.6
7
0

st
d

(0
.0
74
)

(0
.0
78
)

(0
.0
78
)

(0
.0
5
2
)

(0
.0
4
2
)

(0
.7
3
7
)

5%
0.
04
1

0.
39
2

0.
11
6

0.
04
1

0
.0
3
1

2
.5
4
0

95
%

0.
22
8

0.
64
2

0.
35
6

0.
21
9

0
.1
8
5

4
.9
3
2

P
an

el
B
:
m
o
d
el
in
g
lo
g
R
K

t

m
o
d
el

ω
α
1

β
1
,1

β
1
,2

β
1
,3

σ
2

ω
2

α
2

β
2

G
A
S
lo
g-
N

V
oV

m
ea
n

0.
00
5

0.
41
3

0.
80
2

0.
14
0

0
.0
4
2

0
.0
5
2

0
.0
4
7

0
.7
8
6

st
d

(0
.0
09
)

(0
.0
38
)

(0
.0
31
)

(0
.0
3
0
)

(0
.0
1
2
)

(0
.0
5
2
)

(0
.0
3
0
)

(0
.2
1
2
)

5%
-0
.0
06

0.
36
4

0.
74
1

0.
10
0

0
.0
2
6

0
.0
0
1

0
.0
0
5

0
.4
3
0

95
%

0.
02
3

0.
48
2

0.
84
6

0.
19
2

0
.0
6
1

0
.1
6
4

0
.0
9
8

0
.9
9
7

G
A
S
lo
g-
N

m
ea
n

0.
00
6

0.
41
9

0.
80
0

0.
14
5

0
.0
4
0

0
.2
5
2

st
d

(0
.0
08
)

(0
.0
45
)

(0
.0
34
)

(0
.0
3
2
)

(0
.0
1
2
)

(0
.0
4
7
)

5%
-0
.0
05

0.
35
9

0.
72
6

0.
10
1

0
.0
2
3

0
.1
9
2

95
%

0.
02
3

0.
50
5

0.
84
3

0.
20
8

0
.0
5
9

0
.3
3
0

18



Figure 6: Differences in AIC values
This figure shows the differences of the Akaike Information Criterion (AIC) between several score-driven
and benchmark models of the dynamics of (log) RKt. A positive number means that the first mentioned
model has a lower AIC. The sample covers the period January 2, 2001 until December 31 2019 and contains
4,713 observations.

recession and/or the 2013 Sovereign Debt Crisis and may even increase out of bounds if ν2

approaches or goes below 6 during certain periods. It is also interesting to see that increases

in skewness during the heat of the Global Financial Crisis at the end of 2008 for some stocks,

though not for others. Also during the recovery in 2009, we see different patterns across the

11 stocks. Allowing both parameters to vary thus appears empirically important. The next

section investigates the possible implications of these patterns in an out-of-sample analysis.

Based on the full-sample analysis, we conclude that the vol-of-vol and tail-shape pa-

rameters of the distribution of the realized kernel series vary through time. Allowing for

this time-variation improves the fit of the conditional distribution. The following subsection

investigates whether allowing for time-varying DoF parameters persists out-of-sample.

19



Figure 7: Fitted values of the D.o.F. parameters
This figure shows the fitted time-varying values of ν1,t and ν2,t associated with the eleven stocks according
to the GAS-HAR-ν1−2 model. The upper panels shows results of PXD, KEY, EQR, JCP and AIG, while
the lower panel depicts fitted DoFs of NOC, SYY, IR, FDX, GIS and GD. The sample covers the period
January 2, 2001 until December 31 2019 and contains 4,312 observations.

3.3 Out-of-sample results

We assess the short-term forecasting performance of the models in an economic setting by

predicting 1-step density forecasts. In addition, we focus on the 1-step ahead Volatility-

at-Risk (VolaR), a specific quantile of the density of the realized kernel. As indicated by

Caporin et al. (2017), the VolaR is important for volatility traders and hedgers. We use

the same set of models as for the in-sample analysis. For each model, we use a recursive

estimation approach starting from an initial sample period of 1500 observations. This covers

the period 2001–2006, just before the start of the global financial crisis, and therefore con-

stitutes a strong test on the forecasting performance of all models. We update the recursive

estimates roughly every two months (50 observations).

