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ABSTRACT:
Moulin (1987) studies the equal and proportional sharing rule for a special class of cooperative

games that he calls joint venture games. Proportionality is an important principle in allocation prob-
lems. Besides some special cases, it is not obvious how proportionality should be applied in coop-
erative TU-games. Such special cases, where proportionality is obvious, are inessential games and
cooperative joint venture games. In this paper, we discuss an explicit axiom that shows that proper
Shapley values can be seen as an appropriate way to express proportionality in value allocation in
cooperative TU-games. We characterize positive proper Shapley values by affine invariance and an
axiom that requires proportional allocation according to the individual singleton worths in general-
ized joint venture games. As a counterpart, we show that affine invariance and an axiom that requires
equal allocation of the surplus in generalized joint venture games, characterize the positive part of the
Shapley value among the single-valued solutions.
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1. INTRODUCTION

Situations where a set of agents can generate certain worths by cooperating, can be described by a

cooperative transferable utility game (or simply TU-game). A TU-game consists of a (finite) set of

players and a characteristic function that assigns to every subset of the player set, called coalitions,

a real number representing the (transferable) utility that is obtained by the players in this coalition

cooperate together, without the help of the players outside the coalition. A main question is how to

allocate the worths that the coalitions can earn over the individual players. A payoff vector in a TU-

game is a vector which dimension is equal to the number of players, and which components give the

payoffs to individual players. A solution is a mapping which prescribes for every game how the worth

of the grand coalition consisting of all players, should be allocated over the players. We call a solution

single-valued if to every game it assigns a unique payoff vector, and we call it set-valued if to every

game it assigns a set of payoff vectors (which can be empty or a singleton).

The best known single-valued solution for TU-games is the Shapley value, Shapley (1953b), which

distributes the so-called Harsanyi dividends of the game equally among the players in the correspond-

ing coalitions. These Harsanyi dividends somehow can be seen as the ‘real’ value added of coalitions

which was not yet realized by its subcoalitions, see also Billot and Thisse (2005). The weighted

Shapley values, see Shapley (1953a), are a modification of the Shapley value, where, besides their

contributions in the game, the players have exogenous positive weights such that in every game the

Harsanyi dividend of every coalition is allocated over the players proportional to these weights.1 These

weights might express some external asymmetry between the players, such as bargaining power or

their influence in a network.

Whereas the Shapley value is based on the idea of equally sharing the dividends among the players

in the corresponding coalition, there are also situations where proportionality seems a more appro-

priate equity principle. For example, standard business practice of dividing a firm’s profit is to do

this proportionally to investment (constant return per share). This is also in line with the sociopsy-

chological equity theory of Homans (1961) and Selten (1978) that suggests proportionality rather

than equality. Proportionality in TU-game solutions has been expressed in, e.g., Kalai (1977), Roth

(1979), Hart and Mas-Colell (1989), Feldman (1998, 1999), Ortmann (2000) and Béal, Ferrières,

1Kalai and Samet (1987) consider weighted Shapley values allowing weights to be equal to zero, but to avoid dividing

by zero the player set is also partitioned in certain equivalence classes which are ordered.
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Rémila and Solal (2018). For games with more players there is not an obvious way how to apply pro-

portionality. In the underlying paper, we consider the proper Shapley value introduced by Vorob’ev

and Liapounov (1998), whose existence for monotone games is shown by van den Brink, Levínský

and Zelený (2015). This solution expresses proportionality by a fixed point argument, by allocating

the Harsanyi dividends proportional to endogenous weights such that the resulting payoff allocation

exactly equals the weights. This is an expression of proportionality in the sense that for two-player

games, it implies to allocate the worth of the grand coalition proportional to the singleton worths (if

these are positive). For further motivation of this proportionality principle in TU-games, we refer to

the introduction of van den Brink, Levínský and Zelený (2015).

