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Abstract

We develop new multi-factor dynamic copula models with time-varying factor loadings

and observation-driven dynamics. The new models are highly flexible, scalable to high

dimensions, and ensure positivity of covariance and correlation matrices. A closed-form

likelihood expression allows for straightforward parameter estimation and likelihood in-

ference. We apply the new model to a large panel of 100 U.S. stocks over the period

2001–2014. The proposed multi-factor structure is much better than existing (single-

factor) models at describing stock return dependence dynamics in high-dimensions. The

new factor models also improve one-step-ahead copula density forecasts and global min-

imum variance portfolio performance. Finally, we investigate different mechanisms to

allocate firms into groups and find that a simple industry classification outperforms al-

ternatives based on observable risk factors, such as size, value or momentum.
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1 Introduction

Copulas are a key ingredient in many current applications in economics and finance (see for

example Patton, 2009; Cherubini et al., 2011; Fan and Patton, 2014; McNeil et al., 2015).

In particular, time-varying copulas have turned out to be an important and flexible tool to

describe dependence dynamics in an unstable environment (see Patton, 2006; Manner and

Reznikova, 2012; Lucas et al., 2014). Most copula applications deal with a cross-sectional

dimension that is small to moderate (for an overview, see Patton, 2013). Applications to

high-dimensional data sets are scarce, mainly due to the ‘curse of dimensionality’: the number

of parameters grows rapidly when the dimension increases.

Recently, Creal and Tsay (2015), Oh and Patton (2017, 2018), and Lucas et al. (2017) put

forward a general approach to modeling time-varying dependence in high cross-sectional di-

mensions using a factor copula structure. The factor copula structure describes the dependence

between a large number of observed variables by a smaller set of latent variables (or factors)

with time-varying loadings. This allows one to considerably limit the number of parameters

required to flexibly describe the dynamics of high-dimensional dependence structures.

Dynamic factor copulas have mainly been implemented for the single-factor case; see the

references above. This is predominantly driven by computational reasons. Though adding

more factors with dynamic loadings is in principle possible, it would increase the computa-

tional burden substantially. In the approach of Oh and Patton (2018) this results from the

fact that the densities of the common latent factors and of the idiosyncratic factors do not

convolute easily. The copula density is then not available in closed form and additional nu-

merical methods are required for estimation. This requires considerable computational effort,

particularly if multiple factors are used. Creal and Tsay (2015) face a different challenge as

they use a standard parameter driven recurrence equation for the factor loading dynamics.

This introduces additional stochastic components into the model that need to be integrated

out (see also Hafner and Manner, 2012). Bayesian simulation techniques are used for this

integration step, which again becomes computationally expensive as the number of factors

2



with dynamic loadings grows.

Though restricting the number of factors to just a single one is understandable from a

computational point of view, it seems too restrictive for most empirical applications. For

instance, when modeling panels of equity returns a minimum of three to five factors seems to

be the standard (see Fama and French, 1993, 2016). A computationally simple yet flexible

approach that can easily deal with both the multi-factor setting and dynamic loadings thus

seems to be called for.

In this paper we develop exactly such a multi-factor copula model with dynamic loadings.

For this purpose, we assume that the cross-sectional units can be grouped using observable

characteristics, such as the industry of the firm, its headquarters location, or risk characteristics

such as firm size, its book-to-market value, etc. Each of these groups is possibly subject to

one or more common factors as well as to group-specific factors. We keep the number of

parameters in the model limited by assuming that all units in a particular group have identical

factor loadings. We allow the loadings for each of the factors to vary over time using score-

driven dynamics as introduced by Creal et al. (2013) and Harvey (2013). Using appropriate

distributional assumptions for the latent common and group-specific factors as well as for

the idiosyncratic components, we obtain a model with a tractable, closed-from likelihood

expression. Hence, parameter estimation and inference are straightforward using Maximum

Likelihood (ML) and the computational burden is kept to a minimum. In particular, a two-

step targeting approach that combines a moment-based estimator and the ML approach leads

to fast estimation of the parameters in our most flexible multi-factor copula model. The new

multi-factor model can easily be implemented for high dimensions. In addition, the model

easily allows for the inclusion of exogenous variables that help to describe the dynamics of the

factor loadings.

As a typical high-dimensional financial data set, we consider a panel of 100 U.S. daily equity

returns across 10 different industries over the period 2001–2014. We group the stocks according

to industry, and consider various single- and multi-factor specifications, with Gaussian and

Student’s t copulas. We compare the factor copula models with three popular multivariate
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GARCH (MGARCH) models: the cDCC model of Engle (2002) and Aielli (2013), and the

DECO and Block DECO models of Engle and Kelly (2012). Our comparison is based on

in-sample and out-of-sample (density) forecasts, using the Model Confidence Set approach of

Hansen et al. (2011). In addition, we consider the economic performance of the models when

used for constructing Global Minimum Variance Portfolios (GMVPs).

We find that for our panel of equity returns, both within-industry and between-industry

dependence dynamics are key data features that need to be accommodated. Single-factor

models and the standard DECO model have difficulty matching all these within- and between-

industry dynamics simultaneously. Our multi-factor specification with Student’s t copula, by

contrast, outperforms all benchmarks considered in terms of density forecasts, both in-sample

and one-step-ahead out-of-sample. When considering the joint lower tail of the multivariate

distribution, we again find that the multi-factor Student’s t copula model always belongs to

the Model Confidence Set.

For economic criteria, simpler models prevail, though the multi-factor model still belongs

to the Model Confidence Set. Meanwhile, our one-factor specification with heterogeneous

dynamic loadings has the best ex-post variance of the GMVP. We attribute this difference

to the character of the global minimum variance criterion: differences in minimum variance

are harder to obtain and typically smaller, such that the increased flexibility of more complex

models does not offset the associated estimation risk of the additional parameters used. This

contrasts with the criterion based on the full density forecasts, where all dynamics play a more

dominant role and the multi-factor specifications work best in-sample and out-of-sample.

As a final novelty in this paper, we investigate whether industry classification provides the

best grouping structure. As alternatives, we consider other classifications based on observable

risk characteristics such as firm size, value, or momentum. This provides a further modeling

challenge, as the group structure is allowed to vary over time, with corresponding changes

in the factor loadings matrix. We find that group classifications based on observable risk

characteristics do not outperform the simpler, static classification based on industry.

This paper relates to various strands of the literature. First, there is an extensive literature
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on factor models and the computation of large covariance matrices, see for example Fan et al.

(2008, 2011, 2016). Engle et al. (1990) develop factor ARCH models with an application

to asset pricing with many assets. However, the benefit of factor copulas is the flexibility

in choosing the factor structure and distributional assumptions, both with respect to the

marginals and the copula structure. Second, factor copulas have recently been introduced

by Krupskii and Joe (2013); Oh and Patton (2017), among others. Oh and Patton (2018)

and Lucas et al. (2017) are the first to introduce the score-driven framework of Creal et al.

(2013) within factor copulas. Compared to their work, we consider specifications that yield

closed-form densities and use a parametrization that is easily scalable to many factors and high

cross-sectional dimensions. Third, we relate to a strand of literature on Copula-MGARCH

models, such as Christoffersen et al. (2012, 2014), who combine a skewed Student’s t copula

with a DCC model to study diversification benefits in a panel of more than 200 asset returns.

These models suffer in general from the curse of dimensionality mentioned earlier. In addition,

(large) covariance or correlation matrices need to be inverted many times during parameter

estimation, which becomes computationally cumbersome and numerically problematic.

The rest of this paper is organized as follows. Section 2 presents the multi-factor copula

model with dynamic loadings. We carefully lay out the different aspects of our modeling ap-

proach, including various possible common factor specifications and the loading dynamics. We

also discuss important details concerning parameter estimation, using either full likelihood, a

two-step targeting approach, or composite likelihood methods. Section 3 studies the perfor-

mance of the multi-factor copula models in a controlled environment. Section 4 provides the

results for the empirical application. Section 5 concludes. An online appendix to this paper

provides more details on some of the derivations, as well as more empirical and simulation

results for the new models.
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2 The modeling framework

In this section, we develop the class of closed-form dynamic multi-factor copulas with score-

driven loadings, as an approach for describing time-varying dependence that remains man-

ageable yet versatile in high-dimensional settings. Our aim is to characterize the conditional

joint distribution F t(yt) of the vector yt = (y1,t, . . . , yN,t)
> ∈ RN of asset returns in period

t, t = 1, . . . , T , where N is possibly large. We decompose F t(yt) into N marginals and a

conditional copula as in Patton (2006),

yt|Ft−1 ∼ F t(yt) = Ct

(
F1,t(y1,t;θM,1,t) , . . . , FN,t(yN,t;θM,N,t) ; θC,t

)
, (1)

where Ct( · ;θC,t) is the conditional copula given the information set Ft−1 = σ(yt−1,yt−2, . . .)

and the time-varying copula parameter vector θC,t, and Fi,t(yi,t;θM,i,t), i = 1, . . . , N , denotes

the conditional marginal distribution of asset i given Ft−1 and the time-varying marginal

distribution parameter vector θM,i,t. We return to the choice of the marginals later. Note

that the conditional copula Ct( · ;θC,t) can also be interpreted as the conditional distribution

Ct(ut;θC,t) of the probability integral transforms (PITs) ut = (u1,t, . . . , uN,t)
> of yt, where

ui,t ≡ Fi,t(yi,t;θM,i,t) for i = 1, . . . , N .

As is well known, decomposing the multivariate (conditional) distribution F t(yt) into its

marginals and copula has several advantages. Particularly when the cross-sectional dimension

N is large, splitting the modeling task into specifying the marginals and the copula may

substantially reduce the computational burden as parameters can be estimated using a two-

step approach. As modeling the univariate marginal distributions is relatively simple and fast

even for large N , the main remaining challenge is to parsimoniously specify the conditional

copula Ct( · ;θC,t). This can be done using factor copulas or multivariate GARCH models like

the DCC or DECO models.
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2.1 Observation-driven dynamic factor copulas

The general literature on copula modeling is extensive; see for instance Patton (2009, 2013)

or Fan and Patton (2014) for partial overviews. However, the literature on how to deal

with copulas in large cross-sectional dimensions is rather scarce. The main challenge in high

dimensions is to keep the parameter space manageable, but at the same time to allow for

sufficient flexibility in the dependence structure. To strike this balance, we use a multi-factor

copula structure that we endow with score-driven parameter dynamics. Furthermore, we

assume that the N asset returns can be clustered into G groups, with assets in the same group

having identical factor loadings.

We start from the factor copula structure

ui,t = Dx,i(xi,t; λ̃i,t, σi,t,ψC), i = 1, . . . N, (2)

xi,t = λ̃
>
i,tzt + σi,tεi,t,

zt
i.i.d.∼ Dz(zt | ψC), εi,t

i.i.d.∼ Dε(εi,t | ψC),

where λ̃i,t is a k×1 vector of scaled factor loadings, zt is a k×1 vector of common latent factors,

εi,t is an idiosyncratic shock, zt and εi,t are cross-sectionally and serially independent with

distributions Dz and Dε, respectively, characterized by zero means and identity covariance

matrix and static shape parameter vector ψC , and Dx,i( · ) denotes the implied marginal

distribution of xi,t; see Creal and Tsay (2015). We define the vector λ̃i,t and scalar σi,t as

λ̃i,t =
λi,t√

1 + λ>i,tλi,t

, σ2
i,t =

1

1 + λ>i,tλi,t
(3)

for an unrestricted k× 1 vector λi,t, such that xi,t has zero mean and unit variance by design.

Further parameterization details can be added to ensure for instance that some elements

of λi,t are positive by design, e.g., by taking exponential functions or a multinomial logit

parameterization. Further details can be found in the online appendix.
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The correlation matrix of xt = (x1,t, . . . , xN,t)
> equals

Rt = L̃
>
t L̃t +Dt, L̃t =

(
λ̃1,t, . . . , λ̃N,t

)
, Dt = diag

(
σ2
1,t, . . . , σ

2
N,t

)
, (4)

which satisfies all requirements of a correlation matrix, namely positive semi-definiteness and

ones on the diagonal. The copula parameter vector gathers all free parameters in θ>C,t =

(λ>1,t, . . . ,λ
>
N,t,ψ

>
C).

