
 

 

 

TI 2018-088/III 

Tinbergen Institute Discussion Paper  

 

 

 

A Time-Varying Parameter Model 

for Local Explosions 
 

 

Francisco (F.) Blasques1  

Siem Jan (S.J.) Koopman1 

Marc Nientker1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1 VU Amsterdam  



 

 

 

Tinbergen Institute is the graduate school and research institute in economics of 

Erasmus University Rotterdam, the University of Amsterdam and VU University 
Amsterdam. 

 
Contact: discussionpapers@tinbergen.nl  
 

More TI discussion papers can be downloaded at http://www.tinbergen.nl  
 

Tinbergen Institute has two locations: 
 
Tinbergen Institute Amsterdam 

Gustav Mahlerplein 117 
1082 MS Amsterdam 

The Netherlands 
Tel.: +31(0)20 598 4580 
 

Tinbergen Institute Rotterdam 
Burg. Oudlaan 50 

3062 PA Rotterdam 
The Netherlands 

Tel.: +31(0)10 408 8900 
 

mailto:discussionpapers@tinbergen.nl
http://www.tinbergen.nl/


A Time-Varying Parameter Model for Local Explosions

Francisco Blasques(a,b), Siem Jan Koopman(a,b,c) and Marc Nientker(a)

aVU Amsterdam, School of Business and Economics, The Netherlands

bTinbergen Institute Amsterdam, The Netherlands

cCREATES, Aarhus University, Denmark

November 9, 2018

Abstract

Locally explosive behavior is observed in many economic and financial time series when

bubbles are formed. We introduce a time-varying parameter model that is capable of

describing this behavior in time series data. Our proposed model can be used to predict

the emergence, existence and burst of bubbles. We adopt a flexible observation driven

model specification that allows for different bubble shapes and behavior. We establish

stationarity, ergodicity, and bounded moments of the data generated by our model.

Furthermore, we obtain the consistency and asymptotic normality of the maximum

likelihood estimator. Given the parameter estimates, our filter is capable of extracting

the unobserved bubble process from observed data. We study finite-sample properties

of our estimator through a Monte Carlo simulation study. Finally, we show that our

model compares well with noncausal models in a financial application concerning the

Bitcoin/US dollar exchange rate.

Keywords: bubbles, observation driven models, noncausal models, stationary, ergodic,

consistency, asymptotic normality, exchange rates.

JEL codes: C22, C58, G10.
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1 Introduction

Many financial and economic time series display phases of locally explosive behaviour that is

followed by a burst or sharp mean-reverting dynamics. This stochastic behaviour is especially

prevalent in financial asset prices, stock indices and exchange rates. The literature on rational

expectations models for asset pricing typically describe the asset price process as the sum

of a fundamental value process and aforementioned locally explosive process. The second

process is then defined as a speculative bubble, see for instance Blanchard and Watson (1982),

West (1987), Diba and Grossman (1988) and more. The bubble is considered to be an

explosive nonstationary process and its presence is tested via unit root and cointegration

tests. However, Evans (1991) noted that periodically collapsing bubbles can cause the bubble

paths to look more like a stationary process, making it difficult for regular tests to detect

the existence of bubbles. Using recursive testing techniques, evidence for the existence of

a speculative bubble has been found by for example Phillips et al. (2011) and Homm and

Breitung (2012) in the Nasdaq real price index and Phillips and Yu (2011) in the U.S. house

price index, the price of crude oil and the spread between Baa and Aaa bond rates.

A different approach has been proposed by Gouriéroux and Zaköıan (2013) who describe

speculative bubble dynamics using a noncausal autoregressive process of order one with

Cauchy innovations. This specification is able to model speculative bubbles as in reverse

time the model is a causal autoregressive process of order one with a fat tailed innovation

distribution, and thus produces large spikes followed by mean reversion. From the calendar

time perspective such dynamics are observed as exponential explosions followed by sudden

collapse. The noncausal approach to bubble modelling has been extended to stable dis-

tributed innovations in Gouriéroux and Zaköıan (2017) and to higher order mixed causal

and noncausal linear models in Fries and Zaköıan (2017). A difference with the rational

expectations approach is that noncausal models work within a stationary framework, which

allows for the derivation of many theoretical results. Gouriéroux and Zaköıan (2013) show

that the sample autocorrelation converges to a number smaller than one in absolute value.

It demonstrates that a unit root test generally rejects the unit root hypothesis and thus

will be unable to identify the presence of speculative bubbles. Moreover, they indicate the

possibility of calculating and predicting future bubble behaviour and show the existence of
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moments. A major disadvantage of the noncausal approach is its computational challenge.

Distinguishing causal and noncausal components is based on extreme value clustering, see

the discussions in Fries and Zaköıan (2017). The prediction of these components depends

on computational methods such as Metropolis-Hasting or sampling/importance resampling,

see Gourieroux and Jasiak (2016). In addition, the models are unable to distinguish the

potential speculative bubble from the fundamental value. The noncausal models allow for

only one generic type of bubble baseline path for a given set of parameters.

We introduce an observation driven model with time varying parameters designed as a

new approach to modelling multiple speculative bubbles. As in the literature on rational

expectations, our proposed model splits the asset price into a sum of two processes. The

first process represents the fundamental value and can be modelled by any contracting or

mean reverting process, while the second process represents the bubble effect characterised

by the typical exponential increase followed by a burst. We provide various bubble burst

conditions and discuss their respective merits and shortcomings. The advantage of using such

a specification is that we can filter data into its fundamental value and a potential speculative

bubble. Furthermore, the sum of the two processes is very flexible due to the joint dynamics

of the individual components and can describe various baseline paths for the same set of

parameters. Finally, the model has a conventional observation driven specification, which

implies that parameter estimation can rely on the method of maximum likelihood where

the likelihood function is obtained via the prediction error decomposition. It further implies

that point predictions, confidence intervals, bubble burst probabilities, bubble emergence

probabilities, expected bubble life times, and more, can be derived straightforwardly.

Similar to the noncausal literature our model describes locally explosive behaviour in

a strictly stationary framework. Due to earlier work in Blasques and Nientker (2017) we

can immediately show that the model admits a stationary ergodic and φ-mixing solution

under very mild conditions. Additionally, in this paper, we prove that the model as a

filter also admits a stationary ergodic and mixing solution and that any initiated sample

path converges to this solution. The derivations of these results are nonstandard because

the filter contains a discontinuity, rendering classical contraction results such as those in

Bougerol (1993) infeasible. The results are then used to obtain consistency and asymptotic

normality for our maximum likelihood estimator on the parameters that enter continuously
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in the likelihood. In a simulation exercise we show that other parameters are well behaved.

The remainder of the paper is structured as follows. Section 2.1 introduces our modelling

framework for local explosions. In Section 3 we study probabilistic and statistical properties

of the model. Evidence from simulations and a real time series are provided in Section 4.

Concluding remarks are in Section 5. The proofs are presented in the Appendix.

2 Model for Local Explosions

Our model decomposes the asset price Xt into a sum of three elements

Xt = µt + bt + εt,(2.1)

where µt is the fundamental value of the asset price, bt is the value of a potential speculative

bubble and εt is an error term. The error εt an element of an independent and identically

normal distributed sequence

(εt)t∈Z ∼ NID(0, σ2),(2.2)

where σ is a strictly positive constant. The fundamental value µt is defined as the value

of the asset price if no speculative bubbles were to exist. The main focus of this paper

is on describing bubble dynamics. Hence we consider a basic observation driven updating

equation for the fundamental value, that is

µt = δ + βµt−1 + γ(Xt−1 − µt−1 − bt−1),(2.3)

where δ, β and γ are fixed unknown parameters. The dynamics for the fundamental value are

mean reverting if |β| < 1, but partially correct by a factor γ for the past error εt−1 = (Xt−1−

µt−1 − bt−1). This updating equation can be interpreted as an observation driven analogue

of the parameter driven local level model in Chapter 2 of Durbin and Koopman (2012)

and can also be obtained when using a score updating rule for the mean as in Creal et al.