The purpose of the underlying paper is to make a comparison between the proper Shapley value

and the traditional Shapley value. A first main difference between the Shapley value and proper

Shapley value is that the first is a single-valued solution, while the second is a set-valued solution. As

mentioned, van den Brink, Levínský and Zelený (2015) proved existence/nonemptiness of the proper

Shapley value for monotone games, but there can be more than one payoff vector being a fixed point

of the ‘weighted Shapley mapping’. Although possible characterizations of the Shapley value and

proper Shapley value should be formulated using axioms for single-valued solutions and set-valued

solutions respectively, we will introduce axioms that makes a comparison between these two solutions

possible.

A second main difference between the two solutions is that the Shapley value is a linear, and

therefore additive, solution while the proper Shapley value is not. The first axiom we introduce in this

paper is a weaker version of additivity which is satisfied by both solutions (of course, taking account

of the fact that one is a single-valued, and the other is a set-valued solution, see Section 3 for the

details). This axiom, called affine invariance, roughly says that, having two games that have the same

solution outcome, implies that also any affine combination of these two games have this same solution

outcome.

Besides having this axiom in common, we introduce two equity principles that each characterize

each one of the two solutions. Both equity principles are stated for a special type of game, called

generalized joint venture game, being a class of games that generalizes the ordinary joint venture

games introduced by Moulin (1987). A joint venture game is a game such that nonzero Harsanyi

dividends are only allowed for the grand coalition of all players and the singletons. In other words,
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a joint venture game is a linear combination of an inessential game and the unanimity game of the

grand coalition. A generalized joint venture game is a game such that there is at most one nonsingleton

coalition with a nonzero dividend, but this is not necessarily the grand coalition. It turns out that these

games form a basis for the space of TU-games, which we will use in characterizing the Shapley

and proper Shapley values. To characterize the Shapley value, we extend the equal sharing principle

of Moulin (1987), and introduce a generalized equal sharing principle for single-valued solutions,

which requires that in a generalized joint venture game, every singleton receives its own worth, and

the dividend of the only nonsingleton coalition with nonnegative dividend is allocated equally over

the players in this coalition. It turns out that, together with affine invariance, this characterizes the

Shapley value among the single-valued solutions.

To characterize the proper Shapley value among the set-valued solutions, we extend the equal

sharing principle of Moulin (1987), and introduce a generalized proportional sharing principle for

set-valued solutions, which requires that in a generalized joint venture game, every singleton receives

its own worth, and the dividend of the only nonsingleton coalition with nonnegative dividend is al-

located proportionally to the singleton worths. It turns out that, together with affine invariance, this

characterizes the proper Shapley value among the set-valued solutions. Besides explaining the dif-

ference between the two solutions, this also gives a stronger motivation why to consider the proper

Shapley value as an expression of proportionality. Whereas in its definition, proportionality is obvi-

ously applied for two-player games, for general games proportionality is translated as a fixed point

argument. With this generalized proportional sharing principle, for any game the role of the singleton

worths in the proportional allocation of any Harsanyi dividend is made explicit.

2. PRELIMINARIES

A cooperative transferable utility game (or simply TU-game) is a pair (N, v) where N = {1, . . . , n}

is a finite set consisting of n players and v : 2N → RN , satisfying v(∅) = 0 is a characteristic function

such that for any coalition S ⊆ N , the real number v(S) is the worth of S, which the members of

the coalition S can distribute among themselves. In certain applications, v(S) can also be interpreted

as the cost which has to be split among members of S. In this paper, we assume the set of players

N to be fixed. The set of all TU-games on the player set N is denoted by G. A TU-game (N, v) is

monotone if v(S) ≤ v(T ) whenever S ⊆ T ⊆ N .
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Let (N, v) ∈ G. The Harsanyi dividends ∆N,v(S), where S ⊆ N , are defined inductively by

∆N,v(S) =

0, for S = ∅,

v(S)−
∑

T(S ∆N,v(T ), for S 6= ∅

(see Harsanyi, 1959). Let us note that v(S) =
∑

T⊆S ∆N,v(T ) for every S ⊆ N . This formula shows

that dividends uniquely determine the characteristic function. A coalition S ⊆ N in the game (N, v)

is called essential if ∆N,v(S) 6= 0, otherwise S is called inessential. Any TU-game, where all the

coalitions but singletons are inessential, is called an inessential game.