The factor copula structure in (2) comes with an important computational advantage,

namely that the inverse and determinant of Rt are available in closed form as

R−1t = D−1t −D−1t L̃
>
t

(
Ik + L̃tD

−1
t L̃

>
t

)−1
L̃tD

−1
t , |Rt| =

∣∣∣Ik + L̃tD
−1
t L̃

>
t

∣∣∣ · |Dt|, (5)

where Ik denotes the k-dimensional identity matrix. As the number of common latent factors

k is typically much smaller than the number of observed assets N , computing the inverse of

the k × k matrix Ik + L̃tD
−1
t L̃

>
t is much faster than computing the inverse of the N × N

matrix Rt.

The class of factor copulas is very flexible. We can vary the number and types of factors,

the distributional assumptions of the common factors zt and idiosyncratic shocks εi,t, and the

dynamics of the factor loadings λi,t. The following subsections discuss each of these choices

in more detail.

2.1.1 The factor structure

Our main goal in this paper is to develop feasible dependence structures that allow for multiple

factors in a flexible, dynamic way while still giving rise to a closed-form likelihood expression.

With our focus on multiple factors, we extend earlier papers that focus on single-factor im-

plementations, such as Oh and Patton (2018) and Creal and Tsay (2015).

A key aspect of our approach is the assumption that we can split the N assets into G groups

according to an observed characteristic such as industry, region, or riskiness, etc. Each group

may be subject to several factors, where the factor loadings are assumed to be identical within
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each group. Resembling the Block DECO model of Engle and Kelly (2012), this implies that

all assets within a group share the same dependence structure, while the dependence between

any two assets in two different groups is also the same (but still varying across the possible

combinations of groups). This yields a flexible, yet highly parsimonious set-up.

For the sake of exposition, we take the example of G = 4 groups with 2 firms in each group

throughout this subsection. In reality, of course, the number of groups and the number of

firms per group is typically much larger. For instance, in our application in Section 4 we have

G = 10 groups with up to 19 firms per group.

In our most general specification the loading matrix is obtained from a lower-triangular

matrix with columns containing group-specific loadings. The loading matrix then takes the

form

L̃
>
t =



λ̃1,1,t 0 0 0

λ̃1,2,t λ̃2,2,t 0 0

λ̃1,3,t λ̃2,3,t λ̃3,3,t 0

λ̃1,4,t λ̃2,4,t λ̃3,4,t λ̃4,4,t


⊗

1

1

 , (6)

where ⊗ denotes the Kronecker product. The first column vector can be interpreted as a

common-factor with group-specific loadings, like different market betas. Overall, the loading

matrix could also be seen as a Cholesky decomposition of the quasi correlation matrix that

contains within and between group correlations. Note that the Cholesky decomposition could

be sensitive to the different ordering of the groups. We show in Section 4 that in our empirical

application this effect is small: estimated dependence measures hardly change when we reorder

the variables. We label the model with the factor structure in (6) as the Multi-Factor Lower-

Triangular (MF LT) copula model.

A second, much more restricted version of our general specification combines a single

common factor with (common) equi-loadings, and a set of G group-specific factors with cor-
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responding group-specific loadings. This results in the loading matrix

L̃
>
t =



λ̃1,t λ̃2,1,t 0 0 0

λ̃1,t 0 λ̃2,2,t 0 0

λ̃1,t 0 0 λ̃2,3,t 0

λ̃1,t 0 0 0 λ̃2,4,t


⊗

1

1

 . (7)

For G ≥ 3 and at least 2 firms in each group, this model meets the necessary requirement for

identification. To see this, note that the correlation matrix Rt for G = 3 has 3 within-group

correlations and 3 between-group correlations, hence 6 free positions for the 4 different param-

eters in L̃t. For more groups and firms, the number of positions in Rt increases quadratically,

whereas the number of parameters in L̃t increases linearly, thus allowing for overidentifica-

tion. The first (equi)factor with common loadings λ̃1,t affects both the within-group and the

between-group correlations. The group-specific factors with their group-specific loadings, on

the other hand, only affect the within-group correlations and not the between-group correla-

tions. We label this model as the Multi-Factor (MF) copula model.

A third specification is obtained by replacing the group-specific factors in (7) with a com-

mon factor with group-specific loadings. The loading matrix L̃
>
t is then given by

L̃
>
t =



λ̃1,t λ̃2,1,t

λ̃1,t λ̃2,2,t

λ̃1,t λ̃2,3,t

λ̃1,t λ̃2,4,t


⊗

1

1

 . (8)

From an asset pricing point of view, this second common factor has different betas for each

group. There is now less freedom, however, to capture the differences between within-group

and between-group effects as λ̃2,g,t and λ̃2,h,t determine both, for g, h = 1, . . . , G. Note that

λ̃2,1,t cannot be rotated to zero without destroying the equi-loading structure of the first

column of L̃
>
t . This underlines that the model is identified. We label the model in equation

(8) the 2-Factor (2F) copula model. Omitting the factor corresponding to λ̃1,t in (8) leads
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Table 1: Various factor structures and their properties
This table summarizes the various factor structures that are proposed given that there are N assets allocated
to G different groups. We show the number of factors, the number of different scaled factor loadings, the
dimension of the scaled factor loading matrix and the existence of an equi-factor, group-specific factors and/or
group-specific loadings.

Name # factors # λs common factor common factor group factors dim L̃
>
t

with (equi) with with
common loading group loadings group loadings

1F-Equi 1 1 yes no no N × 1
1F-Group 1 G no yes no N × 1
2F 2 G+ 1 yes yes no N × 2
MF G+ 1 G+ 1 yes no yes N × (G+ 1)
MF-LT G G(G+ 1)/2 no yes yes N ×G

to the 1-Factor-Group (1F-Gr) model, which consists of a single factor but with G different

group loadings. The 1F-Gr model has also been used in Lucas et al. (2017) and Oh and Patton

(2018). Similarly, if instead we drop the factor corresponding to λ̃2,g,t in (8), we obtain a single-

factor model with common loadings. We label this special case the 1F-Equi copula model;

see also the the single-factor copula structures of Oh and Patton (2018) and Creal and Tsay

(2015). It corresponds to a DECO correlation structure as in Engle and Kelly (2012), where

each pairwise asset correlation is assumed to be the same. From an asset pricing perspective,

the single factor can be seen as the market factor, with an identical beta for all assets.

Table 1 lists all the factor structures considered in this paper with their corresponding

properties, such as the number of factors, the number of different λ̃s, and the associated

dimension of L̃
>
t .

2.1.2 Distributional assumptions

Given the various factor structures proposed in Section 2.1.1, the next step is to specify a

distribution for the common, group-specific, and idiosyncratic factors in (2). Oh and Patton

(2018) assume a skewed and symmetric Student’s t density for the common factor zt and the

idiosyncratic shock εi,t, respectively. As a result, their copula density for xi,t is not available in

closed form. Hence, likelihood evaluation and parameter estimation become computationally

involved. Also Creal and Tsay (2015) do not have a likelihood in closed form due to their choice
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of a new stochastic component in the transition equation for the factor loading λi,t. They solve

the issue by employing Bayesian (numerical) techniques to estimate the parameters. Again,

this is computationally costly for increasing dimensions, particularly in multi-factor settings.

In contrast to the above approaches, we retain tractability of the model and a closed form of

the likelihood by two particular choices. First, we make convenient distributional assumptions

for the factors zt and εi,t. Second, we consider a score-driven transition equation for the factor

loadings λi,t. We discuss the latter in the next subsection.

To model zt and εi,t, we use the Student’s t copula,

ui,t = T (xi,t; νC), i = 1, . . . N, (9a)

xi,t =
√
ζt

(
λ̃
>
i,tzt + σi,tεi,t

)
, zt ∼ N(0, Ik), εi,t ∼ N(0, 1), (9b)

ζt ∼ Inv-Gamma (νC/2, νC/2) . (9c)

where T ( · ; νC) denotes the cdf of the univariate Student’s t distribution with νC degrees of

freedom, location zero, and unit scale, and ζt denotes an independent Inverse-Gamma dis-

tributed random variable. Note that – in contrast to Creal and Tsay (2015) and Oh and

Patton (2018) – our proposed factor structures of the previous subsection easily fit into the

distributional framework above, while the copula density (and thus the likelihood) retains its

analytical closed-form expression. For the special case νC →∞, we obtain ζt ≡ 1 and a Gaus-

sian copula setting. The Gaussian copula, however, has no tail dependence (see McNeil et al.,

2015) and may therefore be less suitable to describe the dependence structure in empirical

applications.

The copula in (9a)–(9c) is symmetric. Oh and Patton (2017, 2018), by contrast, develop a

1-factor asymmetric copula model that allows for skewness. By adding an additional term γζt

for γ ∈ RN to the right-hand side of (9b) and letting ζt be Generalized Inverse Gaussian, we

obtain the Generalized Hyperbolic (GH) copula class with skewness parameter γ. A special

case is the GH skewed Student’s t copula as used in for instance Lucas et al. (2014, 2017). Such

a generalization would come at a substantial increase in computational burden as the copula
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requires the numerical inversion of the marginal cdfs at each point in time for all coordinates.

Preliminary experiments for the simplest model structures and a skewed t copula did not

result in major in-sample likelihood increases or in substantial changes in the paths of the

fitted dynamic dependence parameters. Therefore, we leave such further generalizations for

future research and in this paper concentrate on the value-added of the multi-factor structures.

2.1.3 Score-driven factor loading dynamics

To complete our dynamic factor copula specification, we formulate the dynamics of the factor

loadings λi,t. In general, there are two approaches to modeling time-varying factor loadings.

The first approach is parameter-driven and assumes λi,t evolves as a stochastic process driven

by its own innovation. This leads to so-called stochastic copula models as in Hafner and Man-

ner (2012) and Creal and Tsay (2015). Estimating such models is typically more involved and

requires integrating out the random innovations of the time-varying parameters in a numeri-

cally efficient way. The second approach is observation-driven and assumes the factor loadings

depend on functions of past observables. Our proposal falls into the latter category and uses

score-driven dynamics as introduced by Creal et al. (2013); see also Harvey (2013) and Oh and

Patton (2018). As mentioned before, an advantage of the observation-driven approach is that

the likelihood is available in closed-form via a standard prediction error decomposition. This

substantially reduces the computational burden compared to a parameter-driven approach.

Score-driven dynamics use the score of the conditional copula density to drive λi,t. In-

tuitively, this adjust the loadings in a steepest ascent direction of the local log likelihood fit

at time t. See the information theoretic optimality motivation for this approach in Blasques

et al. (2015) and its generalizations in Creal et al. (2018). As an example in our context,

consider a 1-Factor equicorrelation copula, such that L̃
>
t = λ̃tιN for a scalar parameter

λ̃t = λt/
√

1 + λ2t , such that λ̃t ∈ [−1, 1] by design, where ιN denotes an N × 1 vector filled

with ones. Then the score-driven dynamics for λt are given by λt+1 = ω + Ast + B λt, with

st = ∂ log c(xt;λt, νC)/∂λt, and c( · ;λt, νC) the Student’s t copula density. We assume the

same type of factor loading dynamics in case λt+1 is a vector, where we only allow the intercept
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ω to be element-specific (collecting these in the vector ω) but continue to assume that A and

B are scalars. Extensions to non-scalar A or B are straightforward, and some of these are in-

vestigated in the empirical application later on. Following Oh and Patton (2018), we use unit

scaling for the score st in the sense of Creal et al. (2013) in order to reduce the computational

burden of estimating a separate scaling function. Explicit expressions for the scores for all

factor copula specifications used in our paper are provided in the online Appendix A.

2.2 Benchmarks, marginals, and parameter estimation

We compare the dynamic factor copula models developed above against MGARCH alterna-

tives, in particular the cDCC model (Engle, 2002; with the correction of Aielli, 2013) and the

(Block) DECO model of Engle and Kelly (2012); see online Appendix C for the implementa-

tion details of these models in our setting. To maintain a fair comparison in high dimensions,

we also consider the MGARCH models in a copula framework and use the same marginal

models for the MGARCH and multi-factor copulas.

For the marginal distributions, we use the univariate t-GAS volatility model of Creal et al.

(2011, 2013). We also perform a robustness check with other marginals, such as univariate

GARCH models with skewed t innovations. The results are qualitatively similar. For more

details on the estimation results for the marginal distributions or for the copula results based

on PITs from skewed marginal distributions, see online Appendices D and E, respectively.

Parameter estimation requires some further details, both for the factor copula and the

MGARCH copula models. To estimate the model parameters, we use a two-step likelihood

based approach. First, we estimate the parameters of each of the marginals (separately).