We test the adequacy of our 1-step ahead density forecasts in two ways. The first test

is based on the log score (see Mitchell and Hall, 2005; Amisano and Giacomini, 2007) as a

scoring rule to differentiate between the density forecasts of the models. The log score of
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model Mj at time t of the density forecast is given by

Sls,t(RKt,Mj) = log pt(RKt|Ft−1,Mj) (11)

for t = 1501, 1502, . . . , T − 1, where pt(·) denotes the conditional density function of model

Mj. Since we have quite some models under consideration, we account for possible inter-

dependence between all density forecasts by using the Model Confidence Set approach of

Hansen et al. (2011), applied on (minus) the log score of all models and using a significance

level of 5%.4

Second, we also test the absolute performance of the density forecasts using the Berkowitz

(2001) test, which is based on the Probability Transform Integral (PIT)

ut(Mj) = Ft(RKt|µt,Ft−1,Mj), (12)

with Ft(·) the CDF of the distribution of model Mj. Instead of directly testing whether

ut(Mj) is uniformly distributed, the test is based on zt(Mj) = Φ−1 (ut(Mj)), which should

be N(0,1) and i.i.d. distributed under the null hypothesis of correct conditional coverage.

Berkowitz (2001) considers a first-order autoregressive alternative with mean and variance

possibly different from 0 and 1, respectively:

zt(Mj)− c = ρ · (zt−1(Mj)− c) + ϵt, (13)

such that the null hypothesis boils down to c = ρ = 0 and Var(ϵt) = 1. The Likelihood

Ratio test statistic now reads

LR = −2
(
L(0, 1, 0)− L(ĉ, σ̂2, ρ̂)

)
, (14)

4Strictly speaking, a MCS is designed based on a moving (rather than expanding) window scheme.
However, as pointed out in footnote 12 of Hansen et al. (2011), a recursive window scheme produces results
that are very similar. As a robustness check, we also did all analyses using a moving window with a window
length of 1500 observations. The main results do not change, but become somewhat less strong compared
to the recursive window scheme. We thank the referee for this point.
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with L(·) the log-likelihood. Under the H(0), this test statistic is asymptotically χ2 dis-

tributed with 3 degrees of freedom.

It is important to note that the above test focuses jointly on mean zero, variance one and

serial independence of zt. As we will see later, serial dependence may be challenging for all

models considered. We therefore also consider the ‘unconditional’ Berkowitz test focusing

only on c and σ2 by calculating

LRSN = −2
(
L(0, 1, ρ̂)− L(ĉ, σ̂2, ρ̂)

)
, (15)

which is asymptotically χ2(2) distributed under the null of H0 : =̧0, σ2 = 1.

As a second empirical out-of-sample application, we consider the 1-step ahead VolaR.

The VolaR computes the risk of extremely high volatility. The q% VolaR is defined as the

q-quantile of the distribution of the realized kernel,

P [RKt+1 > V olaRq
t+1|Ft] = q, (16)

where q is set to 5 percent. Note that the probability depends both on µt and on the shape

parameters of the distribution used. We backtest our predicted V olaR using the uncondi-

tional and conditional coverage (UC and CC) tests proposed by Christoffersen (1998). The

former tests whether number of violations, i.e. the number of times RKt+1 > V olaRq
t+1,

equals the unconditional coverage probability q, while the latter in addition tests for clus-

tering in the VolaR violations. Finally, we compare the relative performance of the VolaR

estimates of all models using the following asymmetric linear tick loss function, which is for

example also used in the conditional predictive ability (CPA) test of Giacomini and White

(2006):

Lq(et+1) = (q − I[et+1 < 0])et+1, et+1 = V olaRq
t+1 −RKt+1 (17)

This loss function is asymmetric in the sense that if a VolaR violation occurs, the loss equals
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(1− q)et+1, while in case of no violation the loss equals qet+1, which is in turn considerably

lower. Similar to the unconditional density forecasts, we use the MCS for comparison

between the losses of all models.

Table 3 shows all out-of-sample results. Panel A lists results relating to the unconditional

accuracy of the models, whereas Panel B focusses on the conditional performance.

