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Chinese postman games with repeated players

Arantza Estévez-Fernándeza, c Herbert Hamersb

October 26, 2018

Abstract

This paper analyses Chinese postman games with repeated players, which generalize Chinese postman

games by dropping the one-to-one relation between edges and players. In our model, we allow players

to own more than one edge, but each edge belongs to at most one player. The one-to-one relation

between edges and players is essential for the equivalence between Chinese postman-totally balanced

and Chinese postman-submodular graphs shown in Granot et al. (1999). We illustrate the invalidity of

this result in our model. Besides, the location of the post office has a relevant role in the submodularity

and totally balancedness of Chinese postman games with repeated players. Therefore, we focus on

sufficient conditions on the assignment of players to edges to ensure submodularity of Chinese postman

games with repeated players, independently of the associated travel costs. Moreover, we provide some

insights on the difficulty of finding necessary conditions on assignment functions to this end.

Keywords: Chinese postman games with repeated players, balanced game, totally balanced game, sub-

modular game, assignment function.

JEL Classification Number: C71

1 Introduction

In this paper, we analyse Chinese postman games with repeated players (cprp games), which generalize

Chinese postman games. In a Chinese postman problem, a postman has to visit a group of customers

starting and ending in the post office. One can see it as a service provider that has to visit a group of

clients. Usually, there are travelling costs associated with the visit. The relevant question is, then, how
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bCentER and Department of Econometrics & OR, Tilburg University, P.O. Box 90153, 5000 LE Tilburg, The Netherlands.
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to reduce the travel costs of visiting all customers. When the customers have to pay for these costs, a

second question arises: how to divide the travel costs among all customers. The analysis of the operational

research problem dates back to Mei-Ko Kwan (1960), Mei-Ko Kwan (1962), and Edmonds and Johnson

(1973), while the allocation problem was first addressed in a game-theoretical framework in Hamers,

Borm, van de Leensel and Tijs (1999). In their work, they represent the city by a graph and assume

a one-to-one relation between the set of customers and the set of edges of the graph. They introduce

Chinese postman games by defining the value of a group of customers (or coalition) as the minimum cost

over all possible walks for the coalition. Here, a walk is a tour that starts at the post office, visits each

customer, and goes back to the post office at the end. Moreover, they illustrate that Chinese postman

games need not be balanced in general, although they are always balanced when the underlying graph is

a bridge-connected Euler graph. Following the work of Hamers et al. (1999), Hamers (1997) shows that

Chinese postman games are always submodular when the underlying graph is a bridge-connected cycle.

Granot, Hamers and Tijs (1999) further investigate Chinese postman games in the same framework as

Hamers et al. (1999). They define Chinese postman-submodular, Chinese postman-totally balanced, and

Chinese postman-balanced graphs. A graph G is postman-submodular if any associated Chinese postman

game with underlying graph G is submodular, independently of the post office location and of the travel

costs. Similarly, they define Chinese postman-totally balanced and Chinese postman-balanced graphs.

They show the equivalence between undirected weak cyclic graphs, Chinese postman-submodular graphs,

and Chinese postman-totally balanced graphs. Further, they show that the class of undirected Chinese

postman-balanced graphs is the class of weakly Euler graphs. Following Granot et al. (1999), Granot and

Hamers (2004) analyse the equivalence between Chinese postman-submodular (as well as balanced and

totally balanced) graphs and traveling salesman-submodular (respectively, balanced and totally balanced)

graphs. Granot, Hamers, Kuipers and Maschler (2011) allow for edges not to be assigned to players. They

investigate the class of graphs for which the associated Chinese postman game is balanced and the players

on a road always pay exactly the cost of the road at each core point, independently of the location of the

post office and the travelling costs.

In the literature, there is a broad stream of papers on relations between properties of games arising

from an OR setting, and the structures of underlying graphs. On Chinese postman games, we further

mention Albizuri and Hamers (2014), Platz and Hamers (2015), Granot and Granot (2012); on minimum

coloring games, we refer to Deng, Ibaraki, Nagamochi and Zang (2000), Okamoto (2003), and Hamers,

Miguel and Norde (2014); and on Steiner-traveling salesman games, we mention Herer and Penn (1995).

In this paper, we drop the one-to-one relation between the set of customers (from now on players)

and the set of edges. The one-to-one relation between players and some relevant feature of an underlying

operational-research problem is common to the literature of OR-games (cf. Borm, Hamers and Hendrickx
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2001). Lately, this one-to-one relation has been dropped as in Calleja, Estévez-Fernández, Borm and

Hamers (2006) and Estévez-Fernández, Borm, Calleja and Hamers (2008) in the context of sequencing

games, Miquel, van Velzen, Hamers and Norde (2006) in the context of fixed tree games, and Miquel, van

Velzen, Hamers and Norde (2009) in the context of assignment games.

In our cprp games model, a player can be present in more than one edge, but no edge can have

more than one player. Moreover, we also allow for an edge to have no players, in which case we call

it a public edge. As an example of this generalization, we can consider a courier company that needs

to deliver packages to several companies and private customers. A company may have several locations

where the delivery can take place and, afterwards, the company will internally redistribute the packages

to the correct destination. We show, contrary to the results in Granot et al. (1999), that cprp games

with underlying undirected weak cyclic graphs do not need to be submodular. Moreover, we show that

submodularity and totally balancedness are not equivalent concepts any longer. Furthermore, the location

of the post office in the graph plays a relevant role in total balancedness and submodularity of the

associated cprp games. This shortcoming leads us to focus on conditions on the assignment of players

to edges that ensure submodularity of the associated cprp game. Given an undirected rooted graph

G, an assignment of players to edges is submodular if the associated cprp game is always submodular,

independently of the travel costs. Here, we restrict our analysis to weak cycles since Chinese postman

games in the framework of Granot et al. (1999) are a special case of cprp games. We give sufficient

conditions for an assignment of players to edges to be submodular for trees. Moreover, using these

conditions, we also provide sufficient conditions for an assignment of players to edges to be submodular for

cycles and for weak cycles. Unfortunately, these requirements are not necessary as well. We give insightful

examples that outline the complexity of finding necessary conditions for submodular assignments of

players to edges.