Second, we estimate the copula parameters conditional on the marginal parameter estimates.

This approach follows directly from decomposing the joint likelihood as

L(θ) ≡
T∑
t=1

log f t(yt;θt) =
N∑
i=1

T∑
t=1

log fi,t(yi,t;θM,t) (10)

+
T∑
t=1

log ct (F1,t(y1,t;θM,1,t), . . . , FN,t(yN,t;θM,N,t);θC,t)
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with fi,t(·;θM,i,t) denoting the conditional marginal density corresponding to F1,t(·;θM,i,t),

and θt = {θM,t,θC,t}. According to Patton (2013), the implied efficiency loss of the two-step

compared to the one-step approach is small.

We assume a Student’s t and Gaussian copula to model dependence, as discussed before.

For the factor copula specifications, inverses and determinants of Rt are given in closed form

by (5), which substantially reduces the computational burden in high dimensions. This enables

us to estimate these models by full maximum likelihood.

In case of our most general multi-factor copula model (the MF-LT), we potentially have

G(G + 1)/2 different elements in the vector of intercepts ω in the score-driven dynamics of

the factor loadings. A computational challenge may then arise if G becomes large. In that

case, we suggest to estimate the copula parameters using the following two-step procedure.

Assuming that the loading process is covariance stationary, and defining the unconditional

mean of λt as λ̄, we have

E[λt+1] = ω +B E[λt] ⇔ λ̄ = (1−B)−1ω. (11)

In the first step, we match λ̄ with the empirical within- and between-group correlations using

a moment estimator. Let RM denote the G×G quasi unconditional correlation matrix based

on xit = Φ−1(uit), where the off-diagonal element (g, h) equals the average correlation between

assets from group g and h, and the diagonal element (g, g) the asset correlations within group

g, g, h = 1, . . . , G, g 6= h. The moment estimator is obtained by minimizing

LM = vech(RM − ¯̃L ¯̃L>)> vech(RM − ¯̃L ¯̃L>) (12)

with ¯̃L> a G×G lower triangular matrix as in (6) depending on λ̄ in (11) via the same non-

linear transformation that maps Lt = L(λt) into L̃t = L̃(λ̃t). In a second step, we estimate

the remaining parameters A and B keeping λ̄ fixed and setting ω = (1−B)λ̄. This two-step

targeting procedure substantially decreases the computational burden: The moment estimator

in the first step is very fast, while in the second step only the two remaining parameters A
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and B need to be estimated. Note that we use the inverse normal in the first step. For the

Student’s t copula, we could use the inverse Student’s t cdf, but we show in the next section

that the normal inverse cdf also works well for the Student’s t copula case.

In contrast to the multi-factor models, inverses and determinants of Rt are not available in

closed form for the Block DECO and cDCC specifications. We therefore estimate the cDCC

model by means of the Composite Likelihood method of Engle et al. (2008). This technique

is based on maximizing the sum of bivariate (copula) log-likelihood values to estimate A and

B (and νC). In a second step the matrix Ω is estimated by its sample analogue.

Finally, we also use a composite likelihood approach for the Block DECO model of Engle

and Kelly (2012) by extending their proposal from the Gaussian to the Student’s t case.

They consider the joint log-likelihood of all the firms in two separate groups i 6= j, with

i, j ∈ {1 . . . , G}, i.e.,

LStudi,j =
T∑
t=1

[
−1

2
log |Rt| −

ν + ni + nj
2

log

(
1 +

x>t R
−1
t xt

ν − 2

)]
, (13)

where |Rt| andR−1t are given analytically for the 2-block case by Lemma 3.1 in Engle and Kelly

(2012). The Composite Likelihood (CL) method now maximizes the sum of all log-likelihoods

of each pair of blocks i > j,

maxLCL = max
∑
i>j

LStudi,j , (14)

where the intercept Ω is estimated by the unconditional correlation matrix of xt. Note that

for ν → ∞, we recover the Gaussian Block DECO model, which is the specification used in

most of the literature. As argued before, however, the Gaussian copula lacks tail dependence

and may therefore be less suitable for fitting financial data.
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3 Simulation experiment

We briefly report the results of three Monte Carlo experiments, conducted to study the prop-

erties of the new method. Full details can be found in the online Appendix B.2.

In the first experiment, we investigate the accuracy of estimation and inference in the new

model. Panel A of Table 2 presents the outcomes for a set-up with an N = 100 dimensional

time series of length T = 1, 000 with G = 10 equally sized groups holding N/G = 10 individual

cross-sectional units each. These sizes roughly correspond to the data dimensions in our

empirical application. The data-generating process (DGP) is the Multi-Factor copula model

from equation (7). We only report results for A, B, and νC . Results for ω and for smaller

sample sizes can be found in the online Appendix and are qualitatively similar. We find that all

parameters are estimated near their true values. Comparing results over sample sizes (in the

online Appendix), we see that the standard deviation decreases in T . By comparing the Monte-

Carlo standard error of the estimates (std column in Table 2) with the mean of the estimated

standard error over all replications (mean(s.e.) column), we find that our computed standard

errors fairly reflect estimation uncertainty. Overall, Panel A shows that the parameters and

standard errors of the Gaussian and Student’s t factor copulas with score-driven dynamic

factor loadings can be accurately estimated if the model is correctly specified.

Panel B of Table 2 shows results for the MF-LT model from equation (6). The results for

A, B, and νC are similar to those of the MF model. Our two-step approach for first targeting

the ωs, and then estimating the remaining dynamic parameters thus appears to work well

both for estimation and inference. Studying the ω estimates in the full tables in the online

Appendix, we find that the standard deviations of moment-based estimators for ω are higher

than the standard errors of the ML estimators for A,B, and νC . The two-step estimator thus

implies a large computational gain at the expense of some efficiency loss in the estimation of

the ωs. The assumed distribution does not appear to have a major impact on the performance.

Finally, we investigate the impact of misspecification of the factor structure on the fitted

dependence structure. In this third experiment, we consider a DGP with N = 25, T = 1, 000,
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Table 2: Monte Carlo results of parameter estimates of the Multi-Factor-Copula
This table provides Monte Carlo results of parameter estimates using the multi-factor (MF) Gaussian and
t-copula model as given in (7), and the MF-LT model based on (6). For full details, see the online Appendix
B.2. B(N) and B(t) denote the value of B in case of the Gaussian (N) and Student’s t (t) factor copula model,
respectively. The table reports the mean and standard deviation of the estimated coefficients, as well as the
mean of the computed standard error. Results are based on 1,000 Monte Carlo replications.

Coef. True Normal Student’s t
mean std mean(s.e.) mean std mean(s.e.)

Panel A: MF, T = 1, 000
Aeq(N) 0.0085 0.0085 0.0009 0.0008
Agr,f (N) 0.0095 0.0093 0.0018 0.0018
Aeq(t) 0.0150 0.0149 0.0020 0.0019
Agr,f (t) 0.0100 0.0096 0.0016 0.0016

B(N) 0.8700 0.8626 0.0221 0.0248
B(t) 0.9200 0.9149 0.0129 0.0126
νC 35.00 35.1760 1.8629 1.8821

Panel B: MF-LT, T = 1, 000
A 0.015 0.0161 0.0006 0.0006 0.0161 0.0007 0.0006
B 0.970 0.9700 0.0025 0.0023 0.9697 0.0024 0.0024
νC 35.00 35.06 1.862 1.846

Table 3: Performance of misspecified factor copulas
This table summarizes the mean and standard deviation of the average Euclidian distance between a simulated
correlation matrixRt (t = 1, . . . , 1, 000) from the MF-LT model with t(35)-distributed errors and the estimated

R̂t based on one, two, or multi-factor copula models with either Gaussian or a Student’s t distributions. All
results are based on 1,000 replications.

MF-LT MF 2F 1F-Group 1F-Equi
Student’s t 0.058 1.692 1.600 0.891 2.541

(0.023) (0.266) (0.222) ( 0.107) (0.308)

Gaussian 0.080 1.699 1.567 0.914 2.559
(0.023) (0.263) (0.205) ( 0.109) (0.312)

and the MF factor structure, using Student’s t(35) distributed errors for G = 5 different

groups, each containing N/G = 5 units. Using different (possibly mis-specified) factor copula

models, we compute the time average of squared Frobenius norm of R̂t −Rt, which is a con-

sistent loss function according to Laurent et al. (2013). The results in Table 3 clearly indicate

that underestimating the number of factors causes substantial discrepancies between the true

and the fitted dependence dynamics, particularly for one-factor models with an equi-loading

structure, or for the multi-factor models that ignore the different between-group dependencies.

This holds irrespective of the distribution used.
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4 Empirical application

4.1 Data

In our high-dimensional empirical application we investigate the daily open-to-close returns of

100 randomly chosen constituents of the S&P 500 index, during the period from January 2,

2001 until December 31, 2014 (T = 3, 521 days). Table B.1 in the online Appendix provides

an overview of the ticker symbols of all stocks. The same Table shows the classification of the

stocks into 10 groups, based on the firm’s industry. For our cross-section, Financials is the

largest group with 19 firms, followed by Consumer Services and Energy, respectively. Each

industry group includes at least four firms.

To model the marginal characteristics of the daily stock returns, we estimate a univariate

t-GAS volatility model as given in equations (D.1)-(D.2) in the online Appendix D. For the

conditional mean, we find at most two significant autoregressive (AR) lags. We therefore use

an AR(2) conditional mean specification in the marginal models for all 100 stocks. Estimation

results are summarized in Table D.1 in the online Appendix D. We find a mean value of

ν = 8.22, underlining the fat-tailed nature of daily stock returns even after filtering for time-

varying volatility. The mean estimate of β reflects the usual strong persistence in volatility. We

follow Creal and Tsay (2015) and evaluate the fit of the marginal distributions by transforming

the PITs ûi,t into Gaussian variables x̂i,t = Φ−1(ûi,t), t = 1, . . . , T . We subsequently test each

series x̂i,t for normality using the Kolmogorov-Smirnov test. Across the 100 firms, we only

reject the null hypothesis for 5 series at the 5% significance level. We conclude that the

marginal models are adequate for our subsequent analysis.

As an robustness check, we also estimated a GARCH model with the skewed Student’s

t distribution of Hansen (1994) and compare this to a GARCH-t model for all assets. The

results of the skewed Student’s t GARCH models are reported in online Appendix D. The

comparison indicates that the average increase in the maximized log-likelihood relative to a

GARCH t model equals only 1.3 points. Given this weak evidence for the presence of skewness,

we therefore remain with the standard Student’s t distribution for our main analysis.
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4.2 Full-sample comparison

After estimating the parameters of the marginal distributions, we proceed to estimate the

parameters of the score-driven factor copula models and the benchmark MGARCH copula

models using the full sample of 3,521 observations. The factor copulas are based on grouping

firms into industries as laid out in Table B.1 of the online Appendix.

Table 4 shows the parameter estimates and maximized log-likelihood values for all models.

Panels A.1 and A.2 contain results for Gaussian and t factor copula specifications, respec-

tively: a one-factor copula with homogeneous (1F-Equi) or with industry-specific (1F-Group)

loadings, a two-factor copula (2F) with one factor with homogeneous loadings and one factor

with industry-specific loadings, a multi-factor copula (MF) with 10 industry factors, and a

multifactor model (MF-LT) with a triangular loading matrix. Panels B.1 and B.2 contain re-

sults for Gaussian and t benchmark copulas from the MGARCH class: the cDCC, DECO and

Block DECO models. In both multi-factor copula models, we assume that the B parameter

in the GAS dynamics of the factor loadings is the same for all parameters. For the MF-LT

model we assume a common scalar A, while A is allowed to differ between the common factor

and the industry-specific factors in the MF model. In the 2F model we also allow for different

A values for the two common factors but assume B is the same. Finally, for the 1F-GR model

we assume a common A and B parameter for all different groups. To save space, we do not

report all the different intercepts ωg for all groups for the factor copulas with group-specific

loadings. These detailed results are provided in the online Appendix E. Standard errors are

based on the sandwich (robust covariance matrix) estimator Ĥ
−1
0 Ĝ0Ĥ

−1
0 with Ĥ0 the inverse

Hessian of the likelihood, and Ĝ0 the outer product of the gradient.

Five interesting results emerge from Table 4. First, in terms of the statistical fit, the

MF-LT t model outperforms the other factor-copula models, as well as the MGARCH-copula

models (cDCC, DECO and block DECO). The MF-LT model not only achieves the highest

total log-likelihood value, but also performs best in terms of AIC, which takes into account

the number of estimated parameters.