In order to take the full distributional properties of the forecasts into account, Panel A.1

in Table 3 shows results for the relative performance of the 1-step ahead density forecasts

using the Model Confidence Set approach of Hansen et al. (2011) with a significance level

of 5%. The GAS-HAR-ν1−2 model clearly performs best: it almost always belongs to the

model confidence set with 87 out of 89 cases. The MEM-HAR model on the other hand only

enters the set 11 times. Overall, the F distribution (and hence all GAS-HAR type models)

appears to produce considerably better density forecasts than the Gamma distribution.

Comparing the static F distribution (GAS) with the dynamic F distribution (GAS-HAR-

ν·), the improvement effect is still clearly noticeable: the static model enters the MCS 74

times, compared to the 87 of the model with both parameters time-varying. We also see

that the models using the logarithm of the realized kernel, a normal distribution, and time-

varying volatility enter the MCS 66 times, which is fair, but still far below the 87 of the

GAS-HAR-ν1−2 model. The model for logRKt with static volatility fares even worse with

an entry of 42.

Panel A.2 shows again MCS results using a 5% significance level, but now applied to

the tick loss function to compare the relative performance of the 95% VolaR forecasts. The

GAS-HAR-ν1 model performs best (69 out of 89 cases it belongs to the model confidence

set), closely followed by the GAS log-N-VoV and GAS-HAR-ν1−2 models. Put differently,

time-varying shape parameters (either in the kernel or logarithm of the kernel) seem to be

important. Note that the difference between modeling the realized kernel or its logarithm

is less pronounced. Moreover, the MEM-HAR model again does not perform well as it only

belongs to the model confidence set 29 times.

Panel A.3 focuses on the 95% VolaR, a specific quantile of the distribution of the realized
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Table 3: 1-step ahead density and Volatility-at-Risk predictions
This table reports results one 1-step ahead density and 95% Volatility-at-Risk predictions of the realized
kernel. We consider the MEM-HAR model assuming a Gamma distribution, the GAS-HAR-F model assum-
ing an F distribution with fixed degrees of freedom parameters, two GAS-HAR models with time varying
shape and/or dispersion parameter(s), and a GAS model for the logarithm of the realized kernel with and
without time-varying volatility-of-volatility (denoted as GAS log-N (VOV)). The models are applied to
daily realized kernels of 89 stocks from the S&P 500 index. We use an expanding window where the first
window contains 1500 observations. Panel A summarizes results of unconditional backtests, while Panel B
focuses on conditional backtests. More specifically, Panel A.1 and A.2 denotes the number of times a model
belongs to the model confidence set (MCS), applied on the log score and tick loss respectively using a 5%
significance level. Panel A.3 lists the number of times the p-value associated with the null-hypothesis of
the Christoffersen (1998) tests on unconditional coverage of the 95% VolaR respectively is below 10, 5 or
1%. Panel A.4 summarizes the number of times the p-value of the unconditional Berkowitz test on correct
absolute density forecasts excluding serial dependence for the inverse standard normal transformation of
the PITs falls below the 10, 5 or 1% level. Panel B shows results of two conditional backtests. The number
of times the p-value associated with the null-hypothesis of the Christoffersen (1998) tests on conditional
coverage of the VolaR predictions respectively is below 10, 5 or 1% is shown by panel B.1. Finally, Panel
B.2 shows again results on the Berkowitz test for the transformed PITs, but now including possible serial
dependence. A bold number represents the best model, i.e. the model that belongs most often to the set
(panel A.1) or the model that has the lowest number of rejections in each row (remaining panels). The
out-of-sample period is from January 17, 2007 until December 31 2019 and contains 3,213 observations.

RKt logRKt

GAS ν1−2 GAS ν1 GAS ν2 GAS MEM GAS log-N -VoV GAS log-N

Panel A: Unconditional backtest results

Panel A.1: log score: # times (out of 89) the model is in the 95% model confidence set (MCS)
♯ in MCS 87 82 83 74 11 66 42

Panel A.2: tick loss: # times (out of 89) the model is in the 95% model confidence set (MCS)
♯ in MCS 58 69 32 42 29 66 47

Panel A.3: # stocks with Unconditional Coverage test rejections
♯ p-val < 0.10 23 38 16 42 41 34 42
♯ p-val < 0.05 14 26 14 35 38 26 32
♯ p-val < 0.01 7 13 5 20 25 12 22