We employ the following notation. Let y ∈ RN and S ⊆ N . The symbol yS stands for
∑

i∈S yi.

By convention, the value of any empty sum of real numbers is zero, i.e., y∅ = 0. A payoff vector in a

TU-game (N, v) is an n-dimensional vector whose components are the payoffs of the corresponding

players. A payoff vector x ∈ RN for a game (N, v) is efficient if it exactly distributes the worth v(N)

of the grand coalition N , i.e., if xN = v(N). In the literature, efficient payoff vectors are also called

preimputations. The set of all efficient payoff vectors of (N, v) is denoted by X(N, v), the set of all

efficient payoff vectors with positive coordinates is denoted by X+(N, v) and the set of all efficient

payoff vectors with nonnegative coordinates is denoted by X0(N, v).

Let C ⊆ G be a subclass of games. A single-valued solution on C is a function f that assigns to

every game (N, v) ∈ C a payoff vector f(N, v) ∈ RN . A set-valued solution F on C assigns a set of

payoff vectors F (N, v) ⊂ RN to every game (N, v) ∈ C.

The best known single-valued solution for TU-games is the Shapley value (Shapley, 1953b) which

distributes the Harsanyi dividends of the game equally among the players in the corresponding coali-

tions, i.e., the Shapley value is the function ϕ : G → RN defined by ϕ(N, v) =
(
ϕi(N, v)

)
i∈N ,

where

ϕi(N, v) =
∑
S⊆N
i∈S

1

|S|
∆N,v(S), i ∈ N.

The symbol |S| denotes the cardinality of S.

Given a weight vector ω ∈ RN with positive weights ωi > 0, i ∈ N , the corresponding weighted

Shapley value (Shapley, 1953a) is the function ϕω : G → RN defined by

ϕωi (N, v) =
∑
S⊆N
i∈S

ωi
ωS

∆N,v(S), i ∈ N.
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The weighted Shapley value thus distributes the dividends of coalitions proportionally to the exoge-

nously given weights of the players. Clearly, if all weights ωi are equal to each other then the weighted

Shapely value ϕω(N, v) is equal to the Shapley value ϕ(N, v). Further, observe that if ω and ω̃ are

positive weight vectors with ω̃i/ω̃j = ωi/ωj for all i, j ∈ N , then ϕω(N, v) = ϕω̃(N, v).

Another solution, the proper Shapley value, was introduced by Vorob’ev and Liapounov (1998) for

games with positive dividends and generalized for monotone TU-games as a set-valued solution by

van den Brink, Levínský, and Zelený (2015). This solution is defined as follows. Let (N, v) ∈ G. To

simplify notation we denote h(x) = ϕx(N, v) for x ∈ X+(N, v). We define a multi-valued mapping

H assigning a subset of RN to each element x of X0(N, v) by

H(x) = {α ∈ RN | there exists a sequence (xj) ⊆ X+(N, v) such that xj → x and h(xj)→ α}.

Note that the multi-valued function H depends on (N, v), but we will omit this parameter for the sake

of simplicity since there is no danger of confusion. The graph of H is just the closure of the graph of

the mapping h.

Definition 1. Let (N, v) ∈ G. A vector x ∈ X0(N, v) is called a proper Shapley value of (N, v)

if x ∈ H(x). We denote PSV(N, v) = {x ∈ X0(N, v)|x is a proper Shapley value of (N, v)} and

GP = {(N, v) ∈ G| PSV(N, v) 6= ∅}. We refer to the solution that assigns to every game (N, v) ∈

GP the set of all proper Shapley values PSV(N, v) as the proper Shapley solution.

3. AXIOMATIZATION AND MAIN RESULTS

We start with the following definition.

