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Abstract

I use new occupational wage and employment data from more than 160 countries to doc-

ument a global decline in the demand for skilled production workers in manufacturing since

the 1950s. They tended to work in craftsman occupations, and their declining relative wages

and employment have been associated with increasing capital intensities of production. My

findings reconcile conflicting characterizations of technological change throughout the 20th

century as either ‘skill biased’ or ‘deskilling’, and point to a globally decreasing number of

manufacturing jobs in which workers with little formal education can acquire significant mar-

ketable skills.
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1 Introduction

There is mounting evidence that the increasing adoption of ICT has reduced the demand for

medium-skilled workers in the labor markets of high income countries.1 This polarization of labor

demand raises concerns about social mobility: is it still possible for workers in unskilled occupa-

tions to climb up the occupational wage ladder, when an increasing number of steps in the middle

are missing? However, the diagnosis of a polarization or “hollowing out of the middle” leaves

open the question whether the displaced workers have moved up or down in the wage distribution.

Goos et al. (2009) for Europe and Autor (2019) for the US show that in the aggregate, labor market

polarization appears to have been driven mostly by the middle-class joining the upper-class, which

may soothe concerns about declining social mobility.2

In this respect, the recent labor market polarization appears to stand in sharp contrast with a

historical precedent, the polarization of labor demand in US manufacturing during the nineteenth

century. Katz and Margo (2014) document that also the move to more capital-intensive factory pro-

duction in this period was polarizing by reducing the demand for medium-skilled artisans relative

to both low-skilled laborers and operatives and high-skilled white collar workers. However, the lit-

erature emphasizes the deskilling aspects of this episode: the initially well-remunerated handicraft

skills which artisans possessed lost much of their value as production was broken into simple parts

that could be carried out by unskilled workers.3

A first question this comparison raises is whether the recent episode of labor market polariza-

tion really has been fundamentally different in this respect, or whether it has also been deskilling

at least for some groups of workers: for the US, Autor (2019) indeed finds strong evidence of

1See Autor et al. (2003), Autor et al. (2006) and Autor and Dorn (2013) for evidence from the US, and Goos and
Manning (2007), Goos et al. (2009), Goos et al. (2014) and Michaels et al. (2014) for international evidence of labor
market polarization.

2For instance, Goos et al. (2009) compare employment changes in 16 European countries between 1993 and 2006
for the eight highest paying occupations, the nine middling occupations and the four lowest paying occupations:
they find that while the joint employment share in middling occupations decreased by 9 percentage points over this
period, employment in the lowest paying occupations increased by only 1.2 percentage points- with the highest paying
occupations registering a corresponding increase in employment of 7.8 percentage points.

3For evidence of deskilling in US manufacturing during the 19th century, see Field (1980), Goldin and Sokoloff
(1982), James and Skinner (1985) and Atack et al. (2004).
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deskilling between 1970 and 2016 once restricting his sample to non-college workers: “almost all

occupational change among non-college workers reflects a movement from the middle toward the

bottom of the occupational distribution. Thus, not only has technology change been transforma-

tional, it has been broadly deskilling–by which I mean that it has narrowed the set of jobs in which

non-college workers perform specialized work that historically (...) commanded higher pay levels”

(p. 9). However, it remains unclear whether such deskilling has been a worldwide phenomenon, as

the modern literature has tended to base its finding of pervasive skill-bias in technological change

on aggregate proxies such as an increasing wage bill share of white collar workers.4 This may hide

substantial heterogeneity among blue collar workers.

A second interesting question is whether the “deskilling mechanism” highlighted by the his-

torical literature–namely, an increasing automation of dexterity-intensive artisanal tasks in man-

ufacturing–has continued to operate also in recent decades: Goldin and Katz (1998) argue that

technological change in US manufacturing had become skill-biased already by the early twentieth

century following the adoption of continuous-process production methods. However, their frame-

work distinguishes between only two skill types, skilled and unskilled workers. Hence, little is

said about the fate of manufacturing artisans and their handicraft skills during the twentieth and

early twenty-first century, in which artisans have tended to be medium-skilled: less skilled than

white collar workers, but considerably more skilled than other manufacturing production work-

ers. This omission is particularly salient for developing countries, for which the literature review

by Tybout (2000) points to a dominance of small-scale and artisanal manufacturing shops at least

until recently.

4For instance, see Berman et al. (1994) for US evidence of an increasing wage bill share of white collar workers
during the 1980s. Berman et al. (1998) and Berman and Machin (2000) find that this finding generalizes to a large
number of countries since the 1970s, and conclude that there has been pervasive skill-biased technological change
also on a global scale. Also Autor (2019) notes that this conventional framing of recent technological change as
skill-biased is somewhat prone to concealing potential deskilling aspects: “A foundational assumption of the modern
literature on skill demand, dating at least to Tinbergen (1974), is that technological progress complements–and hence
raises demand for–educated workers. This framing might suggest that highly-educated workers should see their
work transformed by technology. While this transformation has to some degree occurred, a clear takeaway from this
descriptive analysis is that changes in the nature of work–many of which are technological in origin–have been far
more profound and, arguably, far more disruptive for less-educated workers than they have been for more-educated
workers” (p. 9).
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In this paper, I use new occupational wage and employment datasets to show that automation

since the 1950s has been deskilling among manufacturing production workers around the world in

the sense of Autor (2019): it has narrowed the set of jobs in which manufacturing production work-

ers perform specialized work that commands higher pay levels than more elementary production

work. In the beginning of my sample period, most manufacturing employees worked in medium-

skilled craftsman occupations, jobs which required handicraft skills and a good understanding of

the entire production process. Wages in these skilled production (or “blue collar”) occupations

even rivalled those in some nonproduction (or “white collar”) occupations. I document a pervasive

reduction in the relative demand for craftsmen in countries of all income levels and world regions

over the subsequent decades, following the adoption of more capital intensive production tech-

nologies. By contrast, the relative demand for both unskilled other production workers and skilled

white collar workers increased, mirroring the findings by Katz and Margo (2014) for US manufac-

turing during the nineteenth century. This suggests some continuity over time in the “polarizing”

impact of technological change on labor demand, and implies that countries worldwide have been

confronted with the associated challenges.

This paper contribute to two literatures. First, my findings add to the literature on the effects of

technological change on skill demand: they are consistent with a demand shift favoring white collar

workers (Berman et al., 1998; Berman and Machin, 2000), but at the same time highlight that such

workers tended to account for less than 20 percent of manufacturing employment in most countries

for most of the sample period. For a more refined characterization of global labor demand trends in

manufacturing since the 1950s, I combine wages from the extended “Occupational Wages around

the World” database (OWW) by Freeman and Oostendorp (2020) with occupational employment

data from the “Integrated Public Use Microdata Series” (IPUMS, Minnesota Population Center

2018) and the “International Income Distribution Dataset” (I2D2, Montenegro and Hirn 2009). The

resulting sample goes significantly beyond the existing literature in terms of the countries and time

period covered and in the level of detail of occupational categories. Moreover, relative occupational

wages have the advantage of not only reflecting skill differences related to formal education, but
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also taking into account skills acquired through informal apprenticeships and learning on the job.

This is particularly important when analyzing changes in the demand for skill in countries and time

periods where formal educational attainments are low.

Among production workers, I find evidence of declining returns to skill: craftsman occupa-

tions experienced decreasing wages and employment, relative to other production workers who

were considerably less skilled initially. For developing countries with often still mostly artisanal

manufacturing sectors (Tybout, 2000), my findings are consistent with the model of manufacturing

labor demand by Goldin and Katz (1998). In this model, the first automation step towards larger-

scale factory production favors unskilled machine operators and laborers at the expense of the more

skilled craftsmen.5 However, the demand for manufacturing craftsmen continued to decline also

in high income countries.

Therefore, my findings reconcile the long-standing view that technological change over the

20th century has been skill-biased with the forceful and widely-discussed claim by Braverman

(1974) that it has been deskilling for most workers.6 While employment trends are consistent with

an increasing demand for (skilled) white collar workers, my findings suggest that Braverman was

correct to point out that the substantial skills that craftsmen in manufacturing possessed lost much

of their value following the adoption of more capital intensive production methods.

Second, this paper contributes to a literature initiated by Autor et al. (2003), which analyzes the

effects of technological change on labor demand from the perspective of occupational tasks. This

perspective highlights that the skill required to perform a specific task does not need to coincide

with its susceptibility to automation. The effect of technological change on skill demand will

5In the Goldin and Katz-model, automation is skill-biased only when starting from an already high division of
labor and high capital intensities, with unskilled workers who operate special purpose machines in each production
step. Then, the adoption of continuous-process methods reduces the demand for unskilled operators as well as hauling
and conveying operations performed by unskilled laborers, and increases the demand for skilled professionals who
attend the more advanced machinery.

6For instance, Tinbergen (1974) introduced the metaphor of a “race between technology and education” to illus-
trate the wide-spread idea that technological change is skill-biased and increases skill premia, unless also educational
attainments increase sufficiently. By contrast, in his widely-discussed book “Labor and monopoly capital: The degra-
dation of work in the twentieth century”, published in the same year, Braverman argued that “the capitalist mode of
production systematically destroys all-around skills where they exist” (p. 57), and that there had been a “destruction
of craftsmanship” (p. 94) throughout the 20th century.
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therefore often not be monotonic.

To illustrate how a fall in the relative price of capital may account for the observed decline

of craftsman wages and employment relative to other production workers, Section 4 presents an

adapted version of the task model from Autor et al. (2003): in this model, an increasing use of cap-

ital substitutes for automatable tasks, while complementing non-automatable tasks. I find that this

capital deepening (defined as the adoption of more capital intensive production methods) has been

significantly associated with decreases in the relative wage and employment of craftsmen, consis-

tent with the assumption that craftsmen have tended to perform the most automatable production

worker tasks.7

Also Bessen (2011) and Katz and Margo (2014) note the parallel between the recent labor mar-

ket polarization in the aggregate economy and the decline of medium-skilled artisans–however,

with respect to US manufacturing in the nineteenth century. By contrast, my findings highlight

that the process of substituting craftsmen with capital continued even after 1950. This points to a

continuity of manufacturing automation replacing artisanal tasks stretching from the nineteenth to

the early twenty-first century. It also suggests that the polarization of labor demand in manufactur-

ing precedes ICT.

Finally, task models highlight that automation not only displaces workers from tasks henceforth

performed by capital, but also increases their productivity in the remaining tasks and can create new

tasks in which labor has a comparative advantage (Autor et al., 2003; Acemoglu and Autor, 2011;

Acemoglu and Restrepo, 2018, 2019). Therefore, a reduction in the market value of craftsman

skills does not yet imply deskilling among manufacturing production workers more generally.

However, looking at trends in either wage or educational attainment levels relative to the labor

market overall, I find little evidence of other production workers acquiring additional marketable

skills that would be comparable to the ones that manufacturing craftsmen traditionally possessed.

7In a companion paper (Kunst, 2019), I argue that also the tasks of unskilled machine operator and elementary
occupations have become increasingly automatable when comparing the 1960-1990 to the post-1990 period. This
implies that fewer unskilled jobs have been created to make up for the loss of craftsman employment in recent decades,
leading to the phenomenon of “premature deindustrialization” popularized by Rodrik (2016). Since the present paper
focuses on the composition of occupational labor demand within manufacturing, my argument only requires that
craftsmen jobs have tended to be more automatable than other production worker jobs over the sample period.
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This suggests that any new skill-intensive tasks created by automation have tended to be tasks for

white collar workers, requiring significantly higher educational attainments. This is consistent with

the deskilling among US non-college workers in recent decades documented by Autor (2019).8

In summary, this paper documents a worldwide decline in the demand for skilled manufac-

turing production workers since the 1950s, which appears to be well explained by a substitution

of craftsman tasks with capital. The remainder of this paper is organized as follows: Section

2 introduces the wage and employment data, and uses them to characterize the three groups of

manufacturing occupations that guide my analyses throughout the rest of the paper. Section 3 doc-

uments the pervasive decline in the wages and employment of manufacturing craftsmen relative to

other production workers. Section 4 argues that the declining demand for craftsmen can be under-

stood through the lens of the task-framework introduced by Autor et al. (2003). It also provides

empirical evidence supporting the view that it has been related to an increasing automation of tasks

previously performed by craftsmen, and addresses the question whether the deskilling of craftsmen

has been accompanied by other production workers gaining marketable skills. Section 5 discusses

implications of these findings.