The structure of the paper is as follows. Section 2 gives the preliminary definitions and results used

in the remaining of the paper. Section 3 introduces Chinese postman games with repeated players and

motivates the analysis of submodular assignment of players to edges. Section 4 is devoted to submodular

assignments of players to edges for trees, while Section 5 follows suit for cycles, and Section 6 for weak

cycles. Section 7 concludes.

2 Preliminaries

A cooperative (cost) game in characteristic function form is a pair (N, c) where N is a finite set of

players and c : 2N → R satisfies c(∅) = 0. In general, c(S) represents the value of coalition S, that is, the

joint costs that are incurred by the coalition when its members decide to cooperate. A cooperative game
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is a tool used to solve an allocation problem: how to share the total costs arising from the cooperation

of all players. One highly accepted solution concept within game theory is the core of a game. The core

of a game (N, c), Core(c), is the set of efficient allocations of c(N) to which no coalition can reasonably

object (c.f. Gillies 1953). Formally,1

Core(c) = {x ∈ R
N | x(N) = c(N), x(S) ≤ c(S) for all S ⊂ N}.

A game (N, c) is balanced (see Bondareva 1963, Shapley 1967) if, and only if, it has a nonempty

core. A game (N, c) is totally balanced if for each coalition S ⊂ N , the subgame (S, cS) is balanced,

where cS is the restriction of c to S. A game (N, c) is monotonic if for every S, T ⊂ N with S ⊂ T ,

c(S) ≤ c(T ). A game (N, c) is subadditive if for every S, T ⊂ N with S ∩T = ∅, c(S ∪T ) ≤ c(S)+ c(T ).

An important class of (totally) balanced games is the class of submodular (or concave) games. A game

(N, c) is submodular (or concave) if for every i ∈ N and every S ⊂ T ⊂ N \ {i}, c(S ∪ {i})− c(S) ≥

c(T ∪ {i})− c(T ).

An (undirected) graph G is a pair (V,E) in which V is the finite set of nodes and

E ⊂ {{v, w} ⊂ V : v 6= w} is the set of edges. In general, given a graph G, V (G) and E(G) denote

the set of nodes and the set of edges of G, respectively. For v ∈ V and e ∈ E, we say that v and e are

incident if v ∈ e, and edges(v) denotes the set of edges that are incident with v.

Awalk, ω, from node v to w is an alternating sequence of nodes and edges, w0, e1, w1, . . . , wq−1, eq, wq,

where w0 = v, wq = w, and el = {wl−1, wl} for every l ∈ {1, . . . , q}. For notational convenience, we

sometimes describe a walk ω as a sequence of nodes w0, w1, . . . , wq−1, wq, with {wl−1, wl} ∈ E for every

l ∈ {1, . . . , q}. G(ω) denotes the associated graph with set of nodes {w0, w1, . . . , wq} and set of edges

{e1, . . . , eq}, which we denote by V (ω) and E(ω), respectively. Walks(v, w) denotes the set of walks

from v to w. A closed walk is a walk with w0 = wq.

A path, π, from node v to w is a walk in which no node is repeated. G(π) denotes the corresponding

graph with set of nodes V (π) and set of edges E(π). Paths(v, w) denotes the set of paths from v to w.

It is well known that from any walk between two distinct nodes, we can always construct a path between

those nodes.

A cycle, C, is a walk w0, e1, w1, . . . , wq−1, eq, wq, with w0 = wq and where w1, . . . , wq are distinct.

With minor abuse of language, we refer to a cycle C as the graph with nodes V (C) and edges E(C). In

a cycle, every node has exactly two incident edges and every pair of distinct nodes can be connected by

exactly two paths. A rooted cycle C with root v0 ∈ V (C) is a cycle where node v0 is singled out.

1Here and further, for any vector x ∈ R
N , we denote x(S) :=

∑

i∈S

xi.
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Given a graph G, a subset V ′ of V (G) is called connected if for every v, w ∈ V ′, there is a path from

v to w using only nodes of V ′. A subset V ′ of V (G) is called maximally connected or component if

V ′ is connected and for any w ∈ V (G) \ V ′, V ′ ∪ {w} is not connected.

A graph G = (V,E) is a forest if it has no cycles and a tree if it is a connected forest. In a tree,

two distinct nodes are connected by exactly one path. Given u, v ∈ V , we denote by π(u, v) the unique

path connecting both nodes. A rooted tree G = (V,E) with root v0 ∈ V is a tree where node v0 ∈ V is

singled out.

A graph G = (V,E) is a weak cycle if it is a connected graph and each edge belongs to at most

one cycle. A cycle belonging to a weak cycle is called a leaf if it has at most one node with more

than two incident edges (C2 is a leaf cycle in Figure 1). A rooted weak cycle G = (V,E) with root

v0 ∈ V is a weak cycle where node v0 ∈ V is singled out. The rooted weak cycle G can be decomposed

into a union of rooted trees and rooted cycles which set of edges are pairwise disjoint. Formally, given

G a weak cycle, let C1, . . . , Cr be the cycles contained in G and let V1, . . . , Vs be the components of
(

V (G), E(G)\
(

r
⋃

l=1

E(Cl)
)

)

that are not singletons, that is, |Vl| ≥ 2 for l ∈ {1, . . . , s}. For l ∈ {1, . . . , s},

let Tl be the tree with node set Vl and edge set El = {{v, w} ∈ E | v, w ∈ Vl} and let v∗
l
be the node

that is always visited in any walk from v0 to any node in Vl. Then, Tl is a rooted tree with root v∗l ,

l ∈ {1, . . . , s}. Moreover, for any l ∈ {1, . . . , r}, let w∗
l
∈ V (Cl) be the node that is always visited in any

walk from v0 to any node in Cl. Then, Cl is a rooted tree with root w∗
l , l ∈ {1, . . . , r}. Therefore, G

can be seen as a union of rooted cycles (Cl, w
∗
l ), l = 1, . . . , r, and rooted trees (Tl, v

∗
l ), l = 1, . . . , s, with

E(C1), . . . , E(Cr), E(T1), . . . , E(Ts) pairwise disjoint (see Figure 1).

v4

v2

v0 v1 v5

v3 v6

C1

C2

w∗
1

w∗
2

v4

v2

v0 v1 v5

v3 v6

T1

T2

v∗1

v∗2

Figure 1: Decomposition of a weak cycle into trees and cycles.

