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Abstract

We investigate covariance matrix estimation in vast-dimensional spaces

of 1,500 up to 2,000 stocks using fundamental factor models (FFMs).

FFMs are the typical benchmark in the asset management industry

and depart from the usual statistical factor models and the factor mod-

els with observed factors used in the statistical and finance literature.

Little is known about estimation risk in FFMs in high dimensions.

We investigate whether recent linear and non-linear shrinkage meth-

ods help to reduce the estimation risk in the asset return covariance

matrix. Our findings indicate that modest improvements are possi-

ble using high-dimensional shrinkage techniques. The gains, however,

are not realized using standard plug-in shrinkage parameters from the

literature, but require sample dependent tuning.

1 Introduction

Since the introduction of mean-variance portfolio optimization (Markowitz,

1952), estimating the covariance matrix of asset returns is one of the main

∗This research was performed while van Vlodrop was at APG Asset Management. We
thank Gerben de Zwart, Marco Della Seta, and Anne Opschoor for useful feedback.
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challenges in portfolio management. The task can be daunting, as the dimen-

sion of this covariance matrix is typically large in empirically relevant appli-

cations. For instance, a number of 1, 500 stocks or more is not exceptional

in a standard stock portfolio setting. Such large numbers of assets introduce

an estimation problem: the number of correlations needed for the covariance

matrix increases quadratically with the number of assets. The estimation

risk may become so overwhelming that simple diversification techniques that

avoid estimation altogether can perform better ex-post than ex-ante optimal

investment strategies based on estimated parameters; see for instance the

“naive 1/N” strategy of DeMiguel et al. (2007).

One approach to overcoming the estimation risk problem of the covariance

matrix in high dimensions is the use of factor models for asset returns. By

imposing a factor model structure, the number of parameters is of the order

of the number of assets times the number of factors. For a limited number

of factors compared to the number of assets, this results in sizable reduc-

tions of the parameter space. Factor models come in three different blends:

(1) models where factors are observed but factor loadings are not, such as

seminal papers by Fama and MacBeth (1973), Ross (1976), and many more;

(2) models where neither factors nor factor loadings are oberved, such as

seminal papers by for instance Connor and Korajczyk (1986), Brown (1989);

and (3) models where factor loadings are observed, but factors are not, such

as Menchero et al. (2008). Models of type (1) and (2) have been elaborately

discussed in the finance and statistics literature. Surprisingly, however, mod-

els of type (3) have received much less attention in the academic literature.

These models are also known as Fundamental Factor Models (FFMs). The

lack of attention to FFMs is the more surprising given that these models are

the typical benchmark used in the portfolio management industry for asset

allocation, risk attribution, etc.

In this paper, we fill this gap by studying the effect of estimation risk

on FFMs in more detail. In particular, we are interested in whether the

FFM’s structure itself already suffices for overcoming estimation risk prob-
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lems in high-dimensional covariance matrices, or whether additional tools

are required, such as statistical shrinkage techniques. Statistical shrinkage

relates to a set of techniques that tilt a standard estimator for the covariance

matrix to a target based on outside or prior information. In the presence of

estimation risk, such tilting typically improves upon the standard estimator.

Two popular methods advocated in the literature are linear and non-linear

shrinkage. Linear shrinkage methods are applied most often and have a clear

intuitive appeal. A linear shrinkage estimator for the covariance matrix is a

convex combination of a standard covariance matrix estimator that is sub-

ject to estimation risk, and a well-behaved shrinkage target. The shrinkage

target may take different forms, such as a covariance matrix with correla-

tions equal to zero, correlations equal to a single value (equi-correlation),

identical variances, etc. The weight assigned to the standard estimator and

the shrinkage target is controlled by the shrinkage coefficient. Methods for

optimally choosing the shrinkage coefficient in high dimensions have recently

been developed by for instance Ledoit and Wolf (2003, 2004b). The prac-

tical usefulness of these methods is that the optimal value of the shrinkage

coefficient can be estimated based on the sample of asset returns. In an

application of the method, Ledoit and Wolf (2004a) use an equicorrelation

target and find clear improvements over the sample covariance matrix in a

portfolio optimization context.

More recently, non-linear shrinkage methods have gained popularity, see

Engle et al. (2017); Lam et al. (2016); Ledoit and Wolf (2015, 2017a,b, 2018).

These methods succeed in inverting the asymptotic bias in the eigenvalue-

spectrum in large dimensions and long samples, i.e., so-called large (N, T )-

asymptotics. Non-linear shrinkage is computationally more demanding than

linear shrinkage, but comes with the advantage that one does not have to set

an explicit shrinkage target. To make non-linear shrinkage more accessible

for practitioners, Ledoit and Wolf (2017a) propose a computationally efficient

method to implement non-linear shrinkage.

It is as yet unknown how FFMs can benefit from recent statistical shrink-
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age methods, if at all. Given the benchmark status of FFMs in the industry,

the relevance of obtaining more insight into this questions is evident. In this

paper we therefore evaluate the usefulness of shrinkage methods after impos-

ing a factor structure on the covariance matrix. While the FFM provides a

dimension reduction with respect to the sample covariance matrix in terms

of the number of free parameters, the number of factors can still be relatively

large compared to the length of the time series. To illustrate this, we use

the set-up of the Barra GEM2 model, described in Menchero et al. (2008).1

When including country, industry, and style factors, the total number of fac-

tors can amount to up to 60. Combined with a typical estimation window

of five years of monthly data (60 observations), the challenge in terms of

estimation risk is evident.

To evaluate the accuracy of different covariance matrix estimators and

shrinkage techniques, we perform an out-of-sample analysis. Each month,

we use a rolling estimation period of five years to estimate the asset return

covariance matrix for each of the methods. We then compute the implied

minimum volatility portfolio and evaluate the one-month out-of-sample per-

formance of this portfolio for each of the methods considered.Our set-up

mimics the situation of institutional investors considering optimal portfolios

in a stock universe comparable in size to the MSCI World Index.