2 Global Manufacturing through the Lens of Occupations

This Section introduces novel databases of occupational wages and employment that offer two

main advantages over those used by existing cross-country studies: first, they allow me to distin-

guish between different groups of manufacturing production workers in a way that is consistent

across countries and over time, moving beyond the coarse “white collar versus production” dis-

tinction existing papers usually rely on because of data limitations.9 As I will argue throughout the

8Autor writes: “Labor markets in U.S. cities today are vastly more educated and skill-intensive than they were
five decades ago. Yet, urban non-college workers perform substantially less skilled work than decades earlier. This
deskilling reflects the joint effects of automation and international trade, which have eliminated the bulk of non-
college production, administrative support, and clerical jobs, yielding a disproportionate polarization of urban labor
markets” (p. 1). While this quote focuses on urban non-college workers, Figure 5 on page 10 of Autor (2019) suggests
that the pattern also holds true for all working age adults.

9For instance, the United Nations General Industrial Statistics Database used by Berman et al. (1998) only contains
disaggregated data for “operatives”, defined as all employees directly engaged in production or related activities of the

7



rest of this Section, this distinction matters, as production workers are a large and heterogeneous

group of manufacturing employees.

Second, they extend the country and time coverage significantly beyond commonly available

datasets: my sample includes occupational wages from 169 countries between 1953 and 2008 from

OWW and occupational employment from 146 countries between 1960 and 2016 from IPUMS and

I2D2. This broad coverage allows me to distinguish global trends from more country- or period

specific developments.10 In particluar, Berman et al. (1998) point out that the pervasiveness of

labor demand changes can be considered as a testable implication of technological change-based

explanations, highlighting the benefits of the broad regional and income level coverage of the

sample used in this paper. In all specifications, I include country-occupation fixed effects so that

trends are driven by changes within countries and occupations, and I also present results for a

balanced panel of 86 countries (OWW) and 44 countries (IPUMS and I2D2).

2.1 Occupational Wage Data from OWW

OWW is based on the “October Inquiry” by the International Labor Organization (ILO)–an annual

request to national statistical offices to submit wage data for a number of narrowly and consistently

defined occupations, described in more detail in Freeman and Oostendorp (2020). My sample

includes average hourly wages for 54 manufacturing occupations from 169 countries between 1953

and 2008. 23 of the occupations were included in the “October Inquiry” for the full sample period,

and wages from an additional 21 manufacturing occupations were included from 1983 onwards.

See Appendix B for additional information, including a list of all manufacturing occupations and

industries included in OWW.11

Throughout the paper, I distinguish between three groups of manufacturing occupations which

establishment, next to the data for aggregate manufacturing.
10For instance, the EUKLEMS database allows Michaels et al. (2014) to study the polarizing impact of ICT on labor

markets only for eleven OECD countries between 1980 and 2004, and Ashenfelter (2012) points out that the lack of
internationally comparable wage data over long time periods “is one of the most serious gaps in our evolving system
of economic measurement” (p. 618).

11The data are available on the website of NBER under https://data.nber.org/oww/.
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are based on the major groups from the ILO’s “International Standard Classification of Occupa-

tions” (ISCO), and which I argue to have been affected differently by the move towards more

capital intensive production technologies: craftsman-, other production-, and white collar occupa-

tions.12 According to the description provided by the ILO, craftsman tasks “require the knowledge

and experience of skilled trades or handicrafts which, among other things, involves an understand-

ing of materials and tools to be used, as well as of all stages of the production process, including

the characteristics and the intended use of the final product” (quoted from the description of major

groups, reproduced in Appendix C). Figure 1 presents the wage premia of 8 manufacturing crafts-

man occupations in the 1950s, relative to the average manufacturing wage report by countries, and

shows that handicraft in manufacturing tended to be well remunerated: craftsman wage premia

equal 15 log points on average (ranging from close to zero to 39 log points).13

Other production occupations include machine operators, whose “main tasks consist of operat-

ing and monitoring (...) production machinery and equipment”, and elementary occupations, who

“perform mostly simple and routine tasks, involving the use of hand-held tools and in some cases

considerable physical effort”. They commanded wages that were 13 log points below the aver-

age–though with considerable dispersion around that average, partly due to wage level differences

between manufacturing industries.14

12Craftsmen correspond to major group 7 of ISCO, other production occupations include major groups 8 (“Plant
and machine operators and assemblers”) and 9 (“Elementary occupations”), and white collar occupations subsume
major groups 1 (“Legislators, senior officials and managers”), 2 (“Professionals”), 3 (“Technicians and associate
professionals”) and 4 (“Clerks”). In Kunst (2019), I argue that it is insightful to further distinguish between the high
skilled white collar occupations in major groups 1-3 and the medium skilled clerks in major group 4 when analyzing
the recent impact of ICT on the labor demand in manufacturing. However, this distinction becomes most relevant
towards the end of my sample period, and is not the focus of this paper. OWW does not include any manufacturing
occupations from major groups 5 (“Service workers and shop and market sales workers”) and 6 (“Skilled agricultural
and fishery workers”), which also do not play an important role in manufacturing in terms of employment.

13The occupation fixed effects are similar across countries with different income levels: when estimating them
seperately for low-, middle- and high income countries, the correlations of occupation fixed effects by income group
with the ones for the pooled sample range between 0.97-0.99.

14One may argue that this group hence combines very different occupations. However, the findings presented
below also hold true for craftsmen relative to either ony machine operators or only elementary occupations (results
available upon request). A second concern is that absent data on employment shares in OWW, I assign equal weight
to the underlying occupations when calculating wage premia for these three groups of occupations. However, the
three occupational groups differ systematically in their task requirements, so that also reports from occupations with
smaller employment shares are informative about task prices. Reassuringly, the ranking of the three occupation groups
also holds up within the three more detailed manufacturing industries for which OWW includes occupations from the
different groups (see the discussion below, and Appendix Figure A.3). Moreover, craftsmen in the 2000s enjoyed a
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For instance, “printing & publishing” tended to be a high wage industry in the 1950s, ac-

counting for both the best-paid craftsman occupation (“machine compositor”) and other produc-

tion occupation (“printing pressman”). However, Figure 1 shows that within this industry, the

craftsman occupation again commanded higher wages than the machine operator occupation. By

contrast, “textiles” was a low wage industry–and while the occupation “loom fixer, tuner” was

among the lowest paid craftsman occupations, it still commanded considerably higher wages than

“cloth weavers (machine)”, a machine operator occupation from the same industry.

The latter example also highlights that manufacturing craftsmen often work together with other

production workers, as the description of cloth weavers directly refers to loom fixers and tuners:

A cloth weaver “operates and tends battery of looms to weave yarn into cloth: starts set-up loom

and observes weaving operation; (...); reports mechanical faults to loom fixer.” Loom fixers in

turn “set, inspect and repair looms of various kinds: prepare looms for weaving new pattern

or different quality of product (...); operate loom manually to check movements (...) and make

necessary adjustments; hand loom over to weaver for operation; inspect loom periodically and

keep in good working order; make repairs (...); replace empty warp beams with full ones”.15 When

craftsmen and other production workers work together, craftsmen are hence in charge of setting

up machines and taking over production steps that machines operated by unskilled workers cannot

(yet) perform on their own.

comparable wage premium over other production workers regardless of whether one looks at OWW wages (which
do not weigh the underlying occupations by employment) or the survey wages (which do)- see Figure 3, and the
discussion in Section 3. Finally, a challenge to the interpretation of relative occupational wage trends as task price
trends is that the former may also reflect changes in worker characteristics within the occupations. However, Böhm
et al. (2019) document positive selection effects in declining occupations, i.e. systematically higher wages for “stayers”
as compared to “leavers” related to individual characteristics. Hence, the trend of declining relative craftsman wages
documented in Section 3 if anything understimates the underlying decline in the relative price of craftsman tasks.

15These descriptions are quoted from the detailed description of “October Inquiry” occupations, given to the na-
tional statistical offices by the ILO. For the printing industry, the corresponding tasks of the craftsman occupation
“machine compositor” are described separately by machine type: “sets and arranges printing type by machine: (a)
Linotype operator (...) (b) Monotype keyboard operator (...) (c) Computer keyboard operator (...) (d) Typewriter key-
board operator (...) (e) Filmsetter keyboard operator (...)”. The tasks of the machine operator occupation “printing
pressman” are described as follows, again for different machine types: “Sets and operates various types of machines
which print on paper and other materials: (...).” Additional detailed descriptions are available on request. See Section
3 for references to case studies describing technological changes in the textiles and printing industries over the sample
period.
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Figure 1: Occupational Wage Premia in Manufacturing in the 1950s in 112 Countries

Source: OWW. The red diamonds represent the occupation group fixed effects from a regression of log
wages on country-year fixed effects and occupation group fixed effects. The sample includes 7,950 average
annual wages from 23 manufacturing occupations in one of the three occupation groups, reported by 112
countries between 1953-1960. Hence, they represent the average deviation of the wage in an occupation
group from the average country-year wage report. The dots in light grey are the corresponding occupation
fixed effects from a regression on occupation instead of (coarser) occupation group fixed effects. All oc-
cupations are labelled with the occupation code, and selected ones also with the name of the occupation.
Appendix B contains a full list of occupations, including occupation codes. Note that there is no refer-
ence category because the intercept is instead chosen such that the prediction calculated at the means of the
independent variables equal to the mean wage in the sample.
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2.2 Occupational Employment Data from IPUMS and I2D2

A drawback of OWW is that it does not include occupational employment data.16 To complement

wages with employment data, I combine census and survey data from IPUMS, hosted by the Min-

nesota Population Center (2018), with survey data from I2D2. I2D2 is a collection of harmonized

and nationally representative household surveys introduced by Montenegro and Hirn (2009) and

maintained by the World Bank.17

The resulting dataset contains the distribution of manufacturing wage employment across the

three occupation groups for 955 country-year observations from 146 countries between 1960 and

2016.18 However, coverage for the earlier years is scarcer: 90 percent of the surveys are from 1990

or later, and 74 percent are from 2000 or later.

To examine how the occupational employment mix within manufacturing typically varies with

a country´s income level, Appendix Table A.1 presents the results from regressing the employment

share of craftsmen, other production workers and white collar workers within manufacturing on

the best-fitting third order polynomial of ln GDP per capita, decade dummies and country fixed

effects.19 Figure 2 plots the corresponding fitted relationship for a “typical” country in the sample,

with averaged period and country fixed effects: it shows that a large majority of manufacturing

employees in low income countries tends to work in craftsman occupations. Their share in total

manufacturing employment declines with income, with particularly rapid declines at intermediate

levels of income. However, it is only after an income level of around $10,000 (in 2011 international

16However, the description of the “October Inquiry” states that occupations were chosen with regard to economic
relevance: “the occupations and industry groups covered comprise, as far as possible, those which are important in
terms of the number of persons employed in them”.

17I2D2 is currently not openly available to researchers outside the World Bank. I am grateful to Kathleen G. Beegle,
Claudio E. Montenegro, David Newhouse and Aditi Mishra for their help in accessing the I2D2 surveys.

18I hence exclude manufacturing workers classified as self-employed or as non wage-employed/ working in the
family business, which represent about 30 percent of manufacturing employees on average. I do this to allow for a
cleaner comparison to the wage data from OWW, which does not take account of the earnings of non-wage workers
or the self-employed. However, findings are robust to including these non-employed manufacturing workers in the
analyses. See Appendix B for a more detailed description of the sample construction.

19Using a third order polynomial ensures that the fitted curves could in principle take a large number of possible
shapes, and F-test reject the need for even higher order polynomials. The polynomial terms are selected by Stata´s
“fp” command (with default settings), which compares 164 models and select the best-fitting one. See the note of
Appendix Table A.1 for further details.
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$) that they cease to be the most important group of manufacturing employees.

By contrast, the employment share of other production workers tends to increase with income

up to an estimated peak of around 39 percent, reached at an income level around $18,000. After-

wards, it also declines. Finally, the employment share of white collar workers in manufacturing is

slightly U-shaped, and increases strongly only at higher levels of income.20

Table 1 summarizes additional survey information. Not all of the variables are available for

all countries, and column (1) indicates the number of countries across which the sample average

has been calculated. The average survey is from the year 2002, so that the figures are most rep-

resentative of the later part of the sample period. The first row indicates that craftsmen and other

production workers on average represent more than 70 percent of all manufacturing employees in

the sample.