Second, multi-factor models provide a much better fit than one-factor copula models. For
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Table 4: Parameter estimates of the full sample
This table reports maximum likelihood parameter estimates of various factor copula models, the (block) DECO
model of Engle and Kelly (2012) and the cDCC model of Engle (2002), applied to daily returns of 100 stocks
included in the S&P 500 index. We consider five different factor copula models, see Table 1 for the definition of
their abbreviations. Panel A.1 presents the factor models with a Gaussian copula density, Panel A.2 presents
the parameter estimates corresponding with the Student’s t copula. Panel B.1 and B.2 present the estimates
of the MGARCH class of models. In case of the cDCC and Block DECO models, the table shows parameters
estimates obtained by the Composite Likelihood (CL) method. Standard errors are provided in parenthesis
and based on the (sandwich) robust covariance matrix estimator. We report the copula log-likelihood,the
Akaike Information Criteria (AIC) as well as the number of estimated parameters for all models. The sample
comprises daily returns from January 2, 2001 until December 31, 2014 (3,521 observations).

Model ωeq Aeq Aind Agr B νC LogL AIC ] para

Panel A.1: Gaussian factor copulas
1F-Equi 0.017 0.005 0.975 65,934 -131,862 3

(0.002) (0.000) (0.003)
1F-Group 0.007 0.970 68,086 -136,148 12

(0.001) (0.006)
2F 0.047 0.012 0.013 0.941 71,667 -143,306 14

(0.006) (0.000) (0.001) (0.009)
MF 0.042 0.012 0.014 0.930 81,827 -163,626 14

(0.005) (0.000) (0.001) (0.009)
MF-LT 0.009 0.964 83,226 -166,339 57

(0.001) (0.005)

Panel A.2: t-factor copulas
1F-Equi 0.062 0.012 0.918 36.52 69,679 -139,350 4

(0.013) (0.001) (0.016) (1.52)
1F-Group 0.005 0.986 31.87 72,293 -144,560 13

(0.000) (0.001) (1.11)
2F 0.004 0.009 0.006 0.993 38.57 77,828 -155,627 15

(0.002) (0.001) (0.001) (0.002) (1.64)
MF 0.033 0.012 0.012 0.957 44.98 84,858 -169,687 15

(0.002) (0.001) (0.001) (0.002) (1.78)
MF-LT 0.004 0.990 36.22 86,433 -172,749 58

(0.000) (0.002) (1.38)

Panel B.1: Gaussian copula-MGARCH models
cDCC (CL) 0.017 0.968 74,263 -138,623 4,952

(0.001) (0.003)
DECO 0.071 0.929 64,474 -119,044 4,952

(0.001) (0.001)
Block DECO 0.030 0.957 83,087 -156,270 4,952

(0.002) (0.003)

Panel B.2: t copula-MGARCH models
cDCC (CL) 0.018 0.968 14.17 82,688 -155,470 4,953

(0.001) (0.002) (0.58)
DECO 0.106 0.894 34.43 69,314 -128,721 4,953

(0.000) (0.000) (0.80)
Block DECO 0.032 0.955 22.51 86,222 -162,537 4,953

(0.002) (0.003) (0.60)
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example, the log-likelihood difference between the MF-LT t copula and the 1F-Equi t copula

is more than 15,000 points. The largest gain with respect to the factor structure is obtained

by including industry factors, that is, extending the 1F-Equi model to the MF specification.

This increases the log likelihood by 15,000 points in both the Gaussian and Student’s t case.

Note that allowing for industry specific loadings in the single-factor model leads to a much

more modest improvement in log likelihood of 2,500 points. Extending the single-factor model

with a second factor with industry-specific loadings performs better, but the increase in log-

likelihood is still only half of the improvement achieved by the MF specification.

Third, the Student’s t factor copulas fit considerably better than their Gaussian coun-

terparts. Log-likelihood differences range between 3,000 and 6,000 points, depending on the

specification. Differences for the multi-factor specifications are typically at the lower end of

this range. This underlines that allowing for more than one factor also takes care of part of

the tail clustering.

Fourth, we find strong persistence in the time-varying factor loadings with a value of

B ≈ 0.97 for most of the estimated (t-)factor copula models. This finding, as well as the

previous one, confirms the empirical results of Oh and Patton (2018) using an entirely different

dataset of log-differences of U.S. CDS spreads.

Finally, we note that the estimated degrees of freedom parameter νC is (much) lower for

the Block DECO t and cDCC t specifications than for the MF-LT t model or the DECO

model. It seems that there is empirically some bias effect due to the use of the Composite

Likelihood method for parameter estimation.

Our main results are robust against two variations in the estimation set-up. First, we

re-estimate all models based on PITs obtained from estimating a skewed Student’s t GARCH

model for the marginals. Second, we investigate the sensitivity of the MF-LT t model with

respect to the ordering of the industries by re-estimating the MF-LT t model for 50 different

random industry orderings. Online Appendix E shows the results for both robustness checks

and confirm that our conclusions continue to hold.

Figure 1 shows an example of within and between industry correlations according tot he 1F-
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Figure 1: In-sample within and between industry correlations of the MF-LT t
copula
This figure shows the fitted within industry correlation of Financials and Energy, as well as their between
industry correlations according to the 1F-Equi t, 1F-Group t, MF t and MF-LT t models. The upper-left and
lower-right panels show the within industry correlations for Financials and Energy companies, respectively,
and the upper-right panel shows the between-industry correlation. The sample spans the period from January
2, 2001 until December 31, 2014 (T = 3, 521 days).

Equi t, 1F-Group t, MF t and MF-LT t models. We see for instance that the one-factor copula

models have a considerably different within industry correlation pattern than the multi-factor

models, particularly for the Energy sector. The between correlations are much closer, though

we still see that the MF-LT model results in the least noisy correlation estmates. The main

take-away is that our multi-factor models picks up the within industry specific correlations

that cannot be captured by a single factor models. This ability of the MF and MF-LT models

explains their substantial increases in statistical fit as shown before.

4.3 Alternative groupings based on dynamic risk factors

So far, we have allocated firms into groups using their industry classification, but alternative

grouping mechanisms are of course possible. Here we investigate an obvious candidate by
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Table 5: Forming groups in the MF-LT model
This table reports maximum likelihood parameter estimates of the multi-factor copula model, applied to daily
equity returns of 90 assets listed at the S&P 500 index. The 10 groups associated with the models are formed
on different risk-factors, such as the book-to-market ratio, size and momentum. In addition, we consider the
model based on industry groups. Standard errors are provided in parenthesis and based on the (sandwich)
robust covariance matrix estimator. We report only the A and B of all estimated parameters (hence omitting
the incercepts) and the copula log-likelihood for all models. The sample comprises daily returns from January
2, 2001 until December 31, 2014 (3,521 observations).

Gaussian copula t copula
A B LogL A B νC LogL

Value 0.009 0.965 61,025 0.004 0.995 29.16 64,950
(0.001) (0.005) (0.000) (0.001) (0.98)

Size 0.010 0.904 60,955 0.003 0.966 28.58 64,953
(0.001) (0.010) (0.001) (0.011) (0.92)

Momentum 0.009 0.963 61,368 0.003 0.992 29.33 65,144
(0.001) (0.003) (0.001) (0.002) (1.01)

Industry 0.010 0.964 76,531 0.005 0.989 34.49 79,458
(0.001) (0.006) (0.000) (0.002) (1.22)

forming groups based on key asset pricing risk factors, including firm size (market capital-

ization), value (book-to-market), and momentum, see Fama and French (1993) and Carhart

(1997). Due to data availability, this reduces the sample from 100 to 90 assets. For the size

and value factors, we form 10 new groups in July each year based on deciles of sorted market

capitalization and book-to-market values of the previous fiscal year. Similarly, for momentum

we sort stocks into deciles in January each year based on their sorted past 12-month returns.

This mimics the way these factors are constructed in typical asset pricing studies. Using risk

factors of this type to form groups comes with an additional challenge, namely that group

composition can now change from one period to the next. This can be easily accommodated

in the factor copula approach introduced in this paper, where it boils down to a straightfor-

ward but tedious bookkeeping exercise to account for possible switches in factor loadings of

firms depending on their group allocation at time t. The use of such grouping criteria in a

dynamic factor copula framework is new and can be seen as a separate contribution.

Table 5 shows the estimation results for our preferred in-sample model, the MF-LT cop-

ula, using different grouping criteria. Given the time-varying group composition, we alter

our targeting approach for ω by each year using the moments estimator (12) based on the
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unconditional correlation matrix RM of x̂it = Φ−1(ûit) for the 250 daily observations of the

upcoming year. In a second step, we estimate the parameters A and B. The results show

that the models with dynamic groups based on risk factors achieve a considerably worse sta-

tistical fit than the model with static industry groups. The minimum loss in log-likelihood

exceeds 14,000 points. Among the three risk factors, momentum seems to performs best, but

differences with size and value are small. The conclusions on the preferred grouping structure

do not depend on the distributional assumption, and are similar for the Gaussian and the

Student’s t case.

4.4 Multivariate Density Forecasts

As we have closed-form copula density expressions, a natural way to compare the out-of-sample

(OOS) forecasting performance of factor copula models and copula MGARCH models is to

consider multivariate density forecasts as in Salvatierra and Patton (2015). Because we use

the same marginal distributions in all models, the density forecast comparison actually boils

down to an evaluation and comparison of the OOS copula density forecasts.

We using a moving estimation window of 1,000 observations (or roughly four calendar

years), which leaves P = 2, 521 observations for the out-of-sample period, starting 28 De-

cember 2004. Hence the OOS period includes the Great Financial Crisis. We re-estimate

the parameters in all models after each 50 observations (or roughly 10 calendar weeks) and

construct a one-step ahead density forecast each day.

We evaluate the copula density forecasts using two scoring rules. First, we consider their

accuracy on their full support by means of the log scoring rule (see Mitchell and Hall, 2005;

Amisano and Giacomini, 2007)

Sl,t(ût,Mj) = log ct(ût | θ̂C,t,Mj), (15)

where ct(· | θ̂C,t,Mj) is the Gaussian or Student’s t conditional copula density obtained from

model Mj and ût denote the corresponding PITs. Note that the PITs in ut are based on
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the same marginal distributions for both model specifications in any log score comparison,

and that the marginal densities therefore drop out from a difference in log scores between to

models. We therefore omit the marginals from the log score expression in (15). This underlines

that we are really comparing the forecasting quality of the copula part. Second, we focus the

evaluation on the joint lower region of the copula support by using the conditional likelihood

(cl) scoring rule proposed by Diks et al. (2014),

Scl,t(ût,Mj) =
(

log ct(ût | θ̂C,t,Mj)− logCt(q | θ̂C,t,Mj)
)
× I[ût < q] (16)

where q is an N × 1 vector and Ct( · | θ̂C,t,Mj) is the conditional Copula function, and

I[ût < q] =
∏N

i=1 I[ûi,t < qi] with qi ∈ [0, 1], i = 1, . . . , N . Hence (16) is the log-likelihood

of model Mj conditional on ut < q (element-wise). For any q = (q1, . . . , qN) this boils down

to the joint lower region [0, q1] × · · · × [0, qN ]. Obviously, when qi = 1 for all i, we recover

the log scoring rule. We use a time-varying threshold qt = (q̄t, . . . , q̄t), where q̄t is such that

1
1000

∑1000
j=1 I[ût−j < qt] = q, with q = 0.01 or 0.05, and T1 and T2 the bounds of the (rolling)

estimation sample. We thus compare the copula density forecasts in the joint empirical lower

1% or 5% tail.

For both scoring rules, models that deliver higher values are preferred. We can test whether

differences in the scoring rule values for models Mi and Mj are significant by defining the score

differential

dx,ij,t = Sx,t(ût,Mi)− Sx,t(ût,Mj), with x = l, cl. (17)

The null hypothesis of equal predictive ability is equivalent to H0 : E[dx,ij,t] = 0, which can

be tested using a standard Diebold and Mariano (1995) test statistic. Since we deal with a

substantial number of different models and factor structures and hence many different copula

density forecasts, we consider the Model Confidence Set (MCS) of Hansen et al. (2011). The

MCS automatically accounts for the dependence between model outcomes given that all models

are based on the same data.