We find that the standard FFM without any shrinkage already shows a

good performance. The factor structure imposed already takes care of many

of the estimation risk challenges that are solved by shrinkage of the sample

covariance matrix elsewhere in the literature. Linear and non-linear shrink-

age techniques applied to the covariance matrix of the fundamental factor

returns even result in a worse performance during most periods in the sam-

ple: the bias in the fundamental factor returns’ covariance matrix induced by

shrinkage offsets any potential gains in reduced estimation risk. We find that

1We use a simplified version of this methodology, such that our results cannot be
interpreted as a statement on the performance of the Barra GEM2 model. Instead, we only
use GEM2 as a typical example of a fundamental factor model to assess the performance
of these models in combination with or in comparison to shrinkage methods.
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the worse performance is caused by standard plug-in values for the shrinkage

coefficient. The analysis further indicates that the potential empirical gains

from shrinking the factor returns covariance matrix are quite limited, even if

the optimal bandwidth parameter could be found. A more promising route

for shrinkage in the FFM is to shrink the idiosyncrated covariance matrix

to a shrinkage target based on equal idiosyncratic variances. Also for this

approach, however, the gains are limited and not statistically significant. Al-

lowing for time variation in the underlying factor return covariance matrix or

the idiosyncratic covariance matrix does not alter our results. We conclude

that FFMs provide a good benchmark for overcoming estimation risk by im-

posing structure on asset returns. Recently proposed shrinkage estimators

appear to provide a good competitive alternative approach, but as yet do not

outperform the typical industry benchmark.

In a recent independent study Brito et al. (2018) also investigate shrinkage

in FFMs. Our set-up differs from their set-up in several important aspects.

In particular, we consider a vast dimension of 1,500 stocks or more, whereas

Brito et al. include a much smaller number of stocks of only 430. Our

numbers of substantially over 1,000 assets are much more in line with what

is needed empirically. Second, we follow the industry practice and base the

factor loadings on observed company characteristics. It is precisely in this

context that the question on the effectiveness of shrinkage techniques in vast-

dimensional FFM covariance matrices is most relevant.

The rest of this paper is organized as follows. Section 2 discusses in detail

the FFM and the ways to reduce estimation risk. In Section 3 we discuss the

data and the evaluation set-up. Section 4 presents the results, and Section 5

concludes.
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2 Estimating the covariance matrix

2.1 The fundamental factor risk model

Our objective is to model the N×N covariance matrix of excess stock returns

for N > 1, 500. Let Rt denote the N -dimensional vector of returns (in Euros),

and let rft denote a proxy for the euro area risk-free interest rate over the

same period. The fundamental factor model (FFM) for the excess returns

Rt − rft is specified as

Rt − rft = Xtft +XC
t f

C
t + ut, (1)

where the K-dimensional vector ft contains the (unobserved) factor returns

over period t, and Xt represents the N × K matrix of factor loadings as

observed at the start of the period. The N ×KC matrix XC
t and the KC × 1

vector fCt contain (dummy indicator) currency exposures and correspond-

ing observed currency returns, respectively. Finally, the K × 1 vector ut

represents the unobserved idiosyncratic part of the stock returns.

We consider the risk factors of the Barra GEM2 model of Menchero et al.

(2008), i.e. f ′t = [f 1
t
′ f 2

t
′ f 3

t
′], where f 1

t , f 2
t , and f 3

t represent the industry,

country, and style factor returns, respectively (see Menchero et al., 2008, for

more details). Note that unlike the standard factor model with observed

ft and unobserved Xt, or the statistical factor model with both ft and Xt

unobserved, the FFM hasXt as observed and ft as unobserved, comparable to

a second-pass regression of the Fama-MacBeth type (see Fama and MacBeth,

1973).

We obtain estimates of the factor returns f̂t from weighted least squares

estimation of

rt − rft = Xtft + ut, (2)

where rt represents the local stock returns, i.e. rt excludes the currency re-

turns, such that Rt = rt + XC
t f

C
t in (1).2 We estimate the common risk

2We use weighted least squares estimation since the idiosyncratic stock returns are
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factors f̂t for each time period t = 1, . . . , T , using cross-sectional regres-

sions.34 This provides us a time series of estimated factor returns f̂1, . . . , f̂T ,

and corresponding idiosyncratic returns û1, . . . , ûT .

We assume that the idiosyncratic returns ut are zero mean and indepen-

dent of the factor returns, both cross-sectionally and over time. The expres-

sion for the covariance matrix Σt of the excess Euro returns then follows

as

Σt ≡ cov(Rt − rft ) = [Xt X
C
t ] F [Xt X

C
t ]′ + U, (3)

where F represents the covariance matrix of the factor and currency returns,

i.e., of the vector [ft
′ fCt

′]′, and the diagonal matrix U collects the idiosyn-

cratic variances. Using the time series of estimated f̂1, . . . , f̂T and û1, . . . , ûT

together with the currency returns fC1 , . . . , f
C
T , we obtain the estimates F̂ and

Û .5 The covariance matrices F and U may be estimated by a sample covari-

ance matrix, an exponentially weighted moving average (EWMA) scheme, or

by any other method. The estimated covariance matrix Σ̂t of excess returns

then follows by plugging F̂ and Û into (3).

2.2 Estimation risk in the covariance matrix

The estimated covariance matrix Σ̂t based on (3) is subject to estimation

risk when F̂ and Û are estimated in finite samples. In particular, it might

heteroskedastic. We follow Menchero et al. (2008) and use marketcap1/4 for the weights.
This puts more weight on stocks with a larger market capitalization, which typically are
the stocks with a lower idiosyncratic volatility.

3For robustness purposes we truncate the local returns when performing weighted least
squares estimation in (2), similar to the methodology of Menchero et al. (2008). More
precisely, we calculate their standard deviation and then truncate these local returns at
three standard deviations from their mean return.

4Since the factor loadings for the industry and country factors are dummies and sum
up to one for each stock there is collinearity in Xt. To solve this issue, we follow Menchero
et al. (2008) and first calculate for each industry and country the total marketcap of stocks
belonging to it. Afterwards, we impose the restriction that the marketcap weighted sum
of industry as well as country factor returns equals zero.

5Note that F̂ estimates F using the estimated f̂1, . . . , f̂T rather than the (unobserved)
true f1, . . . , fT . Since our cross-sectional dimension is large, we appeal to a consistency
argument and argue that F̂ and Û are still consistent estimates of F and U , respectively.
Note that estimation error in f̂t and ût may have non-trivial effects on the inference.
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be difficult to precisely pin down the individual correlation terms in F̂ based

on a short sample. In total there are K∗ = K + KC factors including the

currency returns. This yields K∗(K∗ − 1)/2 correlations. For example, if

we take a typical industry standard of K∗ = 75 factors, the corresponding

number of correlations to be estimated is 2, 775. Furthermore, the diagonal

matrix Û typically contains around N = 1, 500 individual variances that also

need to be estimated. Given these numbers, it is clear that in finite samples

the F̂ and Û matrices are potentially subject to a considerable degree of

estimation risk. This estimation risk may subsequently spill over to Σ̂t. To

overcome estimation risk, we can use different shrinkage techniques, which

we discuss next.