The second row shows that while both groups of production workers earn wages below the

manufacturing average in the survey data, craftsmen still tended to be better paid than other pro-

duction workers–consistent with the ranking of OWW wages in the 1950s shown in Figure 1.21

However, the middle panel indicates that average educational attainments of craftsmen and other

production workers in the surveys are comparable, and much lower than those of white collar

workers. The bottom rows show that craftsmen tended to work in smaller establishments than

other production and white collar workers.22

In summary, OWW wage and survey data consistently characterize craftsmen as the best-paid

manufacturing production workers, who likely obtain much of the (handicraft) skills that differ-

20The U-shape of white collar employment may reflect economies of scale at intermediate income levels, where
expanding factories permit a white collar worker to instruct a larger number of production workers. Table 1 confirms
that other production workers, whose employment share expands particularly rapidly at intermediate income levels,
tend to work in larger establishments. By contrast, as GDP per capita increases further, the handling of advanced
machines increasingly requires “white collar” professionals.

21For the sake of readability, Table 1 omits tests for the significance of differences between means. However, the
difference between average craftsman and other production worker wages is highly significant (pval=0.00).

22For all educational attainments, the differences between both groups of production workers are insignificant. The
differences between average firm sizes are insignificant (pval=0.33 for the upper limit, and pval=0.18 for the lower
limit). However, this is due to large standard deviations resulting from large cross-country differences in average
manufacturing firm sizes across all occupation groups. In 84 percent of countries, the average upper firm size-bracket
of other production workers exceeds the one for craftsmen, and this is the case for 90 percent of countries with respect
to the lower firm size bracket. Hence, the survey data do robustly suggest that craftsmen tend to work in smaller
establishments.
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Figure 2: Fitted Occupational Employment within Manufacturing by GDP per Capita

Source: IPUMS and I2D2. The Figure shows the predicted employment shares among all wage employed
aged 15-64 from a regression on a third-order polynomial of ln GDP per capita, decade fixed effects and
country fixed effects in a sample including surveys from of 123 countries between 1960 and 2014. The best-
fitting third order polynomials are selected using Stata´s “fp” command with default settings. Period and
country effects are all averaged to obtain the relationship for a “typical” country in the sample. Appendix
Table A.1 presents the specifications (which exclude countries with observations from only one year, and
country-years for which the Penn World Table do not include data on real GDP per capita). While the three
occupation groups cover almost all manufacturing employees (cf. Table 1), I do not impose that the fitted
employment shares in the three groups in this Figure always add up to 100.
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Table 1: Descriptives by Occupation in Manufacturing: Survey Data

By occupation

(1) (2) (3) (4)
Countries All groups Other production Craftsmen White collar

Employment (%) 146 93.4 30.4 40.1 22.9

Wage premium (log pts) 124 0 -19 -10.8 34.8

Educational attainment: at least completed...

-primary schooling (%) 127 71.7 69.2 69.1 88.1

-secondary schooling (%) 127 32.9 26 27.1 62.5

-tertiary schooling (%) 127 8.1 3.1 3.7 26.8

Firmsize (number of workers):

-lower bound 94 31.8 34.6 26.6 39.2

-upper bound 94 34.6 38.2 30.7 40.2

Source: IPUMS and I2D2. Averages across all countries with available data. For countries with data for
several years, I take the average across available years. Hence, all countries have the same weight. The
first row presents the distribution of manufacturing wage employment of men and women aged 15-64 across
occupations. Employment in the “all groups” columns is less than 100 because it excludes manufacturing
employees classified as working major group 5 (“service and sales workers”) and 6 (“skilled agricultural,
forestry and fishery workers”). These major groups are not represented among the manufacturing occupa-
tions in OWW, and play a negligible role for manufacturing in surveys from most countries. The second
row depicts the wage premium relative to total manufacturing in log points. Firmsizes are reported as “up-
per” and “lower” bounds of the size category that the establishment falls into. For the “tertiary education”
variable, I2D2 surveys include those who started their tertiary education, whereas IPUMS surveys include
only those who also completed it.
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entiate them from other production workers by means of informal apprenticeships and training on

the job rather than formal education. They tend to work in smaller establishments, likely reflecting

a lower division of labor, and their importance in manufacturing tends to decline with a country´s

income level.

3 The Changing Fortunes of Craftsmen

In this Section, I use the wage and employment data to argue that there has been a pervasive decline

in the relative demand for craftsman tasks since the 1950s in countries from all income groups and

world regions.

Figure 3 summarizes the evolution of the craftsman wage premium relative to other production

workers over a period of six decades for a balanced sample of 86 countries. It reveals a substantial

and monotonic decline in the wage premium of craftsmen, from an average of 31.8 log points in

the 1950s to 8.3 in the 2000s.23 The dotted lines split the sample by income group, following the

World Bank´s income classification in 1990.24 They suggest that craftsmen were the most skilled

production workers in countries of all income groups, yet enjoyed particularly high wage premia

in low and middle income countries.25 However, craftsmen in these countries also experienced

particularly stark declines in their wage premium, and craftsmen in middle income countries earned

the lowest wage premia by the 2000s.

Appendix Figure A.1 compares the distribution of the craftsman wage premium in the 1950s

and the 2000s for the same sample, and confirms that the entire distribution of wage premia has

23Note that reassuringly, the OWW wage premium of craftsmen over other production workers in the 2000s cor-
responds very closely to the corresponding wage premium of 8.2 log points in Table 1, which is calculated from the
IPUMS and I2D2 surveys (and which is on average also based on surveys from the early 2000s).

24I calculate it as the (max) mode of all available classifications between 1987 (the first year for which World
Bank income classifications are available) and 1993, to deal with missing classifications. Using the 1990 income
classification has the advantage that the classification broadly corresponds to well established notions about the income
status of countries, and is usually representative for most of the sample period. However, given the pervasiveness of the
decline of craftsman wage premia documented in this paper, the picture does not change much when using (estimated)
income groups from the beginning or end of the sample period instead.

25This is consistent with the finding of generally larger skill premia in low and middle income countries in Kunst
et al. (2020).
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Figure 3: Craftsman Wage Premium relative to Other Production Workers

Source: OWW. The average wage premium of manufacturing craftsmen versus other production occupations
is based on 86 countries, of which 19 are classified as high income, 43 as middle income, and 24 as low
income. It is calculated as 100 times the difference between the decade average log wages in up to 8
craftsmen and 13 other production occupations. The sample is balanced, and gaps of at most one decade (15
percent of wage reports) have been filled using nearest inter- or extrapolation of reports from neighboring
decades. This interpolation procedure is conservative in the sense that it makes it harder to find a trend.
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shifted to the left. Appendix Figure A.2 shows that craftsman wages declined relative to both

occupation groups subsumed in the “other production” category, machine operators and workers

in elementary occupations.

Table 2 presents the results of regressions of all log wages from manufacturing craftsman and

other production occupations included in OWW over the full sample period on interactions of

decade dummies and a “craftsman” dummy. The specifications include country-occupation fixed

effects (so that the identication comes from changes within country-occupation series over time)

and country-year fixed effects (to control for changes in wage levels), and cluster standard errors

at the country level. Comparing the 1950s to the 2000s, the point estimate for the pooled sample

in Column (1) suggests a significant decline of the craftsman wage premium by 20.9 log points,

similar to the decline in the balanced sample.

Note that these comparisons include wages from craftsmen and other production occupations

in different manufacturing industries. For instance, I may compare wages in the craftsman occu-

pation “cabinetmaker” from the “manufacture of furniture and fixtures” industry with the other

production occupation “mixing and blending-machine operator” from the “manufacture of indus-

trial chemicals” industry. This should not pose a problem if the task differences between crafts-

men and other production occupations are sufficiently general, as the definition of major groups

suggests. As a robustness check, I use the fact that OWW includes at least one craftsman and

one other production occupation for three 2 digit manufacturing industries, allowing me to track

the evolution of the craftsman wage premium within these industries: Appendix Figure A.3 plots

the evolution of wage premia calculated separately for each available country-industry (instead of

country, as in Figure 3). It shows that the average industry-level craftsman premium declined from

36.4 log points in the 1950s to 11.5 log points in the 2000s. This is in the ballpark of, and slightly

exceeds, the decline of the country-level craftsman premium from 31.8 to 8.3 log points over the

same period.

At the level of the individual occupations, Figure 4 presents two examples from the textiles and

the printing and publishing industries: the left panel plots all wage premia of “loom fixers, tuners”
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(a craftsman occupation) relative to “cloth weavers (machine)” in the sample against the year of

the report, and the right panel presents all wage premia of “machine compositors” (a craftsman oc-

cupation) relative to “printing pressmen” (see Section 2.1 for a description of these occupations).

To help with the interpretation, both panels include a non-parametric local polynomial fit, and the

subtitles present the point estimates from a regression of log wages on country fixed effects and a

trend. Fitted wage premia in 1953 amount to 17.5 log points for “machine compositors” and 24

log points for “loom fixers, tuners”, and they declined significantly by on average 3.8-4 log points

per decade over the subsequent six decades. This is similar to the decline of average craftsman

wage premia in the balanced sample in Figure 3. Hence, fitted wage premia in 2008 amounted to

only 2.1 log points for “loom fixers, tuners”, and minus 3.2 log points for “machine compositors”.

These findings are consistent with case studies from the textiles and printing industry: Rasiah

(1993) documents rapid automation in a sample of Malaysian textile firms during the 1980s. By

the end of the decade, nine of the eleven fibre-making, spinning and weaving firms in his study

had switched to using shuttleless air-jet looms, reducing the demand for some skilled craftsmen:

“skilled menders who spot and swiftly mend breaks in the weaved and knitted cloth became re-

dundant as the automated machines enabled break free weaving and knitting” (p. 18). Rasiah

reports that in particular skills requiring dexterity had become less important due to the adoption

of the new machines.26 Wallace and Kalleberg (1982) review how technological changes in the US

printing industry have changed labor demand over time: they argue that “by all accounts, printers

have enjoyed a privileged status among manufacturing workers since the early 1800s”, and that

well into the twentieth century, “printers were expected to be proficient in all phases of printing

production from composition to presswork” (pp. 308-309). They then document how the new tech-

nology of teletypesetting (TTS) reduced the demand for skilled craftsmen in the composing room

over the 1931-1978 period: “The TTS machine produces a perforated tape which can be transmit-

ted from shop to shop, virtually bypassing the services of local compositors. (...) TTS contributed

26He writes: “In 1980 when none of the textile and garment firms had automated machinery, dexterity was the
prime skill. (...) Indeed, new recruits had to pass dexterity tests. The most dexterous recruits were trained into sewers
(in garment firms) and menders (in weaving and knitting firms). Automation has gradually reduced the importance of
dexterity. The fall in dexterity appears sharpest in textile firms” (p. 17).
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Figure 4: Craftsman Wage Premia: Examples from the Textiles and Printing Industries

Source: OWW. The left panel plots the (log point) wage premium of “loom fixers, tuners” (a craftsman
occupation) over “cloth weavers (machine)” (a machine operator occupation) in the textiles industry over
time, along with a non-parametric local polynomial fit (using Stata´s “lowess” command). The wage pre-
mium could be calculated for 133 countries and 1,798 country-year observations in OWW. The sub-header
shows the point estimate and p-value of a regression of the wage premium on a linear trend (year/10) and
country fixed effects, with standard errors clustered at the country level. The right panel plots all wage
premia of “machine compositors” (a craftsman occupation) over “printing pressmen” (a machine operator
occupation) in the printing industry over time. Wage premia could be calculated for 156 countries and 2,615
country-year observations.

20



in a significant way to the de-skilling of composing room operators. (...) It greatly diminished the

training time required to set the type, thus obviating the need for long apprenticeships required of

compositors and linotype operators. (...) While these occupational titles have remained intact (...)

the tasks performed by occupational incumbents have been drastically simplified and routinized”

(pp. 310-311).27

As Berman et al. (1998) point out, a testable prediction of technological change-based expla-

nations of the wage structure is that changes should be pervasive, and hence visible in countries

with different income levels, policies and macroeconomic experiences.28 Columns (2)-(4) of Table

2 confirm that while declines in relative craftsman wages were about double as strong in low and

middle income countries, they are significant in countries of all income groups. Columns (5)-(7)

compare the evolution of relative craftsmen wages in Africa and Latin America–for which Rodrik

(2016) finds declining shares of manufacturing employment and value added since the 1980s–and

Asia, which has tended to experience significant industrialization. In all country groups, there has

been a significant decline of craftsman wage premia.