(2013). Many other dynamic processes for the fundamental value can also be considered.

The model specification (2.3) can be augmented with more lags of the µ and ε processes,
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similar to a stationary autoregressive moving average (ARMA) process. Also, we can adopt

a completely exogenous stationary process for µt which is potentially based on economic or

financial reasoning. We will maintain the stationary framework explored in the non-causal

literature. In practice, this means that one would have to add a nonstationary component

when the objective is to model bubles in non-stationary time-series, such as asset prices

which are typically nonstationary. Alternatively, one could allow the fundamental value to

be non-stationary, such as a random walk. This is however outside the scope of this paper.

The speculative bubble process is nonnegative and defined according to the following

updating equation

bt = (ω + αbt−1)1{survival condition}.(2.4)

To ensure nonnegativity of bt we impose ω > 0, while α can be any nonnegative number, but

typically is thought of as a parameter that is greater than one. This implies that the bubble

process satisfies an exponential increase, as is commonly observed in locally explosive time

series. The bubble bt then diverges to infinity, if not for the indicator function, which forces

the bubble to collapse down to zero if the survival condition is no longer satisfied. As with

the fundamental value process, many options are available for the survival condition. Let

Ft = (Xt, µt, bt) be the information obtained at time t. Then a general survival condition

that encompasses a variety of useful model choices is given by thresholded functions

1{g(Ft−1) < 0},(2.5)

where g is some real-valued function, which we will call the survival function. A few example

choices for the survival function are given by

E1 g(Ft−1) = Xt−1 − c, for some c ∈ R.

E2 g(Ft−1) = Xt−1 − µt−1 − c, for some c ≥ 0.

E3 g(Ft−1) = bt−1 − kXt−1, for some k ∈ [0, 1].

E4 g(Ft−1) = bt−1 − k(µt − c), for some k ≥ 0 and c ∈ R.
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The simplest survival function E1 lets the bubble grow until the asset price reaches a fixed

level c. This allows for various bubble sizes bt, as Xt−1 also depends on the fundamental

value µt−1 and the shock process εt−1, but does describe time series in which the asset price

always drops from approximately the same critical level. To allow for varying levels one can

use a survival function such as E2. This function allows the bubble to grow as long as the

difference between the asset price and the fundamental value is not too large, which leaves

flexibility for the actual critical level. Examples E1-E2 have less control for the emergence

rate of bubbles. If a bubble just collapsed, then Xt−1 is equal to its fundamental value in

expectation, which has dynamics that are potentially likely to immediately initiate another

bubble. In example E2 for instance, if bubbles are very large, then c will be relatively large

with respect to the dynamics of the fundamental value. When the bubble collapses at time

t − 1, then g(Ft−1) = εt−1 − c, which means that there is a very high probability of a new

bubble being created.

To gain more control of bubble emergence dynamics one can use more involved survival

functions such as example E3. Here a bubble collapses if it makes out more than a fraction

k of the total asset price. This allows for various bubble sizes and critical levels of the asset

price as Xt−1 depends on the fundamental value and the shock process. In fact, a higher

fundamental value allows for larger bubbles, a result that can be argued to be appealing as

a high fundamental price can be one of the driving reasons for the existence of the bubble.

Example E3 can control for the emergence of bubbles, as Xt−1 < 0 implies that the break

condition is not satisfied for any possible value of bt−1 and thus no bubble is created. A period

of negative asset value thus ensures no bubble is created during that time, hence E3 can be

used well to describe time series which contain explosive and nonexplosive windows. Finally,

example E4 captures the same effects as E3, but elaborates on the connection between

the fundamental value and the bubble process. The bubble size and collapse and emergence

times are now all directly related to the fundamental value. If the fundamental value is below

the threshold c, then no bubbles are created. If the fundamental value goes above c, then

a bubble is created which grows until its size is larger than k times the difference between

the fundamental value and c. There are two general driving forces that cause the bubble

to burst. Firstly, the fundamental value process can stay above c for an extended period of

time, but as it is mean reverting while the bubble is exponentially increasing, the bubble

6



process grows much faster and thus we eventually observe that bt−1 ≥ k(µt − c). Secondly,

the fundamental value can fall quickly below c again, which immediately makes the bubble

collapse. Combinations between these two collapse reasons are also possible, allowing for a

wide variety of bubble sizes and overall asset price dynamics.

2.1 Bubble variety

The bubble process described in (2.4) might appear to be rather restricted at first sight, as

conditional on the current value of the bubble the updating equation allows for only two

possible values, all of which are within a countable space. However, the joint dynamics

between the fundamental value and the bubble process can cause the asset price to be very

flexible in describing various bubble sizes, shapes and frequencies. This is especially true

for examples E3 and E4, which we demonstrate in Figure 1 by examining some of the

possible impulse response functions (IRFs) for the model described in equations (2.1)-(2.5)

with survival condition E4. Figure 1(a) illustrates how a small impulse that does not push

Figure 1: Several impulse response functions for the bubble model as described in equations (2.1)-
(2.5) with survival condition E4.
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(a) No bubble creation.
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(b) One standard bubble.

Xt
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c

(c) Multiple consecutive bubbles decreasing
in size.

Xt

µt

c

(d) A flat bubble that spends some time near its peak
before collapsing.
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the fundamental process above the threshold c creates no speculative bubble. The resulting

dynamics in the asset price are therefore just the mean reverting ones from the fundamental

value process. In Figure 1(b) we have increased the size of the impulse, which results in a

typical unique bubble characterised by its exponential increase followed by a sudden collapse.

The collapse is caused by the fundamental process reverting back to its mean lower than c. If

we further increase the size of the impulse as in Figure 1(c), then we obtain a similar initial

scenario, but now the bubble collapses even though the fundamental value is still above the

threshold, because its size is larger than k(µt−1 − c). This results in another smaller bubble

immediately created once the first bubble has collapsed. Finally, Figure 1(d) illustrates the

effect of an impulse size that causes the mean reverting fundamental process dynamics to

approximately cancel out the explosive bubble dynamics. The resulting joint dynamics for

the asset price show a bubble that spends some time at its peak level before collapsing.

The different possible joint dynamics in the asset price as illustrated in Figure 1 are

often encountered in financial time series. Figure 2 exhibits some time series for which

evidence for the existence of a speculative bubble has been found. The bubble shapes in

each time series are remarkably different. Figure 2(a) plots the monthly Nasdaq real price

Figure 2: Several time series with evidence for the existence of a speculative bubble. Panel (a) is
the monthly Nasdaq real price from January 1973 to May 2005, Panel (b) is the daily Bitcoin/USD
exchange rate from February 20, 2013 to July 18, 2013 and Panel (c) is the daily spread between
US Baa bond rates and Aaa bond rates from January 3, 2006 to July 2, 2009.
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from January 1973 to May 2005, studied in Phillips et al. (2011). This time series contains

a single bubble where the exponential increase is followed by an immediate burst and no

new explosive behaviour, see the similarity with the impulse response function (IRF) in
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Figure 1(b). Figure 2(b) depicts the daily Bitcoin/US dollar exchange rate from February

20 to July 18 in 2013, studied in Hencic and Gouriéroux (2015). This time series contains a

classic bubble, which collapses on April 10. However, different to Figure 2(a), it is followed

immediately by a new smaller exponential increase and downwards burst, analogous to the

IRF of Figure 1(c). Figure 2(c) shows the daily spread between US Baa bond rates and

Aaa bond rates from January 3, 2006 to July 2, 2009, studied in Phillips and Yu (2011).