2.2.1 Linear shrinkage

A common method to deal with estimation risk is to use a linear shrinkage

estimator. The concept of linear shrinkage is intuitive. Consider the sample

covariance matrix F̂ of the factor returns and a well-behaved shrinkage target

F̂ 0. The target F̂ 0 is misspecified, but subject to a lower degree of estimation

risk. For instance, F̂ 0 my put a number of elements equal to each other (such

as the correlations), or restrict elements to particular values (such as setting

the correlations to zero). The linear shrinkage estimator F̂ S is obtained as a

convex combination of the sample covariance matrix and the target,

F̂ S = (1− δ)F̂ + δF̂ 0, (4)

where δ ∈ [0, 1] represents the weight of the shrinkage target. It is quite

common for the “optimal” shrinkage estimator that 0 < δ < 1, i.e., we can

improve on F̂ by putting it closer to F̂ 0, see e.g. Ledoit and Wolf (2004a).

We propose several candidates for the shrinkage target F̂ 0. In our first

target choice, we specify a version with a parsimonious correlation structure

building on the Barra GEM2 FFM specification. In particular, we use a

target that sets the correlation between classes of risk factors to zero, and
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uses an equicorrelation structure within a given risk factor class. We have

F̂ 0 =


F̂ 0

1 0 0 0

0 F̂ 0
2 0 0

0 0 F̂ 0
3 0

0 0 0 F̂ 0
C

 , (5)

where F̂ 0
1 , F̂ 0

2 , F̂ 0
3 , and F̂ 0

C represent the shrinkage targets for the covariance

matrices of the industry, country, style, and currency factor returns, respec-

tively. Each of these matrices is based on an equicorrelation structure that

we obtain from the sample covariance matrices in a straightforward way. For

instance, if F̂1 is the sample covariance matrix of the industry factors, we

have

F̂ 0
1 = ∆̂

1/2
1

(
(1− ρ̂1)I + ρ̂1 ι ι

′
)

∆̂
1/2
1 ,

ρ̂1 =
(
ι′∆̂
−1/2
1 F̂1 ∆̂

−1/2
1 ι−K1

)
/
(
K1(K1 − 1)

)
,

where ∆̂1 is a diagonal matrix containing the diagonal of F̂1, K1 is the di-

mension of F1, I is an identity matrix, and ι is a vector of ones. This sets

the equicorrelation in F̂ 0
1 equal to the average correlation in F̂1.

As our second shrinkage target, we use an equicorrelation of zero, i.e.,

we set ρ̂i = 0 for i = 1, . . . , 4. Together, these two shrinkage targets reduce

estimation risk by shrinking the correlations within groups of factor returns

towards equal values (and to zero for the second version). The correlations

between factor returns from different groups are shrunk towards zero. Com-

bined, this reduces the effect of spurious correlation values observed in the

sample covariance matrix.

We also experiment with a shrinkage target for the diagonal matrix Û .

In particular, we specify the shrinkage target Û0 as a version with equal

idiosyncratic variances, i.e.,

Û0 = σ̄2IN (6)
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where σ̄2 equals the average idiosyncratic sample variance over the N stocks.

2.2.2 Setting the linear shrinkage parameter

The shrinkage intensity δ plays an important role in the analysis. If δ = 0

there is no shrinkage and also no potential gains. If δ = 1 the shrinkage is

dogmatic, however, the bias in the shrinkage target may be too large. In

principle, δ needs to shrink to zero as the sample size diverges to infinity.

This, however, provides little guidance in finite samples. To set δ, we follow

the asymptotic arguments derived in Ledoit and Wolf (2003, 2004b), who

minimize the expected Frobenius norm of the difference between the shrink-

age estimator and the true covariance matrix F . This optimal value of δ,

denoted as δ∗, is given by

δ∗ = argminδ∈[0,1]E
[
||(1− δ)F̂ + δF̂ 0 − F ||2

]
, (7)

where we assume that F is time-invariant. Similarly, for the idiosyncratic

variances we have

δ∗ = argminδ∈[0,1]E
[
||(1− δ)Û + δÛ0 − U ||2

]
. (8)

Ledoit and Wolf (2003, 2004b) show that we can consistently estimate the

optimal δ∗ for fixed N when T →∞, implementation details can be found in

in Appendix A. Since we only require in-sample information for the estimate

δ̂∗, this is a valid method in our out-of-sample evaluation of the different

shrinkage methods. Note, however, that our estimation samples are as small

as T = 60, whereas the number of stocks N is typically larger than 1,500.

This casts doubt on the applicability of arguments for the determination of δ

based on large T asymptotics. Therefore, the determination of δ is also part

of our analysis later on.
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2.2.3 Non-linear shrinkage

Recently important steps have been made in the literature that considers

non-linear shrinkage estimators. These estimators operate directly on the

eigenvalues of large covariance matrices, the so-called eigenvalue spectrum.

The underlying mathematics for non-linear shrinkage estimators originates

from the field of Random Matrix Theory; see the review in Ledoit and Wolf

(2017a). For large N and T , with N/T tending to a constant, the eigenvalue

spectrum converges to a highly specific curve, which causes a bias in correla-

tion matrix estimates in vast dimensions. Ledoit and Wolf (2017a) provides

a numerical solution to the inversion of this bias problem, which gives a way

to obtain consistent estimates in large dimensions. These were successfully

applied even in time-varying parameter cases such as the DCC model, see

Engle et al. (2017).

Numerically, the recent non-linear shrinkage estimators are as fast as the

linear shrinkage estimators. We therefore include these new techniques in our

comparison. We apply the non-linear shrinkage estimator of Ledoit and Wolf

(2017a) to the F̂ matrix in two ways. First, we use the non-linear shrinkage

estimator on the full F̂ matrix. Second, we apply it to the components F̂1,

F̂2, F̂3, and F̂C individually and then form a block diagonal matrix out of

the non-linearly shrunken components.