This highlights that the trends described in this Section are consistent with very different perfor-

mances of the manufacturing sector in the aggregate economy: craftsmen lose out in an expanding,

export-oriented manufacturing sector that switches to a more capital intensive production technol-

ogy in response to falling costs of capital or to comply with increasing consumer demands. They

also lose out in a contracting, import-competing manufacturing sector in which firms that use older,

more labor intensive production technologies exit disproportionately.29

A second testable implication of a technological change-induced demand shift against crafts-

men is a pervasive decline also in their employment share in manufacturing. For a first impression,

Figure 5 plots the number of craftsmen per other production worker, comparing the first available

year with data before 1990 with the last available year after 1990 for 44 countries with data for

27Note that “linotype operator” is a type of machine compositor, whose declining wages relative to “printing
pressmen” are plotted in the right panel of Figure 4.

28With the caveat that technology adoption lags across countries are often substantial (Comin and Hobijn, 2010).
29See Section 4 for an illustration of how increasing capital intensities can reduce relative craftsman wages, and

evidence that this has actually been the case.
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both periods:30 in the first year (on average, 1974), there were on average 4.9 craftsmen per other

production worker. In the last year (on average, 2009), this number had decreased to 1.4 craftsmen

per other production worker in the same countries. While a few countries (such as PRY-Paraguay

or HND-Honduras) experienced particularly large decreases, the number of craftsman per other

production worker decreased in 38 of the 44 countries, consistent with a pervasive demand shift

against craftsmen.

For a more systematic illustration of trends in the occupational employment mix within manu-

facturing, Table 3 regresses the employment shares of other production workers (“O”), craftsmen

(“C”) and white collar workers (“WC”) on country fixed effects and a trend. While the focus of

this paper is on the two groups of production workers, I include the results for white collar work-

ers to allow for a direct comparison to the “production worker versus white collar”-distinctions

that is common in the existing literature. The first panel in the top row shows that in the pooled

sample, craftsmen experienced strong and significant employment share decreases of 4 percentage

points per decade, whereas the employment shares of both other production and white collar oc-

cupations both increased by 2 percentage points per decade. An analysis through the “blue collar

versus white collar” lens would hence lead us to conclude that there has been skill-biased techno-

logical change, as the white collar occupations increased their employment share by 2 percent per

decade, mirrored by a decline of blue collar employment. However, it would miss the equally large

employment shift towards the less skilled production occupations.

The other panels show that across all income groups and regions, point estimates suggest a

decreasing employment share of manufacturing craftsmen, with particularly large decreases in

middle income and Asian countries. By contrast, employment shares in other production and

white collar occupations either show no significant change or increased.31

30The choice of 1990 as demarcation-year is somewhat arbitrary–but it ensures that there is a reasonable number of
countries in the comparison, and that their first and last years in the sample are a reasonable number of years apart from
each other. See Table 3 for an alternative representation of employment trends that makes use of the full employment
dataset.

31Notably, the point estimate of other production occupations in high income countries is (insignificantly) negative,
and of the same size as the point estimate for craftsmen: in Kunst (2019), I argue that the demand for other production
workers declines with the following automation step towards digitally controlled machines. Such machines require
less unskilled human operators, and also reduce the need for hauling and conveying operations performed by unskilled
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Figure 5: Craftsmen per Other Production Worker in Manufacturing

Source: IPUMS and I2D2. The Figure compares the number of craftsmen per other production worker in
manufacturing for the first available year before 1990, and the last available year after 1990, and labelling
the 10 countries which experienced the largest decreases. Of 45 countries with employment data from both
periods, 38 experienced a reduction in the number of craftsmen per other production worker. The Figure
omits the outlier Benin, in which manufacturing was dominated by craftsmen throughout the sample period.
Among the remaining 44 countries, the average selected first years is 1974, the average selected last years is
2009, and the average number of craftsmen per other production worker decreased from 4.9 to 1.4 (median:
from 2.6 to 0.9) during this 35 year-period.
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In summary, the initially well-paid manufacturing craftsmen experienced strong and global de-

clines in their relative wages and employment since the 1950s. An increasing supply of craftsmen

could account for the decline in their relative wages, but would be accompanied by increasing

rather than declining employment shares. By contrast, both wage and employment trends are con-

sistent with a pervasive decline in the demand for craftsman tasks in manufacturing.32

4 An Interpretive Framework

In this Section, I borrow the model from Autor et al. (2003) to show how increasing capital intensi-

ties in manufacturing may account for the observed reduction in the relative demand for craftsmen.

While Autor et al. (2003) use this model to study the effect of computer capital on task demand,

I argue that it is equally useful to illustrate the mechanism behind the reduction in the demand for

tasks that can be performed by capital more generally.

4.1 Capital Deepening and the Demand for Craftsmen

Following the previous discussions, I think of craftsmen as the production workers performing the

most automatable tasks: as the examples of “loom fixers, tuners” and “cloth weavers (machine)”

in the textiles industry illustrates, craftsmen tend to be engaged in handicraft tasks that cannot yet

be performed cost-effectively by machines (cf. the task descriptions in Section 2.1)–a range of

tasks that has narrowed over time, as machines have become increasingly wide-spread and capable

(cf. the case studies in Section 3).

laborers. Since such technologies were first adopted in high income countries, the reduction in the employment share
of other production workers is already apparent for these countries. In Kunst (2019), I show that once conditioning on
GDP per capita, employment in such occupations has decreased also in middle income countries when comparing the
1960-1990 to the post-1990 period.

32An alternative test to rule out a supply-side explanation of the declining craftsman wages is to control for the
average educational attainment by country-year in the relative wage-regressions and its interaction with a craftsman-
dummy (which requires dropping the then collinear country-period fixed effects). The finding of a prevasive decline
of relative craftsman wages is robust to controlling for a variety of different educational attainment measures in this
way (results available upon request). However, note that skill differences among manufacturing production workers
are likely in large part due to on-the-job training in most countries and years in my sample (cf. Table 1), which is not
captured by measures of formal educational attainments.
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To avoid possible confusion with the literature on routine-biased technological change–which

studies the effects of computer/ICT capital rather than “old school” total capital–, I refer to “au-

tomatable” rather than “routine” tasks. However, Appendix Figure A.4 shows that craftsmen also

score higher than both groups of other production workers and white collar occupations on the

“routine task intensity index” (RTI) introduced by Autor and Dorn (2013). Hence, the demand

shift against manufacturing craftsmen can already be characterized as “routine biased” when using

a measure of the relative importance of routine to non-routine tasks that is widely used in the recent

literature on labor market polarization.33

By contrast, the move towards more capital-intensive factory production increased the demand

for other production workers, namely machine operators and laborers for hauling and conveying

operations. This is the case especially in the earlier part of my sample period and in developing

countries with technologically less advanced manufacturing industries, prior to the adoption of

more advanced and digitally controlled machines (cf. Goldin and Katz 1998, and Kunst 2019).

This informal discussion of typical craftsman and other production tasks and their interaction

with capital can be summarized in three assumptions:

• A1. In manufacturing, capital tended to be more substitutable for tasks performed by crafts-

men (“automatable tasks”) than for tasks performed by other production workers.

• A2. Automatable and other production task inputs are imperfect substitutes.

• A3. A greater use of automatable task input increases the marginal productivity of other

production tasks.

More specifically, suppose the production function in manufacturing is given by Equation 1. Lc is

craftsman labor input, K is capital input, and Lo is other production labor input, all measured in

efficiency units. For simplicity, this production function implies a perfect substitutability between

33Moreover, Appendix Figure A.5 presents the disaggregated task scores that enter in the calculation of the RTI
index. It confirms that craftsmen score highest in terms of “finger dexterity” and “setting limits, tolerances and
standards”, consistent with the view that manufacturing automation reduced the demand for dexterity and the need to
manually set limits, tolerances and standards.
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craftsmen and capital inputs, and an elasticity of one between automatable and other production

inputs. However, the only substantive model requirement is that capital input is more substitutable

for craftsmen than for other production labor input (cf. A1. and A2.). Moreover, automatable and

other production task inputs are complements with this production function, consistent with A3. I

abstract from nonproduction/white collar labor input here, but A1-A3 remain reasonable also if we

instead assume Lo to include white collar workers.34

Q = (Lc +K)1−β Lβ
o (1)

I further assume that there is a large number of income-maximizing workers, each of whom

inelastically supplies one unit of labor to the manufacturing industry.35 Workers have heteroge-

neous productivity endowments Ei = [ci,oi] in both automatable (craftsmen) and other production

tasks, with ci,oi ∈ (0,1] ∀i. A worker can choose to supply ci efficiency units of craftsmen input

or oi efficiency units of other production input. These assumptions imply that workers will choose

tasks according to their comparative advantage as in Roy (1951). The framework hence allows for

changes in craftsmen versus other production task supplies in reaction to changes in the relative

wage, and hence for changes in the relative employment of craftsmen and other production work-

ers. I assume that capital is supplied perfectly elastically at price r. Since craftsmen and capital

inputs are perfect substitutes, the craftsmen wage is pinned down by the price of capital (Equation

2).36 Given r, the self-selection of workers into craftsmen and other production jobs clears the

labor market.

wc = r (2)

To characterize the relative employment of craftsmen versus other production workers, I de-

34In Section 4.2, I show that also the empirical tests of the model are robust to including white collar occupations
in Lo.

35Since I am concerned with labor demand changes within manufacturing, I abstract from employment flows be-
tween industries.

36I implicitly assume that the shadow wage of craftsmen absent capital exceeds r so that Equation 2 holds with
equality.
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fine the relative productivity of individual i in performing automatable versus craftsmen tasks as

ηi =
oi
ci

. The assumptions above imply that ηi ∈ (0,∞). At the labor market equilibrium, the

marginal worker with relative efficiency units η∗ is indifferent between performing craftsmen

and other production tasks when η∗ = wc
wo

. Individual i works as a craftsman if ηi < η∗, and

works as an other production worker otherwise. Functions g(η) and h(η) characterize the to-

tal labor supply of craftsmen and other production labor, respectively. g(η) = ∑i ci· I[ηi < η∗],

and h(η) = ∑i oi· I[ηi ≥ η∗], where I[· ] is the indicator function. Moreover, productive efficiency

requires that craftsmen and other production workers wages equal their marginal productivities

(Equations 4 and 5), where θ is the ratio of automatable to other production input in production

(Equation 3):

θ ≡ g(η∗)+K
h(η∗)

(3)

wc =
∂Q
∂Lc

= (1−β )θ−β (4)

wo =
∂Q
∂Lo

= βθ
1−β (5)

One can use Equations 1-5 to study the effect of a decrease of the price of capital on θ and

the relative craftsmen versus other production wage and employment: first, Equation 6 shows that

a decrease in the price of capital will increase the ratio of automatable input to other production

input in production.37

37This follows from Equations 2 and 4.
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∂ lnθ

∂ lnr
=− 1

β
< 0 (6)

From the perspective of producers, this increase in automatable input could come either from

increasing K or from increasing Lc. However, Equation 7 shows that the increasing use of au-

tomatable inputs will be met entirely by increasing K, since η∗ decreases alongside r so that Lc

declines (as more workers choose to become other production workers instead of craftsmen).38

Since η∗ = wc
wo

, also the wage of craftsmen relative to other production workers declines.

∂ lnη∗

∂ lnr
=

∂ ln wc
wo

∂ lnr
=

1
β
> 0 (7)

In summary, an exogenous decline in the price of capital raises the marginal productivity of

other production tasks, incentivizing craftsmen to work in other production occupations. Although

craftsman labor input declines, an inflow of capital more than compensates, yielding a net in-

crease in the intensity of automatable (and in fact, increasingly automated) task input in production.