Panel A.4: # stocks with Unconditional Berkowitz tests (excluding serial dependence) rejections
♯ p-val < 0.10 42 43 60 64 77 49 61
♯ p-val < 0.05 30 38 52 61 76 42 58
♯ p-val < 0.01 20 29 37 52 68 34 51

Panel B: Conditional backtest results

Panel B.1: # stocks with Conditional Coverage test rejections
♯ p-val < 0.10 88 89 85 89 48 69 83
♯ p-val < 0.05 88 89 84 88 40 61 80
♯ p-val < 0.01 87 89 81 85 27 39 63

Panel B.2: # stocks with Berkowitz tests rejections
♯ p-val < 0.10 89 88 89 89 81 83 87
♯ p-val < 0.05 89 88 89 88 79 80 83
♯ p-val < 0.01 87 88 86 87 67 77 79
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kernel. Two important conclusions can be drawn. First, allowing for a time-varying ν2,t

produces by far the best unconditional VolaR predictions, followed by a model with time-

varying (ν1,t, ν2,t). The differences between the GAS-HAR-ν2 and ν1−2 models versus the

GAS-HAR model are striking: the number of rejected null-hypotheses always exceeds a

factor 2 (for instance, 42 vs 16, 35 vs 14 and 20 vs 5). This holds even more strongly

if we compare the same model against the MEM-HAR models. Moreover, only allowing

the ‘vol-of-vol parameter’ ν1,t to be time-varying improves the VolaR predictions to some

extent, but we still reject the null hypothesis of correct unconditional coverage in 26 (12)

cases at a 5% (1%) significance level. Hence allowing for a time-varying ν2,t parameter

appears crucial. Second, the unconditional coverage results show that it is better to model

the realized kernel distribution directly (using a fat-tailed distribution with time-varying

shape parameters) than to model the distribution of the log-kernel logRKt using a normal

distribution with time-varying volatility. Allowing for a time-varying VoV improves the

VolaR forecasts compared to a fixed VoV parameter for the log-kernel models. Still, we

reject the null-hypothesis of unconditional coverage 34, 26 and 12 times, respectively, which

is 80% to more than 100% times more than for the GAS-HAR-ν2 model.

Finally, Panel A.4 looks to the absolute density forecasts using the ’unconditional’

Berkowitz test. Although the GAS-HAR-ν1−2 again outperforms its competitors, the re-

sult is less strong here: in 30 out of 89 cases, the null-hypothesis has been rejected using a

5% significance level. This leads to the important result that it is in general fairly difficult

to predict accurate unconditional density forecasts over the entire tail area. We shed more

light on this result when discussing the conditional Berkowitz test below.

Panel B of Table 3 provides a summary of the conditional test results. Both panels

convey the same message: all models have difficulties with producing accurate conditional

VolaR predictions. The only extra signal from Panel B appears that the MEM-HAR model

fare (somewhat) better than the GAS-HAR models in Panel B.1. This turns out to be

mainly due to the MEM-HAR model exhibiting less serial dependence. The challenge GAS

models face with serial dependence of the violations is not entirely surprising and partly
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inherent to the use of the score-driven modeling methodology. Remember the score in for

instance (6) downweights large observations in a trade-off of whether such observations are

caused by the fat-tailedness of the data or by recently increased volatility. Only if more

of large observations occur after an initial one, the score-driven volatility increases as it

then becomes clear that such a sequence of large observations cannot be attributed to fat-

tailedness alone. This induces some of the correlations that cause the outcome of the CC

tests for GAS models. Investigating this further, we also find that these correlations for

the GAS models are very short-lived: second order partial autocorrelations are generally

very close to zero for all models, indicating the GAS score-driven models only require a few

signals to disentangle fat-tailedness from increases in volatility.