2.2.4 Robust time variation

As stock returns typically exhibit volatility clustering, we also consider a ro-

bustness analysis where we allow for time variation in the covariance matrices.

We note that for monthly data volatility clustering is much less pronounced

than for daily data. To track time-varying (co)variances, we consider a simple

exponentially weighted moving average (EWMA) scheme. Let f̄ represent

the sample average of the (estimated) factor returns over the estimation win-

dow, then the EWMA recursion for F̂t becomes

F̂t+1 = λF̂t + (1− λ)(f̂t − f̄)(f̂t − f̄)′, (9)

11



for t = 1, . . . , T , where f̂t − f̄ denotes the vector of estimated (de-meaned)

factor returns (including currency returns), and where 0 < λ < 1 denotes the

decay factor. Similarly, for the variances of the idiosyncratic returns σ̂2
i,t, we

follow a standard EWMA recursion as given by

σ̂2
i,t+1 = λσ̂2

i,t + (1− λ)û2
t , (10)

for i = 1, . . . , N and t = 1, . . . , T .6 Throughout this paper we treat λ as a

tuning parameter and set it to 0.97, which is the value typically used for a

monthly frequency of observations.

Although an EWMA scheme can capture the time variation in the co-

variances, it is also subject to more estimation risk. As λ decreases, the

end-of-sample covariance estimate puts more weight on a relatively small pro-

portion of recent observations. The question of whether the EWMA yields

better estimates is ultimately an empirical question. Therefore, we include

a comparison of equally weighting and EWMA weighting in the empirical

analysis later on.

Given the potential presence of outliers in stock returns, we also consider

robustified EWMA schemes for the idiosyncratic variances σ̂2
i,t. The stan-

dard EWMA recursion in (10) is prone to outliers. These potentially have a

substantial and long lasting impact on the estimated variance given the high

value of λ. To robustify the methodology against such effects, we consider

versions that are less sensitive to outliers. Our first robust time-varying ap-

proach uses the score-driven EWMA proposed in Lucas and Zhang (2016).7

Here, the update is based on a scaled version of the score of the standardized

Student’s t distribution, i.e.,

σ̂2
i,t+1 = λσ̂2

i,t + (1− λ)
τ + 1

τ − 2 + û2
t/σ̂

2
i,t

û2
t . (11)

6We initialize F̂1 and σ̂2
i,1 ∀i using their sample covariances over the estimation window,

i.e., F̂ and σ̂2
i .

7This EWMA scheme is based on the score-driven volatility models proposed in Creal
et al. (2011, 2013) and Harvey (2013).
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We treat the degrees of freedom parameter τ as a tuning parameter and fix

it at τ = 5, which is a typical empirical value for stock returns; see Lucas

and Zhang (2016)). Lower values of τ reduce the impact of outliers more

strongly. Note that for τ →∞ the EWMA scheme in (11) converges to the

standard EWMA in (10).

Our final EWMA scheme is the robust EWMA recursion of Guermat and

Harris (2002)

σ̂i,t+1 = λσ̂i,t + (1− λ)
√

2 |ût| , (12)

which is based on the robustified GARCH models of Taylor (1986) and Schw-

ert (1990). It considers the absolute values of the idiosyncratic returns, rather

than the squares, which makes it more robust to outliers. Unlike the score-

driven EWMA specification in (11), however, large values of ût can still have

an unbounded impact on σ̂2
i,t+1.

3 Data and methodology

3.1 Data

We observe monthly stock returns from May 1999 until August 2017, cov-

ering 29 countries and 3895 different stocks in total. All stocks have been

included in the MSCI World Index at least once during the sample period.

The factor loadings Xt are taken from the Barra GEM2 model, which is one

of the standard industry FFMs. See Menchero et al. (2008) for a detailed de-

scription regarding the construction of these factors. For each stock we have

the exposure with respect to industry, country, and style factors as measured

at the start of the month. We also observe the market capitalization for each

stock and its inclusion status in the MSCI World Index (at the beginning of

each month).

Given that our FFM also includes currency risk factors, we take the local

returns for each stock. The exchange rate returns fCt are taken against the

Euro for the Australian Dollar, the Canadian Dollar, the Swiss Franc, the
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Danish Krone, the British Pound, the Hong Kong Dollar, the Japanese Yen,

the Malaysian Ringgit, the Norwegian Krone, the New Zealand Dollar, the

Singapore Dollar, the Swedish Krona, and the US Dollar. Finally, our proxy

for the risk-free interest rate is the one-month Euro LIBOR rate.8

3.2 Methodology

To evaluate the effect of shrinkage and robust covariance matrix dynamics,

we use a standard rolling estimation window of T = 60 months to estimate

the parameters, apply shrinkage, and forecast the covariance matrix out-

of-sample for month T + 1. We do so for each of the competing methods.

For each method, we subsequently determine the global minimum volatility

portfolio weights ωMV implied by the forecast of the covariance matrix. The

weights ωMV follow from

ωMV = arg min
ω

ω′Σ̂ω, subject to
N∑
i=1

ωi = 1, (13)

which yields the analytical solution

ωMV = Σ̂−1ι / ι′Σ̂−1ι, (14)

where ι denotes a vector of ones. Our minimum volatility portfolios allow

for both long and short positions. When imposing further short-sale and

concentration constraints the analytical solution for ωMV is not available

anymore and numerical methods are required to obtain ωMV . Given our vast

dimension of Σ̂ the resulting computational burden is very high. Therefore,

we stick to the analytically tractable setting that allows for short positions.

These additional constraints would typically only narrow the gap between

the different methods.

The first (rolling) estimation window covers the period May 1999 until

8The exchange rates, LIBOR rates, market capitalizations, and the stock returns are
obtained from the IDC database.
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April 2004. We then compute the return of the minimum volatility portfolio

over May 2004 for the competing methods. Next, we shift the estimation

window one month forward and repeat the whole procedure until we reach

August 2017, which is the last month in our evaluation sample. The total

evaluation period covers 160 out-of-sample months for which we have the

returns of the minimum volatility portfolios. We evaluate the competing

methods by the realized volatility σ̂MV of these returns. A lower value of

σ̂MV indicates a better performance of the underlying method. Next to σ̂MV ,

we also consider the mean return µ̂MV and the Sharpe ratio

ŜMV = µ̂MV / σ̂MV . (15)

Although µ̂MV and ŜMV are unrelated to the minimum volatility objective

function underlying ωMV , these measures provide a useful complementary

perspective on the out-of-sample performance of the portfolio returns.