Hence, relative employment of craftsmen decreases alongside their relative wage.39

4.2 Has Capital Deepening Reduced the Demand for Craftsmen?

To assess the hypothesis that the declining demand for manufacturing craftsmen is the result of

craftsman tasks being taken over by capital, the top panel of Table 4 regresses log wages from man-

ufacturing occupations on alternative measures of the log capital stock per worker (both expressed

in 2011 prices). While the value of the capital stock per worker need not be perfectly correlated
38This follows from Equations 4, 5, and 6.
39Note that for wages, this is true for wages per efficiency unit of task that is supplied, which may differ from

observed wages. For example, if there is a positive correlation between worker’s abilities to carry out automatable
(craftsman) and non-automatable (other production) tasks, the flow of craftsmen into other production jobs in re-
sponse to a decline in the price of capital reduces the average ability among workers in both occupations. Then,
observed craftsman wages unambiguously fall, but observed other production wages may not rise. See Section 4.3
for a discussion of the evolution of craftsman and other production wages relative to a “numeraire”–namely, relative
to wages outside of manufacturing. A decrease in the average ability of workers to carry out non-automatable task
could be another reason for the absence of a clear increase in their observed relative wage documented in that Section.
However, this mechanism hinges on displaced craftsmen having a lower average innate productivity when carrying
out the mostly simple non-craftsman production worker tasks, and hence appears unlikely to play an important role in
practice.
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with the extent to which machines are able to take over tasks previously performed by craftsmen,

I consider it as a reasonable proxy.40 All specifications include an interaction of the capital inten-

sity with a dummy taking a value of one for craftsman occupations, to test for an effect of capital

intensity on the relative wage of craftsmen. Since specifications include country-occupation fixed

effects, identification comes from wage variation within country-occupation specific wage series.

Moreover, specifications include year fixed effects to control for global time trends, and cluster

standard errors at the country level.

Column (1) uses the most widely available capital intensity measure, the economy-wide cap-

ital stock per worker from the Penn World Table. Unsurprisingly, wages are positively associ-

ated with the capital stock per worker, with an elasticity of 0.58. However, the significantly

negative craftsman-interaction suggests that craftsman wages increased more slowly with capi-

tal intensity than the wages in other production occupations.41 Since the economy-wide capital

stock per worker need not be a good proxy for the capital intensity in manufacturing, I construct

manufacturing-specific capital intensities using investment and employment data from the IND-

STAT2 database by the United Nations Industrial Development Organization (UNIDO, 2018): I

deflate the investment data using the price level of capital formation from the Penn World Table,

and use the perpetual inventory method to estimate capital stocks, following Caselli (2005) in as-

suming a 6 percent depreciation rate (see Appendix B for more details). INDSTAT2 allows to

estimate capital intensities both for aggregate manufacturing and by 2-digit manufacturing indus-

40An alternative test of the model in Section 4.1 would be to check whether relative craftsman wages and employ-
ment have been associated with changes in the price of capital. While it is well established that the relative price
of investment to consumption goods has declined globally since the 1950s (cf. Karabarbounis and Neiman (2014)),
factors other than the relative price of investment goods–such as openness to foreign direct investment, exports to high
income markets, increasing import competition, or factor market imperfections (as argued by Hasan et al. (2013))–are
likely to have also influenced the extent to which more capital intensive production methods have been adopted. I
do not attempt to gauge the relative importance of these potential drivers of capital deepening in this paper, and the
model hence uses a declining price of capital as a “catch-all” driving force for simplicity. However, I acknowledge
that factors other than the relative price of capital are likely to also have played a role in bringing about the observed
increases in capital intensity.

41For simplicity, the model assumes that craftsman wages are pinned down by the (declining) price of capital,
as it is concerned with the demand for craftsman relative to other production workers. In a model that is more
informative about absolute craftsman wages, it would appear reasonable to assume that an increasing capital intensity
also enhances the productivity of the remaining craftsmen, which could explain the (observed) positive association
between capital intensities and absolute craftsman wages.
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try.42 Columns (2) and (3) shows that using either measure of capital intensity, the point estimates

of the craftsman-interactions are also significantly negative, and in the ballpark of the estimate for

the economy-wide capital intensity.43

While the main focus of this article is on demand changes among manufacturing production

workers, the literature suggests that also white collar workers tend to be more complementary to

capital than craftsmen. Columns (4)-(6) therefore replace the other manufacturing production oc-

cupations with white collar occupations, and results suggest that increasing capital intensities tend

to be associated with decreasing craftsman wages also relative to this reference group (with signif-

icant point estimates for the economy-wide and the industry-specific capital intensity measures).

This is consistent with the view that one may consider the framework in the previous Section as

being informative about the demand for manufacturing craftsmen relative to other manufacturing

workers more generally (including other production as well as white collar workers).

The bottom panel of Table 4 presents results from corresponding regressions in which the de-

pendent variable is the occupational employment share in manufacturing. This panel omits the

results for the industry-level capital stock estimates, since I do not have employment data at this

disaggregated level. Increasing capital intensities are also significantly associated with decreasing

employment shares of craftsmen–relative to other production workers in columns (1)-(2), and rel-

ative to white collar workers in columns (4)-(5). In summary, these results corroborate the view

that the adoption of more capital intensive production methods has been behind the demand shift

against manufacturing craftsmen.

To illustrate the economic significance of these point estimates, one can compare the actually

42National statistical offices sometimes made reports to UNIDO jointly for several industries. In such cases, I
aggregate investment data to the most detailed level for which I could construct a consistent investment series (see
Appendix B for details). This hints at challenges encountered by some statistical offices in assigning capital formation
to a unique 2-digit industry. Moreover, note that my investment price deflator from the Penn World Table is only
available for aggregate manufacturing. While the industry-specific capital intensities are conceptually preferrable, the
capital intensities for aggregate manufacturing are hence likely to be measured with less measurement error.

43Point estimates become insignificant once also allowing for a linear time trend of craftsman wages (not shown).
However, they remain negative, and are not significantly different from the point estimates of the time trends. Since
both the decline in relative craftsman wages and capital deepening have been pervasive (see Section 3 for craftsmen
wages, and Appendix Table A.4–which I introduce in more detail at the end of this Section–for capital deepening), it
is perhaps not surprising that it is empirically challenging to disentangle the effects of capital deepening from a pure
time trend of relative craftsman wages.
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Table 4: Capital Intensity and the Demand for Craftsmen

Craftsmen... ...vs. Other production ...vs. White collar

(1) (2) (3) (4) (5) (6)
Capital intensity: Total Manuf. By ind. Total Manuf. By ind.

Dependent variable: ln hourly wage (in constant national prices)

ln capital/employee 0.576∗∗ 0.140 0.075+ 0.681∗∗ 0.172∗ 0.129∗∗

(0.084) (0.087) (0.039) (0.096) (0.084) (0.048)

x craftsman -0.076∗∗ -0.067∗ -0.042∗ -0.120∗∗ -0.069 -0.081∗

(0.016) (0.027) (0.019) (0.044) (0.046) (0.033)

Country-occ. FE X X X X X X
Year FE X X X X X X
Countries 138 84 85 138 84 85
Occupations 46 46 46 26 26 26
Observations 57386 30644 31122 29712 15977 16250

Dependent variable: share of manufacturing employment

ln capital/employee 9.17∗ 6.93∗∗ 7.91∗∗ 3.51∗

(3.83) (1.47) (2.54) (1.33)

x craftsman -23.54∗∗ -11.22∗∗ -23.77∗∗ -8.26∗∗

(6.79) (2.89) (3.31) (2.58)

Country-occ. FE X X X X
Year FE X X X X
Countries 122 74 122 74
Occupations 2 2 2 2
Observations 1766 1064 1766 1064

Source: OWW (top panel) and I2D2 and IMPUMS (bottom panel), as well as INDSTAT2 and Penn World
Table for data on capital intensity (both panels). Standard errors in parentheses, clustered at the country
level. + p < 0.1,∗ p < 0.05,∗∗ p < 0.01. Top panel: Specifications in the first three columns include only
other manufacuring production occupations next to craftsmen, whereas specifications in columns (4)-(6)
compare manufacturing craftsman to white collar occupations. “Total” denotes the capital stock per worker
in the total economy, taken from the Penn World Table. “Manuf.” stands for the capital stock per worker
in aggregate manufacturing, estimated from the INDSTAT2 database as described in Appendix B. “By ind.”
stands for industry-level capital stock estimates, seperately by 2-digit ISIC manufacturing industry. Bot-
tom panel: specifications in the first two columns include the stacked employment shares of two groups of
production occupations from each survey, “craftsmen” and “other production workers”. In columns (4) and
(5), specifications include the employment shares of craftsmen and white collar workers. The capital inten-
sity variables are defined analogously. Since occupational employment shares are only available for total
manufacturing, the bottom panel does not include regressions at the level of disaggregated manufacturing
industries.
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observed change of the average relative craftsman wage and employment in the sample with the

change that would be predicted from the capital intensity changes, based on the point estimates in

Table 4. For the countries in the wage sample, Figure 6 compares the distributions of the capital

intensity in aggregate manufacturing for the first and the last year from each country: these are the

years 1975 and 1997 on average, and the distribution of capital intensities shifted markedly to the

right between both years.44

The average capital stock per worker more than doubled from $43,200 to $95,600 during this

22 year period. Using the point estimate from column (2), this implies a reduction of the craftsman

wage premium by 4.4 percentage points, or by 2 percentage points when scaled to one decade.

When regressing wages in the same sample on country-occupation fixed effects, country-period

fixed effects and a linear trend (as in Table 2 when replacing the decade dummies with a linear

trend), the point estimate implies an average decrease by 3.6 percentage points per decade.45 When

doing the corresponding calculations for relative craftsman employment, the capital intensity-

changes suggest a reduction in relative craftsman employment by about 4.1 percentage points per

decade, as compared to a trend decline of 7.8 percentage points.

Hence, these back-of-the-envelope calculations suggest that capital deepening in manufactur-

ing can account for more than half of the observed reductions of both relative craftsman wages and

employment. In summary, the pervasive decline in the demand for manufacturing craftsmen has

been accompanied by pervasive capital deepening. Panel regressions suggest that both trends have

been related, consistent with the framework in Section 4.1.
44Also for the full sample of estimated manufacturing capital intensities, Appendix Table A.4 shows significant in-

creases in all income and region groups (with the exception of Latin America, where point estimates are insignificant).
45The precise calculations go as follows: The average increase in the log capital stock per worker between the

first and the last year in the sample is 0.685. Since (exp(-0.067*0.685)-1)*100=4.5 percentage points, and both years
are on average 22 years apart, this corresponds to a (10/22)*4.4=2.0 percentage point decline in the craftsman wage
premium when scaled to a 10 year-period. In the same sample, the point estimate of the “craftsman x trend”-term from
a regression of log wages in this sample on country-occupation and country-period fixed effects is -0.037 (not shown),
and (exp(-0.037)-1)*100=3.6 percentage points.

34



0
.1

.2
.3

.4
.5

6 8 10 12 14
ln capital stock/worker, 2011 int. $

First year Last year

Figure 6: Evolution of Manufacturing Capital Stock per Worker in the Sample

Source: INDSTAT2. The Figure compares the kernel densities of the estimated capital stocks per worker
for the first and last year in the sample from the specification in column (2) of Table 4. On average, the first
year is 1975, and the last year is 1997. Over this 22 year period, the average capital intensity increased from
$43,200 to $95,600 (median: $47,300 to $103,800), and 65 of the 84 countries in the sample experienced
increasing capital intensities. Capital stocks per manufacturing worker are estimated from the INDSTAT2
database as described in Appendix B.
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4.3 Deskilling of Craftsmen- or Upskilling of other Production Workers?

From the perspective of manufacturing production workers, the model from Section 4.1 offers

a silver lining: while automation reduces the demand for craftsmen, it increases the marginal

productivity of other production tasks, creating the scope for higher wages in other production

occupations. Also Autor (2015) highlights that while workplace automation has always made

some tasks carried out by human labor obsolete, it has tended to increase the value of the remaining

tasks which could not be automated. In addition, increasing automation may have created new and

more skill-intensive tasks for other production workers, allowing them to acquire marketable skills

comparable to those that craftsmen possessed traditionally.

While Braverman (1974) agreed that automation increased the demand for highly skilled pro-

duction tasks, he believed that these tasks would be performed by white collar workers (with much

higher educational attainments, cf. Table 1). By contrast, he did not believe in a compensating in-

crease in the value of the remaining tasks carried out by production workers: “The mass of workers

gain nothing from the fact that the decline in their command over the labor process is more than

compensated for by the increasing command on the part of managers and engineers. On the con-

trary, not only does their skill fall in an absolute sense (in that they lose craft and traditional

abilities without gaining new abilities adequate to compensate), but it falls even more in a relative

sense” (pp. 294-295).