Let G be a weak cycle and let ω be a closed walk in G. The associated graph G(ω) is also a weak

cycle. Moreover, we can always construct another closed walk ω̄ that have the same nodes and edges

than ω and such that each edge belonging to a cycle of G(ω) appears exactly once in ω̄, while all other

edges appear exactly twice. In this case, G(ω) = G(ω̄). We say that ω̄ is an essential walk. Conversely,
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associated with each connected subset V ′ ⊂ V (G), we can always construct a closed essential walk ω

satisfying: (i) V (ω) = V ′ and (ii) E(ω) = {{u, v} ∈ E(G) | u, v ∈ V ′}. We say that a closed essential

walk ω satisfying these two conditions is a walk associated with V ′. Obviously, there might be more

than one walk associated with V ′.

3 Chinese postman games with repeated players

In this section, we introduce Chinese postman games with repeated players. For this, we first need to

formally introduce Chinese postman problems with repeated players.

In a Chinese postman problem with repeated players (cprp problem), a postman, starting from the

post office, has to visit a (finite) set N of customers (or players) in a city and return to the post office

at the end. The map of the city is represented by a graph G and the players are located in the edges of

the graph. Here, a player may be located in more than one edge, but each edge may only be assigned to

one player. Associated with each edge there is a non-negative cost. The cprp problem consists of finding

a walk that visits all players at minimal cost. Formally, a cprp problem is a 5-tuple (G, v0, t, N, p)

where G is the graph representing the map of the city; v0 is the node where the post office is located;

t : E(G) → R+ is the cost function on the edges of G; N is the set of players; and p : E(G) → N ∪ {0}

is a function assigning edges to players, where p(e) = i, i ∈ N , means that edge e ∈ E(G) is occupied by

player i, and p(e) = 0 means that edge e ∈ E(G) is not occupied by a player. If p(e) = 0 for e ∈ E(G),

we say that edge e is public.

Next to the optimization problem, we consider an allocation problem: how to divide the minimal

cost of visiting all players among them. To solve this problem, we consider Chinese postman games with

repeated players (cprp games). Before the formal introduction, we give some new concepts. Let S ⊂ N

be a coalition of players and assume that the postman only has to visit the players in S. We define an

S-walk as a closed walk that visits all players in S at least once. An S-walk starts and finishes in v0,

may visit the same edge more than once, and may visit edges not assigned to members of S. We denote

the set of all S-walks by W(S).

The cprp game, (N, c), corresponding to the cprp problem (G, v0, t, N, p) is defined by

c(S) = min

{

q
∑

l=1

t(el) | v0, e1, w1 . . . , wq−1, eq, v0 ∈ W(S)

}

for every S ⊂ N . It is readily verified that (N, c) is monotonic and subadditive.

Given a cprp problem (G, v0, t, N, p) and a player i ∈ S, some edges assigned to i may be always

visited after visiting other edges assigned to i as well. In such case, these edges are redundant for the

definition of the game and can be considered public. Formally, given a cprp problem (G, v0, t, N, p), we

6



associate the reduced cprp problem, (G, v0, t, N, pr), where pr is defined as follows: pr(e) = i with

i ∈ N if p(e) = i and there exist at least one walk ω ∈ W({i}) such that e ∈ E(ω) and p(ē) 6= i for

every ē ∈ E(ω) \ {e}; otherwise, pr(e) = 0. We denote by M(G, v0, t, N, pr) the set of players that own

multiple edges according to pr. Formally,

M(G, v0, t, N, pr) = {i ∈ N | |(pr)−1(i)| > 1}.

If no confusion is to be expected, we denote M instead of M(G, v0, t, N, pr). We denote by (N, cr) the

cprp game associated to (G, v0, t, N, pr). Figure 2 illustrates how to obtain a reduced cprp problem. There,

and in the remaining, the numbers in boldface represent the players assigned to the edge (or 0 if the edge

is public) and the non-boldface numbers represent the cost of the edges.

v4

v2

v1

v0

v5 v6

v7 v8

v9 v10 v11 v12

v13 v14

2 1

1 1

4 1

4

1

4

1

4 1 41

1
1

3
1

2
1

3
1

3 0.5 3 0.5

Cprp problem

v4

v2

v1

v0

v5 v6

v7 v8

v9 v10 v11 v12

v13 v14

2 1

1 1

4 1

4

1

4

1

0 1 01

1
1

3
1

2
1

3
1

3 0.5 3 0.5

Reduced cprp problem

Figure 2: Cprp problem and reduced cprp problem.

The following result is straightforward and, therefore, the proof is omitted.

Theorem 3.1. Let (G, v0, t, N, p) be a cprp problem, let (G, v0, t, N, pr) be the reduced cprp problem,

and let (N, c) and (N, cr) be the corresponding cprp games. Then, c = cr.

If p is a one-to-one relation with N , that is, p−1(0) = ∅ and |p−1(i)| = 1 for every i ∈ N , then,

both the cprp problem and corresponding game coincide with the Chinese postman problem and the

corresponding game introduced in Hamers et al. (1999). Granot et al. (1999) study Chinese postman-

balanced, Chinese postman-totally balanced, and Chinese postman-submodular (cp-balanced, cp-totally

balanced, and cp-submodular) graphs for Chinese postman games. A graph is cp-submodular if the
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corresponding Chinese postman game is always submodular, independently of the edge costs and the

post office location. Similarly, they define cp-balanced and cp-totally balanced graphs. In Granot et al.

(1999), each edge belongs to one player and each player has exactly one edge. They obtain the following

result.

Theorem 3.2. (Granot et al. 1999) Let G be a connected undirected graph. Then, the three following

statements are equivalent:

(i) G is weakly cyclic,

(ii) G is cp-submodular,

(iii) G is cp-totally balanced.