Here we observe a speculative bubble that increases exponentially, but then spends some

time around its peak before collapsing, as in the IRF of Figure 1(d). All time series contain

windows where no speculative bubble is apparent, as in the IRF of Figure 1(a).

3 Probabilistic and statistical analysis

In this section we study the probabilistic properties of our model as defined in equations

(2.1)–(2.5). The bubble model contains several irregular components making the results

in this section nonstandard. Firstly, the parameter α is allowed to be greater than one,

which means that the bubble model is locally explosive on its sample space. Secondly, the

updating equation for the bubble process (2.4) contains a discontinuity. These aspects imply

that typical stability properties necessary for almost everywhere contraction conditions or

smoothness assumptions do not hold, which means that it is not possible to employ standard

stability theory results as developed in Bougerol (1993) or Meyn and Tweedie (1993). Instead

we rely on previous work in Blasques and Nientker (2017) that provides stability results for

resetting dynamic systems. Such a system is defined by an updating function that sometimes

resets to a fixed, possibly random, value regardless of the past. These dynamics are present

in the bubble process when the bubble collapses back to zero.

We split the parameter vector in two sub-vectors (θ, λ) which belong to the parameter

space Θ × Λ. Here θ contains all the parameters that enter continuously in (µt, bt) and λ

contains the remaining parameters. Among the parameters (σ2, δ, β, γ, ω, α), it is clear that

σ2 is always an element of θ, while the remaining parameters may be elements of θ or λ

depending on the chosen survival function g. If the survival function depends on the bubble

process, then (α, ω) belong to λ and if g is nonconstant in the fundamental value process,

then (δ, β, γ) belong to λ. We examine the examples from Section 2 as an illustration.
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E1 g(Ft−1) = Xt−1 − c, then θ = (σ2, δ, β, γ, ω, α) and λ = c.

E2 g(Ft−1) = Xt−1 − µt−1 − c, then θ = (σ2, ω, α) and λ = (δ, β, γ, c).

E3 g(Ft−1) = bt−1 − kXt−1, then θ = (σ2, δ, β, γ) and λ = (ω, α, k).

E4 g(Ft−1) = bt−1 − k(µt − c), then θ = σ2 and λ = (δ, β, γ, ω, α, k).

Deriving consistency and asymptotic normality for λ is generally difficult. Therefore we

approach the problem by deriving these results for θ conditionally on a calibrated value of

λ. This means that we will work with functions f in the Banach space L∞(Θ,R), we write

‖f‖Θ for the supremum norm. The parameter space Θ is assumed to be compact throughout

this section.

We show in Section 3.1 that the model admits stable solutions under lenient restrictions

on the parameters and the survival function. We then continue to analyse the model as a

filter in Section 3.2 and show that filter paths converge to a stable solution. We derive the

likelihood in Section 3.3 and provide consistency and asymptotic normality for a maximum

likelihood (ML) estimator in Section 3.4. The proofs and further details are presented in

Appendix A.

3.1 The model as a data generating process

This section provides results that guarantee that our model generates (strictly) stationary

ergodic data with finite moments. Moreover, we show that partial solutions converge to

the stationary sequence. These results will be required later on to show consistency and

asymptotic normality for the ML estimator in a correctly specified model.

Data generated by our model partially adheres to very standard dynamics, as equation

(2.1) holds for such data and thus (2.3) simplifies to

µt = δ + βµt−1 + γεt−1.(3.1)

The fundamental value process therefore is an autoregressive process of order one with

Gaussian errors, a specification that is well studied and known to have stable solutions. We

need the following assumptions to ensure the stability results:
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DGP 1. The parameter space satisfies |β| < 1.

DGP 2. Let b ≥ 0 and µ, ε ∈ R. There exists a set S ⊂ R×R of positive Lebesque measure

such that the survival function satisfies

g̃(ε, µ) := inf
b≥0

g(µ+ b+ ε, µ, b) ≥ 0 for all (ε, µ) ∈ S.

Assumption DGP 1 is standard in the literature on autoregressive processes. Condition

DGP 2 seems complicated but essentially requires that the bubble process always has positive

probability to collapse next period, regardless of its current and past values. If this were not

the case, then there are scenarios in which the bubble is guaranteed to continue growing,

something that can be considered unnatural. Assumption DGP 2 is usually easy to verify.

Lemma. Assumption DGP 2 holds if g̃ is a continuous and surjective function.

Proof. The set [0,∞) contains an open subset, say O. Since g̃ is surjective g̃−1(O) is

nonempty and by continuity it is open. Any nonempty open subset in Euclidean space is of

positive Lebesque measure. �

We verify condition DGP 2 on our examples E1–E4 as an illustration. If our survival

function is given by E1 then g̃(ε, µ) = µ+ ε− c, if our survival function is given by E2 then

g̃(ε, µ) = ε− c, if our survival function is given by E3 then g̃(ε, µ) = k(µ+ ε) as k ≤ 1 and

finally if our survival function is given by E4 then g̃(ε, µ) = −k(δ + βµ + γε − c). All of

these functions are continuous and surjective and thus condition DGP 2 is satisfied for all

our examples.

Theorem 1. Suppose that assumptions DGP 1–2 hold. Then there exists a unique causal

stationary ergodic solution ((Xt, µt, bt))t∈Z to model (2.1)–(2.5). Moreover, any other solu-

tion ((X̂t, µ̂t, b̂t))t∈N initialised at (X̂1, µ̂1, b̂1) almost surely converges exponentially fast to

the stationary ergodic one, that is

∥∥∥(µ1, b1)− (µ̂1, b̂1)
∥∥∥

Θ

eas→ 0 as t→∞.

Theorem 5 establishes the existence of a unique causal solution to our model for each
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choice of θ that satisfies assumptions DGP 1–2. One can simulate an arbitrary close approx-

imation of this solution by using any initialisation of choice and discarding the first portion

of the time series.

We finalize this section by providing a result on the existence of moments for the solution

found in Theorem 1. Showing such existence is dependent on the chosen survival function.

We will use example E4 in our application, so we derive the result for this survival function.

Corollary 2. Suppose that assumptions DGP 1 holds and that the survival function is given

as in E4. Then the unique stationary ergodic solution has a uniform n′th moment for all

n ∈ N, i.e. E‖(Xt, µt, bt)‖nΘ <∞.

3.2 The model as a filter

This section focusses on the model as a filter for general data (Xt)t∈Z. Such a filter will

always have to be initialised at some values µ̂1 and b̂1, as the fundamental respective bubble

processes are unobserved. We impose conditions that ensure that our filtered model admits

a unique stationary ergodic solution that is twice continuously differentiable, has bounded

moments and that any initialised process converges to. The first set of conditions assume

structure on the dependence between the (Xt). We write log+(x) = max{0, log x} and F ts
for the σ-algebra of (Xs, . . . , Xt) for any s ≤ t ∈ [−∞,∞].

FLT 1. The data sequence (Xt)t∈Z is stationary ergodic and has a finite log moment, that

is E log+ |Xt| <∞.

FLT 2. Each Xt is absolutely continuous with full support pdf. If A ∈ F−1
−∞ and B ∈ F∞0

are events of positive probability, then P(A and B) > 0.

FLT 3. The conditional distributions Xt | Xt−1, . . . , Xt−n are absolutely continuous and of

bounded density uniformly over n ∈ N and almost all possible past values with respect to

Lebesque measure.

Condition FLT 1 is standard and necessary, one cannot expect to obtain stationary

ergodic filter paths if the original data sequence is not so. A log moment is implied by the

existence of any regular moment by Jensen’s inequality. Assumption FLT 2 is less common,
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but has an intuitive interpretation. It requires the sequence (Xt)t≥0 to be non exclusive, that

is, conditional on the past some future events are more likely than others, however, anything

that was possible unconditionally can still happen. Assumption FLT 3 is a technical one that

is satisfied for most reasonable distributions. We realise conditions FLT 2 and FLT 3 are

unusual in the literature. We provide the following result to illustrate that many stochastic

processes satisfy these conditions.