The question is hence whether the decline in the relative wage of manufacturing craftsmen re-

flects first and foremost a decline in the value of craftsman skills (as Braverman forcefully argued),

or at least in part increasing wages for other production workers (which may arise either from

complementarity to the increasingly abundant capital, or from newly acquired skills). From the

perspective of task models, this is an empirical question. Since OWW includes wages for occupa-

tions outside of manufacturing, one can shed light on this question by comparing wage trends of

manufacturing craftsmen and other production workers with wage trends in occupations from in-

dustries other than manufacturing in the same country-years. This comparison controls for general

wage growth trends at the national level affecting all occupations symmetrically.
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The first two columns of Table 5 make this comparison for manufacturing craftsmen: the speci-

fications correspond to those from Table 2 (and hence include country-occupation and country-year

fixed effects), with the difference that the reference group is wages from all non-manufacturing

occupations in column (1), and from all non-manufacturing occupations excluding white collar

occupations in column (2). The case for excluding white collar occupations is that they tend to be

considerably more skilled than manufacturing craftsmen (cf. the wage premia in Figure 1 and Ta-

ble 1). Hence, they may be less informative as a comparison group than “production” occupations

from other industries that require similar formal qualifications as manufacturing production work-

ers.46 However, columns (1) and (2) show that the wages of manufacturing craftsmen decreased

considerably regardless of whether one includes white collar occupations in the reference group,

by 7.9-10.9 log points when comparing the 1950s to the 2000s.

By contrast, columns (3) and (4) show that the increase of other production wages up to the

1980s becomes insignificant once excluding white collar occupations from the reference group.47

Appendix Table A.3 presents the corresponding specifications when including the occupations

available since 1983: in this extended sample, craftsman wages declined significantly since the

1980s, whereas wages in other production occupations did not increase–regardless of whether one

includes white collar occupations in the reference group. Hence, wage trends robustly point to a

decline in the wages of manufacturing craftsmen relative to the wages paid in other industries, but

not to an increases in the wages of other production workers.

To approach the same question from a different perspective, Table 6 compares the evolution of

educational attainments of manufacturing craftsmen and other production workers to those among

all wage employed (regardless of occupation or industry). All samples hence include three ob-

servations per survey, and specifications include country fixed effects to ensure that identification

46For example, samples include the non-manufacturing, non-white collar occupations “bricklayer”, “bus conduc-
tor” and “plumber”. See Freeman and Oostendorp (2020) for a complete list of the occupations included in the OWW
database.

47When including white collar occupations in the reference category, column (3) suggests increasing other produc-
tion wages up to the 1980s. In Kunst et al. (2020), we show that the 1950s-1980s were a period of strongly declining
skill premia, driven by increasing educational attainments. Hence, when the reference group includes white collar
occupations, the increasing relative wage of other production workers over this period reflects decreasing skill premia
of white collar workers, as opposed to an upskilling of other manufacturing production workers.
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Table 5: Wage Trends: Craftsmen and Other Production Workers vs. Other Occupations

Dependent variable: ln hourly wage

Group: Craftsmen Other production

(1) (2) (3) (4)
vs. all excl. WC vs. all excl. WC

group x 1960s -0.023 -0.025 0.015 0.017
(0.015) (0.015) (0.011) (0.011)

group x 1970s -0.040∗ -0.034+ 0.063∗∗ 0.025
(0.017) (0.019) (0.019) (0.016)

group x 1980s -0.059∗∗ -0.048∗ 0.098∗∗ 0.012
(0.019) (0.022) (0.023) (0.017)

group x 1990s -0.055∗ -0.031 0.107∗∗ 0.018
(0.024) (0.026) (0.025) (0.023)

group x 2000s -0.109∗∗ -0.079∗∗ 0.096∗∗ 0.029
(0.026) (0.026) (0.026) (0.020)

Country-year FE X X X X
Country-occup. FE X X X X
Countries 165 163 165 162
Occupations 32 20 37 21
Observations 78434 52458 87274 47359

Source: OWW. Standard errors in parentheses, clustered at the country level. + p < 0.1,∗ p < 0.05,∗∗ p <

0.01. “Group” is a dummy taking a value of one for manufacturing craftsman occupations in columns (1)-
(2), and for other manufacturing production occupations in columns (3)-(4). Column (1) compares wages
in manufacturing craftsman occupations to all other occupations in OWW, except for other manufacturing
production occupations. Column (2) excludes white collar occupations. Column (3) compares wages in
other manufacturing production occupations to all other occupations in OWW, except for manufacturing
craftsman occupations, and column (4) again excludes white collar occupations.
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comes from within country-variation, as well as fixed effects for each population group to control

for differences in the average educational attainment. The first row shows that unsurprisingly, ed-

ucational attainments increased strongly over time among all wage-employed: most strongly for

the share with at least completed secondary education (plus 9.1 percentage points per decade), fol-

lowed by the share with completed primary education (plus 7.7 percentage points) and the share

with completed tertiary education (plus 4.4 percentage points).48

The second and third row present the point estimates of interaction terms with a “craftsman”

and “other production worker” dummy. The first column shows that for primary schooling, there

are no significant differences, suggesting that attainments of manufacturing craftsmen and other

production workers increased at roughly the same pace as for employees overall. By contrast,

the share of both groups of workers with tertiary education in the third column increased signifi-

cantly more slowly than for the wage employed overall, reflecting the fact that both are production

occupations that do not usually require tertiary education. Interestingly, column (2) shows that

the share of manufacturing craftsmen with completed secondary education increased significantly

more slowly than among all wage employed, whereas the corresponding share of other manufac-

turing production workers did not increase more rapidly.

This corroborates the view that the primary effect of automation on production workers in

manufacturing has been to reduce the value of craftsman skills, as opposed to increasing the value

of–or need for–other skills that they possessed or acquired.49 This account is consistent with both

the argument made by Braverman (1974), and with the recent US evidence of deskilling among

non-college workers by Autor (2019).

48While the first two educational attainment categories are perfectly comparable across surveys from IPUMS and
I2D2, the “tertiary” variable from I2D2 surveys includes those who started their tertiary education, whereas it includes
only those who also completed it for IPUMS surveys. However, point estimates are similar (and significant) also when
running the regression in column (3) seperately for observations from both sources, which is why I report results from
the pooled specification for the sake of brevity.

49This is also true when further distinguishing between the two sub-groups of other production workers, machine
operators and elementary occupations. Results are available upon request.
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Table 6: Trends in the Relative Educational Attainment

Dependent variable: share with at least completed...

(1) (2) (3)
...primary ...secondary ...tertiary

Trend/10 7.72∗∗ 9.11∗∗ 4.41∗∗

(1.02) (0.69) (0.32)

x Craftsmen -0.30 -1.17∗∗ -2.95∗∗

(0.50) (0.43) (0.29)

x Other production 0.67 -0.37 -2.79∗∗

(0.47) (0.46) (0.29)

Country + pop. group FE X X X
Countries 127 127 127
Samples 734 734 734
Mean dep. var. 72.61 31.96 7.19
Observations 2202 2202 2202

Source: IPUMS and I2D2. Standard errors in parentheses, clustered at the country level. + p < 0.1,∗ p <

0.05,∗∗ p < 0.01. Each survey enters the sample with three observations: the reference category is the
share with at least the respective educational attainment level among all wage-employed. In addition, the
sample includes the corresponding shares for manufacturing craftsman and other production workers. For
the “tertiary education” variable, I2D2 surveys include those who started their tertiary education, whereas
IPUMS surveys include only those who also completed it.
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5 Concluding Remarks

It is widely accepted that today´s labor markets are more skill-intensive than in the past, and that

increasing human capital investments are necessary to seize the opportunities offered by the new

technologies. The findings of this paper highlight that while increasing human capital investments

may be necessary, they do not guarantee success on the labor market: in spite of the substan-

tial skills that they had acquired, manufacturing craftsmen have experienced pervasive declines

in relative wages and employment opportunities since the 1950s, following the adoption of more

capital-intensive production methods. At the same time, I do not find evidence of other manu-

facturing production workers acquiring marketable skills comparable to those that craftsmen tra-

ditionally possessed. Rather, newly emerging skill-intensive production tasks were taken over by

white collar workers with considerably higher formal educational attainments.

Declines in the demand for manufacturing craftsmen have been strongest in developing coun-

tries, where the scope for the adoption of capital-intensive production technologies was greatest

in the beginning of my sample period. This is consistent with the model of manufacturing labor

demand by Goldin and Katz (1998), in which the automation of handicraft-intensive production

tasks is deskilling. It is also consistent with the historical account of technology adoption by Comin

and Hobijn (2010), which points to substantial technology adoption lag lengths across countries,

and with studies showing that imported “vintage capital” plays an important role in developing

countries.50

However, the demand for manufacturing craftsmen continued to decline also in high income

countries, suggesting that the experience of a declining market value of acquired craftsman skills

has been shared by manufacturing production workers around the world. Deskilling of manufac-

turing production work can hence be considered as a an additional contributor to the wide-spread

perception that “good” blue collar jobs–those in which even workers with little formal education

can acquire valuable, marketable skills–have been lost in recent decades, which is corroborated by

50See Navaretti et al. (2000) and Raveh and Reshef (2016) for studies on the role of vintage capital in developing
countries. Moreover, Verhoogen (2008) presents the case study of a German “Volkswagen” production line from the
1950s being used in Mexico to produce original “Beetle” cars for the domestic market up until 2003.
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the finding of Autor (2019) that non-college workers in the US nowadays perform substantially

less skilled work than they did in the past. This mechanism is distinct from the displacement of

production workers by local trade shocks studied by Autor et al. (2013), which has been linked

to political polarization and social problems in the affected US communities (Autor et al., 2017,

2019).

Absent individual-level panel data, this paper cannot provide direct evidence on the subsequent

labor market outcomes of the craftsmen displaced by automation. However, indirect evidence

suggests that the displacement from a manufacturing craftsman job was usually associated with

lower wages: the results in this paper show that this tended to be the case when transferring to

another manufacturing production job. Transfers to white collar jobs have likely been limited,

given their scarcity at most income levels (Figure 2) and their higher educational requirements

(Table 1).51 Further, the results from the companion paper Kunst (2019) suggest that transitions

to industries other than manufacturing have become more frequent in recent decades, as fewer

“compensating” other production jobs have been created to make up for the loss of craftsman jobs.

That paper also documents substantial wage premia for low-educated workers in manufacturing

compared to other industries, consistent with the development literature (Rodrik, 2013a). For the

US, Ebenstein et al. (2014) use individual-level panel data to confirm that the displacement from a

manufacturing job tends to be associated with substantial wage losses.

Recent case studies from China suggest that deskilling is likely to remain a possible outcome

of workplace automation also in the future: Huang and Sharif (2017; 2019) document how the

adoption of advanced production technology, supported by the Chinese government in an effort to

move up in manufacturing value chains, has affected labor demand in five manufacturing indus-

tries, and find that the primary effect has been deskilling in two of them.52They also argue that the

51A theoretical caveat is that they may have moved into newly created craftsman occupations that are not included in
the OWW. However, the evidence does not suggest that there are important growing craftsman occupations which are
omitted from the analysis: relative craftsman wages decline also among the manufacuring occupations available from
1983 onwards (among which any growing craftsman occupations should be overrepresented), and the employment
data, which would include any newly crated craftsman occupations, shows declining craftsman employment.

52For instance, they report reduced training times for production workers in the “bicycle and motorcycle helmet”
industry, following the adoption of industrial robots: “In our visit to Factory H, the manager explained to us that
previously it took six months to train a novice operator to become proficient in cutting venting holes in a bicycle
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new technologies have reduced the bargaining power of experienced production workers in these

industries by allowing factory managers to rely on younger and cheaper workers.53

While recent studies find little evidence of an economy-wide polarization of labor markets in

developing countries (Maloney and Molina, 2016; Das and Hilgenstock, 2018), my results sug-

gest that within manufacturing, the polarization of labor demand has been a global phenonemon

which has started already before the advent of ICT. Braverman (1974) points to two possible conse-

quenses: a reduction in the bargaining power of production workers since shorter training periods

make them more easily replaceable (as is also highlighted in one of the Chinese case studies),

and an increase in the “knowledge distance” between production and white collar workers, which

makes transitions of production workers to management positions less likely.54

Moreover, it is insightful to interpret the findings of this paper through the lens of the task-

model presented in Acemoglu and Restrepo (2019): in their framework, automation may or may

not increase total labor demand (depending on whether the demand for non-automatable tasks in-

creases sufficiently to compensate for the displacement of labor from tasks henceforth performed

by capital), and always decreases the labor share in value added.55 This raises the question whether

the displacement of production workers from production tasks documented in this paper has con-

tributed to the global decline of the labor share since the early 1980s shown by Karabarbounis and

Neiman (2014).56Also for developing countries in recent decades, the evidence points to an accel-

helmet. Now, the same worker who is assigned to operate the robotic arm can finish the tasks very effectively in only
three days” (Huang and Sharif 2017, p. 67).