We also evaluate the properties of the minimum volatility portfolio weights

ωMV in more detail. First, we measure the effective number of stocks (ENS)

in the minimum volatility portfolio, defined as

ENS =

(
N∑
i=1

|ω̂i|

)2 / N∑
i=1

ω̂2
i . (16)

This is a standardized inverse Herfindahl-Hirschman index, where we stan-

dardize the portfolio weights ω̂i by
∑N

i=1 |ω̂i| to account for possible short

positions in a selection of the stocks. In general, a higher ENS value implies

a more diversified portfolio. As an alternate measure of riskiness, we also

consider the total short position (TSP ) for each portfolio, measured as

TSP = −
N∑
i=1

ω̂i · I{ω̂i < 0}, (17)

where I{ω̂i < 0} is 1 if ω̂i < 0, and zero else. For both measures we report

the averages over the 160 months in the evaluation period.
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Figure 1: Stock inclusion
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Notes: The figure displays for each month in the evaluation sample the number of stocks included in
the MSCI World Index together with the number of stocks included in our estimation window.

To mimic the set of stocks in the MSCI World Index as closely as possible,

for each estimation window we include in our sample those stocks that are

part of the MSCI World Index at the end of the last month and for which

we have 60 past return observations and one future return observation. The

latter results in a small look-ahead-bias. We do not expect this to affect our

conclusions in any material way. Furthermore, some stocks drop out since

they belong to industries or countries for which the factor returns are not

available. For a specific industry or country factor to be included, we require

at least five stocks in that category. Otherwise, there is not enough infor-

mation to obtain a sufficiently accurate estimate of the corresponding factor

return and the corresponding stocks are left out of the rolling estimation

sample.

Figure 1 compares the number of stocks in the MSCI World Index with

the number of stocks included in our estimation windows for the 160 out-

of-sample months. There is only a relatively small gap between the set of

stocks included in our estimation samples and those included in the MSCI

World Index, ranging from a reduction of 13% in the number of firms at

the start of the sample, to a low 6% towards the end of the sample. In any

case, there is no reason to expect sample selection issues that would put the
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Table 1: Included factors over the estimation windows

average minimum maximum

# country factors 21.73 20 23
# industry factors 33.86 32 34
# style factors 9.00 9 9
# exchange rates 11.80 11 12

# total 76.39 74 78

Notes: The table gives a summary of the number of included factors (per category) over the 160
estimation windows.

competing covariance estimation methods and shrinkage approaches on an

unequal footing in the empirical analysis in Section 4.

Table 1 summarizes the number of included factors over the 160 estima-

tion windows. The factors are split out over the four different categories,

namely country factors, industry factors, style factors, and exchange rates.

Factors may drop out during a particular period if there are not enough stocks

in a particular country or industry to obtain a sufficiently reliable estimate

of the fundamental factor return. As illustrated by Table 1, there is only a

minor variation over time in the set of included factors, again underlining

that sample selection issues do not play a major role in our analysis.

Our sample of stocks is based on the MSCI World Index, which con-

sists of stocks with a large market capitalization. For this reason we do not

find substantial outliers in the data, unlike a situation where micro-caps are

included in the sample. We find some large returns, positive as well as neg-

ative. The minimum return over the entire sample was around −87%, while

the maximum was around 264%. In most months, however, the returns were

between −50% and 100%, suggesting there will be no problems with outliers

or influential observations in our analysis.

3.3 Competing estimation and shrinkage methods

Our base case is the FFM with the factor return covariance matrix F and

idiosyncratic covariance matrix U estimated by their standard sample covari-

ance matrices. To account for the estimation uncertainty in these covariance
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matrices that make up the covariance matrix of asset returns, we consider

six alternatives where we shrink either the sample covariance matrix F̂ of

the fundamental factor returns or the sample idiosyncratic covariance ma-

trix Û . The first two methods use linear shrinkage of F̂ . First, we consider

the shrinkage target F̂ 0 as in (5) with equicorrelation within each group of

factor returns. The second shrinkage method goes one step further and uses

a target with zero correlations. Methods three and four use the non-linear

shrinkage of Ledoit and Wolf (2017a) rather than linear shrinkage. Method

three uses non-linear shrinkage on the full F̂ , whereas method four considers

non-linear shrinkage of the four components in (5) individually. Method five

is set up to check the relevance of the estimated correlations in the entire

composite covariance matrix Σ̂ of the FFM. It dogmatically shrinks Σ̂ to a

diagonal target Σ̂0 that has the same diagonal as Σ̂ by setting the off-diagonal

elements to zero. Finally, method six does not shrink the sample factor co-

variance matrix, but instead considers linear shrinkage on the idiosyncratic

variances to a target Û0 that has a common idiosyncratic variance equal to

the average idiosyncratic variance in the original Û .

Rather than shrinking the components F̂ and Û of the covariance ma-

trix Σ̂, we can also shrink the sample covariance matrix directly without

imposing the FFM structure. We do so in the next four methods. The first

and second of these shrink the sample covariance matrix of returns linearly

towards an equicorrelation and a zero-correlation target, respectively. Note

that the sample covariance matrix itself cannot be used for determining the

minimum variance portfolio, as the number of observations in the estimation

sample (T = 60) is much smaller than the number of assets (N > 1, 500).

This results in a non-unique solution to the optimization problem. Such

problems are avoided by the linear shrinkage techniques. We compute the

shrinkage constant for these two methods based on Ledoit and Wolf (2004a).

The third approach within this group uses the non-linear shrinkage method

of Ledoit and Wolf (2017a) on the sample covariance matrix. This, actually,

would be the most appealing as it avoids imposing the fundamental factor
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structure, while still eliminating the estimation bias of the full sample covari-

ance matrix. Good results with this approach were reported in Engle et al.

(2017). Our fourth method is a much more blunt benchmark, where we put

all off-diagonal elements of the sample covariance matrix to zero. It results

in an equal risk weighted portfolio when determining the minimum variance

portfolio.