Definition 2. We say that a class C ⊆ G is affine if for any TU-games (N, v1), (N, v2) ∈ C, λ1, λ2 ∈ R

with λ1 + λ2 = 1, we have λ1v1 + λ2v2 ∈ C.

The next axiom is a weakening of Shapley’s additivity axiom.

Axiom 1. Let C ⊆ G be affine. A single-valued solution f satisfies affine invariance on C if for any

TU-games (N, v1), (N, v2) ∈ C with f(N, v1) = f(N, v2) and λ1, λ2 ∈ R with λ1 + λ2 = 1, we

have f(N,λ1v1 + λ2v2) = f(N, v1) = f(N, v2).

For set-valued solutions, affine invariance is defined as follows.
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Axiom 2. Let C ⊆ G be affine. A set-valued solution F satisfies affine invariance on C if for any

TU-games (N, v1), (N, v2) ∈ C, λ1, λ2 ∈ R with λ1 + λ2 = 1, and x ∈ RN+ with x ∈ F (N, v1) ∩

F (N, v2), we have x ∈ F (N,λ1v1 + λ2v2).

Remark 1. One can easily prove that a set-valued solution F satisfies affine invariance on an affine

class C if and only if, for every k ∈ N, (N, v1), . . . , (N, vk) ∈ C, λ1, . . . , λk ∈ R with
∑k

i=1 λi =

1, and x ∈ RN+ with x ∈ F (N, vi) for every i ∈ {1, . . . , k}, we have x ∈ F (N, v) whenever

v :=
∑k

i=1 λivi. Notice that by repeated application of condition from Definition 2, it follows that

v :=
∑k

i=1 λivi ∈ C.

Remark 2. Notice that Axiom 1 (for single-valued solutions) is stated for all payoff vectors, while

Axiom 2 (for set-valued solutions) is stated only for nonnegative payoff vectors. We will argue later,

that we could also restrict Axiom 1 to nonnegative payoff vectors and have similar results.

Moulin (1987) defines a joint venture game as a TU-game where the intermediate coalitions are

inessential, formally, (N, v) ∈ G is a joint venture game, if ∆N,v(S) = 0 whenever |S| 6= 1 and S 6=

N . For this class of games he analyzes two sharing rules, namely the equal sharing and proportional

sharing rule. We find Moulin’s set-up suitable for studying the proportional sharing rule. Let us note

that Moulin’s proportional sharing rule is structurally identical to an older concept of Homans (1961),

see also Selten(1978), who were referring to it as to an equity principle. Further, since any two-player

game belongs to the class of joint venture games, the proportional sharing rule for two-player games

corresponds to proportional standardness for two-player games as defined by Ortmann (2000).

Clearly, for general games (with more than two players), the proportionality principle is not obvi-

ous, because once we have several nonsingleton essential coalitions in the game, the application of

proportionality becomes nontrivial. Still, to apply the proportionality principle in the broadest possi-

ble context, we can go a step further than Moulin by introducing the class of games having at most

one nonsingleton essential coalition. Notice that this nonsingleton coalition can be the grand coalition

N in which case it is an ordinary joint venture game.

Definition 3. A TU-game (N, v) is called a generalized joint venture game if there exists a setE ⊆ N

such that ∆N,v(T ) = 0 whenever |T | 6= 1 and T 6= E. The set of all generalized joint venture games

is denoted by G1. For (N, v) ∈ G1, the symbol E(N, v) denotes the unique nonsingleton essential

coalition if such a coalition exists, otherwise E(N, v) = ∅.
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Remark 3. The symbol G1 is chosen to stress the fact that any game in G1 contains at most one

nonsingleton essential coalition. The class G1 clearly contains all inessential games as well as joint

venture games.

Now, exactly as Moulin for joint venture games, we define two possible sharing rules for general

joint venture games. The generalized equal sharing principle requires that in generalized joint venture

games, the surplus of the only essential nonsingleton coalition is allocated equally over the players in

that coalition.