53They give the example of an unsuccessful strike of experienced production workers in one of the factories in
their study, specialized in manufacturing doors: “The veteran workers suddenly realized that they were no longer the
backbone of the factory and their skills no longer automatically granted them workplace bargaining power. In their
40s, most feared that they would have great difficulty finding other jobs if they were fired, and quickly returned to their
positions. Each striking worker was fined 100 yuan as punishment.” (Huang and Sharif 2017, p. 70).

54Braverman described the widening of the “knowledge gap” between production and white collar occupations as
follows: “The more science is incorporated into the labor process, the less the worker understands of the process; the
more sophisticated an intellectual product the machine becomes, the less control and comprehension of the machine
the worker has. In other words, the more the worker needs to know in order to remain a human being at work, the less
does he or she know” (p. 295).

55A countervailing force is the introduction of new tasks in which labor has a comparative advantage, which in-
creases the labor share.

56Karabarbounis and Neiman (2014) find that manufacturing exhibited the third strongest decrease of ten industries
since 1975 (cf. their Figure V). One may wonder why the global labor share decline started later than the displacement
of skilled manufacuring production workers by capital, if both trends are related. For US manufacturing, Acemoglu
and Restrepo (2019) argue that what distinguishes the period after 1987 from the previous four decades (during which
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erating pace of technology adoption (cf. World Bank (2008) and Kunst (2019)) accompanied by a

strong reduction of labor shares, and Bessen (2015) argues that historically, technological changes

which reduced the returns to experience had a tendency to also reduce labor shares for extended

periods.57

It is interesting to compare the recent experience of developing countries with automation to

the US experience between the 1950s and 1970s: in the US, labor market prospects remained fa-

vorable during this period in spite of rapid automation, as rising incomes increased labor demand

across a broad range of non-tradable sectors (Autor, 2015). Also Acemoglu and Restrepo (2019)

suggest that the net impact of automation on labor demand depends on the broader labor market

context, and that it is particularly prone to reducing labor demand when wages are low and labor

is abundant.58 From that perspective, labor markets in developing countries may be most strongly

affected by further automation, and the future effect of automation on total labor demand in devel-

oped and developing countries alike will depend on how widely the associated productivity gains

are shared.

Finally, the accelerating pace of changes in labor markets around the world in recent years

suggests that the phenomenon of specific human capital investments losing their market value is

increasingly relevant also beyond manufacturing. The findings of this paper do not imply that

workers should abstain from making specific human capital investments. Rather, they highlight

that in a technologically dynamic environment, such investments are inherently risky. Social safety

the labor share remained roughly constant) is a slower pace at which new tasks have been created to compensate for
the displacement of labor from automated tasks (cf. their Figures 3 and 5).

57For instance, a regression of the labor shares from the Penn World Table between 1980-2014 on country fixed
effects and a linear trend yields a significant decline of 1.13 percentage points by decade in high income countries.
For developing countries, the corresponding point estimate is 65 percent larger (-1.86), and the difference is only
marginally insignificant when clustering standard errors at the country level (pval=0.147). Bessen (2015) gives the
examples of two previous instances of falling labor shares in times of disruptive technological change: the stagnation
of manufacturing wages during the introduction of steam power in the early period of the British Industrial Revolution,
and falling average real wages in US manufacturing between 1899-1919 during the electrification of manufacturing
plants.

58This is because the productivity effect of automation is proportional to the cost-savings due to automation: “be-
cause the productivity gains of automation depend on the wage, the net impact of automation on labor demand will
depend on the broader labor market context. When wages are high and labor is scarce, automation will generate a
strong productivity effect and will tend to raise labor demand. When wages are low and labor is abundant, automation
will bring modest productivity benefits and could end up reducing labor demand” (p. 11).
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nets and subsidized (re-)training programs then have insurance features, and may be necessary to

incentivize workers to invest sufficiently in their human capital.
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A Supplementary Tables and Figures

Table A.1: Occupational Employment in Manufacturing as a Function of Income

Dependent variable: employment share in manufacturing wage employment, ages 15-64 (percent-
age points)

Other production Craftsmen White collar

(1) (2) (3)

<fpfit polynomial term 1> -2.31 6.67 459.39
(7.02) (7.03) (1963.24)

<fpfit polynomial term 2> 2.15 -5.32 -0.39
(5.47) (5.48) (0.34)

<fpfit polynomial term 3> -0.49 1.07 0.17
(1.09) (1.09) (0.12)

Country fixed effects X X X
Decade fixed effects X X X
F-test joint polynomial terms 0.06 0.00 0.00
Mean dep. var. 32.55 39.16 22.21
Countries 123 123 123
Observations 901 901 901

Source: IPUMS and I2D2. Standard errors in parentheses, clustered at the country level. + p < 0.1,∗ p <

0.05,∗∗ p < 0.01. Employment data are taken from IPUMS and I2D2 (see Section B), and data on GDP
per capita in 2011 International Dollars are taken from the Penn World Table 9.0. To allow for flexible
relationships between occupational employment shares and ln GDP per capita, the best-fitting third order
polynomials of ln GDP per capita are selected using Stata´s “fp” command (with default settings). For
other production workers in column (1) and craftsmen in column (2), this polynomial consists of the terms
x3, x3 ∗ ln(x), and x3 ∗ ln(x)2(denoting ln GDP per capita as “x” for simplicity). For white collar workers in
column (3), the terms are x−2,x3 and x3∗ ln(x). Due to collinearity, the polynomial terms are not individually
significant. However, the p-values of the F-tests for joint significance in the third row of the bottom panel
of the Table show that they are jointly significant. The “mean dependent variables” do not exactly add up
to 100, as the total include some manufacturing employees in major group 5 (“service and sales workers”)
and 6 (“skilled agricultural, forestry and fishery workers”). However, these major groups tend to play a
negligible role in manufacturing employment.
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Table A.3: Wage Trends: Craftsmen and Other Production Workers vs. Other Occupations

Dependent variable: ln hourly wage

Group: Craftsmen Other production

(1) (2) (3) (4)
vs. all excl. WC vs. all excl. WC

group x 1990s -0.004 -0.011 0.012 -0.001
(0.017) (0.013) (0.014) (0.013)

group x 2000s -0.057∗ -0.042∗ -0.015 0.004
(0.026) (0.016) (0.020) (0.014)

Country-year FE X X X X
Country-occup. FE X X X X
Countries 142 139 142 137
Occupations 131 54 141 67
Observations 95761 40498 102077 45464

Source: OWW. Standard errors in parentheses, clustered at the country level. + p < 0.1,∗ p < 0.05,∗∗ p <

0.01. “Group” is a dummy taking a value of one for manufacturing craftsman occupations in columns (1)-
(2), and for other manufacturing production occupations in columns (3)-(4). Column (1) compares wages
in manufacturing craftsman occupations to all other occupations in OWW, except for other manufacturing
production occupations. Column (2) excludes white collar occupations. Column (3) compares wages in
other manufacturing production occupations to all other occupations in OWW, except for manufacturing
craftsman occupations, and column (4) again excludes white collar occupations.
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Figure A.1: Distribution of the Craftsman Wage Premium in the 1950s versus 2000s

Source: OWW. The Figure plots the kernel densities of craftsman wage premia in the 1950s and the 2000s.
The sample and the calculation of wage premia are explained in the note of Figure 3.
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Figure A.2: Wage Premium of Manufacturing Craftsmen by Category of Other Production Workers

Source: OWW. Wage premia are calculated as described in the note of Figure 3- with the difference that the
left panel only used the wages in up to 9 machine operator occupations as the reference category, whereas
the right panel uses only the wages in up to 4 elementary occupations as the reference category.

56



0
10

20
30

40
50

C
ra

fts
m

en
 w

ag
e 

pr
em

iu
m

1950 1960 1970 1980 1990 2000 2010

All countries High income

Middle income Low income

Figure A.3: Wage Premium of Manufacturing Craftsmen relative to Other Production Workers
within Industries

Source: OWW. Wage premia are calculated as described in the note of Figure 3- with the difference that
for each country, craftsmen wage premia are calculated seperately for up to three ISIC Rev. 3 2 digit
industries for which OWW includes wages from both occupation groups. These industries are “Manufacture
of textiles”, “Printing & Publishing”, and “Manufacture of machinery and equipment”. The Figure is based
on 76 countries with both craftsmen and other production wages in at least one of these industries.
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Figure A.4: Routine Task Intensity Scores by Occupation

Source: Goos et al. (2014). The routine task intensity (RTI) scores are calculated as in Autor and Dorn
(2013), based on the translation of task scores from the 1977 US “Dictionary of Occupational Titles” into
sub-major groups of ISCO-88 by Goos et al. (2014). It is normalized to have a mean of zero and a standard
deviation of one across these sub-major groups. The Figure shows occupation group averages constructed
from 11 sub-major groups that are relevant to manufacturing, as indicated by representation among the
manufacturing occupations in OWW. This excludes major groups 5 (“Service and sales workers”) and 6
(“Skilled agricultural, forestry and fishery workers”), as well as some sub-major groups that do not play a
role in manufacturing (for instance, sub-major group 23: “Teaching Professionals”).
The RTI scores are calculated from the individual task scores shown in Figure A.5 as follows, following
Autor et al. (2003): first, they are combined to produce three task aggregates: the Manual task measure
corresponds to the DOT variable measuring an occupation’s demand for “eye-hand-foot coordination”; the
Routine task measure is a simple average of two DOT variables, “set limits, tolerances and standards” mea-
suring an occupation’s demand for routine cognitive tasks, and “finger dexterity,” measuring an occupation’s
use of routine motor tasks; and the Abstract task measure is the average of two DOT variables: “direction
control and planning,” measuring managerial and interactive tasks, and “GED Math,” measuring mathemat-
ical and formal reasoning requirements. Second, the RTI index is constructed from these aggregates as the
difference between the log of Routine task score and the sum of the log of Abstract and the log of Manual
tasks scores.
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Figure A.5: Task Scores by Occupation

Source: Goos et al. (2014). Task measures come from the 1977 US “Dictionary of Occupational Titles”,
and are based on the ranking of occupations in the 1960 distribution of task input in the USA. They range
between 0 and 10. See Autor et al. (2003) for a detailed description. I make use of a translation of these US
scores into sub-major groups of ISCO-88 by Goos et al. (2014). The Figure shows occupation group aver-
ages constructed from 11 sub-major groups that are relevant to manufacturing, as indicated by representation
among the manufacturing occupations in the extended “Occupational Wages Around the World” database
(and hence, in the ILO “October Inquiry”, which it is based on- see Freeman and Oostendorp (2020) for
a description). This excludes major groups 5 (“Service and sales workers”) and 6 (“Skilled agricultural,
forestry and fishery workers”), as well as some sub-major groups that appear not relevant for manufacturing
(for instance, sub-major group 23: “Teaching Professionals”).
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B Details on Wage, Employment and Capital Data

Wage data

See Freeman and Oostendorp (2020) for a description of the “Occupational Wages around the

World” database, and the underlying “October Inquiry” by the ILO. While the broad country and

time coverage of the database likely comes at the cost of measurement error stemming from the

varying capabilities of the national statistical offices submitting the reports as well as the stan-

dardization of reports in different formats to hourly wages, there is no reason to believe that this

affects the key finding of declining relative wages of manufacturing craftsmen as the occupations

are narrowly and consistently defined over time. Moreover, results are robust to keeping only

wage reports without imputations in the sample (see Freeman and Oostendorp (2020) for details,

and results available upon request).

For the analyses in this paper, I exclude the wage reports from 21 non-sovereign countries

with populations below one million (such as Guadeloupe or La Reunion). All results are robust to

including them. The analysis sample contains reports from 168 countries, of which Puerto Rico

is the only non-sovereign country. Table B.1 presents the OWW manufacturing occupations by

ISIC-industry and occupation group, using the correspondence Table by the ILO.