The final two benchmarks that we include in our analysis do not build on

the estimated covariance matrix in any way, but use pre-determined portfolio

weights, namely market cap based weights, and equal weights. Particularly

the equal weigthing provides a naive, but typically rather strong benchmark

in the presence of estimation error; see DeMiguel et al. (2007).

4 Results

In this section we present the empirical results. We first discuss the out-of-

sample minimum variance portfolio performance using the different shrinkage

methods for the FFM. We then discuss the choice of the shrinkage constant.

Finally, we investigate the effect of allowing for time variation in the FFM’s

covariance matrix.

4.1 Shrinkage

Table 2 presents the results. We first focus on the FFM results. The stan-

dard FFM without any shrinkage already provides a strong benchmark in

that its minimum variance portfolio returns have the second lowest out-of-

sample standard deviation. Its average return is correspondingly lower, but

its Sharpe ratio is still in the top three. All shrinkage methods for the co-

variance matrix F̂ appear ineffective in lowering the out-of-sample minimum

variance portfolio standard deviation. This holds both for the linear and

non-linear shrinkage techniques, as well as for shrinkage targets with equicor-

relation, zero correlation, or with a block structure. The bias effect caused
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Table 2: Minimum volatility portfolio returns

Details Std. dev. Mean Sharpe ENS TSP

FFM- standard 8.00 8.83 1.10 692.88 1.57
FFM- shrinkage: equicorrelation 8.81 9.56 1.08 649.08 0.99
FFM- shrinkage: zerocorrelation 8.57 9.78 1.14 671.52 0.97

FFM- nonlin shrinkage: full F̂ 9.41 9.70 1.03 650.98 1.19

FFM- nonlin shrinkage: parts F̂ 8.93 9.04 1.01 711.14 1.13

FFM- diagonal Σ̂ 12.56 8.52 0.68 1160.83 0.00
FFM- shrinkage: idiosyncratic 7.67 8.79 1.15 841.88 1.43

Sample- shrinkage: equicorrelation 8.21 9.18 1.12 536.20 1.05
Sample- shrinkage: zerocorrelation 7.38 7.36 1.00 562.73 0.62

Sample- nonlin shrinkage: full Σ̂ 8.20 7.14 0.87 1005.33 0.56

Sample- diagonal Σ̂ 12.01 8.54 0.71 945.67 0.00

Benchmark- marketcap weighted 13.08 7.02 0.54 336.60 0.00
Benchmark- equally weighted 14.71 8.24 0.56 1564.96 0.00

Notes: The table displays the out-of-sample evaluations of the returns of the minimum volatility
portfolios obtained from the competing estimation methods. The evaluation period runs from May
2004 until August 2017 and consists of 160 months. Furthermore, Sharpe represents the estimated
Sharpe ratio, ENS the effective number of stocks, and TSP the total short position, see Section 3.2
for more details on these evaluation measures.

by shrinkage therefore seems to off-set any potential gains in estimation error

reduction when considering the estimation of F̂ .

The only effective shrinkage method for the FFM appears to be the shrink-

age of the idiosyncratic (diagonal) covariance matrix Û . Shrinkage of this

matrix to a matrix with equal idiosyncratic variances produces the lowest ex-

post standard deviation of 7.67 per cent. We note that given our relatively

short out-of-sample period, the standard errors for the standard deviations,

means, and Sharpe ratios in Table 2 are too high to make statements about

statistical significance of the differences between models. Still, it is interest-

ing to see that the estimation error in the idiosyncratic variances appears to

be substantial, and that shrinkage on these idiosyncratic variances improves

both the standard deviation and the Sharpe ratio. Interestingly, shrinking Û

results in a higher effective number of stocks (ENS) and a somewhat smaller

total short position (TSP) than the standard fundamental factor model. The

FFM with shrunken Û thus also appears to yield a slightly more balanced

and less leveraged minimum volatility portfolio.
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The importance of the correlations between stock returns implied by the

FFM structure is also evident from the return performance of the FFM with

diagonal Σ̂ shrinkage target. Here, we use the variances of the FFM, but

put all correlations in the shrinkage target to zero. This method is the worst

performer in the set of models considered. It even performs worse than

the diagonal counterpart of the sample covariance matrix (sample - diagonal

Σ̂). It thus appears important to include the estimated correlations in the

portfolio optimization, despite the estimation uncertainty caused by small

samples (60 months) and a large number of stocks (N > 1, 500).

If we abandon the FFM covariance structure and shrink the complete

sample covariance matrix Σ̂ directly, we see a number of interesting features.

First, the non-linear shrinkage techniques of Ledoit and Wolf (2015, 2017a)

when applied to Σ̂ appear less effective than a standard FFM, both in terms

of the ex-post standard deviation and Sharpe ratio. This holds despite the

number of effective stocks (ENS) in this portfolio being considerably higher

than in the standard FFM, and the total short position (TSP) being lower.

This performance is somewhat disappointing given the promising character

of non-linear shrinkage in vast dimensions. The linear shrinkage techniques

applied to the sample covariance matrix result in a comparable performance

of the minimum variance portfolio to the FFM based portfolios. Linear

shrinkage of the sample covariance matrix to a zero correlation shrinkage

target even appears to be the best performer in terms of ex-post minimum

standard deviation amongst all estimators considered. The method performs

somewhat less, however, in terms of Sharpe ratio and effective number of

stocks.

To conclude the discussion of Table 2, we note that both the market cap

weighted portfolio and the equally weighted portfolio have a substantially

higher out-of-sample standard deviation than any of the shrinkage estimation

techniques. Also the Sharpe ratios are correspondingly lower. It therefore

pays off in portfolio optimization to measure the variance of the stock returns

and account for their dependence structure in vast dimensions.
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Figure 2: Shrinkage intensities
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Notes: The left panel shows for a grid of fixed δ values the resulting volatility of the minimum
volatility portfolio. The right panel displays the estimated δ values based on the estimation window.

4.2 Linear shrinkage intensity

The linear shrinkage coefficient δ was determined for each estmation window

in the analysis in Section 4.1 using the methods of Ledoit and Wolf (2003,

2004b). The precise values of δ of course affects the relative performance of

the different methods. To shed some light on this sensitivity, we first compute

the out-of-sample performance of the minimum variance portfolio for a grid

of δ, whereby we fix δ to be constant over the estimation windows. We then

evaluate the ex-post standard deviation σ̂MV as a function of δ, and plot

the result in the left-hand panel of Figure 2. We use two (linear) shrinkage

targets, namely a factor covariance matrix with an equicorrelation and a zero

correlation assumption. We also include the shrinkage estimator with equal

idiosyncratic variances (Û = σ̄2I) into our comparison.