The following examples illustrate that Theorem 3.2 does not hold if the one-to-one relation between

the set of edges and the set of players is violated. First, we give an example of a cprp game associated to

a cprp problem with a weak cycle that is not balanced.

Example 3.1. Let (G, v0, t, N, p) be the cprp problem described in Figure 3. Here, pr = p.

v2 v1 v0 v3 v4

v5

v6

2

1

1

2

2

2

3

1

3 2

1 1

Figure 3: Cprp problem in Example 3.1.

The associated cprp game has values:

c({1}) = c({2}) = c({3}) = 4, c({1, 2}) = c({1, 3}) = c({2, 3}) = 6 and c(N) = 10.

The game is not balanced. To see this, suppose that x ∈ Core(c). Then, x1+x2+x3 = 10 and x1+x2 ≤ 6,

x1 + x3 ≤ 6, x2 + x3 ≤ 6. Adding all inequalities together, we have

20 = 2(x1 + x2 + x3) = x1 + x2 + x1 + x3 + x2 + x3 ≤ 6 + 6 + 6 = 18

which establishes a contradiction to our premise x ∈ Core(c). Thus, (N, c) is not balanced and, therefore,

neither totally balanced, nor submodular. However, if the post office is situated at any other node, then,

the associated cprp-game is submodular. 3
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Second, we give an example of a cprp game associated to a cprp problem with a weak cycle that is

totally balanced, but not submodular.

Example 3.2. Let (G, v0, t, N, p) be the cprp problem described in Figure 4. Here, pr = p.

v1

v2

v0

v3

v4

1

2

2

1

2

2
3

2

Figure 4: Cprp problem in Example 3.2.

The associated cprp game has values:

c({1}) = c({3}) = 4, c({2}) = c({1, 2}) = 6, c({1, 3}) = c({2, 3}) = 8 and c(N) = 10.

The game is totally balanced since it has a nonempty core (for example, (4, 2, 4) ∈ Core(c)) and all sub-

games have a nonempty core, too. However, it is not submodular. Take i = 1, S = {2}, and T = {2, 3}.

Then, c({1, 2}) − c({2}) = 0 6≥ 2 = c({1, 2, 3}) − c({2, 3}). In fact, the game is not submodular since

player 2 is visited on his edge {v1, v2} for coalitions {2}, {1, 2}, and {1, 2, 3}, while he is visited on his

edge {v3, v4} for coalition {2, 3}. However, if the post office is situated at any other node, the associated

cprp-game is submodular. 3

As illustrated in the examples above, as soon as we drop the one-to-one relation between the set of

edges of the underlying graph and the set of players, Theorem 3.2 does not hold and the position of the

post office plays a relevant role. In the remaining, we study sufficient conditions on the assignment of

players to edges in order to ensure submodularity of the corresponding cprp game, independently of the

cost function at hand. One of the admissibility conditions will be that all assignment functions that are a

one to one function between the set of edges and the set of players are admissible. Due to this, it follows

that the only graphs that combined with an admissible assignment function provide submodular cprp

games are weakly cyclic (as seen in Granot et al. 1999).

Let G be a rooted graph with root v0 and let N be a finite set. The assignment function

p : E(G) → N ∪ {0} is submodular if for every cost function t : E(G) → R+, the cprp game (N, c)
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associated to the cprp problem (G, v0, t, N, p) is submodular.

4 Submodular assignment functions for trees

In this section, we analyse restrictions on the assignments of players in trees to obtain submodularity of

cprp games. Let (G, v0, t, N, p) be a cprp problem where G is a tree (tree-cprp problem). Given a coalition

S ⊂ N and a walk ω ∈ W(S), it is readily seen that the associated graph, G(ω), is a tree. Since we are

interested in walks that visit all players in S at minimum cost, we can restrict our analysis to essential

closed walks. Then, we can write the value of coalition S ⊂ N as

c(S) = min
ω∈W(S)

2
∑

e∈E(ω)

t(e).

As illustrated in Examples 3.1 and 3.2, we encounter problems with submodularity of tree-cprp games

when a player can be visited in different edges depending on the coalition at hand. Next, we define pairwise

tree-admissibility with respect to the post office of an assignment function, which will be a sufficient

condition to obtain submodularity of tree-cprp games. First, we need to introduce some preliminary

notation.

Let G be a rooted tree with root v0 and let v ∈ V (G). We denote by Pr(v) the set of predecessors of

v, that is, the set of nodes that precede v in the path from v0 to v. Formally,

Pr(v) = {u ∈ V | u 6= v, u ∈ V (π(v0, v))}.

We denote Pr(v)= Pr(v) ∪ {v}. This induces a partial order ≤G defined by

v ≤G w if v ∈ Pr(w).

Besides, we write v<Gw if v ≤G w and v 6= w. It follows that Pr(v0) = ∅ and v0 ∈ Pr(v) for every

v ∈ V (G) \ {v0}. We denote by Fol(v) the set of nodes that have v as a predecessor. Formally,

Fol(v) = {u ∈ V | v <G u}.

We denote Fol(v)= Fol(v) ∪ {v}. Certainly, Fol(v) may be empty. Let v ∈ V and e = {v1, v2} ∈ E be

such that v1 <G v2, v1, v2 ∈ Fol(v). Then, there exists a unique ẽ = {v, ṽ} ∈ edges(v), v <G ṽ, such that

ẽ ∈ E(π(v, v2)). Clearly, ẽ may be e. We define the rooted tree G(v, e) = (V (v, e), E(v, e)) with

root v by

V (v, e) = {v} ∪ Fol(ṽ) and E(v, e) = {{u,w} ∈ E | u,w ∈ V (v, e)}.

Surely, G(v, e) = G(v, ẽ).
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v0
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v7 v8

v9 v10 v11 v12

v13 v14

Pr(v7) = {v0, v5}

Fol(v7) = {v9, v10, v13}

G(v7, {v9, v13}) = G(v7, {v7, v9})

V (v7, {v9, v13}) = {v7, v9, v13}

E(v7, {v9, v13}) = {{v7, v9}, {v9, v13}}

Figure 5: Notions of predecessors and followers in a rooted tree.