Axiom 3. A single-valued solution f satisfies the generalized equal sharing principle if for every

(N, v) ∈ G1, we have

f(N, v)i =

v({i}) + 1
|E(N,v)|∆N,v

(
E(N, v)

)
, for i ∈ E(N, v),

v({i}), for i ∈ N \ E(N, v).

Alternatively, the generalized proportional sharing principle applies proportionality to the general-

ized joint venture games. It requires to split the surplus of the only essential nonsingleton coalition

among its members proportionally to their individual worths whenever possible. Notice that although

F is a set-valued solution, this principle assigns a unique payoff vector to every generalized joint

venture game.

Axiom 4. A set-valued solution F satisfies the generalized proportional sharing principle if for every

(N, v) ∈ G1 and x ∈ F (N, v) we have

xi =


v({i}) + v({i})∑

j∈E(N,v) v({j})∆N,v

(
E(N, v)

)
, if

∑
j∈E(N,v) v({j}) 6= 0 and i ∈ E(N, v),

v({i}), for i ∈ N \ E(N, v).

Remark 4. Observe that if (N, v) ∈ G is inessential, thus (N, v) ∈ G1, then E(N, v) = ∅ and for any

F that satisfies the generalized proportional sharing principle, we have that x ∈ F (N, v) implies that

xi = v({i}). An analogous observation can be made also for the generalized equal sharing principle.

Now, the main propositions of this paper can be stated. The first result is a characterization of the

Shapley value by affine invariance and the generalized equal sharing principle.2

2It will each time be clear from the context whether we consider affine invariance for single-valued, or set-valued

solutions.
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Proposition 1. The Shapley valueϕ is the unique single-valued solution that satisfies affine invariance

and the generalized equal sharing principle.

The proof of this and the other propositions can be found in the appendix.

Obviously, the proper Shapley solution does not satisfy the generalized equal sharing principle.3

Instead, restricting ourselves to nonnegative payoff vectors, the generalized proportional sharing prin-

ciple implies that we allocate according to a proper Shapley value.

Proposition 2. Let F be a set-valued solution satisfying affine invariance on its affine domain domF

and the generalized proportional sharing principle. Then F (N, v) ∩ RN+ = PSV(N, v) ∩ RN+ for

every (N, v) ∈ GP .

Proposition 2 would be meaningless if there does not exist a solution satisfying affine invariance

and the generalized proportional sharing principle. It turns out that the following solution satisfies

these axioms. For (N, v) ∈ G, define gN,v : RN → RN by

gN,v(x)i =
∑
S3i
xS 6=0

xi
xS

∆N,v(S) +
∑
S3i
xS=0∑

j∈S v({j})6=0

v({i})∑
j∈S v({j})

∆N,v(S)

+
∑
S3i
xS=0∑

j∈S v({j})=0

1

|S|
∆N,v(S), i ∈ N,

and consider the set valued solution G defined by

G(N, v) = {x ∈ RN | gN,v(x) = x}.

The weight mapping gN,v is constructed in such a way that, if possible, the corresponding dividend is

split proportionally to weights that are equal to the final payoffs. If this is not possible (i.e., the sum

of the payoffs/weights of the players is zero), then, if possible, the dividend is split proportionally to

the individual worths of the players. If this is not possible either (i.e., also the sum of the singleton

worths of the players in the coalition is zero), then the dividend is split equally.

Proposition 3. The set-valued solution G satisfies affine invariance and the generalized proportional

sharing principle.

3Similar as the generalized equal sharing principle, the generalized proportional sharing principle for set-valued solutions

requires to assign a unique payoff vector to every generalized joint venture game.
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4. CONCLUDING REMARKS

In this paper, we compared the Shapley value with the proper Shapley value (solution) by char-

acterizing them using affine invariance and generalizations of Moulin (1987)’s equity, respectively,

proportionality principles, applied to generalized joint venture games. Besides making the Shapley

and proper Shapley value comparable, using the generalized proportionality principle, we explicitly

stated the proportionality feature of the proper Shapley values by applying proportionality to general-

ized joint venture games, and extending to other games by affine invariance, being a weak additivity

axiom which is satisfied by both solutions.