Proposition 3. Suppose (Xt)t∈Z is a real valued stationary ergodic solution of a Markov

chain Xt = f(Xt−1, ζt). If f(x, ·) is a continuously differentiable function for all x ∈ R with

derivative bounded away from zero for almost all x ∈ R with respect to Lebesque measure,

and (ζt)t∈Z is a sequence of independent, identically distributed and absolutely continuous

random variables such that f(x, ζt) has full support for all x ∈ R. Then conditions FLT 2

and FLT 3 are satisfied.

Proposition 3 implies that typical processes such as general AR(1) given by Xt =

h(Xt−1) + εt, or multiplicative specifications of the type Xt = h(Xt−1)εt usually satisfy

conditions FLT 2 and FLT 3. The proposition can also be extended to multivariate pro-

cesses where the data is one of the entries in the vector. This implies processes such as

ARMA or GARCH satisfy our conditions.

As mentioned before, the dynamics of our model rely heavily on the survival function

chosen, specifically whether g is nonconstant in any of its arguments. We provide the desired

results for the most complex case in which g is nonconstant in any of its variables. We then

need the following additional parameter restrictions.

FLT 4. The function g is Lipschitz with derivative bounded away from zero almost every-

where, it is monotone in its first argument, decreasing and continuous in its second argument

and increasing in its third argument. Moreover, the probability P(g(Xt, µ, 0) ≥ 0) is positive

for all µ ∈ R and the inverse of g in its third argument is L-Lipschitz.

FLT 5. The parameters satisfy r := |β − γ| < 1 and the polynomial p(x) = 1− rx+ γαLx2

has roots outside of the unit circle.

Assumption 4 contains quite some restrictions of the survival function. It can be easily

checked however that these all hold for example E4.
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Theorem 4. Suppose that assumptions FLT 1–4 hold. Then there exists a unique causal

stationary ergodic solution ((µ∗t , b
∗
t ))t∈Z to model (2.3)–(2.5) that is twice continuously dif-

ferentiable over Θ. Moreover, any other solution ((µ̂t, b̂t))t∈N initialised at (µ̂1, b̂1) almost

surely converges exponentially fast to the stationary ergodic one, that is,

∥∥∥(µ∗t , b
∗
t )− (µ̂t, b̂t)

∥∥∥
Θ

eas→ 0 as t→∞.

Finally, if Xt has an n’th moment for some n ∈ N, then (µ∗t , b
∗
t ) has an n’th moment too.

3.3 The likelihood

As mentioned in the beginning of Section 3 we derive our asymptotic results for θ condi-

tionally on a calibrated value of λ. The likelihood evaluated at some θ ∈ Θ for a sequence

(X1, . . . , XT ) is the joint density implied by (2.1)–(2.5). The fundamental value and bubble

processes are unobserved, so we choose initialised values µ̂1 and b̂1 which deliver filtered

sequences (µ̂t(θ, λ))Tt=2 and (b̂t(θ, λ))Tt=2 according to (2.3)–(2.5). It follows that

Xt|X1, . . . , Xt−1 = Xt|µ̂t(θ, λ), b̂t(θ, λ) ∼ N(µ̂t(θ, λ) + b̂t(θ, λ), σ2)

and thus prediction error decomposition delivers the average log likelihood as a function

Θ→ R given by

L̂T (θ) ∝ 1

T

T∑
t=2

`(Xt, µ̂t(θ, λ), b̂t(θ, λ), σ2),

`(Xt, µ̂t(θ, λ), b̂t(θ, λ), σ2) := −1

2
log(2πσ2)− 1

2σ2
(Xt − µ̂t(θ, λ)− b̂t(θ, λ))2.

From here on out we will omit mentioning that the plug in processes depend on θ and λ to

keep notation clear.
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3.4 Asymptotic results

3.4.1 Consistency

The ML estimator of θ is defined as

θ̂T = arg max
θ∈Θ

L̂T (θ).

We need the following conditions to obtain consistency.

CS 1. (Xt)t∈Z is stationary and ergodic with bounded second moment: E|Xt|2 <∞.

CS 2. The filter vector ((µ̂t, b̂t))t∈N is invertible and converges to a limit process ((µ∗t , b
∗
t ))t∈Z

uniformly over Θ with two uniform bounded moments. That is,

∥∥∥(µ̂t, b̂t)− (µ∗t , b
∗
t )
∥∥∥

Θ

eas→ 0 as t→∞ and E ‖(µ∗t , b∗t )‖
2
Θ <∞,

Moreover, the joint process ((Xt, µ
∗
t , b
∗
t ))t∈Z is strictly stationary and ergodic.

CS 3. There exists a unique maximizer θ0 of the limit log likelihood, that is, for every θ ∈ Θ

that is unequal to θ0 we have

E`(Xt, µ
∗
t (θ, λ), b∗t (θ, λ), σ2) < E`(Xt, µ

∗
t (θ0, λ), b∗t (θ0, λ), σ2

0).

The assumptions CS 1–3 are typical conditions used in the theory of M -estimators.

Assumptions CS 1 and CS 2 assume stochastic properties of our model that ensure that a

law of large numbers can be applied. Note that they are both implied by assumption FLT 1

– FLT 5 and Theorem 4. Assumption CS 3 ensures that the limit log likelihood is maximised

at a unique point θ0, given the fixed parameter λ. Note that the expectations exist by the

moment assumptions in CS 1–2. When the model is assumed to be well specified and λ is

fixed at its true value λ0, then it is often easy to show that this assumption holds and that

the parameter of interest θ0 is the true parameter, that is, the parameter that corresponds

to the data generating process for {Xt}t∈Z. If the model is misspecified, or λ is set at some

arbitrary value λ 6= λ0, then the uniqueness of the parameter of interest θ0 is harder to

establish. When the uniqueness assumption fails, set consistency can be easily established,
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thus ensuring that the ML estimator converges to the limit argmin set; see Lemma 4.2

in Pötscher and Prucha (1997) for standard conditions that apply here. In this case, the

limit parameter θ0 is a ‘pseudo-true parameter’, i.e. a parameter that minimizes a Kullback-

Leibler divergence between the true conditional density of the data and the model-implied

conditional density, see Section 2.3 of White (1994).

Theorem 5 (Consistency). If assumptions CS 1–3 hold, then θ̂T
as→ θ0.

Theorem 1 establishes the a.s. convergence of the ML estimator θ̂T to the pseudo-true

parameter θ0 which is the unique maximizer of the limit log likelihood or any given value of

λ ∈ Λ. In this sense, the θ0 provides the best Kullback-Leibler approximation to the true

unknown distribution of the data, for the given value of λ. Naturally, if the model is correctly

specified and λ is calibrated at its true value, then θ0 corresponds to the true parameter.

Corollary 6. Suppose that the model is correctly specified and that λ is calibrated at its true

value. If the results of Theorem 1 can be applied for all θ ∈ Θ, and

E ‖(µt, bt)‖2
Θ <∞.

Then the ML estimator θ̂T converges a.s. to the true parameter θ0.

3.4.2 Asymptotic normality

In what follows, we establish the asymptotic normality of the ML estimator θ̂T as T →∞.

Theorem 7 focuses on the case of a well specified and correctly calibrated model, and Theorem

8 obtains asymptotic normality for a misspecified or incorrectly calibrated model where

λ 6= λ0. We need the following standard assumptions.

AN 1. The conditions CS 1–3 hold and θ0 belongs to the interior of Θ.

AN 2. The limit process (µ∗t , b
∗
t ) is twice continuously differentiable on Θ for all t ∈ Z.

AN 3. {Xt}t∈Z has four bounded moments E|Xt|4 <∞.