We also scrutinize the conditional results for the MEM-HARmodel a bit further in Figure

8 to provide further insights into the difference between the MEM-HAR and GAS-HAR-ν1−2

conditional results. We show scatter plots of zt against zt−1 for three representative different

stocks. Under the null hypothesis, zt and zt−1 should be uncorrelated and have a bivariate

standard normal distribution. In all three cases, the MEM-HAR specification appears to be

plagued by quite a few severe horizontal and vertical influential observations, thus severely

violating the bivariate normality. The pattern is in line with that of additive outliers (AO)

in a time series setting (Martin and Yohai, 1986, see for instance), which are known to cause

a downward bias in estimates of serial dependence parameters such as ρ̂, and in a subse-

quent increase in the number of ‘non-rejections’ for the MEM-HAR model of conditional

tests based on such serial correlation estimates. This provides a further explanation of the

better behavior of the MEM-HAR model in Panel B (conditional) combined with the worse

behavior in Panel A (unconditional). By contrast, the properties of zt in the right-hand

panels for the GAS-HAR models appear closer to normality than the left-hand panels: uni-

variate Bera-Jarque tests for non-normality are a 40-fold higher for the MEM-HAR model

than for the GAS-HAR models.

We can conclude that unconditionally, the new GAS-HAR models with an F distribution

and time-varying parameters clearly perform best, both in terms of model confidence sets,
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Figure 8: Scatter plots of transformed PITs
This figure shows a scatter plot of the transformed PITs zt against zt−1 for the stocks LLY, MCO and
HON. The left three graphs are associated with the MEM-HAR model, the right three graphs correspond
to the GAS-HAR-ν1−2 model. The out-of-sample period covers January 17, 2007 until December 31, 2019
and contains 3,213 observations.
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(modified) Berkowitz tests, and unconditional coverage tests. Conditionally, all models face

still substantial challenges. Part of these are inherent to the methodology: the GAS models

need more than a single signal to disentangle fat-tailedness from volatility increases. The

induced serial correlations in the diagnostics are, however, short-lived, though this does not

show up in the typical numerical test results. Conversely, challenges and serial correlations

faced by non-robust models may be masked by typically reported numerical test results,

as we saw in Figure 8 for the MEM-HAR model compared to the new GAS-HAR model.

It therefore seems a good idea to always scrutinize numerical test results further, possibly

with additional graphical analyses.

4 Conclusions

We introduced a new dynamic score-driven model for the vol-of-vol and skew-of-vol of real-

ized kernels. The proposed model explicitly acknowledges that realized kernels are fat-tailed

and has robust propagation dynamics for the time-varying parameters. The proposed set-up

is particularly suitable for cases where no explicit robustification methods are applied while

estimating realized measures. Using realized kernels of 89 U.S. stocks over 2001–2019, the

new model improves both the in-sample and out-of-sample fit of the realized kernel dynam-

ics vis-á-vis the MEM model (with HAR dynamics) of Engle and Gallo (2006) and the GAS

F of Opschoor et al. (2018) model with static parameters.

Summarizing the out-of-sample Volatility-at-Risk (VolaR) and density prediction results,

we conclude that unconditional density and VolaR forecasts clearly improve when accounting

for time-variation in both ν1,t and ν2,t and thus in the vol-of-vol and skew-of-vol. Gathering

all results simultaneously in a model-confidence-set (MCS) approach, we see that the new

model is almost always (87 out of 89) part of the MCS. The same conclusion holds with

respect to forecasting the VolaR: the new model has better unconditional coverage proper-

ties. In addition, we see that modeling the realized kernel directly with the time-varying

F distribution as suggested in our paper produces better VolaR and density forecasts than
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modeling the logarithm of RKt, as is regularly proposed in the literature.

All models face challenges for the conditional forecasts. Interestingly, though, better

numerical test results for serial dependence for the MEM-HAR model may mask the occur-

rence of sequences of influential observations in the PITs of these models, possibly causing

under-rejections of the test similar to additive outlier problems in a time-series context. In

particular, the failure of the normality seems much more pronounced for the MEM-HAR

model than for the GAS-HAR models. Also, the serial correlations of the GAS approach are

very short lived and partly attributable to the methodology requiring more than one signal

to disentangle a fat-tailed observation from a large observation due to a volatility increase.

This calls for the further development of test that are robust to the problem of influential ob-

servations, and at the same time reflect any failure of the bivariate normality under the null

of correct specification. Nevertheless, given our unconditional backtest results, we conclude

that the new model provides a valuable tool when modeling and forecasting realized kernels,

and that including time-varying degrees-of-freedom parameters are empirically important.
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