Whereas the Shapley value is well-defined for all TU-games, proper Shapley values is not. There-

fore, we characterized the nonnegative proper Shapley values in Propositions 2 and 3. In Proposition 1,

we characterized the Shapley value without the restriction to nonnegative payoff vectors. For single-

valued solutions, we could redefine affine invariance restricting it only to the case of nonnegative

payoff vectors in a similar way as Proposition 1, and characterize the Shapley value payoff vectors in

case these are nonnegative.

5. PROOFS

5.1. Proof of Proposition 1. Since the Shapley value obviously satisfies affine invariance and the

generalized proportional sharing principle, it remains to prove uniqueness.

Let (N, v) ∈ G1 and take any x ∈ RN . Now, for S ⊆ N, |S| ≥ 2, we define the game (N, vxS) by

∆N,vxS
(T ) =



−∆N,v(S), for T = S,

xi + 1
|S|∆N,v(S), for T = {i}, i ∈ S,

xi, for T = {i}, i ∈ N \ S,

0, otherwise.

Clearly, we have (N, vxS) ∈ G1. Further, we define the inessential game (N, νx) ∈ G1 by

∆N,νx(T ) =

xi, for T = {i}, i ∈ N,

0, otherwise.
(1)

Finally, let us define the game (N,wx) as a sum

wx = v − (2n − n− 1)νx +
∑

S⊆N,|S|≥2

vxS . (2)



10

One can easily check that

∆N,wx(T ) =

0, for |T | ≥ 2,

v({i}) +
∑

S3i,|S|≥2
1
|S|∆N,v(S) =

∑
S3i

1
|S|∆N,v(S), for T = {i}.

The linear combination in (2) is affine, since we have

1− (2n − n− 1) +
∑

S⊆N,|S|≥2

1 = 1− 2n +
∑
S⊆N

1 = 1− 2n + 2n = 1. (3)

Now, we show that for x ∈ RN we have x = f(N, v) if and only if x = ϕ(N, v). First, assume

that x = f(N, v). Since f satisfies the generalized equal sharing principle, we get x = f(N, vxS) for

every S ⊆ N, |S| ≥ 2, and x = f(N, νx). Thus, by affine invariance of f we obtain x = f(N,wx).

The game (N,wx) is inessential and therefore

xi = wx({i}) =
∑
S3i

1

|S|
∆N,v(S).

This shows that x is the Shapley value payoff of (N, v).

Now suppose that x is the Shapley value payoff vector of (N, v), i.e., x = ϕ(N, v). Using (2) we

can write

v = wx + (2n − n− 1)νx −
∑

S⊆N,|S|≥2

vxS . (4)

Thus, v is an affine combination of games from G1, x = f(N, νx), and x = f(N, vxS) for S ⊆

N, |S| ≥ 2, by the generalized equal sharing principle. Since x is the Shapley value payoff vector of

(N, v), we get x = f(N,wx) by the generalized equal sharing principle. Now, affine invariance of f

yields x = f(N, v) and we are done.

5.2. Proof of Proposition 2.

Claim. Let (N, v) ∈ G, x ∈ RN+ . Then there exist games (N, v0), (N, v1), . . . , (N, vk) ∈ G1 such

that

(a) v is an affine combination of v0, v1, . . . , vk of the form v = v0 +
∑k

j=1 γjv
j with

∑k
j=1 γj =

0,

(b) x ∈ F (N, vj), j = 1, . . . , k,

(c) we have

∆N,v0(T ) =

0, for T ⊆ N, |T | ≥ 2,∑
S3i

xi
xS

∆N,v(S), for T = {i}, i ∈ N.