AN 4. The Fisher information matrix is invertible.
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The following assumption ensures that the filter derivatives converge almost surely and

exponentially fast to limit strictly stationary and ergodic sequences. The exponential rate

for the filter was established in Section 3.2. It is clear that the same argument applies to

the derivative processes {∂µ̂t
∂θ
} and {∂b̂t

∂θ
}. In particular, we have again that {∂b̂t

∂θ
} converges

at any rate since it is reset to zero in a finite number of steps with positive probability, and

{∂µ̂t
∂θ
} converges exponentially fast due to its autoregressive nature.

AN 5. The derivative processes are invertible at exponential rates and feature four bounded

moments, ∥∥∥(∇0:2µ̂t,∇0:2β̂t)− (∇0:2µt,∇0:2βt)
∥∥∥

Θ

eas→ 0 as t→∞ ,

and E
∥∥(∇0:2µt,∇0:2βt)

∥∥4

Θ
<∞.

Theorem 7. (Asymptotic Normality: Correct specification) Let assumptions AN 1–5 hold.

Suppose further that the model is well specified and that λ = λ0. Then

√
T (θ̂T − θ0)

d→ N(0, I−1(θ0)) as T →∞ ,

where I−1(θ0) denotes the inverse information matrix.

We need the following additional assumption to obtain asymptotic normality under a

misspecified model.

AN 6. {xt} is near epoch dependent of size −1 on a φ-mixing sequence of size −r/(r − 1)

for some r > 2 .

Theorem 8. (Asymptotic Normality: Incorrect specification/calibration) Let assumptions

AN 1–6 hold. Then

√
T (θ̂1

T − θ1
0)

d→ N(0,Σ(θ1
0, θ

2)) as T →∞ ,

where

Σ(θ1
0, θ

2) =
(
Eˆ̀′′

t (θ
1
0, θ

2)
)−1(Eˆ̀′

t(θ
1
0, θ

2)Eˆ̀′
t(θ

1
0, θ

2)>
)(
Eˆ̀′′

t (θ
1
0, θ

2)
)−1

.
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4 Illustrations

In this section we test the descriptive capability of our model and illustrate the accessability

and ease of further analysis after estimation. We will use our model with survival function E4

and estimate it on a part of the Bitcoin/US dollar exchange rate. We realise that the chosen

survival function implies that most of our parameters belong to λ, the vector of parameters

that enter discontinuously into the likelihood. Therefore we add a short simulation study in

Section 4.1 in which we examine the distribution of our ML estimator for a representative

choice of parameters. Section 4.2 contains the estimation results and further analysis.

4.1 Simulation study

We examine the distribution of the ML estimator for a given parametrization, stated in Table

1. This choice represents a medium amount of bubbles of size relative to the fundamental

σ δ β γ ω α k c
1.0 0.1 0.95 0.7 0.2 1.03 7 −0.1

Table 1: Parametrization used for simulation study.

value process. A typical simulation for the implied model can be found in Figure 3. There

Figure 3: An example simulated path for the parametrization of the model described in Table 1.
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are periods of locally explosive behaviour, but also times at which no bubbles seem to form.

The size of the bubbles is substantially larger than that of the fundamental value, but not

so far as to render its value insignificant compared to the magnitude of the bubble process.
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Figure 4: Estimated kernel densities for the ML estimator based on one thousand estimate values,
each of which is based on a sample path of length one thousand.
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We estimate the model parameters by maximising the likelihood over an area centered

around the true values. The likelihood however is discontinuous and nondifferentiable, which

means that gradient based optimizing algorithms cannot be applied. Instead we implement

a procedure based on the genetic algorithm in Matlab, which is inspired by natural selection

observed in biological evolution. The algorithm generates a population of points and then

successively selects a partially random subpopulation to be parents to the next population.

We use a total of fifty generations to get near to the optimal point and then use that

as a starting value for a gradient based optimizer to get quicker to the maximiser. An

important observation about our procedure is that the resulting optimizing algorithm is

stochastic. It implies that parameter values cannot be reproduced, however, the algorithm

works sufficiently well: successive estimations on the same data produce similar results.
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For the simulation we calculate one thousand estimate values, each of which is based on a

sample path of length one thousand. The resulting estimated densities for the ML estimator

are portrayed in Figure 4. We find that all densities, except the one for k, are close to

symmetric with their peak at the true value. The estimator for k has more inaccuracy than

the others, because most bubbles in this parametrization collapse due to the fundamental

process dropping below the threshold c. A path of one thousand observations contains

approximately ten bubbles, so therefore there is relatively little data to estimate k.

4.2 The BTC/USD exchange rate

The data set that we use is equivalent to the one studied in Hencic and Gouriéroux (2015).

We take the detrended daily Bitcoin/US dollar exchange rate from February 20 to July 18

in 2013, given in Figure 5. There appears to be a big bubble that collapses on April 10,

2013. Moreover, it is potentially followed by a second smaller bubble. Afterwards it tends

to behave as a standard stable and mean reverting process.

Figure 5: Detrended daily Bitcoin/USD exchange rate, taken from Hencic and Gouriéroux (2015).

20/02/13 09/04/13 29/05/13 18/07/13

-50

0

50

100

σ δ β γ ω α k c
2.05 −0.25 0.86 1.04 0.44 2.10 2.39 12.29

Table 2: Parameter estimates for detrended daily Bitcoin/US dollar exchange rate from February
20 to July 18, 2013.

We estimate the model parameters as discussed in the simulation study. The results are

given in Table 2. The estimate of α is relatively large, which means that any potential bubble
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is highly explosive. Moreover, the value of c implies that the potential smaller second bubble

is mostly identified as the fundamental value moving away from its mean. These observations

are substantiated when we look at the filtered time series in Figure 6, note that these are

also the in sample one step ahead predictions. Our model describes only one significant

bubble, which is preceded by an increase in the fundamental value. It then collapses due to

the k parameter restriction on bubble size. Afterwards the fundamental value stays below

the threshold c and hence the rest of the time series is filtered as an autoregressive process.

Our model performs well as it predicts the burst of the bubble on April 10 correctly. It does

however underestimate the additional decrease in fundamental value after the bubble burst.

Figure 6: The filtered daily Bitcoin/USD exchange rate, taken from Hencic and Gouriéroux (2015).
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We compare our bubble model to the nested simpler model in which we set the bubble

always to zero. In that case we have only four parameters left out of eight. The resulting

Akaike information criteria are 646 for the full bubble model and 726 for the simpler model.

Therefore we conclude that including the bubble process adds descriptive power and thus

we prefer that model.

Observation driven parameter varying time series models have two main advantages. The

first one is that they are easy to estimate as the likelihood is accessible through prediction

error decomposition as discussed in Section 3. The second advantage is that further analysis

is straightforward once the model has been estimated, as we have closed form formulas for the

filtered time series. For example, we can calculate the probability that the bubble condition

in the next period holds. Figure 7 plots the filtered time series and these probabilities
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for some period centered around the bubble. Here we see that the probability of nonzero

bubble values before the bubble start are virtually equal to zero. As the bubble starts, the

probability of a nonzero bubble is almost one. The probability dips a little for April 8, as the

fundamental value on April 7 has gone down a little. The fundamental value then increases

on April 8 however and thus so does the probability for April 9. When we get to April 10 the

probability is again almost zero as the large exponential growth of the bubble has outgrown

the fundamental value process on April 9 by far too much.

Figure 7: The filtered daily Bitcoin/USD exchange rate around the bubble in the top frame, and the
probability that the bubble condition holds in the next period shifted one period to the right in the
second frame.
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The estimated probabilities above are just an example of many possible features that

can be predicted. For example, once the model parameters are estimated, one can predict

expected remaining bubble life, the probability that a bubble will emerge at a given time,

or the expected maximal bubble size.