Let (G, v0, t, N, p) be a tree-cprp problem. We say that p is pairwise tree-admissible with respect

to v0 if for every v, w ∈ V (G), every e ∈ edges(v) with e ⊂ Fol(v), and every f ∈ edges(w) with f ⊂ Fol(w)

such that E(v, e) ∩ E(w, f) = ∅, one of the following conditions is satisfied:

(i) min{|pr(E(v, e))|, |pr(E(w, f))|} ≤ 1,

(ii) pr(E(v, e)) = pr(E(w, f)) with |pr(E(v, e))| = 2,

(iii) pr(E(v, e)) ∩ pr(E(w, f)) = ∅.

Clearly, if p is a one-to-one relation with N , condition (iii) is always satisfied.

Before stating the main result of this section, we need to provide a preliminary result.

Lemma 4.1. Let (G, v0, t, N, p) be a tree-cprp problem with p pairwise tree-admissible with respect to v0.

Then, for every S ⊂ N , there exists an optimal S-walk ω̂ ∈ W(S) such that |{e ∈ E(ω̂) | pr(e) = i}| = 1

for every i ∈ S.

Proof: Let ω ∈ W(S) be an optimal S-walk and assume that there exist e1, e2 ∈ E(ω) such that

pr(e1) = pr(e2) = i, i ∈ S. We may assume that every edge in ω appears exactly twice. We construct

optimal walks ω1, ω2, . . . , ωm ∈ W(S) such that ωm is in the conditions of the lemma.

Let i1 ∈ S with |{e ∈ E(ω)| pr(e) = i1}| = k1 ≥ 2. We construct another optimal walk ω1 such that

|{e ∈ E(ω1)| pr(e) = i1}| = 1. Let e1, . . . , ek1
∈ E(ω) be the edges in ω that belong to i1 according

to pr and let el = {ul, vl} with ul <G vl. Assume, without loss of generality, that e1 6∈
k1
⋃

l=2

E(ul, el).

Define V 1 = V (ω) \ (
k1
⋃

l=2

(V (ul, el) \ {ul})) and let ω1 be a closed walk associated with V 1 that starts
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and finishes in v0. We now consider two cases: (i) |pr(E(ul, el))| = 1 for every l ∈ {2, . . . , k1} and (ii)

|pr(E(ul, el))| > 1 for l ∈ {1, . . . , k′} with 1 < k′ ≤ k1.

(i) |pr(E(ul, el))| = 1 for every l ∈ {2, . . . , k1}.

In this case, it readily follows that ω1 is feasible for S since i1 is still visited in edge e1 and we

only delete either public edges, or edges that are owned by i1. Moreover, by optimality of ω and

construction of ω1, we have that ω1 is also optimal.

(ii) |pr(E(ul, el))| > 1 for l ∈ {1, . . . , k′} with 1 < k′ ≤ k1.

In this case, |pr(E(ul, el))| = 1 for l ∈ {k′+1, . . . , k1}. By condition (ii) of pairwise tree-admissibility

with respect to v0, it follows that pr(E(ul, el)) = {i1, j} with j ∈ N for every l ∈ {1, . . . , k′}. If

j ∈ pr(E(ul, el)) ∩ pr(E(ω)) for some l ∈ {1, . . . , k′}, assume, without loss of generality, that

j ∈ pr(E(u1, e1))∩pr(E(ω)). Then, it readily follows that ω1 is feasible for S since i1 and j are still

visited in edge e1 and in E(u1, e1) ∩E(ω1), respectively, and we only delete either public edges, or

edges that are owned by i1 or by j. Moreover, by optimality of ω and construction of ω1, we have

that ω1 is also optimal.

If |{e ∈ E(ω1)| pr(e) = i}| = 1 for every i ∈ S, then, we are done. Otherwise, we repeat the above pro-

cedure for i2 ∈ S with |{e ∈ E(ω)| pr(e) = i2}| > 1. In this way, we construct ω2 such that ω2 ∈ W(S), ω2

optimal, and |{e ∈ E(ω)| pr(e) = il}| = 1, l = 1, 2. Successively, we construct ωm satisfying ωm ∈ W(S),

ωm optimal, and |{e ∈ E(ω)| pr(e) = i}| = 1 for every i ∈ S. Clearly, the procedure ends in a finite

number of steps since S is finite. 2

The following example illustrates the necessity of pairwise tree-admissibility in Lemma 4.1.

Example 4.1. Let (G, v0, t, N, p) be the cprp problem described in Figure 6. Here, pr = p.

v2 v1 v0 v3 v4
2

1

1

1

1

1

3

1

Figure 6: Cprp problem in Example 4.1.

The assignment function is not pairwise tree-admissible since pr(v0, {v0, v1}) = {1, 2} and

pr(v0, {v0, v3}) = {1, 3} and, therefore, neither of the three conditions is satisfied. Moreover, the graph

associated to any optimal N -walk is G and, therefore, 1 is always visited twice (otherwise either player

2, or player 3 would not be visited). 3
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Theorem 4.2. Let G be a rooted tree with root v0 and let N be a finite set. If p : E(G) → N ∪ {0} is

pairwise tree-admissible with respect to v0, then, p is submodular.

Proof: Let t : E(G) → R+ be a cost function. We show that the cprp game (N, c) associated to the cprp

problem (G, v0, t, N, p) is submodular. Namely, we show that for every i ∈ N and every S ⊂ T ⊂ N \ {i},

c(S ∪ {i}) + c(T ) ≥ c(T ∪ {i}) + c(S). (4.1)

Notice that if either c(S∪{i}) = c(T ∪{i}), or c(T ) = c(T ∪{i}), then, the above inequality is satisfied by

monotonicity of (N, c). Therefore, we only need to verify the inequality when both c(S∪{i}) < c(T ∪{i})

and c(T ) < c(T ∪ {i}). We distinguish between two cases: i ∈ N \M and i ∈ M .

Case 1: i ∈ N \M .