11

Proof of Claim. We set A = {S ⊆ N | |S| ≥ 2,∆N,v(S) 6= 0}. For S ∈ A and α ∈ R, we define a

game (N,wx,αS ) as follows

∆N,wx,αS
(T ) =



−α∆N,v(S), for T = S,

xi + xi
xS
α∆N,v(S), for T = {i}, i ∈ S,

xi, for T = {i}, i /∈ S,

0, otherwise.

We have clearly (N,wx,αS ) ∈ G1. We define a game (N, v0) as the following sum

v0 = v − 2|A|νx +
∑
S∈A

(wx,αSS + wx,βSS ), (5)

where νx is defined by (1), αS and βS are chosen in such a way that αS 6= 0, βS 6= 0, αS + βS = 1,

xS + αS∆N,v(S) 6= 0 and xS + βS∆N,v(S) 6= 0. Now we verify (a)–(c).

(a) Using (5) it is easy to choose γ1, . . . , γk and to denote appropriately the games νx, wx,αSS , wx,βSS ,

S ∈ A, by v1, . . . , vk to satisfy (a).

(b) Because of the choice of αS and βS , S ∈ A, the corresponding games satisfy E(N,wx,αSS ) =

E(N,wx,βSS ) = S, ∑
i∈S

wx,αSS ({i}) = xS + αS∆N,v(S) 6= 0 and

∑
i∈S

wx,βSS ({i}) = xS + βS∆N,v(S) 6= 0.

Thus, we can apply the generalized proportional sharing principle for F to infer x ∈ F (N,wx,αSS )

and x ∈ F (N,wx,βSS ). To see this, notice that obviously wx,αSS ({i}) = xi for every i /∈ S and, for

every i ∈ S, we have

wx,αSS ({i})+
wx,αSS ({i})∑
j∈S w

x,αS
S ({j})

αS∆N,v(S)

= xi +
xi
xS
αS∆N,v(S)−

xi + xi
xS
αS∆N,v(S)

xS + αS∆N,v(S)
αS∆N,v(S)

= xi +
xi
xS
αS∆N,v(S)− xi

xS
αS∆N,v(S) = xi

and similarly for x ∈ F (N,wx,βSS ). Since x ∈ F (N, νx) and νx is inessential, by Remark 4 we

get (b).
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(c) Consider T ⊆ N with |T | ≥ 2. Then we have

∆N,v0(T ) = ∆N,v(T )− 2|A|∆N,νx(T ) +
∑
S∈A

(
∆N,v

x,αS
S

(T ) + ∆
N,v

x,βS
S

(T )
)

= ∆N,v(T ) + ∆N,v
x,αT
T

(T ) + ∆
N,v

x,βT
T

(T )

= ∆N,v(T )− αT∆N,v(T )− βT∆N,v(T ) = ∆N,v(T )(1− αT − βT ) = 0.

Now choose T ⊆ N with T = {i}, i ∈ N . Then we have

∆N,v0({i}) = ∆N,v({i})− 2|A|∆N,νx({i}) +
∑
S∈A

(
∆N,v

x,αS
S

({i}) + ∆
N,v

x,βS
S

({i})
)

= ∆N,v({i})− 2|A|xi

+
∑

S∈A,i∈S

(
xi +

xi
xS
αS∆N,v(S) + xi +

xi
xS
βS∆N,v(S)

)
+

∑
S∈A,i/∈S

(xi + xi)

= ∆N,v({i}) +
∑

S∈A,i∈S

xi
xS

∆N,v(S)

=
∑
S3i

xi
xS

∆N,v(S). (by the definition of A)

This ends the proof of the claim. �

Now, we show that F (N, v) ∩ RN+ = PSV(N, v) ∩ RN+ .

Proof of the inclusion F (N, v) ∩ RN+ ⊆ PSV(N, v). Suppose that x ∈ F (N, v)∩RN+ . Take v0, . . . , vk

for (N, v) and x according to the Claim. By (b), we have x ∈ F (N, vj) for j ∈ {1, . . . , k} and

(N, v0) is an affine combination of (N, v) and (N, v1), . . . , (N, vk). By affine invariance of F , we

get x ∈ F (N, v0). Since the game (N, v0) is inessential, we have for i ∈ N

xi = v0({i}) =
∑
S3i

xi
xS

∆N,v(S).