Table 6 shows results of the copula density forecast evaluation. We report the mean of the
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log scores and the conditional likelihood scores, as well as the p-values of the Model Confidence

Set.

The table shows three interesting results. First, in line with our full-sample results, the

MF-LT t model performs best in terms of predictive ability when evaluated over the full copula

support using the log scoring rule. The same pattern emerges from the MCS. The MCS p-

value equals 1 for the MF-LT t, whereas that of all other models is below 0.01. Second,

similar to the in-sample results, most of the gain for the factor copulas is obtained by allowing

for industry-specific factors. For example, changing the equifactor from fixed (1F-Equi t) to

industry-specific loadings (1F-Group t) increases the average log-score by only 0.75 points

(from 21.08 to 21.83). Allowing for different industry factors (MF t), however, implies an

additional increase of almost 4 points to an average log-score of 25.60. Allowing for cross-

exposures in the MF-LT specification results in yet a further increase by 0.5 points. Third,

when we consider density forecasts in the joint lower tail, the MF-LT model is always part of the

MCS. In that case, however, also the MGARCH specifications perform well and are included in

the MCS, in particular the block DECO-t model. The differences in the conditional likelihood

scores are small in these cases, however, and below 0.015 points.

Overall, we conclude that the flexibility provided by the new MF-LT t model is also impor-

tant out of sample using density forecast criteria. The more flexible parametrization allows for

a larger class of dependence matrices than more restrictive one-factor models. This extension

appears to be empirically important in high dimensions.

4.5 Economic out-of-sample performance

Finally, we assess the forecasting performance of the different models from an economic per-

spective. We do so by considering the ex-post variance of the ex-ante global minimum variance

portfolio (GMVP); compare Chiriac and Voev (2011) and Engle and Kelly (2012), among oth-

ers. The best forecasting model should provide portfolios with the lowest ex-post variance.

Assuming that an investor aims to minimize the 1-step portfolio volatility at time t subject

to being fully invested, the resulting GMVP weights wt+1|t are obtained as the solution of the
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Table 6: One-step ahead copula density forecasts
This table evaluates the accuracy of one-step ahead copula density forecasts (in the left tail) of daily return
series for 100 stocks from the S&P500 index, obtained by various factor copula and copula MGARCH models,
assuming a Gaussian or Student’s t distribution (denoted by N or t). We consider a 1-factor model with
equi-loadings (1F-Equi), a 1-factor model with group-specific loadings (1F-Group), a 2-Factor model with
one equifactor and an additional factor with group-specific loadings (2F), a multi-factor copula model with
one equi-factor plus G group-specific factors (MF), and the lower triangular multi-factor model (MF-LT). In
addition, we show the results of the cDCC model of Engle (2002) and the (block) DECO model of Engle and
Kelly (2012). The table presents the mean of the log score (Sls) and the conditional (tail) likelihood score (Scl)
for the lower joint 1% and 5% tail. We present the p-value associated with the Model Confidence Set of Hansen
et al. (2011) in parentheses. Bold numbers in this row represent models that belong to the model confidence
set at a significance level of 5%. The out-of-sample period covers December 28, 2004 until December 31, 2014
and contains 2,521 observations.

Full 1% tail 5% tail
Model Sls,t(p-val) Scl,t(p-val) Scl,t(p-val)
1F-Equi 20.07 (0.00) 1.401 (0.00) 4.022 (0.00)
1F-Equi t 21.08 (0.00) 1.443 (0.00) 4.142 (0.00)
1F-Group N 20.73 (0.00) 1.411 (0.00) 4.045 (0.00)
1F-Group t 21.83 (0.00) 1.445 (0.00) 4.177 (0.00)

2F N 22.52 (0.00) 1.436 (0.00) 4.138 (0.00)
2F t 23.53 (0.00) 1.469 (0.01) 4.267 (0.00)

MF N 24.95 (0.00) 1.466 (0.00) 4.284 (0.00)
MF t 25.60 (0.00) 1.494 (0.22) 4.373 (0.04)
MF-LT N 25.32 (0.00) 1.469 (0.00) 4.291 (0.00)
MF-LT t 26.10 (1.00) 1.500 (0.40) 4.400 (0.36)

cDCC N 22.42 (0.00) 1.501 (0.50) 4.369 (0.36)
cDCC t 24.37 (0.00) 1.509 (1.00) 4.384 (0.36)
DECO N 19.76 (0.00) 1.415 (0.00) 4.020 (0.00)
DECO t 21.01 (0.00) 1.447 (0.00) 4.143 (0.00)
Block DECO N 25.24 (0.00) 1.478 (0.03) 4.314 (0.00)
Block DECO t 26.02 (0.01) 1.505 (0.76) 4.415 (1.00)

quadratic programming problem

minw>t+1|t (H t+1|tR
∗
t+1|tH t+1|t) wt+1|t, s.t. w>t+1|tι = 1, (18)

with H t+1|t the 1-step forecasts of the variances based on the marginal models, and R∗t+1|t the

one-step ahead forecast of the correlation matrix. As the forecast of the correlation matrix

R∗t+1|t is not the same as the forecast of the copula dependence matrix Rt+1|t, we obtain the

former by simulating 20,000 returns from the joint distribution of returns as constructed from

the marginals and the conditional copula. Following Chiriac and Voev (2011), we assess the

predictive ability of the different models by comparing the results to the ex-post realizations
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of the conditional standard deviation σp,t, given by σp,t =
√
w>t+1|tRCt+1wt+1|t, with RCt+1

the realized covariance matrix obtained using 5-minute returns. We decompose this matrix

into realized variances and a realized correlation matrix, where the latter is by definition

ill-conditioned and not positive definite. We use the ‘eigenvalue cleaning’ method used by

Hautsch et al. (2012) to get a positive definite correlation matrix. Having constructed the

ex-post conditional portfolio standard deviation, we test model performance by means of the

Model Confidence Set (MCS) approach with a significance level of 5%.

Alongside the GMVP’s volatility, we also calculate a number of other relevant quantities,

such as portfolio turnover (TOt), concentration (COt), and the total short position (SPt) for

each competing model at time t. Turnover at time t is defined as

TOt =
N∑
i=1

∣∣∣∣∣wi,t+1|t − wi,t|t−1
1 + yi,t

1 +w>t|t−1yt

∣∣∣∣∣ , (19)

where wi,t|t−1 is the i-th element of the weight vector wt|t−1. It measures the value of the

portfolio that is bought/sold when rebalancing the portfolio to its new optimal position from

time t to t + 1. A model that produces more stable correlation matrix forecasts implies

in general less turnover and hence, less transaction costs. Portfolio concentration and total

portfolio short position both measure the amount of extreme portfolio allocations. Again, more

stable forecasts ofR∗t+1|t should result in less extreme portfolio weights. Portfolio concentration

is defined as

COt =

(
N∑
i=1

w2
i,t|t−1

)1/2

, (20)

while the total portfolio short position SPt is given by

SPt =
N∑
i=1

wi,t|t−1 · I[wi,t|t−1 < 0], (21)

with I[·] an indicator function that takes the value 1 if the i-the element of the weight vector

is lower than zero.
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Table 7: Minimum variance portfolio results
This table reports results on a global minimum variance portfolio strategy, based on 1-step ahead predictions
of the daily covariance matrix, according to four different type of factor copulas, the cDCC model of Engle
(2002) and the (block) DECO model of Engle and Kelly (2012). The columns represent two types of one-factor
copulas (one equi-factor or one factor with group-specific loadings, denoted by 1F-eq and 1F-gr), one 2-Factor
model (one equi-factor plus an additional factor with group-specific loadings) and two types of multi-factor
copula models (one equi-factor plus G group-specific factors and the MF-LT model). Each type of model is
further discriminated across distribution (Gaussian vs. a Student’s t) For each model, we show the mean of
the ex-post portfolio standard deviation, the p-value corresponding with the Model Confidence Set of Hansen
et al. (2011), using a significance level of 5%, and the mean of the portfolio turnover (TO), concentration (CO)
and the total portfolio short positions (SP). Bold numbers indicate the models that stay within the MCS, or
the lowest (absolute) portfolio turnover, concentration and total portfolio short positions. The out-of-sample
period goes from December 28, 2004 until December 31, 2014 and contains 2,521 observations.

Model σ̄p (p-val) TO CO SP
1F-Equi N 0.527 (0.00) 0.359 0.336 -0.595
1F-Equi t 0.528 (0.00) 0.351 0.339 -0.604
1F-Group N 0.513 (0.97) 0.332 0.307 -0.530
1F-Group t 0.513 (1.00) 0.319 0.310 -0.541

2F N 0.537 (0.00) 0.395 0.339 -0.604
2F t 0.542 (0.00) 0.377 0.343 -0.615

MF N 0.537 (0.00) 0.418 0.357 -0.636
MF t 0.538 (0.00) 0.407 0.359 -0.642
MF-LT N 0.523 (0.07) 0.407 0.353 -0.622
MF-LT t 0.522 (0.11) 0.397 0.353 -0.625

cDCC N 0.556 (0.00) 0.763 0.470 -1.032
cDCC t 0.564 (0.00) 0.774 0.477 -1.054
DECO N 0.525 (0.01) 0.345 0.335 -0.596
DECO t 0.525 (0.00) 0.346 0.335 -0.598
Block DECO N 0.531 (0.00) 0.398 0.352 -0.622
Block DECO t 0.532 (0.00) 0.399 0.352 -0.623

Table 7 reports the economic out-of-sample performance results. As for the density forecast

results, the factor copulas also perform best in terms of economic performance. Again, the MF-

LT model is included in the MCS. There are however also a number of remarkable differences.

In terms of the ex-post variance of the GMVP, the 1-factor copulas with industry specific

loadings now perform best. This contrasts with the density forecast setting, where the MF-LT

t model performed best in-sample and out-of-sample. The multi-factor models also now still

(marginally) outperform the block-DECO model in terms of ex-post variance of the GMVP.

The 1-factor models, however, have the best performance, both in terms of ex-post variance,

turnover, concentration, and total short positions. Unlike the density forecast setting, we also

note that the choice of the distribution plays a less important role in Table 7.
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To reconcile the findings in terms of economic performance with those of the density

forecast evaluation from the previous subsection, it is important to note that the GMVP

evaluation takes a very specific perspective. The GMVP focuses attention on an area of the

forecast distribution where differences are more concentrated by design: all models focus on

a portfolio with ex-ante minimum variance. If the different models are any good, differences

in this concentrated performance measure are harder to obtain. This is corroborated by the

results in Table 7. Although the results are sometimes statistically significantly different,

they are all quite close in economic terms (with the possible exception of the cDCC, which

lags somewhat more). Using such a performance measure, introducing models with more

parameters and with the associated estimation risk typically deteriorates overall forecasting

performance. This explains why the simpler 1-factor models do better here. By contrast, if

the full density or complete tail area is taken into account as in the previous subsection, the

additional flexibility of the more complex factor models has a beneficial effect on performance,

particularly in the current high-dimensional setting.

5 Conclusions

We have introduced various factor structures within the class of closed-form factor copula

models for high dimensions. The new factor copula model is computationally tractable with

score-driven dynamics, implying a closed from copula density. Parameters can be estimated in

a straightforward way by Maximum Likelihood and/or a fast two-step approach that combines

a moment-based estimator and the ML approach.

The factor structures are based on group-specific characteristics such as industry classi-

fication. In addition, an important feature of our model is that it allows for more than one

factor. Extensions to the model are also easily possible, such as the inclusion of covariates to

describe the factor loading dynamics, and different time-varying group structures, such as the

risk-based groups (size, value, momentum) also considered in this paper. This can be done

without any difficulty for the positive definiteness of the implied dependence matrix.
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Empirically, we modeled the dependence across 100 equity returns from the S&P 500 index

over the period 2001-2014. We found that our factor copula models outperform multivariate

GARCH (MGARCH) based counterparts, such as the (c)DCC and (block) DECO. In-sample,

the multi-factor copula model has a better fit than one-factor models and benchmarks such

as the cDCC and (Block-)DECO. Out-of sample, the good performance of multi-factor copula

models persists. A simple static industry-based group structure for the copula appears better

statistically than risk-based groups based on size, value, or momentum. Measured in terms

of density forecasts, the multi-factor models perform best, whereas in terms of the global

minimum variance portfolio variance, simpler 1-factor models outperform other models. In all

settings, we thus find score-driven factor copulas to describe the dynamics of the data well.