5 Conclusions

We have introduced a new observation driven time varying parameter model to describe

locally explosive behaviour in a stationary setting. We do so by splitting the asset price into

the sum of its fundamental value and a speculative bubble. For the sake of simplicity we have
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assumed an AR(1) process for the fundamental value and a collapsing AR(1) for the bubble

process. However, these are not binding assumptions and many extensions and variations

are possible. Of course any mean reverting stationary process for the fundamental value fits

exactly in the theoretic domain presented in the paper. Dynamics can be changed by using a

nonstationary process such as a random walk for the fundamental value. Most asset pricing

data is nonstationary, so this would mean that one does not have to detrend the data, which

makes out of sample forecasting possible. Other possibilities that could be explored are

extensions to the break condition. One could for example add external stochastics allowing

for more structural models that include specific financial or economic variables that can

help in predicting bubble collapses. Another extension can be made by changing the sudden

collapse in a more smooth exponential decrease. The dynamics of this model would then be

very close to those described in the mixed causal and noncausal literature.

A Proofs

A.1 Proof of Theorem 1

It is straightforward to verify the assumptions of Theorem 3.1 in Bougerol (1993) for the

system defined in equations (2.2) and (3.1). It then immediately follows that there exists

a unique causal stationary ergodic sequence (µt)t∈Z that satisfies (3.1) and that any other

solution (µ̂t)t∈N initialised at µ̂1 satisfies

‖µt − µ̂t‖Θ

eas→ 0 as t→∞.

Next, we substitute equation (2.1) into the survival function to obtain the bubble updat-

ing function

bt+1 = φt(bt), where φt(b) = (ω + αb)1 {g(µt + b+ εt, µt, b) < 0} .

We then check Assumption A for Theorem 2.1 in Blasques and Nientker (2017). Assumption

A1 is trivial and A2 is satisfied by Krengel’s Lemma: a measurable function of a stationary

ergodic sequence produces a stationary ergodic sequence, see Proposition 4.3 in Krengel
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(1985). For the final assumption A3 we note that φt(b) = 0 for all b ∈ [0,∞), if

g(µt + b+ εt, µt, b) ≥ inf
b≥0

g(µt + b+ εt, µt, b) ≥ 0.

Therefore Assumption A3 is satisfied if

P
(

inf
b≥0

g(µt + b+ εt, µt, b) ≥ 0

)
> 0.

This is implied by condition DGP 2, because (2.2) implies that µt and εt are independent

and both absolutely continuous on the real line. Therefore the joint random variable (µt, εt)

is absolutely continuous on R2 and thus P((µt, εt) ∈ S) > 0. We conclude that there exists a

unique causal stationary ergodic sequence (bt)t∈Z that satisfies the bubble updating process

defined in (2.1)–(2.5) and that any other solution (b̂t)t∈N initialised at b̂1 satisfies

∥∥∥bt − b̂t∥∥∥
Θ

eas→ 0 as t→∞.

The final conclusion follows again by Krengel’s Lemma.

A.2 Proof of Corollary 2

The solution for the fundamental process found in Theorem 1 is given by

µt =
∞∑
i=0

βεt−i−1,

so all moments of µt are finite over Θ as it is a compact space so that |β| is bounded and

the εt are Gaussian and thus have all finite moments. For the bubble process we have

bt = (ω + αbt−1)1{bt−1 < k(µt − c)} ≤ ω + max{αk(µt − c), 0}

and hence moment existence follows from those of the fundamental value process.
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A.3 Proof of Proposition 3

We fix some ζ ∈ R and let ξ = f(x, ζ). The fact that f(x, ·) is continuously differentiable

implies by the inverse function theorem that it is invertible on a neighbourhood O around ζ

and that the inverse f−1(x, ·) is also continuously differentiable. Moreover, by assumption,

for Lebesque almost all x ∈ R there exists an L > 0 such that |f ′(x, ζ)| ≥ L and thus

f−1(x, ·) is Lipschitz as

d

dξ
f−1(x, ξ) =

1

f ′(x, ζ)
≤ 1

L
.

The real line is separable, hence we can choose a countable number of disjunct compact

neighbourhoods {Ok}k∈N whose union is equal to R and f(x, ·) is invertible on each neigh-

bourhood as above. A continuously differentiable function on a compact set is absolutely

continuous, which in turn implies that it has the Luzin property, that is, sets of measure

zero are mapped to sets of measure zero.

We now prove that Xt is absolutely continuous. Let E ⊂ R be a set of Lebesque measure

zero and let F denote the distribution function of Xt, then by independence of the ζt we

have

P(Xt ∈ E) = P(f(Xt−1, ζt) ∈ E)

=

∫
R
P(f(x, ζt) ∈ E)F (dx) =

∞∑
k=1

∫
R
P(f(x, ζt) ∈ E ∩Ok)F (dx)

=
∞∑
k=1

∫
R
P(ζt ∈ f−1(x,E ∩Ok))F (dx) =

∞∑
k=1

∫
R

0F (dx) = 0,

where we used that E ∩ Ok has Lebesque measure zero, f−1(x, ·) has the Luzin property

on each Ok and ζt is absolutely continuous. The absolute continuity of the conditional

distributions follows similarly as by the independence of the ζt and the Markov property

P(Xt ∈ E | Xt−1 = x1, . . . , Xt−n = xn) = P(Xt ∈ E | Xt−1 = x1) = P(f(x1, ζt) ∈ E) = 0.

Next we show that the conditional densities are uniformly bounded. By assumption, we

know that the density of ζt is bounded by some B > 0. For some ξ ∈ R and η > 0 we then
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have

P(ξ < Xt ≤ ξ + η | Xt−1 = x1, . . . , Xt−n = xn) = P(ξ < f(x1, ζt) ≤ ξ + η)

=
∞∑
k=1

P(ζt ∈ f−1(x1, (ξ, ξ + η] ∩Ok)) ≤
B

L
η,

where we used that f−1(x, ·) is 1
L

-Lipschitz on each Ok and the density of ζt is bounded by

B. Taking the limit of η → 0 shows that the conditional densities are all bounded by B
L

.

Finally we note that the full support of Xt follows directly from the fact that f(x, ζt)

has full support for all x ∈ R and ζt is absolutely continuous, and show the non exclusive

property in FLT 2. This follows from the Markov chain setup. Let A0 ⊂ R be all points x

such that P(A | X0 = x) > 0. Then A0 has positive Lebesque measure as X0 is absolutely

continuous and

P (X0 ∈ A0) ≥ P(A and X0 ∈ A0) = P (A) > 0.

It follows that

P(A and B) =

∫
R
P(A and B | X0 = x)F (dx)

=

∫
R
P(A | X0 = x)P(B | X0 = x)F (dx) > 0,

where we used that P(A | X0 = x) is greater than zero on a set of positive Lebesque measure

and P(B | X0 = x) is greater than zero for all x ∈ R as f(x, ζt) has full support for all x ∈ R

and ζt is absolutely continuous.

A.4 Proof of Theorem 4

A.4.1 The existence of a stationary ergodic solution

We follow the approach used in Theorem 3.1 of Bougerol (1993) where we expand the model

equations backwards and show that this converges to a stationary ergodic solution. We

define the joint updating equation (µt, bt) = Φt−1(µt−1, bt−1), where for u ∈ R and v ≥ 0 we
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have

Φt−1(u, v) = (φt−1(u, v), ψt−1(u, v)),

φt−1(u, v) = δ + ru+ γXt−1 − γv,

ψt−1(u, v) = (ω + αv)1{g(Xt−1, u, v) < 0}.

To ease notation we write µ
(0)
t = u and b

(0)
t = v and then define the backward iterates

recursively for m ∈ N as

µ
(m)
t = φt−1

(
µ

(m−1)
t−1 , b

(m−1)
t−1

)
and b

(m)
t = ψt−1

(
µ

(m−1)
t−1 , b

(m−1)
t−1

)
.