Table B.1: Overview of Manufacturing Occupations in OWW

Manufacturing Occupations Available 1953-2008

Industry (ISIC-88) Occupation group Occupation name

(ISCO-88)

(15) food products (7)Craftsmen Baker (ovenman)

(17) textiles (7)Craftsmen Loom fixer, tuner

(17) textiles (8-9)Other prod. Cloth weaver (machine)

(17) textiles (8-9)Other prod. Thread and yarn spinner

(17) textiles (8-9)Other prod. Labourer
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(18) wearing apparel and fur (8-9)Other prod. Sewing-machine operator

(22) publishing and printing (7)Craftsmen Hand compositor

(22) publishing and printing (7)Craftsmen Machine compositor

(22) publishing and printing (8-9)Other prod. Bookbinder (machine)

(22) publishing and printing (8-9)Other prod. Printing pressman

(22) publishing and printing (8-9)Other prod. Labourer

(24) chemicals and chemical prod. (2)-(4)White collar Chemistry technician

(24) chemicals and chemical prod. (8-9)Other prod. Mixing, blending-machine oper.

(24) chemicals and chemical prod. (8-9)Other prod. Labourer

(27) basic metals (2)-(4)White collar Occupational health nurse

(27) basic metals (8-9)Other prod. Labourer

(27) basic metals (8-9)Other prod. Metal melter

(29) machinery and equipment (7)Craftsmen Bench moulder (metal)

(29) machinery and equipment (8-9)Other prod. Machine fitter-assembler

(29) machinery and equipment (8-9)Other prod. Labourer

(36) furniture; manufacturing (7)Craftsmen Cabinetmaker

(36) furniture; manufacturing (7)Craftsmen Furniture upholsterer

(36) furniture; manufacturing (7)Craftsmen Wooden furniture finisher

Additional Manufacturing Occupations Available 1983-2008

(15) food products (7)Craftsmen Butcher

(15) food products (8-9)Other prod. Dairy product processor

(15) food products (8-9)Other prod. Grain miller

(15) food products (8-9)Other prod. Packer

(18) wearing apparel and fur (7)Craftsmen Garment cutter

(19) leather, luggage, footwear (7)Craftsmen Clicker cutter (machine)

(19) leather, luggage, footwear (7)Craftsmen Laster

(19) leather, luggage, footwear (7)Craftsmen Leather goods maker
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(19) leather, luggage, footwear (7)Craftsmen Show sewer (machine)

(19) leather, luggage, footwear (8-9)Other prod. Tanner

(20) wood prod. except furniture (8-9)Other prod. Plywood press operator

(20) wood prod. except furniture (8-9)Other prod. Sawmill sawyer

(20) wood prod. except furniture (8-9)Other prod. Veneer cutter

(21) paper and paper products (8-9)Other prod. Paper-making-machine operator

(21) paper and paper products (8-9)Other prod. Wood grinder

(22) publishing and printing (2)-(4)White collar Journalist

(22) publishing and printing (2)-(4)White collar Office clerk

(22) publishing and printing (2)-(4)White collar Stenographer-typist

(23) coke, petroleum products (8-9)Other prod. Controlman

(24) chemicals and chemical prod. (2)-(4)White collar Chemical engineer

(24) chemicals and chemical prod. (8-9)Other prod. Supervisor or general foreman

(24) chemicals and chemical prod. (8-9)Other prod. Packer

(27) basic metals (8-9)Other prod. Blast furnaceman (ore smelting)

(27) basic metals (8-9)Other prod. Hot-roller (steel)

(28) fabricated metal products (7)Craftsmen Metalworking machine setter

(28) fabricated metal products (7)Craftsmen Welder

(31) electrical machinery & apparatus (2)-(4)White collar Electronics draughtsman

(31) electrical machinery & apparatus (2)-(4)White collar Electronics engineering technician

(31) electrical machinery & apparatus (7)Craftsmen Electronics fitter

(31) electrical machinery & apparatus (8-9)Other prod. Electronic equipment assembler

(35) other transport equipment (7)Craftsmen Ship plater
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Employment data

The first data source is the “International Income Distribution Dataset” (I2D2), which is a harmo-

nized collection of nationally representative and harmonized household surveys maintained by the

World Bank. It is first described in Montenegro and Hirn (2009), but has been extended signifi-

cantly since then. The data in this paper are based on the full I2D2 database as of March 2019.

I2D2 draws on a variety of surveys such as labor force surveys, budget surveys, and the World

Bank´s Living Standards Measurement Surveys. Industry and occupation codes are harmonized to

the 1-digit level of ISIC and ISCO, respectively. I calculate occupational employment shares for

all men and women aged 15-64 in manufacturing wage employment, using the survey weights. I

exclude non-wage (family) employed and self-employed manufacturing workers in order to match

the OWW wage data. If several surveys are available for a country-year, I take the average val-

ues across surveys, using the square root of the number of manufacturing observations as weight.

I2D2 includes surveys with information on wage-employment by occupation and industry from

137 countries, but has very limited coverage for years before 1990.

I hence complement I2D2 with the surveys of the Integrated Public Use Microdata Series

(IPUMS), provided by the Minnesota Population Center (2018). IPUMS contains data with 1-

digit level of ISIC and ISCO codes from 76 countries, the large majority of which are census

extracts. I again calculate occupational employment shares for all men and women aged 15-64 in

manufacturing wage employment, using the person weights. Finally, I combine the IPUMS and

I2D2 surveys. If a country-year observation is available from both sources, I give preference to the

IPUMS data, as IPUMS census extracts tend to contain a larger number of observations and the

sampling is likely to be more harmonized. The combined sample includes manufacturing employ-

ment shares by occupation for 955 country-years from 146 countries and between 1960 and 2016.

10 percent of the observations are from before 1990, a further 16 percent from the 1990s, and the

remaining 74 percent from the 2000-2016 period. I did not engage in any further “cleaning” of this

dataset. The surveys from 133 countries for which the sample includes surveys from at least two

years enter in the regressions with country fixed effects.
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Capital data

INDSTAT2 is a database maintained by the United Nations Industrial Development Organization

(UNIDO, 2018) which contains data on employment and gross fixed capital formation in current

US dollar for total manufacturing and by 2-digit manufacturing industry, mostly derived from

industrial surveys. It is the largest database of its kind. Often, countries made reports jointly for

several industries for at least some years–for instance, jointly for industries 18 (“manufacturing

of wearing apparel and fur”) and 19 (“Tanning and dressing of leather; manufacture of luggage,

handbags, saddlery, harness and footwear”). In such instances, I aggregate all reports to the level

of combined industries. To ensure consistency of the time series, I exclude observations from years

for which only reports for a subset of the industries are available.

To prepare the investment data for the capital stock estimation, I deflate the investment data

to 2011 international prices, using the price level of capital formation from the Penn World Table

9.0, and fill any gaps in the investment series by means of log-linear interpolations. Next, I use

the “perpetual inventory method” to estimate capital stocks: as is commonly done in the literature,

I estimate the initial capital stock as K0 =
I0

g+δ
, with I0 being the initial investment, g being the

growth rate of investment, and δ being the depreciation rate. I calculate I0 as the average of the

investments in the first three years to reduce the impact of measurement error, and follow Caselli

(2005) in calculating g as the geometric average of growth rates in the (up to) first 20 years and in

assuming a depreciation rate of 6 percent. Then, the capital stock in period t can be estimated as

Kt = (1−δ )∗Kt−t + It , and the corresponding capital intensity results from dividing the estimated

capital stock by the number of employees. The final resulting dataset contains estimated capital

intensities from 125 countries between the 1963 and 2014.

I have verified that both the finding of a pervasive increase in manufacturing capital intensities

since the 1960s, and its negative association with relative craftsman wages and employment, are

robust to making a number of alternative assumptions: first, it is robust to being more conservative

in the interpolations of missing investment data by only interpolating gaps of up to 5 consecutive

observations (and by keeping the longest spell for each investment series where this results in
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gaps). Second, it is robust to using the US investment price deflator from PWT for all countries

(similar to Rodrik (2013b), who justifies the use of a common deflator for manufacturing value

added with the tradability of manufacturing goods. This argument arguably also applies to many

investment goods).

Finally, results for the capital intensity in aggregate manufacturing are robust to assuming a

higher depreciation rate of 12.6 percent (instead of 6 percent), which corresponds to the deprecia-

tion rate for the investment category “other machinery and assets” in the Penn World Table. By

contrast, the point estimates of the craftsman-interactions in the wage regressions turn insignifi-

cant (yet remain negative) when using industry-level capital stock estimates with a 12.6 percent

depreciation rate (cf. the specifications in columns (3) and (6) of the top panel of Table 4). How-

ever, the 6 percent depreciation rate taken from Caselli (2005) that I use for my benchmark results

appears conceptually preferrable: it lies in between the 2 percent depreciation rates for “structures

(residential and non–residential)” and the 12.6 percent depreciation rate for “other machinery

and assets” assumed by Inklaar and Timmer (2013). Also Glitz and Meyersson (2017) assume a

depreciation rate of 6 percent when estimating manufacturing industry-level capital stocks.

C Description of ISCO major groups

1. Legislators, senior officials and managers: This major group includes occupations whose

main tasks consist of determining and formulating government policies, as well as laws and

public regulations, overseeing their implementation, representing governments and acting

on their behalf, or planning, directing and coordinating the policies and activities of en-

terprises and organisations, or departments. Reference to skill level has not been made in

defining the scope of this major group, which has been divided into three sub-major groups,

eight minor groups and 33 unit groups, reflecting differences in tasks associated with differ-

ent areas of authority and different types of enterprises and organisations.

2. Professionals: This major group includes occupations whose main tasks require a high
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level of professional knowledge and experience in the fields of physical and life sciences, or

social sciences and humanities. The main tasks consist of increasing the existing stock of

knowledge, applying scientific and artistic concepts and theories to the solution of problems,

and teaching about the foregoing in a systematic manner. Most occupations in this major

group require skills at the fourth ISCO skill level. This major group has been divided into

four sub-major groups, 18 minor groups and 55 unit groups, reflecting differences in tasks

associated with different fields of knowledge and specialisation.

3. Technicians and associate professionals: This major group includes occupations whose

main tasks require technical knowledge and experience in one or more fields of physical

and life sciences, or social sciences and humanities. The main tasks consist of carrying out

technical work connected with the application of concepts and operational methods in the

above-mentioned fields, and in teaching at certain educational levels. Most occupations in

this major group require skills at the third ISCO skill level. This major group has been di-

vided into four sub-major groups, 21 minor groups and 73 unit groups, reflecting differences

in tasks associated with different fields of knowledge and specialisation.

4. Clerks: This major group includes occupations whose main tasks require the knowledge

and experience necessary to organise, store, compute and retrieve information. The main

tasks consist of performing secretarial duties, operating word processors and other office

machines, recording and computing numerical data, and performing a number of customer-

oriented clerical duties, mostly in connection with mail services, money-handling operations

and appointments. Most occupations in this major group require skills at the second ISCO

skill level. This major group has been divided into two sub-major groups, seven minor

groups and 23 unit groups, reflecting differences in tasks associated with different areas of

specialisation.

5. Service workers and shop and market sales workers: (omitted)

6. Skilled agricultural and fishery workers: (omitted)
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7. Craft and related trades workers: This major group includes occupations whose tasks

require the knowledge and experience of skilled trades or handicrafts which, among other

things, involves an understanding of materials and tools to be used, as well as of all stages

of the production process, including the characteristics and the intended use of the final

product. The main tasks consist of extracting raw materials, constructing buildings and

other structures and making various products as well as handicraft goods. Most occupations

in this major group require skills at the second ISCO skill level. This major group has

been divided into four sub-major groups, 16 minor groups and 70 unit groups, reflecting

differences in tasks associated with different areas of specialisation.

8. Plant and machine operators and assemblers: This major group includes occupations

whose main tasks require the knowledge and experience necessary to operate and monitor

large scale, and often highly automated, industrial machinery and equipment. The main

tasks consist of operating and monitoring mining, processing and production machinery and

equipment, as well as driving vehicles and driving and operating mobile plant, or assembling

products from component parts. Most occupations in this major group require skills at the

second ISCO skill level. This major group has been divided into three sub-major groups,

20 minor groups and 70 unit groups, reflecting differences in tasks associated with different

areas of specialisation.

9. Elementary occupations: This major group covers occupations which require the knowl-

edge and experience necessary to perform mostly simple and routine tasks, involving the

use of hand-held tools and in some cases considerable physical effort, and, with few excep-

tions, only limited personal initiative or judgement. The main tasks consist of selling goods

in streets, doorkeeping and property watching, as well as cleaning, washing, pressing, and

working as labourers in the fields of mining, agriculture and fishing, construction and man-

ufacturing. Most occupations in this major group require skills at the first ISCO skill level.

This major group has been divided into three sub-major groups, ten minor groups and 25
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unit groups, reflecting differences in tasks associated with different areas of work.

Source: ILO
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