The left-hand panel in Figure 2 reveals that improvements over the stan-

dard FFM are possible for low shrinkage intensities towards an equi- or zero

correlation target. The gains are modest and of the order of 3% or less. More-

over, the gains are quickly lost and turn into losses for shrinkage intensities

δ above 0.2. Linear shrinkage towards a Û with equal variances, however,

is much more robust. Though the gains are only slighly larger than those
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of the equicorrelation and zero correlation shrinkage of F̂ , the gains appear

much less sensitive to the precise value of δ. Almost all gains are even still

realized for full shrinkage, i.e., an extreme value of δ = 1.

Given the sensitivity of the results to the coefficient δ, in particular for

shrinkage of F̂ , it is important to consider the plug-in values of the shrinkage

coefficient δ in the empirical results. The right-hand panel of Figure 2 plots

the estimated values of δ resulting from the estimation windows as a function

of time. We see that for both shrinkage targets of F̂ , the parameter δ is

estimated in the range 0.3 − 0.5 using the approach of Ledoit and Wolf

(2003). This explains why the linear shrinkage estimators of F̂ perform

poorly in Table 2. The plug-in estimator of δ looses (or actually reverses)

the possible shrinkage gains.9

Finally, the right-hand plot in Figure 2 also shows the plug-in value of δ

for the shrinkage target of Û with equal idiosyncratic variances. This value

of δ varies much more strongly over time. There is a clear peak directly after

the financial crisis, resulting in more shrinkage being imposed. As the gains

in terms of the minimum volatility portfolio performance σMV , however, is

much less sensitive to the precise value of δ, the strong time series variation

in δ in this case does not affect the fact that this shrinkage target realizes

the gains compared to the standard FFM as evidenced in Table 2.

4.3 Time variation

We now turn to the possibility of time variation in the factor covariance

matrix Ft and the idiosyncratic covariance matrix Ut. As our benchmark,

we take the standard FFM with time-invariant F and U . We consider three

settings. The settings differ in the way the idiosyncratic covariance matrix

Ut is made time-varying. We use the standard EWMA and the two robust

schemes of Section 2, respectively. All three settings use a standard EWMA

9Note that this estimator is specified to minimize the Frobenius norm in (7). This crite-
rion does not necessarily imply optimality with respect to the implied minimum volatility
portfolio weights.
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Table 3: Minimum volatility portfolio, time variation in F̂ and Û

time variation F̂t time variation Ût Std. dev. Mean Sharpe ENS TSP

none none 8.00 8.83 1.10 692.88 1.57

EWMA EWMA 8.04 8.88 1.10 694.20 1.58
EWMA student-t score 8.02 8.96 1.12 706.20 1.53
EWMA absolute returns 7.98 8.92 1.12 702.14 1.51

Notes: The table displays the out-of-sample evaluations of the returns of the minimum volatility
portfolios obtained from the competing EWMA schemes.

scheme to estimate Ft. Table 3 presents the results.

We conclude that allowing for time variation in our setting does not have

a major impact. There are only mild changes in the minimum volatility re-

turn performance for the three methods considered compared to the standard

FFM setting. Also the portfolio weight measures ENS and TSP are hardly

effected. The exponential decay of the weights for the returns over the lim-

ited length of the estimation period of 60 months apparently does not yield

a more accurate covariance matrix estimate compared to the setting of using

equal weigths over the estimation sample, as is done for the standard FFM.

Note that this result is not at odds with the typical finding of volatility clus-

tering in stock return data. First, the return data are observed at a monthly

rather than a daily frequency, which already mitigates volatility clustering

effects. Second, the FFM’s structure already implies a time-varying covari-

ance matrix through the time variation in the factor loadings Xt. Finally,

the short rolling estimation sample of 60 months also mimics part of the

volatility clustering effects present at a lower frequency and therefore further

mitigates the potential gains of more complex methods such as EWMA, ro-

bust filters, or GARCH type models. The additional gains of time-varying

parameter models, therefore, appear less useful in the current setting.

4.4 Time series pattern of the minimum volatility

The preceding results in Table 2 provided the realized volatility σ̂MV of the

minimum volatility portfolio returns over the entire out-of-sample period. In
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Figure 3: Minimum variance portfolio performance over time
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Notes: The figure displays the locally estimated variance of the minimum volatility returns. These
are obtained through an EWMA scheme with decay parameter λ = 0.9.

Figure 3, we show the time series pattern of σ̂MV using a simple EWMA

smoothing scheme using a smoothing parameter λ = 0.9, which corresponds

to a half-life of 6 or 7 months.

The figure reveals a number of interesting features. First, the time se-

ries pattern in Figure 3 shows that the averaged results in Table 2 are not

limited to an isolated period, but actually persist over longer episodes. For

instance, the standard FFM has a stable low-volatility performance, only

improved by the shrinkage method with equal idiosyncratic variances. The

difference between the latter two is generally very small, except during the

great financial crisis and early 2012. Second, the linear shrinkage methods

often perform at par with the standard FFM, except in the run-up of the

great financial crisis. There, the omission in the shrinkage of the correlation

effects or their heterogeneity results in much higher ex-post variances. This

makes sense, as correlations typically increase over crisis periods. We also

find that introducing (robust) time variation only has a minor impact on

the minimum volatility portfolio variance, irrespective of the period. The

EWMA results are hardly distinguishable from the standard FFM. Finally,
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the non-linear shrinkage of the standard sample covariance matrix does not

appear to work well in the run-up towards the crisis. The ex-post minimum

volatility portfolio variances based on the non-linearly shrunken sample co-

variance matrix can be more than twice the size of its counterpart based on

the standard FFM. Only in 2005-2006 and in 2012, the non-linear shrinkage

method results in a better performance than the FFM. As these appear to be

rather low variance episodes, these gains do not seem to off-set the increased

variance effects during the turbulent crisis period.