The goal will be to show that b
(m)
t is almost surely eventually constant as m→∞ and that

limm→∞ µ
(m)
t exists. The stationary ergodic solution is then given by

(
lim
m→∞

µ
(m)
t , lim

m→∞
b

(m)
t

)
t∈Z

.

It is stationary ergodic by Corollary 2.1.3 of Straumann and Mikosch (2006) and it is a

solution since

lim
m→∞

µ
(m)
t = lim

m→∞
φt−1

(
µ

(m−1)
t−1 , b

(m−1)
t−1

)
= φt−1

(
lim
m→∞

µ
(m−1)
t−1 , lim

m→∞
b

(m−1)
t−1

)
,

where we are allowed to swap the limit in because the second argument is eventually constant

and φt is continuous in its first argument. Similarly

lim
m→∞

b
(m)
t = lim

m→∞
ψt−1

(
µ

(m−1)
t−1 , b

(m−1)
t−1

)
= ψt−1

(
lim
m→∞

µ
(m−1)
t−1 , lim

m→∞
b

(m−1)
t−1

)
,

where we are allowed to swap the limit in because the second argument is eventually constant,

the random variable

g
(
Xt−1, lim

m→∞
µ

(m−1)
t−1 , lim

m→∞
b

(m−1)
t−1

)
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is absolutely continuous by assumption FLT 3 and the fact that g is monotone in its first

argument, and finally because g is continuous in its second argument by assumption FLT 4.

Lemma. The sequence b
(m)
0 is eventually constant as m → ∞ and the limit limm→∞ µ

(m)
0

converges almost surely.

Proof. Define

st = lim sup
m→∞

µ
(m)
t and it = lim inf

m→∞
µ

(m)
t .

The proof that the backward iterate limits above exist consists of two steps that we will

show later:

(i) We show that for every η > 0 there exists an event Aη ∈ F−1
−∞ of positive probability,

such that conditional on Aη we have almost surely s0 − i0 < η and b
(m)
0 is constant for

sufficiently large m.

(ii) We show that there exists an event Bη ∈ F∞−∞ that contains Aη, such that conditional

on Bη we have st − it ≤ rt(s0 − i0) for all t ∈ N. Moreover b
(m)
t is eventually constant

for all t ∈ N.

Since (Xt)t∈Z is stationary ergodic there almost surely are infinitely many 0 > −t1 > −t2 >

. . . for which the event Bη shifted by tk to the right occurs. If it occurs for such a −tk, then

s0 − i0 ≤ rtk(s−tk − i−tk) ≤ rtkη.

Taking the limit of k → ∞ then delivers s0 = i0 and thus the limit limm→∞ µ
(m)
0 converges

almost surely. The fact that
(
b

(m)
0

)
m∈N

is eventually constant follows immediately from part

(ii) and the same argument that the event Bη occurs for some −t < 0. �

Lemma. Claim (i) holds.

Proof. We start out by showing that almost surely st − it < ∞. This follows by a series

of upper bounds. Firstly we have

µ
(m)
t = δ + rµ

(m−1)
t−1 + γXt−1 − γb(m−1)

t−1 ≤ δ + rµ
(m−1)
t−1 + γXt−1
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Assumptions FLT 5 and FLT 1 together with Lemma 2.1 in Straumann and Mikosch (2006)

ensure that expanding backwards and taking the limit converges, hence st < ∞. The

infimum requires more work. Note that the Liptschitz condition of the inverse of g in its

third argument as stated in assumption FLT 4 ensure the existence of two constants L,K > 0

such that

b
(m)
t =

(
ω + αb

(m−1)
t−1

)
1

{
g
(
Xt−1, µ

(m−1)
t−1 , b

(m−1)
t−1

)
< 0
}

=
(
ω + αb

(m−1)
t−1

)
1

{
b

(m−1)
t−1 < g−1

(
Xt−1, µ

(m−1)
t−1 , 0

)}
≤ ω + αmax

{
g−1

(
Xt−1, µ

(m−1)
t−1 , 0

)
, 0
}

≤ ω + αmax
{
K + L

(
µ

(m−1)
t−1 +Xt−1

)
, 0
}
.

It follows that

µ
(m)
t = δ + rµ

(m−1)
t−1 + γXt−1 − γb(m−1)

t−1

≥ (δ − γ(ω + αK)) + rµ
(m−1)
t−1 − γαLµ(m−2)

t−2 + γ (Xt−1 − αLXt−2) .

Again assumptions FLT 5 and FLT 1 together with Lemma 2.1 in Straumann and Mikosch

(2006) ensure that expanding backwards converges, hence it > −∞. We conclude that

st − it <∞. Note that these bounds immediately prove the moment statement in Theorem

4.

Next, we choose an M > 0 such that P (st − it < M) > 0 and let t =
⌈

log(η/m)
log r

⌉
, where

dxe is the smallest integer larger than x. Continuity of g in its second argument, the pos-

itive probability condition in assumption FLT 4 and assumption FLT 2 guarantee that by

conditioning on the past we can show for each 0 ≤ v < t that

P
(

lim sup
m→∞

b
(m)
−v = 0

)
≥ P (g (X−v−1, s−v−1, 0) ≥ 0) > 0.

It follows by Assumption FLT 2 that there exists an event Aη ∈ F−1
−∞ of positive probability

such that

st − it < M and lim sup
m→∞

b
(m)
−v = 0 for all 0 ≤ v < t.
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This then implies that

s0 − i0 = r(s−1 − i−1) + γ

(
lim sup
m→∞

b
(m)
−1 − lim inf

m→∞
b

(m−1)
−1

)
= rt(s−t − i−t) < rtM ≤ η,

which concludes the proof of part (i). �

Lemma. Claim (ii) holds.

Proof. The argument will be a recursive one, conditional on Aη. Suppose that st− it < rtη

and b
(m)
t is eventually constant, then

st+1 − it+1 = r(st − it) < rt+1η.

Next we show that there exists an event such that b
(m+1)
t+1 is eventually constant. Note that

this holds if and only if

sign(g(Xt, it, bt)) = sign(g(Xt, st, bt)),(A.1)

where bt = limm→∞ b
(m)
t . The Lipschitz condition in assumption FLT 4 implies that there

exists a K > 0 such that

|g(Xt, st, bt)− g(Xt, it, bt)| ≤ K(st − it) < Krtη.

Moreover, the derivative being bounded away from zero by at least some B > 0 and the

monotonicity of g in its second argument implied by assumption FLT 4 then ensure that

(A.1) follows from

|g(Xt, st, bt)| > BKrtη.

We conclude that statement (ii) follows if |g(Xt, st, bt)| > BKrtη for all t ∈ N.

Next we determine the probability of this event. Let I2Krtη(st, bt) be a stochastic inter-

val of length Krtη such that if |g(Xt, st, bt)| ≤ BKrtη then Xt ∈ I2Krtη(st, bt). Then by

30



assumption FLT 3 there exists a U > 0 such that

P
(
|g(Xt, st, bt)| ≤ BKrtη

∣∣Aη) ≤ P (Xt ∈ I2Krtη(st, bt)|Aη)

=

∫
P (Xt ∈ I2Krtη(st, bt)| st, bt, Aη) dP(st, bt)

≤
∫

2UKrtηdP(st, bt) = 2UKrtη.

It follows that

P
(
|g(Xt, st, bt)| > BKrtη, ∀t ∈ N

∣∣Aη) = 1− P
(
|g(Xt, st, bt)| ≤ BKrtη, ∃t ∈ N

∣∣Aη)
≥ 1−

∞∑
t=1

P
(
|g(Xt, st, bt)| ≤ BKrtη

∣∣Aη)
≥ 1−

∞∑
t=1

2UKrtη ≥ 1− 2UKηr

1− r
.