Thus, we have x = h(x) and, consequently, x ∈ H(x). This shows that x ∈ PSV(N, v). �

Proof of the inclusion PSV(N, v) ∩ RN+ ⊆ F (N, v). Consider x ∈ PSV(N, v) ∩ RN+ . Again, take

v0, . . . , vk for (N, v) and x according to the Claim. Since x ∈ PSV(N, v) ∩ RN+ , we have x = h(x),

i.e.,

xi =
∑
S3i

xi
xS

∆N,v(S), i ∈ N.

This shows that x ∈ F (N, v0). Since x ∈ F (N, vj), j = 1, . . . , k, by (b) of Claim, we obtain

x ∈ F (N, v) using affine invariance of F . �



13

5.3. Proof of Proposition 3. Affine invariance on G. Let (N, v1), (N, v2) ∈ G and λ1, λ2 ∈ R with

λ1 + λ2 = 1. Denote v = λ1v
1 + λ2v

2. Suppose that x ∈ RN+ satisfies x ∈ G(N, v1) ∩ G(N, v2).

Then, we have

xi = gN,vl(x)i =
∑
S3i

xi
xS

∆N,vl(S) for l ∈ {1, 2}, i ∈ N.

This implies that

xi = λ1xi + λ2xi = λ1gN,v1(x)i + λ2gN,v2(x)i

=
∑
S3i

λ1xi
xS

∆N,v1(S) +
∑
S3i

λ2xi
xS

∆N,v2(S)

=
∑
S3i

xi
xS

(
λ1∆N,v1(S) + λ2∆N,v2(S)

)
=
∑
S3i

xi
xS

∆N,v(S) = gN,v(x)i, i ∈ N.

Thus, we have x ∈ G(N, v).

Generalized proportional sharing principle. Let (N, v) ∈ G1 and x ∈ G(N, v), i.e., gN,v(x) = x. To

simplify the notation we denote E = E(N, v). We distinguish several possibilities.

(a) Assume that xE 6= 0. Then the equality x = gN,v(x) can be written as

xi =

∆N,v({i}) + xi
xE

∆N,v(E), for i ∈ E,

∆N,v({i}), for i ∈ N \ E.
(6)

For i ∈ N \ E, we have the desired equality xi = v({i}). If
∑

i∈E ∆N,v({i}) =
∑

i∈E v({i}) = 0,

then there is nothing to verify for i ∈ E since the generalized proportional sharing principle does not

require anything in this case. So, assume that
∑

i∈E ∆N,v({i}) 6= 0. Summing up xi over i ∈ E, we

infer from (6)

xE =
∑
i∈E

∆N,v({i}) + ∆N,v(E) =
∑
i∈E

v({i}) + ∆N,v(E). (7)

Further, using (6), we infer for i ∈ E,

xi =
v({i})

1− ∆N,v(E)
xE
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and using (7) we get

xi =
v({i})

1− ∆N,v(E)
xE

=
v({i})

1− ∆N,v(E)∑
j∈E v({j})+∆N,v(E)

= v({i}) +
v({i})∑
j∈E v({j})

∆N,v(E).

Thus, we verified the generalized proportional sharing principle if xE 6= 0.

(b) Assume that xE = 0 and
∑

i∈E ∆N,v({i}) 6= 0. Then the equality x = gN,v(x) can be written as

xi =

∆N,v({i}) + v({i})∑
i∈E v({i})∆N,v(E), for i ∈ E,

∆N,v({i}), for i ∈ N \ E.

This is exactly the generalized proportional sharing condition.

(c) Assume that xE = 0 and
∑

i∈E ∆N,v({i}) = 0. Then from the equality x = gN,v(x) we get

xi = v({i}) for i ∈ N \ E, and the proof is finished.
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