Given their computational ease and closed-form likelihood expression, they thus provide a

useful tool for modeling high-dimensional dynamic dependence structures.
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A Derivations of the score

A.1 General set-up

The general set-up of the (multi) factor copulas is given by equation (2). We are interested in

the score st, defined as

st = ∂ log ct(xt;Rt, ψC)/∂λt (A.1)

where λt holds all dynamic factor loadings, and with a slight abuse of notation ct(·) is related

to the conditional copula density. Note that the dimension of λt (and hence st) depends on

the chosen factor structure.

We consider a Student’s t and a Gaussian copula density for xt = (x1,t, . . . , xN,t)
> =

(T−1ν (u1,t), . . . , T
−1
ν (uN,t))

> for the vector of PITs (u1,t, . . . , uN,t)
>, with T−1ν ( · ) the standard

inverse Student’s t cdf with ν degrees of freedom, where ν → ∞ for the Gaussian case. We
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have the following specifications:

log cStud,t(xt;Rt, ψC) = −1

2
log |Rt| −

ν +N

2
log

(
1 +

x>t R
−1
t xt

ν − 2

)
+ aStud(ν), (A.2)

log cGauss,t(xt;Rt, ψC) = −1

2
log |Rt|+−

1

2
x>t R

−1
t xt + aGaus, (A.3)

where aStud(ν) and aGaus are constants that do not depend on Rt. Further, the dependence

matrix Rt is modeled as

Rt = L̃
>
t L̃t +Dt, L̃t =

(
λ̃1,t, . . . , λ̃N,t

)
, Dt = diag

(
σ2
1,t, . . . , σ

2
N,t

)
, (A.4)

with

λ̃i,t =
λi,t√

1 + λ>i,tλi,t

= λi,t · σit, σ2
it =

1

1 + λ>i,tλi,t
(A.5)

for a vector λi,t ∈ Rk×1. This ensures that xi,t has unit variance by design.

Define Lt = (λ1,t, . . . ,λN,t) ∈ Rk×N , then using the chain rule we obtain

∂ log ct(xt;Rt, ψC)

∂λ>t
=
∂ log ct(xt;Rt, ψC)

∂ vec(Rt)>
· ∂ vec(Rt)

∂ vec(Lt)>
· ∂ vec(Lt)

∂λ>t
. (A.6)

The first two factors in (A.6) are generic for any factor structure. The last factor, by contrast,

strongly depends on the factor structure and will be dealt with in separate subsections. A

further factor might be added in case some elements of λt are restricted to be positive, or

lie in some range. This can for instance be obtained by specifying that element of λt as the

exponential function of a new, unrestricted time varying parameter, and by taking the deriva-

tive with respect to this new parameter. The derivative of this last type of transformation

can be added as a final chain rule factor in (A.6) and will typically take the form of a simple,

diagonal matrix.

The first factor in (A.6) only depends on the conditional copula density specification. For
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the Student’s t case, we obtain

d logcStud,t(xt;Rt, ψC) = −1

2
tr
(
R−1t dRt

)
− ν +N

2

1

1 +
x>t R−1

t xt
ν−2

d

(
x>t R

−1
t xt

ν − 2

)
= −1

2

(
vec(Rt)

−1)> d vec(Rt) +
1

2

(
ν +N

ν + x>t R
−1
t xt

)
x>t R

−1
t (dRt)R

−1
t xt

= −1

2

(
vec(Rt)

−1)> d vec(Rt) +
1

2

(
ν +N

ν + x>t R
−1
t xt

x>t R
−1
t ⊗R−1t xt

)>
d vec(Rt)

=

(
−1

2

(
vec(Rt)

−1)> +
1

2

(
ν +N

ν + x>t R
−1
t xt

vec
(
R−1t xtx

>
t R

−1
t

))>)
d vec(Rt), (A.7)

and hence

∂ log cStud,t(xt;Rt, νC)

∂ vec(Rt)>
= −1

2

(
vec(Rt)

−1)> +
1

2

(
ν +N

ν + x>t R
−1
t xt

vec
(
R−1t xtx

>
t R

−1
t

))>
.

(A.8)

For the Gaussian case, we let νC →∞ and obtain

d logcGaus,t(xt;Rt, ψC) =

(
−1

2

(
vec(Rt)

−1)> +
1

2
vec
(
R−1t xtx

>
t R

−1
t

)>)
d vec(Rt), (A.9)

such that

∂ log cGaus,t(xt;Rt, ψC)

∂ vec(Rt)>
= −1

2

(
vec(Rt)

−1)> +
1

2
vec
(
R−1t xtx

>
t R

−1
t

)>
. (A.10)

For the second factor in (A.6) we obtain

d vec(Rt) = d vec(L̃
>
t L̃t +Dt) = (IN2 +KN)

(
IN ⊗ L̃

>
t

)
d vec(L̃t) + d vec(Dt), (A.11)

where KN is the commutation matrix, i.e., vec(A) = KN vec(A>) for a general N ×N matrix

A. As a result, we obtain

∂ vec(Rt)

∂ vec(Lt)>
= (IN2 +KN)

(
IN ⊗ L̃

>
t

)
· ∂ vec(L̃t)

∂ vec(Lt)>
+
∂ vec(Dt)

∂ vec(Lt)>
. (A.12)
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Let SD be an N2 × N selection matrix, such that for a diagonal N × N matrix A with the

N × 1 vector a on the diagonal we have vec(A) = SD · a. Then

∂ vec(Dt)

∂ vec(Lt)>
= SD

∂diag(Dt)

∂ vec(Lt)>
= −2SD D2



λ>1,t 0 · · · 0

0 λ>2,t · · · 0

...
. . .

...

0 0 · · · λ>N,t


, (A.13)

where diag(A) ∈ RN×1 holds the diagonal elements of the N × N matrix A. Similarly, we

obtain

∂ vec(L̃t)

∂ vec(Lt)>
=


Q1,t · · · 0

...
. . .

...

0 · · · QN,t

 , Qi,t =
Ik

(1− λ>i,tλi,t)1/2
−

λi,tλ
>
i,t

(1− λ>i,tλi,t)3/2
, (A.14)

for i = 1, . . . , N . Note due to the special structure in (A.14), we have that

(
IN ⊗ L̃

>
t

) ∂ vec(L̃t)

∂ vec(Lt)>
=


L̃
>
t Q1,t · · · 0

...
. . .

...

0 · · · L̃>t QN,t

 . (A.15)

We now turn to the last factor in (A.6) for the factor models considered in this paper.

A.2 1-Equi-Factor

In the 1-Factor equi-copula, we have Lt = λtι
>
N and λt = (λt) ∈ R1×1. We then have

∂ vec(Lt)

∂λ>t
= ιN . (A.16)

The result is now obtained by combining (A.16) above, (A.6), (A.8) or (A.10), and (A.12)–

(A.15).
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A.3 1-Factor model with heterogeneous loadings

In this case we have λt = (λt,1, λt,2 . . . , λt,G)> ∈ RG×1 and Lt = λ>t (Sgr1 )> with

Sgr1 =


ιN1 · · · 0

...
. . .

...

0 · · · ιNG

 ∈ RN×G, (A.17)

where Ng for g = 1, . . . , G is the number of firms in group g. We then have

∂ vec(Lt)

∂λ>t
=
∂ vec

(
λ>t (Sgr1 )>

)
∂λ>t

= Sgrt
∂ vec(λ>t )

∂λ>t
= Sgrt

∂ vec(λt)

∂λ>t
= Sgrt . (A.18)

A.4 2-factor model

The 2F model consists of an equi-loading vector, and a set of heterogeneous loadings. In this

case we have λt = (λt,0, λt,1, λt,2, . . . , λt,G)> ∈ R(G+1)×1. Let δi,j be the kronecker delta, i.e.,

δi,j = 1 if i = j and zero otherwise. Also define

S2f
i =


δ0,iιN1 δ1,iιN1

...
...

δ0,iιNG δG,iιNG

 ∈ RN×2. (A.19)

Then

Lt =
G∑
i=0

λt,i · (S2f
i )>, (A.20)

and

∂ vec(Lt)

∂λ>t
=
(

vec
(
(S2f

0 )>
)
, vec

(
(S2f

1 )>
)
, . . . , vec

(
(S2f

G )>
) )
∈ R2N×(G+1). (A.21)
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A.5 MF model

The MF model consists of two types of factors: an equi-factor, and G industry factors, each

with a group-specific loading. In this case we have λt = (λt,0, λt,1, λt,2, . . . , λt,G)> ∈ R(G+1)×1.

Define

Smfi =


δ0,iιN1 δ1,iιN1 · · · 0

...
...

. . .
...

δ0,iιNG 0 · · · δG,iιNG

 ∈ RN×(G+1). (A.22)

Then

Lt =
G∑
i=0

λt,i · (Smfi )>, (A.23)

and

∂ vec(Lt)

∂λ>t
=
(

vec
(
(Smf0 )>

)
, vec

(
(Smf1 )>

)
, . . . , vec

(
(SmfG )>

) )
∈ R(G+1)N×(G+1).

(A.24)

A.6 MF LT model

For the MF LT model, we have λt = (λt,1, λt,2, . . . , λt,G(G+1)/2)
> ∈ RG(G+1)/2×1. Also define

Slti =



δ1,iιN1 0 · · · 0

δ2,iιN2 δ3,iιN2 · · · 0

...
...

. . .
...

δ 1
2
G(G−1)+1,iιNG δ 1

2
G(G−1)+2,iιNG · · · δ 1

2
G(G+1),iιNG


∈ RN×G. (A.25)

Then

Lt =

G(G+1)/2∑
i=1

λt,i · (Slti )>, (A.26)
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and

∂ vec(Lt)

∂λ>t
=
(

vec
(
(Slt1 )>

)
, vec

(
(Slt2 )>

)
, . . . , vec

(
(Slt1

2
G(G+1)

)>
) )
∈ RGN× 1

2
G(G+1).

(A.27)
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B Sample composition

B.1 Sample composition

Table B.1: Selected S&P500 constituents
This table lists ticker symbols of the 100 stocks in our dataset. All stocks are included in the S&P 500 index.
Tickers are grouped per industry.

Ind Nr. Industry # Comp. Tickers
1 Capital Goods 10 AA,BA,CAT,HON,F,NOC,UTX,A,IR,GD
2 Financials 19 AXP,JPM,AIG,BAC,C,KEY,MTB,COF,USB,

BBT,STI,WFC,GS,MS,MMC,HIG,PNC,
XL,MCO

3 Energy 12 GE,XOM,BHI,MUR,SLB,CVX,HAL,OXY,
APC,SU,CNX,PXD

4 Consumer Services 14 HD,MCD,WMT,TGT,BXP,DIS,JCP,NLY,
ANF,EQR,WY,RCL,WSM,TV

5 Consumer Non-Durables 9 KO,MO,SYY,PEP,CL,AVP,GIS,CPB,EL
6 Health Care 11 PFE,ABT,BAX,JNJ,LLY,THC,MMM,MRK,BMY,

MDT,CI
7 Public Utilities 7 AEP,AEE,DUK,SO,WMB,VZ,EXC
8 Technology 5 IBM,DOV,HPQ,TSM,CSC
9 Basic Industries 9 PG,DD,FLR,DOW,AES,IP,ATI,LPX,POT
10 Transportation 4 LUV,UPS,NSC,FDX

B.2 Full simulation results

This supplementary appendix presents the full details of the three Monte Carlo experiments

from Section 3.

In the first experiment, we simulate N = 100 dimensional time series of length T = 1, 000

with G = 10 equally sized groups holding N/G = 10 individual cross-sectional units each.

These sizes roughly correspond to the data dimensions in our empirical application.
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As our data-generating process (DGP), we take the Multi-Factor copula

xi,t =
√
ζt

(
λ̃
>
i,tzt + σi,tεi,t

)
, (B.1)

L̃t =


λ̃eq1,t λ̃gr,f2,1,t · · · 0

...
...

. . .
...

λ̃eq1,t 0 · · · λ̃gr,f2,G,t

⊗ ιN/G
λeq1,t+1 = ωeq + Aeq seqt +B λeq1,t, (B.2)

λgr,f2,g,t+1 = ωgr,fg + Agr,f sgr,fg,t +B λgr,f2,g,t, g = 1, . . . , G, (B.3)

with ⊗ denoting the Kronecker product, and where zt ∼ N(0, IG+2), εi,t ∼ N(0, 1), and

ζt ∼ Inv-Gamma
(
1
2
νC ,

1
2
νC
)
, where the mapping from λt to λ̃t is given in (3). The expressions

for the scores seqt and sgr,fg,t can be found in Supplementary Appendix A.