5 Conclusion

In this paper, we focused on estimation risk and statistical shrinkage methods

in vast-dimensional fundamental factor models (FFMs). The FFM provides a

convenient framework to estimate a covariance matrix of equity returns, even

for a large number of stocks, and is the standard in the asset management

industry. In order to address the issues caused by having to estimate a vast

number of parameters based on a limited estimation sample, we considered

the potential gains from statistical shrinkage techniques in FFM covariance

matrices in an out-of-sample context. As our evaluation criterion we used

the ex-post volatility of the minimum volatility portfolio returns.

Using a large sample of stocks that mimics the MSCI World Index, we

found that the standard FFM already shows a good performance. Linear

and non-linear shrinkage techniques applied to the fundamental factor re-

turns covariance matrix resulted in a worse performance during almost all

periods. When zooming in on the determination of the shrinkage coefficient,

we found that standard plug-in values for this coefficient worsened rather

than improved the situation. This analysis further indicated that the poten-

tial empirical gains from shrinking the factor returns covariance matrix are

quite limited. Better and more robust results were obtained with shrinkage

targets based on the idiosyncratic covariance matrix. Also there, however,

the gains were limited and not statistically significant. Allowing for time vari-
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ation in the underlying factor return covariance matrix or the idiosyncratic

covariance matrix did not alter our results.

A final interesting finding emerged from the application of the recent

non-linear shrinkage techniques of Ledoit and Wolf (2015, 2017a) applied to

the entire sample covariance matrix. Also these techniques do not seem to

improve upon the FFM performance. By contrast, the ex-post variance of

the minimum volatility portfolio turned out the be sometimes more than

twice as high during the turbulent period around the great financial crisis.

The lower variance of non-linear shrinkage methods during calmer periods

did not off-set this.

In conclusion, our results suggest that estimation risk in stock return

correlations in vast-dimensional spaces can be adequately addressed using

fundamental factor models. Linear shrinkage techniques with standard plug-

in tuning parameters typically deteriorate rather than improve the situation,

as do non-linear shrinkage methods. Our analysis further indicated that

the potential gains of shrinkage methods compared to the standard FFM

are quite modest, leaving the FFM as a typical benchmark model in vast-

dimensions.
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Appendix A Shrinkage intensity

The linear shrinkage methods in the FFM require us to set a shrinkage co-

efficient. Here, we provide the formulas for the estimator of the optimal

shrinkage coefficient. We first consider the covariance matrix F̂ of funda-

mental factor returns. Then, we consider the matrix Û holding idiosyncratic

variances.

Factor covariance matrix

Recall that the estimated fundamental factor and currency returns are rep-

resented by f̂i,t, for i = 1, . . . , K∗ and t = 1, . . . , T . Furthermore, let F̂

denote the sample covariance matrix, and F̂ 0 the shrinkage target. The true

covariance matrix of the factor returns is represented by F . In general, we

want to use the optimal shrinkage value δ∗ defined by

δ∗ = argminδ∈[0,1]E
[
||(1− δ)F̂ + δF̂ 0 − F ||2

]
. (A1)

Ledoit and Wolf (2003) show that the optimal δ∗ behaves like a constant over

the sample size T as T → ∞ (for fixed K∗, up to higher-order terms of T ),

i.e. δ∗ ≈ κ/T for large T . This constant κ can be expressed as

κ =
π − φ
γ

, (A2)

a description of π, φ, and γ can be found in Ledoit and Wolf (2003). For

our equicorrelation shrinkage target, the formulas are derived in Ledoit and

Wolf (2004a). We repeat these here. We use the subscript i, j to indicate the

element in row i and column j of a matrix. A consistent estimator for π is

given by

π̂ =
K∗∑
i=1

K∗∑
j=1

π̂i,j, with π̂i,j =
1

T

T∑
t=1

(
(f̂i,t − f i,·)(f̂j,t − f j,·)− F̂ 0

i,j

)2

,

(A3)
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where f i,· represents the average return for factor i. Similarly, γ can be

estimated consistently using

γ̂ =
K∗∑
i=1

K∗∑
j=1

(
F̂ 0
i,j − F̂i,j

)2

. (A4)

The estimators for π and γ do not depend on the specific form of the shrinkage

target F̂ 0. Instead, the estimator for φ is specific to the shrinkage target.

For the case of an equicorrelation shrinkage target,Ledoit and Wolf (2004a)

show that φ can be consistently estimated using

φ̂ =
K∗∑
i=1

π̂i,i +
K∗∑
i=1

∑
j 6=i

ρ̂

2

(√
F̂j,j

F̂i,i
ν̂ii,ij +

√
F̂i,i

F̂j,j
ν̂jj,ij

)
, (A5)

where ρ̂ represents the average of the estimated correlations in the sample

covariance matrix F̂ , and

ν̂ii,ij =
1

T

T∑
t=1

(
(f̂i,t − f i,·)2 − F̂i,i

)(
(f̂i,t − f i,·)(f̂j,t − f j,·)− F̂i,j

)
, (A6)

ν̂jj,ij =
1

T

T∑
t=1

(
(f̂j,t − f j,·)2 − F̂j,j

)(
(f̂i,t − f i,·)(f̂j,t − f j,·)− F̂i,j

)
. (A7)

For the shrinkage target with zero correlation, we apply the formulas above

and set ρ̂ = 0.

Given π̂, φ̂, and γ̂ we obtain κ̂ from

κ̂ =
π̂ − φ̂
γ̂

. (A8)

The estimate of the optimal shrinkage intensity δ̂∗ is

δ̂∗ = max

[
0,min

[
κ̂

T
, 1

]]
. (A9)
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Idiosyncratic variances

Let the diagonal N -by-N matrix Û represent the sample covariance matrix

of the estimated idiosyncratic returns ûi,t, for i = 1, . . . , N and t = 1, . . . , T .

Furthermore, let σ̄2 denote the average over the N estimated idiosyncratic

variances. Ledoit and Wolf (2004b) show that the optimal shrinkage param-

eter is given by

δ∗ =
b2

d2
. (A10)

They show that a consistent estimator for d2 is given by

d̂2 =
1

N

N∑
i=1

(
Ûi,i − σ̄2

)2

, (A11)

and for b2 by

b̂2 =
1

NT 2

N∑
i=1

T∑
t=1

(
(ûi,t − ui,·)2 − Ûi,i

)2

, (A12)

where ui,· represents the average (estimated) idiosyncratic return for stock i.

The estimated optimal shrinkage intensity δ̂∗ is then given by

δ̂∗ =
min

[
d̂2, b̂2

]
d̂2

. (A13)
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