Before showing this case, we need to fix some notation. Let i ∈ N \ M and R ⊂ N (notice that i

may, or may not, belong to R). We denote by e(i) = {u(i), v(i)}, with u(i) <G v(i), the unique edge

assigned to i according to pr. We denote by ω̂R ∈ W(R) an optimal walk for R under the conditions

of Lemma 4.1, that is, every edge in ω̂R appears exactly twice and |{e ∈ E(ω̂) | pr(e) = j}| = 1 for

every j ∈ R. For j ∈ R \ {i}, we denote e(j,R) = {u(j,R), v(j, R)}, with u(j, R) <G v(j, R), the

unique edge in ω̂R assigned to j by pr. We denote by v(i, j, R) the “last common node” in the paths

π(v0, u(i)) and π(v0, u(j, R)). Formally, v(i, j, R) ∈ V (π(v0, u(i)))∩ V (π(v0, u(j, R))) with v ≤G v(i, j, R)

for every v ∈ V (π(v0, u(i)))∩V (π(v0, u(j, R))). Clearly, v(i, j, R) is well defined since v0 ∈ V (π(v0, u(i)))∩

V (π(v0, u(j, R))). Moreover, v(i, j, R) ∈ V (ω̂R). Finally, we denote v(i, R) the “last node” among all

v(i, j, R). Formally, v(i, R) ∈ {v(i, j, R) | j ∈ R \ {i}} with v(i, j, R) ≤G v(i, R) for every j ∈ R \ {i}.

v5 v6

v4 v8

v0 v1 v3 v7

v2 v9

i

j

k

E(v(i, R), e(i))

R = {j, k}

v(i, j, R) = v1

v(i, k, R) = v3

v(i, R) = v(i, k, R) = v3

Figure 7: Notions of special nodes in the proof of Theorem 4.2.

Fix ω̂S∪{i} and ω̂T . We construct feasible walks ωS ∈ W(S) and ωT∪{i} ∈ W(T ∪ {i}) such that

∑

e∈E(ω̂S∪{i})

t(e) +
∑

e∈E(ω̂T )

t(e) =
∑

e∈E(ωT∪{i})

t(e) +
∑

e∈E(ωS)

t(e),
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in which case,

c(S ∪ {i}) + c(T ) = 2





∑

e∈E(ω̂S∪{i})

t(e) +
∑

e∈E(ω̂T )

t(e)



 = 2





∑

e∈E(ωT∪{i})

t(e) +
∑

e∈E(ωS)

t(e)



 ≥ c(T ∪ {i}) + c(S)

where the inequality follows by feasibility of both ωS and ωT∪{i}. To do this, we distinguish between two

situations: (1.1) v(i, S ∪ {i}) ≤G v(i, T ), (1.2) v(i, T ) <G v(i, S ∪ {i}).

(1.1) v(i, S ∪ {i}) ≤G v(i, T ).

Clearly, v(i, T ) ∈ V (ω̂S∪{i}) since v(i, T ) ∈ π(v0, v(i)). Besides, E
(

v(i, T ), e(i)
)

∩ E(ω̂T ) = ∅ by

definition of v(i, T ). By definition of v(i, S ∪ {i}), the edges in E
(

v(i, T ), e(i)
)

∩E(ω̂S∪{i}) are only used

to visit i. Then, pr
(

E
(

v(i, T ), e(i)
)

∩ E(ω̂S∪{i})

)

∩ (S ∪ {i}) = {i}. Define

V S = {v(i, T )} ∪
(

V (ω̂S∪{i}) \ V (v(i, T ), e(i))
)

and V T∪{i} = V (ω̂T ) ∪ V
(

v(i, T ), e(i)
)

and let ωR be a closed walk associated with V R that starts and finishes in v0, and visits each edge exactly

twice, for R ∈ {S, T ∪ {i}}. It follows that ωS ∈ W(S), ωT∪{i} ∈ W(T ∪ {i}), and
∑

e∈E(ω̂S∪{i})

t(e) +
∑

e∈E(ω̂T )

t(e) =
∑

e∈E(ωT∪{i})

t(e) +
∑

e∈E(ωS)

t(e).

(1.2) v(i, T ) <G v(i, S ∪ {i}).

By definition of v(i, S ∪ {i}), the edges in E
(

v(i, T ), e(i)
)

∩ E(ω̂S∪{i}) are also used to visit players

in S. Let U be the set of players in S that are visited in E(v(i, T ), e(i)) according to ω̂S∪{i}, that is,

U = pr
(

E
(

v(i, T ), e(i)
)

∩ E(ω̂S∪{i})

)

∩ S 6= ∅. Clearly, U ⊂ S ⊂ T and v(i, j, T ) ≤G v(i, T ) for every

j ∈ U by definition of v(i, T ). Recall that {e ∈ E(ω̂R) | pr(e) = j} = {e(j, R)} for every j ∈ R by selection

of ω̂R, with R ∈ {S ∪ {i}, T }. Notice that |pr
(

E
(

v(i, T ), e(i)
)

)

| ≥ 2 since i ∈ pr
(

E
(

v(i, T ), e(i)
)

)

and

U 6= ∅. Since i ∈ N \ M , we have that pr
(

E
(

v(i, j, T ), e(T, j)
)

)

= {j} for every j ∈ U by pairwise

tree-admissibility of p with respect to v0. Therefore, the edges in E(v(i, j, T ), e(j, T )) ∩ E(ω̂T ) are only

used to visit j for every j ∈ U . Define

V S =

(

{v(i, T )} ∪
(

V (ω̂S∪{i}) \ V (v(i, T ), e(i))
)

)

∪

(

⋃

j∈U

(

V (v(i, j, T ), e(j, T )) ∩ V (ω̂T )
)

)

and

V T∪{i} =

(

{v(i, j, T )|j ∈ U} ∪
(

V (ω̂T ) \
⋃

j∈U

V (v(i, j, T ), e(j, T ))

)

∪

(

V (v(i, T ), e(i)) ∩ V (ω̂S∪{i})

)

.

Let ωR be a closed walk associated with V R that starts and finishes in v0 and visits each edge exactly

twice, for R ∈ {S, T ∪ {i}}. It follows that ωS ∈ W(S), ωT∪{i} ∈ W(T ∪ {i}), and
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∑

e∈E(ω̂S∪{i})

t(e) +
∑

e∈E(ω̂T )

t(e) =
∑

e∈E(ωT∪{i})

t(e) +
∑

e∈E(ωS)

t(e).