The Multi-Factor copula model has two different types of factor loadings, each with its own

score-driven dynamics: one λeq1,t for the common equi-factor, and G different λgr,f2,g,ts for each of

the group-specific factors. Each of these 11 loadings has its own intercept. We use a pooled

persistence parameter B common to all factor loadings, and type-specific score parameters

Aeq and Agr,f .

Guided by the empirical application, we set ωeq = 0.07 and let ωg be equally spaced on

the interval [0.01 , 0.07]. For the Gaussian copulas, we set Aeq = 0.0085 and Agr,f = 0.0095,

while for the t-copula these parameters equal 0.015 and 0.01, respectively. For the copula’s

tail behavior, we use νC ∈ {35,∞}, where νC →∞ corresponds to the Gaussian factor copula.

Finally, in line with our empirical results later on we set B = 0.87 for normally distributed

factors (νC →∞) and B = 0.92 for the Student’s t case (νC = 35).

Table B.2 presents the results based on 1,000 replications. All parameters are estimated

near their true values. The standard deviations decrease in T . We also observe that the mean

of the estimated standard error over all simulation runs matches closely the Monte-Carlo stan-

dard error of the estimates, indicating that computed standard errors fairly reflect estimation

uncertainty. Overall, we conclude that the parameters of the Gaussian and Student’s t factor
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copulas with score-driven dynamic factor loadings can be accurately estimated if the model is

correctly specified.

In the second Monte Carlo experiment, we investigate the two-step approach of estimating

the copula parameters of the Multi-Factor LT model. For this study, we simulate 1,000 time-

series of length T = 1, 000 and dimension N = 100 with G = 10 equally sized groups holding

N/G = 10 assets using the MF-LT model with Normal and Student’s t(35) distributed errors.

Based on empirical parameter estimates, we set A and B equal to 0.015 and 0.97 respectively

and allow for (10 × 11)/2 = 55 different ω parameters, ranging from -0.10 to 0.9. Table

B.3 presents the results based on 1,000 replications. The Monte Carlo averages of almost all

parameters again lie close to their true values. Note that the standard deviations of moment-

based estimators for ω are considerably higher than the standard errors of the ML estimators

for A,B, and νC . Using the two-step estimator thus implies a huge computational gain, but

at the cost of some efficiency loss. The average estimated standard errors for A, B for the

MF-LT N and for the MF-LT t model again lie close to their Monte-Carlo counterparts, such

that standard errors correctly reflect the estimation uncertainty. We further note that the

assumed distribution does not have a large impact on the moment estimator of ω.
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Table B.2: Monte Carlo results of parameter estimates of the Multi-Factor-Copula
This table provides Monte Carlo results of parameter estimates using the multi-factor (MF) Gaussian and
t-copula model as given in (B.1)–(B.3). B(N) and B(t) denote the value of B in case of the Gaussian (N) and
Student’s t (t) factor copula model, respectively. The table reports the mean and standard deviation of the
estimated coefficients, as well as the mean of the computed standard error. Results are based on 1,000 Monte
Carlo replications.

Panel A: T = 500
MF N MF t

Coef. True mean std mean(s.e.) mean std mean(s.e.)
ωeq 0.0700 0.0761 0.0145 0.0159 0.0752 0.0121 0.0127

ω1 0.0100 0.0094 0.0074 0.0097 0.0097 0.0050 0.0051
ω2 0.0167 0.0172 0.0073 0.0076 0.0179 0.0044 0.0042
ω3 0.0233 0.0251 0.0070 0.0073 0.0250 0.0049 0.0049
ω4 0.0300 0.0326 0.0076 0.0081 0.0323 0.0060 0.0059
ω5 0.0367 0.0400 0.0090 0.0093 0.0395 0.0068 0.0070
ω6 0.0433 0.0471 0.0097 0.0106 0.0468 0.0079 0.0081
ω7 0.0500 0.0542 0.0108 0.0120 0.0540 0.0088 0.0092
ω8 0.0567 0.0617 0.0125 0.0134 0.0612 0.0100 0.0104
ω9 0.0633 0.0691 0.0135 0.0149 0.0684 0.0111 0.0115
ω10 0.0700 0.0763 0.0150 0.0162 0.0755 0.0121 0.0127

Aeq(N) 0.0085 0.0085 0.0012 0.0011
Agr,f (N) 0.0095 0.0089 0.0027 0.0025
Aeq(t) 0.0150 0.0146 0.0027 0.0026
Agr,f (t) 0.0100 0.0090 0.0025 0.0023

B(N) 0.8700 0.8584 0.0269 0.0296
B(t) 0.9200 0.9136 0.0137 0.0144
νC 35.000 35.445 2.828 2.702

Panel B: T = 1000
ωeq 0.0700 0.0739 0.0119 0.0134 0.0744 0.0115 0.0112

ω1 0.0100 0.0094 0.0058 0.0068 0.0104 0.0033 0.0032
ω2 0.0167 0.0173 0.0050 0.0054 0.0176 0.0036 0.0033
ω3 0.0233 0.0246 0.0051 0.0057 0.0248 0.0043 0.0042
ω4 0.0300 0.0314 0.0059 0.0065 0.0319 0.0052 0.0052
ω5 0.0367 0.0387 0.0069 0.0077 0.0389 0.0063 0.0061
ω6 0.0433 0.0458 0.0078 0.0088 0.0461 0.0073 0.0071
ω7 0.0500 0.0529 0.0088 0.0100 0.0531 0.0084 0.0081
ω8 0.0567 0.0599 0.0100 0.0112 0.0602 0.0094 0.0091
ω9 0.0633 0.0667 0.0110 0.0123 0.0673 0.0103 0.0101
ω10 0.0700 0.0738 0.0121 0.0136 0.0744 0.0115 0.0112

Aeq(N) 0.0085 0.0085 0.0009 0.0008
Agr,f (N) 0.0095 0.0093 0.0018 0.0018
Aeq(t) 0.0150 0.0149 0.0020 0.0019
Agr,f (t) 0.0100 0.0096 0.0016 0.0016

B(N) 0.8700 0.8626 0.0221 0.0248
B(t) 0.9200 0.9149 0.0129 0.0126
νC 35.00 35.1760 1.8629 1.8821
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Table B.3: Monte Carlo results of parameter estimates of the MF-LT model
This table provides Monte Carlo results of parameter estimates using the multi-factor (MF) LT Gaussian and
t-copula model with a loading matrix given in (6). The table reports the mean and standard deviation based
on 1,000 Monte Carlo replications. Since we have 55 different values of ω, we only report ω1, ω4, . . . , ω55 in
addition to A, B and νC .

MF-LT N MF-LT t
Coef. True mean std mean std
ω1 0.893 0.884 0.0530 0.886 0.0539
ω4 0.621 0.606 0.0538 0.607 0.0541
ω7 0.560 0.550 0.0526 0.551 0.0511
ω10 0.845 0.832 0.0524 0.830 0.0529
ω13 0.187 0.185 0.0485 0.186 0.0495
ω16 0.146 0.144 0.0491 0.149 0.0490
ω19 0.119 0.122 0.0478 0.127 0.0487
ω22 0.009 0.012 0.0473 0.013 0.0475
ω25 0.003 0.007 0.0492 0.005 0.0477
ω28 0.310 0.385 0.0434 0.384 0.0397
ω31 0.163 0.127 0.0508 0.127 0.0511
ω34 0.156 0.119 0.0483 0.123 0.0475
ω37 0.250 0.229 0.0477 0.230 0.0479
ω40 0.026 0.041 0.0466 0.042 0.0458
ω43 0.011 0.011 0.0453 0.007 0.0479
ω46 0.591 0.626 0.0447 0.622 0.0435
ω49 -0.020 -0.009 0.0466 -0.008 0.0457
ω52 0.016 0.017 0.0491 0.018 0.0493
ω55 0.347 0.504 0.0436 0.497 0.0431

A 0.015 0.016 0.0006 0.016 0.0007
B 0.970 0.970 0.0025 0.970 0.0024
νC 30.00 35.06 1.862
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C Recap of benchmark MGARCH models

In this appendix we give a brief recap of the MGARCH benchmark models we use, in particular

the cDCC model (Engle, 2002) (with the correction of Aielli (2013)) and the (Block) DECO

model of Engle and Kelly (2012) in high dimensions. To maintain a fair comparison between

both classes of models, we also cast the MGARCH models into a copula framework. Hence the

innovations in these models are xi,t = P−1(ui,t), with ui,t estimated in a first step by the same

marginals, and P−1( · ) the inverse marginal CDF corresponding to the copula specification at

hand.

The cDCC model is given by

Qt+1 = Ω + AQ∗txtx
>
t Q

∗
t +BQt (C.1)

RcDCC
t = Q∗−1t QtQ

∗−1
t

with Q∗t a diagonal matrix with entries qii,t, A and B scalars and Ω a N × N matrix. The

DECO model assumes that the dependence between all assets is the same (equi-dependence)

and takes the average of all pairwise DCC correlations:

RDECO
t = ρtJN×N + (1− ρt)IN (C.2)

ρt =
1

N(N − 1)
(ι>RcDCC

t ι−N) (C.3)

where JN×N denotes a N ×N matrix of ones. As noted earlier, the DECO model corresponds

to a one-factor model, though the DECO and score-driven dynamics are different.

A third variant is the Block DECO model that allows for different intra-block correlations

ρg,g, and inter-block correlations ρg,h with g 6= h. Similar to the multi-factor models, the size
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of each block may differ. The Block DECO correlation matrix is defined as

RBL−DECO
t =


(1− ρ1,1,t)In1 · · · 0

...
. . .

...

0 · · · (1− ρG,G,t)InG



+


ρ1,1,tJn1×n1 · · · ρ1,G,tJn1×nG

...
. . .

...

ρ1,G,tJnG×n1 · · · ρG,G,tJnG×nG

 . (C.4)

The Block DECO model allows for G distinct within-group correlations ρg,g,t, g = 1, . . . , G as

well as for G(G− 1)/2 unique (off-diagonal) between-group correlations ρg,h,t for g 6= h. The

dynamic correlations are computed as

ρg,g,t =
1

ng(ng − 1)

∑
i∈g,j∈g,i6=j

qi,j,t√
qi,i,tqj,j,t

, (C.5)

ρg,h,t =
1

ngnh

∑
i∈g,j∈h

qi,j,t√
qi,i,tqj,j,t

, g 6= h, (C.6)

where qi,j,t is the i, j-th element of the matrix Qt from the cDCC model in (C.1). Put differ-

ently, the correlations of the Block DECO model are obtained by averaging all DCC correla-

tions within each block.

Similar to the multi-factor dynamic copula models, the Block DECO model allows for

different within-group and between-group correlations. This model comes with the additional

flexibility: via the matrix Ω each between-group correlation has its own intercept, while in

the factor copula approach the between-group correlations are spanned by a smaller set of

parameters. This flexibility comes at two important costs. First, it is hard to impose ex-

ante that the dynamic correlations from the Block DECO give rise to a positive definite

correlation matrix. Though in practice a maximum likelihood type approach will steer the

parameters away from a region where the predicted dependence matrix is indefinite, this is

not guaranteed by the structure of the model. By contrast, the factor copula models with
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score-driven dynamics automatically ensure a positive semi-definite correlation matrix at all

times, which is particularly relevant when using the model for forecasting. Second, the Block

DECO model averages DCC correlations, which means that it relies heavily on the A and B

parameters from the cDCC model and its unconditional N ×N intercept Ω.
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D Models for the marginals

In our main analysis, we use the univariate t-GAS volatility model of Creal et al. (2011,

2013) for the marginal distributions. That is, we assume a Student’s t distribution for the

individual returns yi,t with νi degrees of freedom with the following return and volatility

dynamics (omitting the i for the sake of exposition)

yt = φ0 +

p∑
j=1

φjyt−j + εt, εt ∼ t(0, ht, ν), (D.1)

ht+1 = ω + α (wtε
2
t − ht) + β ht, wt =

ν + 1

ν − 2 + ht
−1ε2t

, (D.2)

with ht the conditional variance at time t. This model updates the conditional variance by

the (scaled) score, i.e., the partial derivative of the log Student’s t density with respect to the

variance ht. We follow Creal et al. (2011, 2013) and scale the score by the inverse conditional

Fisher information matrix. The interpretation of the scaled score is highly intuitive in this

model: Large values of ε2t are downweighted by wt, since possible outliers (jumps) might not

only be attributed to an increase in variance, but also to the fat-tailed nature of the return

data. The estimation results for the marginal models are summarized in Table D.1.