This last number can be made larger than zero by choosing η sufficiently small. �

A.4.2 Partial solutions and continuous differentiability

The convergence of partial solutions to the true ones is essentially almost the same as the

one for the existence of a stationary ergodic solution. We can use the same bounds as in

statement (i) to show that |µ∗t | and |µ̂t| are bounded by some η with positive probability and

that their respective bubble processes are zero. It then follows by the same derivation as in

part (ii) that they converge with positive probability. As (Xt)t∈Z is stationary ergodic this

event happens with probability one at some point in time and thus we get the convergence.

Continuous differentiability follows by the same way as in Straumann and Mikosch (2006).

The stochastic recurrence equations for the derivatives of the fundamental and bubble pro-

cesses are either linear or standard resetting systems. Therefore their respective backward

iterations converge to stationary ergodic solutions. This then implies the continuous differ-

entiability by a standard analysis result.
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A.5 Proof of Theorem 5

We follow the usual consistency proof for M -estimators which involves showing firstly the

uniform convergence of the sample average log likelihood to the limit log likelihood and

secondly the identifiable uniqueness of the parameter of interest; see e.g. Theorem 3.4 in

White (1994) or Lemma 3.1 in Pötscher and Prucha (1997). To ease notation we define the

following functions Θ→ R:

ˆ̀
t = `(Xt, µ̂t(·, λ), b̂t(·, λ), σ2),

`∗t = `(Xt, µ
∗
t (·, λ), b∗t (·, λ), σ2).

Lemma. The sample average log likelihood almost surely converges uniformly to the limit

log likelihood, i.e.

∥∥∥L̂T − E`∗t
∥∥∥

Θ

as→ 0 as T →∞.

Proof. We have

∥∥∥L̂T − E`∗t
∥∥∥

Θ
=

∥∥∥∥∥ 1

T

T∑
t=2

ˆ̀
t − E`∗t

∥∥∥∥∥
Θ

≤ 1

T

T∑
t=2

∥∥∥ˆ̀
t − `∗t

∥∥∥
Θ

+

∥∥∥∥∥ 1

T

T∑
t=2

`∗t − E`∗t

∥∥∥∥∥
Θ

.(A.2)

We will show that the two rightmost terms in (A.2) go to zero as T →∞. For the first term

note that ` is a differentiable function, we write

`f (µ̃, b̃) =
∂`(Xt, µ, b, σ

2)

∂(µ, b)

∣∣∣∣
(µ̃,b̃)

.

We then invoke the mean value theorem to obtain the existence of some (µ̃t, b̃t) between
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(µ̂t, b̂t) and (µ∗t , b
∗
t ) that satisfies

∥∥∥ˆ̀
t − `∗t

∥∥∥
Θ
≤
∥∥∥`f (µ̃t, b̃t)∥∥∥

Θ

∥∥∥(µ̂t, b̂t)− (µ∗t , b
∗
t )
∥∥∥

Θ

≤
∥∥∥`f (µ̃t, b̃t)− `f (µ∗t , b∗t )∥∥∥

Θ

∥∥∥(µ̂t, b̂t)− (µ∗t , b
∗
t )
∥∥∥

Θ
(A.3)

+ ‖`f (µ∗t , b∗t )‖Θ

∥∥∥(µ̂t, b̂t)− (µ∗t , b
∗
t )
∥∥∥

Θ

The function `f is linear in its arguments and thus is a K-Lipschitz function for some K > 0.

Therefore assumption CS 2 guarantees that

∥∥∥`f (µ̃t, b̃t)− `f (µ∗t , b∗t )∥∥∥
Θ
≤ K

∥∥∥(µ̃t, b̃t)− (µ∗t , b
∗
t )
∥∥∥

Θ

≤ K
∥∥∥(µ̂t, b̂t)− (µ∗t , b

∗
t )
∥∥∥

Θ

eas→ 0 eas t→∞ ,

hence (A.3) almost surely goes to zero exponentially fast by assumption CS 2 and thus we

have

1

T

T∑
t=2

∥∥∥`f (µ̃t, b̃t)− `f (µ∗t , b∗t )∥∥∥
Θ

∥∥∥(µ̂t, b̂t)− (µ∗t , b
∗
t )
∥∥∥

Θ

as→ 0 as T →∞.

Next, note that
(
‖`f (µ∗t , b∗t )‖Θ

)
t∈Z is a stationary sequence by assumption CS 2 and Propo-

sition 4.3 in Krengel (1985). Therefore

1

T

T∑
t=2

‖`f (µ∗t , b∗t )‖Θ

∥∥∥(µ̂t, b̂t)− (µ∗t , b
∗
t )
∥∥∥

Θ

as→ 0 as T →∞

if ‖`f (µ∗t , b∗t )‖Θ has a log moment by assumption CS 2 and Lemma 2.1 in Straumann and

Mikosch (2006). Let log+(x) = max{0, log x}. The log moment follows from the fact that

E log+ ‖`f (µ∗t , b∗t )‖Θ =
1

σ2
E log+

∥∥∥∥∥∥ Xt − µ∗t − b∗t
Xt − µ∗t − b∗t

∥∥∥∥∥∥
Θ

,

the finiteness of which is implied by the moment conditions in assumptions CS 1 and CS 2.

We conclude that the first term in (A.2) converges to zero almost surely.
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Finally, we discuss the second term in (A.2). We show that

∥∥∥∥∥ 1

T

T∑
t=2

`∗t − E`∗t

∥∥∥∥∥
Θ

as→ 0 as T →∞

by application of the uniform law of large numbers, Theorem 2.7 in Straumann and Mikosch

(2006). The law of large numbers holds since (`∗t )t∈N is strictly stationary and ergodic by

assumption CS 2 and Proposition 4.3 in Krengel (1985), and because

E ‖`∗t‖Θ = E
∥∥∥∥1

2
log(2πσ2)− 1

2σ2
(Xt − µ∗t − β∗t )2

∥∥∥∥
Θ

≤
∥∥∥∥1

2
log(2πσ2)

∥∥∥∥
Θ

+ c

∥∥∥∥ 1

2σ2

∥∥∥∥
Θ

(
EX2

t + E ‖µ∗t‖
2
Θ + E ‖b∗t‖

2
Θ

)
,

for some c > 0. This upper bound is finite by assumption CS 2, because Θ is compact and

the fact that σ2 > 0. �

Lemma. The parameter θ0 is identifiable unique on Θ.

Proof. The identifiable uniqueness of θ0 ∈ Θ is implied by the uniqueness assumption CS

3, the continuity of E`∗t and the compactness of Θ, see Chapter 3 in Pötscher and Prucha

(1997). The continuity of E`∗t follows directly from the fact that the sample likelihood, which

is continuous, converges uniformly to E`∗t . �

A.6 Proof of Corollary 6

Theorem 5 ensures that (µ∗t , b
∗
t )t∈Z = (µt, bt)t∈Z, so that condition CS 2 follows. The max-

imiser of the limit log likelihood is equal to the minimiser of the Kullback-Leibler divergence

between the true conditional density of the data and the model-implied conditional density,

see for instance Section 2.3 of White (1994). Therefore it follows by the Gibbs inequality that

the limit log likelihood is uniquely maximised at the true parameter θ0 and thus condition

CS 3 holds for the true parameter.
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A.7 Proof of Theorem 7

This proof is identical to Section 7 of Straumann and Mikosch (2006).

A.8 Proof of Theorem 8

The desired result follows by the same argument as used above for proving asymptotic

normality under correct specification, with the exception that the score is not granted to

be a martingale difference sequence. However, by assumptions AN 5 and AN 6, we have

that the score sequence is near epoch dependent of size −1 on a φ-mixing sequence of size

−r/(r − 1) for some r > 2. Given the moment bounds, we can thus appeal to the central

limit theorem for near epoch dependent sequences in Potscher and Prucha (1997, Theorem

10.2).
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