Case 2: i ∈ M .

Fix ω̂S∪{i} and ω̂T . Let e(i, S ∪{i}) be the unique edge owned by i that is visited in ω̂S∪{i}. Consider

the tree-cprp problem (G, v0, t, N, p̄) with p̄ defined as

p̄(e) =



















p(e) if p(e) 6= i,

p(e)(= i) if e = e(i, S ∪ {i}),

0 otherwise,

and let (N, c̄) be the corresponding tree-cprp game. By definition of p̄, it follows that p̄ is pairwise tree-

admissible with respect to v0, i ∈ N \M(G, v0, t, N, p̄), c̄(S ∪{i}) = c(S ∪{i}), c̄(T ) = c(T ), c̄(S) = c(S),

and c̄(T ∪ {i}) ≥ c(T ∪ {i}). Then,

c(S ∪ {i}) + c(T ) = c̄(S ∪ {i}) + c̄(T ) ≥ c̄(S) + c̄(T ∪ {i}) ≥ c(S) + c(T ∪ {i})

where the first inequality is a direct consequence of Case 1 of this proof. 2

Pairwise tree-admissibility is a sufficient, but not necessary condition for submodularity of an assign-

ment function for tree-cprp games. When considering a “linear city” with clients situated to the right

and left of the post office as in Figure 8, the associated cprp game is always submodular, as shown in

Theorem 4.3.

vm vm−1 v2 v1 v0 w1 w2 w3 wn−1 wn

m 2 1 1 2 3 n

Figure 8: Cprp problem in Theorem 4.3.

Theorem 4.3. Let N = {1, . . . , n} be a finite set of players. Let G be the rooted tree with root v0 and

p be the assignment function given in Figure 8. Then, p is submodular.

Proof: Let n ≥ m. If m = 1, then, p is pairwise tree-admissible and, by Theorem 4.2, submodular.

Therefore, we can assume m ≥ 2. If n = m = 2, then, p is also pairwise tree-admissible and, by

Theorem 4.2, submodular. Therefore, we can assume m ≥ 2 and n ≥ 3. Then, p is not pairwise tree-

admissible since |pr(E(v0, {v0, v1}))| = m ≥ 2, |pr(E(v0, {v0, w1}))| = n ≥ 3, and pr(E(v0, {v0, v1})) ∩

pr(E(v0, {v0, w1})) 6= ∅.

Let i ∈ N and R ⊂ N \ {i}. Then,

c(R ∪ {i}) =







c({1, . . . , i}) if R ∩ {i+ 1, . . . , n} = ∅,

c(R) if R ∩ {i+ 1, . . . , n} 6= ∅.
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Let S ⊂ T ⊂ N \ {i}. If T ∩ {i+ 1, . . . , n} = ∅,

c(S ∪ {i})− c(S) = c({1, . . . , i})− c(S) ≥ c({1, . . . , i})− c(T ) = c(T ∪ {i})− c(T ),

and if T ∩ {i+ 1, . . . , n} 6= ∅,

c(S ∪ {i})− c(S) ≥ 0 = c(T ∪ {i})− c(T ),

where both inequalities follow by monotonicity of (N, c). 2

Theorem 4.3 also holds if players are allowed to own more than one edge at each side of the post

office. However, the proof heavily relies on each player having the same “set of followers” at each side

of the post office. This makes relevant that necessary and sufficient conditions for submodularity of

assignment functions need to include the relative order of the players in the edges. Therefore, looking

at the set of players in edges of the type E(v, e) is not enough and aiming for necessary and sufficient

conditions becomes too cumbersome. In any case, the relative order of players in the graph is not the only

important element to find necessary and sufficient conditions for submodularity of assignment functions.

We illustrate this in the following example.

Example 4.2. Let (G, v0, t, N, p) be the cprp problem described in Figure 9. Here, pr = p.

v2 v5

v1 v0 v4

v3 v6

2

1

3

2

1

1

1

1.1

2

1.1

3

1

Figure 9: Cprp problem in Example 4.2.

The assignment function is not pairwise tree-admissible since pr(v0, {v0, v1}) = {1, 2, 3} and

pr(v0, {v0, v4}) = {1, 2, 3} and, therefore, neither of the three conditions is satisfied. Here, the “set of

followers” of player i ∈ N are the same to the right and to the left of the post office. However, (N, c) is

not concave since for i = 2, S = {1}, and T = {1, 3}, we have c({1, 2})− c({1}) = 4 − 2 6≥ 6.4 − 4.2 =

c({1, 2, 3})− c({1, 3}). 3
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5 Submodular assignment functions for cycles

In this section, we analyze cprp games where the underlying graph is a cycle (cycle-cprp games). We extend

the concept of pairwise tree-admissibility to cycles. Just as in Section 4, our conditions on assignment

functions are sufficient for submodularity on cycles. The following example points out a fundamental

reason for a cycle-cprp game not to be submodular.

Example 5.1. Let (G, v0, t, N, p) be the cprp problem described in Figure 10.

v1

v2

v0

v3

v4

1

2

2

1

27

2

2
3

2

Cprp problem

v1

v2

v0

v3

v4

1

2

2

1

07

2

2
3

2

Reduced cprp problem

Figure 10: Cprp problem and reduced cprp problem in Example 5.2.

The edge {v2, v3} is never visited by any coalition. Therefore, the associated cprp game coincides with

the game in Example 3.2, which is not submodular. 3

Let (G, v0, t, N, p) be a cprp problem where G is a cycle (cycle-cprp problem). By deleting an edge

of G, we obtain a rooted tree (a line). Formally, given e ∈ E(G), let G{e} be the rooted tree, with root

v0, defined by V (G{e}) = V (G) and E(G{e}) = E(G) \ {e}. Let p{e} and t{e} denote the restriction of

p and t to E(G{e}), respectively. Hence, (G{e}, v0, t{e}, N, p{e}) is a tree-cprp problem.