Table D.1: Marginal distribution parameter estimates
This table reports summaries of the maximum likelihood parameter estimates of the t-GAS volatility models
in (D.1)-(D.2) for 100 daily time series of equity returns. The columns present the mean and quantiles of
the cross-sectional distribution of each parameter. Data are observed over the period January 2, 2001 until
December 31, 2014 (T = 3, 521 trading days).

Mean 5% 25% Med 75% 95%
φ0 0.027 -0.030 0.010 0.025 0.046 0.091
φ1 -0.009 -0.049 -0.027 -0.008 0.008 0.026
φ2 -0.012 -0.044 -0.028 -0.011 0.001 0.020
ω 0.025 0.009 0.014 0.021 0.029 0.060
α 0.091 0.062 0.077 0.088 0.104 0.129
β 0.991 0.983 0.988 0.992 0.995 0.998
ν 8.22 5.53 6.77 8.21 9.25 11.41

KS test for Student’s t dist of std. residuals
Number of rejections 5

As a robustness check, we also considered marginal distributions based on a GARCH model

D.1



with a skewed Student’s t distribution for the innovations. The specification of that model is

yt = φ0 +

p∑
j=1

φjyt−j + εt, εt ∼ St(0, ht, ν, λ), (D.3)

ht+1 = ω + α ε2t + β ht, (D.4)

where the pdf of the skewed Student’s t distribution of Hansen (1994) for a zero mean variable

zt = (yt − µt)/
√
ht with µt = Et−1[yt] is given by

f(zt;λ, ν) =

 bc
(
1 + 1

ν−2( bzt+a
1−λ )2

)− ν+1
2 if zt < −a

b

bc
(
1 + 1

ν−2( bzt+a
1+λ

)2
)− ν+1

2 if zt ≥ −a
b

(D.5)

with

a = 4λc
ν − 2

ν − 1
, b2 = 1 + 3λ2 − a2, and c =

Γ(ν+1
2

)√
π(ν − 2)Γ(ν

2
)

such that f(yt|µt, ht, ν, λ) = 1/htf(zt;λ, ν). Further, λ is the skewness parameter and ν again

represents the degrees of freedom. A (positive) negative value of λ indicates (positive) negative

skewness.

The results for these marginals are given in Table D.2 and result in qualitatively similar

conclusions as the main results in Table 4 (see Appendix E).
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Table D.2: Marginal distribution parameter estimates (skewed Student’s t distri-
bution)
This table reports summaries of the maximum likelihood parameter estimates of the GARCH skewed Student’s
t volatility models in (D.3)-(D.4) for 100 daily time series of equity returns. The columns present the mean
and quantiles of the cross-sectional distribution of each parameter. Data are observed over the period January
2, 2001 until December 31, 2014 (T = 3, 521 trading days).

Mean 5% 25% Med 75% 95%
φ0 0.025 -0.026 0.008 0.022 0.041 0.095
φ1 -0.009 -0.051 -0.030 -0.007 0.009 0.025
φ1 -0.013 -0.043 -0.029 -0.013 -0.001 0.018
ω 0.026 0.008 0.014 0.021 0.029 0.064
α 0.067 0.043 0.055 0.063 0.079 0.098
β 0.924 0.887 0.909 0.928 0.939 0.950
ν 7.84 5.28 6.47 7.74 8.92 11.13
λ -0.011 -0.071 -0.037 -0.010 0.013 0.055

KS test for Student’s t dist of std. residuals
Number of rejections 2
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E Additional In-sample Factor Copula results

This appendix shows supplementary results our multi-factor Copula results with respect to

three issues: 1) the non-reported different ωi of our (multi-) factor copulas listed in Table 4,

2) parameter estimates of all factor models when the PITs are based on skewed Student’s t

GARCH model and 3) the sensitivity of MF-LT t model with respect to the different ordering

of the industries.

The intercepts reported in Table E.1 can be further interpreted. For instance, the in-

dustry intercepts of the MF model show that the within Financial and Energy correlations

are unconditionally much higher than for example within Capital Goods and Basic Industries

correlations. This holds for both the Gaussian and t copula models.

The second part of this appendix holds a robustness check with respect to the assumed

marginal distributions. As written in Appendix D, in our main analysis we use the univariate

t-GAS volatility model of Creal et al. (2011, 2013) for the marginal distributions. In the same

appendix, we also presented the results for skewed Student’s t GARCH marginals. Table E.2

contains the results for all Factor and MGARCH Copula models if the PITs of the skewed t

GARCH marginals are used in the copula analysis. The results confirm the analysis of the

main text, and the statistical ordering of the different copula specifications.

The third part of this appendix contains a robustness check with respect to the ordering

of the industries when estimating the MF-LT model. We re-estimated the MF-LT t model for

50 different random orderings to investigate the model’s sensitivity to this. Table E.3 presents

the average, minimum and maximum values of the estimates of A, B, and ν, as well as the

log-likelihood value.

We find that the estimated parameters are very stable with respect to the ordering chosen.

There appears some limited variation (< 1%) in the maximized log-likelihood value, such that

some further small gains in likelihood might be possible by optimizing over the ordering of

the industries.

To conclude, Figure E.1 shows the fitted within and between dependencies of Capital
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Table E.1: Intercept parameter estimates of (multi-) Factor Copula models
This table reports the maximum likelihood parameter estimation results of intercepts ωi for the 1F-Group,
2F and MF copula models listed in Table 4. The different intercepts correspond to the Capital Goods,
Finance, Energy, Consumer Services, Consumer Non-Durables, Health Care, Public Utilities, Technology,
Basic Industries, and Transportation industries respectively. We also list again the estimated B parameter.
Panel A (B) corresponds with the Gaussian (t) copula likelihood. Data are observed over the period January
2, 2001 until December 31, 2014 (T = 3, 521 trading days).

1F-Group 2F MF
Parameter ω̂g s.e. ω̂g s.e. ω̂g s.e.

Panel A: Gaussian factor copulas
ωeq 0.047 (0.005) 0.042 (0.005)

ωCapGoods 0.025 (0.005) 0.026 (0.004) 0.011 (0.001)
ωFin 0.030 (0.006) 0.054 (0.002) 0.056 (0.008)
ωEnergy 0.020 (0.005) 0.011 (0.003) 0.055 (0.007)
ωConsSer 0.020 (0.004) 0.017 (0.007) 0.021 (0.003)
ωConsNon−Dur 0.016 (0.004) 0.013 (0.005) 0.033 (0.005)
ωHealth 0.018 (0.004) 0.005 (0.007) 0.029 (0.004)
ωPublUtil 0.017 (0.004) 0.012 (0.003) 0.041 (0.005)
ωTech 0.023 (0.005) 0.011 (0.002) 0.021 (0.003)
ωBasicInd 0.022 (0.005) 0.009 (0.009) 0.008 (0.001)
ωTransport 0.024 (0.005) 0.014 (0.005) 0.038 (0.006)

B 0.970 (0.006) 0.941 (0.004) 0.930 (0.009)

Panel B: t factor copulas
ωeq 0.004 (0.002) 0.033 (0.002)

ωCapGoods 0.012 (0.001) 0.002 (0.001) 0.015 (0.001)
ωFin 0.014 (0.002) 0.006 (0.002) 0.034 (0.002)
ωEnergy 0.010 (0.001) -0.001 (0.001) 0.033 (0.002)
ωConsSer 0.009 (0.001) 0.002 (0.001) 0.011 (0.001)
ωConsNon−Dur 0.008 (0.001) 0.001 (0.001) 0.018 (0.001)
ωHealth 0.009 (0.001) 0.002 (0.001) 0.017 (0.001)
ωPublUtil 0.008 (0.001) 0.000 (0.000) 0.026 (0.001)
ωTech 0.011 (0.001) 0.003 (0.001) 0.012 (0.001)
ωBasicInd 0.010 (0.001) 0.002 (0.001) 0.008 (0.001)
ωTransport 0.011 (0.001) 0.003 (0.001) 0.020 (0.001)

B 0.986 (0.001) 0.993 (0.002) 0.957 (0.002)

Goods, Financials and Health companies according to our empirical specification against a

randomly chosen order. Again, the differences are hardly noticeable. We conclude that the

ordering of the groups does not materially affect our results.
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Table E.2: Parameter estimates of the full sample based on skewed Student’s t
errors
This table reports maximum likelihood parameter estimates of various factor copula models, the (block)
DECO model of Engle and Kelly (2012) and the cDCC model of Engle (2002), applied to daily equity returns
of 100 assets listed at the S&P 500 index. The marginals are modeled assuming a skewed t GARCH model.
We consider five different factor copula models, see Table 1 for the definition of their abbreviations. Panel
A.1 presents the factor models with a Gaussian copula density, Panel A.2 presents the parameter estimates
corresponding with the t-factor copula. Panel B.1 and B.2 present the estimates of the MGARCH class of
models. In case of the cDCC and Block DECO models, the table shows parameters estimates obtained by the
Composite Likelihood (CL) method. Standard errors are provided in parenthesis and based on the (sandwich)
robust covariance matrix estimator. We report the copula log-likelihood,the Akaike Information Criteria (AIC)
as well as the number of estimated parameters for all models. The sample comprises daily returns from January
2, 2001 until December 31, 2014 (3,521 observations).

Model ωeq Aeq Aind Agr B ν LogL AIC ] para

Panel A.1: Gaussian factor copulas
1F-Equi 0.018 0.005 0.973 66,055 -132,105 3

(0.002) (0.000) (0.003)
1F-Group 0.007 0.969 68,221 -136,419 12

(0.001) (0.009)
2F 0.058 0.006 0.008 0.913 73,380 -146,733 14

(0.007) (0.000) (0.001) (0.010)
MF 0.080 0.007 0.005 0.896 82,329 -164,630 14

(0.004) (0.000) (0.001) (0.005)
MF-LT 0.009 0.962 83,401 -166,688 57

(0.001) (0.006)

Panel A.2: t-factor copulas
1F-Equi 0.060 0.012 0.920 34.39 69,790 -139,571 4

(0.010) (0.001) (0.013) (1.29)
1F-Group 0.004 0.986 30.12 72,420 -144,815 13

(0.000) (0.000) (0.99)
2F 0.035 0.011 0.011 0.946 36.80 76,607 -153,184 15

(0.004) (0.001) (0.001) (0.005) (1.52)
MF 0.070 0.014 0.010 0.909 42.83 84,804 -169,578 15

(0.002) (0.001) (0.001) (0.003) (1.48)
MF-LT 0.004 0.991 34.30 86,603 -173,091 58

(0.000) (0.002) (1.24)

Panel B.1: Gaussian copula-MGARCH models
cDCC (CL) 0.017 0.967 76,210 -142,515 4,952

(0.001) (0.003)
DECO 0.031 0.957 65,034 -120,165 4,952

(0.003) (0.005)
Block DECO 0.030 0.956 83,306 -156,707 4,952

(0.002) (0.003)

Panel B.2: t copula-MGARCH models
cDCC (CL) 0.018 0.967 13.92 84356 -158,807 4,953

(0.001) (0.003) (0.56)
DECO 0.038 0.949 29.97 69630 -129,354 4,953

(0.003) (0.005) (1.13)
Block DECO 0.031 0.955 21.82 86,450 -162,995 4,953

(0.002) (0.003) (0.57)
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Table E.3: Estimated parameters of the MF-LT t model
This table contains summary statistics of the estimate parameters of a MF-LT t model with 50 different
random ordering of groups. We show the average, minimum and maximum values of the parameters and the
maximized log-likelihood over the 50 generated random orderings. The first row (current) corresponds with
the ordering used in the paper. Results are based on the full sample.

A B ν LogL
current 0.004 0.990 36.22 86,433

mean 0.005 0.990 36.35 86,463
min 0.004 0.988 35.82 86,314
max 0.006 0.992 36.79 86,551
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Figure E.1: Fitted dependencies of the MF-LT t model according to two different
orders
This figure shows within and between dependencies of Financials, Capital Goods and Energy according to the
MF-LT model. The red line is based on the group ordering used in the paper, while the blue line corresponds
with a randomly chosen group ordering. The sample spans the period from January 2, 2001 until December
31, 2014 (T = 3, 521 days).
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