We can now define admissibility with respect to the post office. Let (G, v0, t, N, p) be a weak cycle-cprp

problem. An assignment function p is admissible with respect to v0 if p{e} is pairwise tree-admissible

with respect to v0 for every e ∈ E(G). For a rooted cycle (G, v0), adm(G, v0) denotes the set of admis-

sible assignment functions with respect to v0.

The assignment function p in Example 5.2 is, clearly, not admissible with respect to v0 since for

e = {v2, v3}, pr{e}(E(v0, {v0, v1})) = {1, 2} and pr{e}(E(v0, {v0, v4})) = {2, 3}, which violates pairwise

tree-admissibility with respect to v0 for G{e}.

Theorem 5.1. Let G be a rooted cycle with root v0 and let N be a finite set. If p ∈ adm(G, v0), then,

p is submodular.
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Proof: Let t : E(G) → R+ be a cost function. We show that the cycle-cprp game (N, c) associated to

the cycle-cprp problem (G, v0, N, t, p) is submodular. Namely, we show that for every i ∈ N and every

S ⊂ T ⊂ N \ {i},

c(S ∪ {i}) + c(T ) ≥ c(T ∪ {i}) + c(S).

If either c(S∪{i}) = c(T∪{i}), or c(T ) = c(T∪{i}), then, the above inequality is satisfied by monotonicity

of (N, c). Therefore, we only need to verify the inequality when both c(S ∪ {i}) < c(T ∪ {i}) and

c(T ) < c(T ∪ {i}).

Let ω̂S∪{i} ∈ W(S ∪ {i}) be an optimal S ∪ {i}-walk and let ω̂T ∈ W(T ) be an optimal T -walk. Since

c(S ∪ {i}) < c(T ∪ {i}), we have

(i) E(ω̂S∪{i}) 6= E(G);

(ii) each edge in E(ω̂S∪{i}) is visited exactly twice in the walk ω̂S∪{i}.

Moreover, c(T ) < c(T ∪ {i}) implies

(iii) E(ω̂T ) 6= E(G);

(iv) each edge in E(T ) is visited exactly twice in the walk ω̂T ;

(v) e(i) 6∈ E(ω̂T ).

We distinguish between two cases: i ∈ N \M and i ∈ M .

Case 1: i ∈ N \M .

Let e(i) be the unique edge assigned to i according to pr.

If E(ω̂S∪{i}) ∪ E(ω̂T ) = E(G),

c(S ∪ {i}) + c(T ) ≥ 2
∑

e∈E(G)

t(e) ≥ c(S) + c(T ∪ {i})

where the last inequality follows because going all around the cycle is both an S-walk and a T ∪{i}-walk.

If E(ω̂S∪{i})∪E(ω̂T ) 6= E(G), then, we can fix ē ∈ E(G)\ (E(ω̂S∪{i})∪E(ω̂T )). Let N̄ = pē(E \{ē}).

Then, (Gē, v0, tē, N̄ , pē) is a tree-cprp problem and pē is pairwise tree-admissible. Let (N̄ , c̄) be the

associated tree-cprp game. Then, by selection of ē, c̄(S ∪ {i}) = c(S ∪ {i}), c̄(T ) = c(T ), c̄(S) ≥ c(S) and

c̄(T ∪ {i}) ≥ c(T ∪ {i}). Therefore,

c(S ∪ {i}) + c(T ) = c̄(S ∪ {i}) + c̄(T ) ≥ c̄(S) + c̄(T ∪ {i}) ≥ c(S) + c(T ∪ {i})

where the first inequality follows by Theorem 4.2.

Case 2: i ∈ M .
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Since i ∈ M , i owns exactly two edges according to pr. Since E(ω̂S∪{i}) 6= E(G), we can assume

that i is only visited once in ω̂S∪{i} according to pr. Let e(S ∪ {i}, i) be this unique edge. Consider the

tree-cprp problem (G, v0, t, N, p̄) with p̄ defined by

p̄(e) =



















p(e) if p(e) 6= i,

p(e)(= i) if e = e(S ∪ {i}, i),

0 otherwise,

and let (N, c̄) be the corresponding tree-cprp game. By definition of p̄, it follows that p̄ is admissible

with respect to v0, i ∈ N \ M(G, v0, t, N, p̄), c̄(S ∪ {i}) = c(S ∪ {i}), c̄(T ) = c(T ), c̄(S) = c(S), and

c̄(T ∪ {i}) ≥ c(T ∪ {i}). Then,

c(S ∪ {i}) + c(T ) = c̄(S ∪ {i}) + c̄(T ) ≥ c̄(S) + c̄(T ∪ {i}) ≥ c(S) + c(T ∪ {i})

where the first inequality is a direct consequence of Case 1 of this proof. 2

Just like in Section 4, our admissibility condition for cycles is a sufficient, but not necessary condition

for submodularity of an assignment function for cycle-cprp games. When considering a “circular city”

with clients situated to the right and left of the post office as in Figure 11, the associated cprp game is

always submodular, as shown in Theorem 5.2.
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vn−1 vn+1
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v1 v2n−1
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3 3

n n
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v3 v2n−4

v2 v2n−3
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2 2

3 3

n− 1 n− 1

n

Figure 11: Cprp problems in Theorem 5.2.

Theorem 5.2. Let N = {1, . . . , n} be a finite set of players. Let G be the rooted cycle with root v0 and

p be an assignment function as one in Figure 11. Then, p is submodular.
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Proof: Let t : E(G) → R+ be a cost function. We show that the cycle-cprp game (N, c) associated to

the cycle-cprp problem (G, v0, t, N, p) is submodular. Namely, we show that for every i ∈ N and every

S ⊂ T ⊂ N \ {i},

c(S ∪ {i}) + c(T ) ≥ c(T ∪ {i}) + c(S).

If either c(S∪{i}) = c(T∪{i}), or c(T ) = c(T∪{i}), then, the above inequality is satisfied by monotonicity

of (N, c). Therefore, we only need to verify the inequality when both c(S ∪ {i}) < c(T ∪ {i}) and

c(T ) < c(T ∪{i}). Let ω̂S∪{i} ∈ W(S∪{i}) be an optimal S∪{i}-walk and let ω̂T ∈ W(T ) be an optimal

T -walk. Since c(S ∪ {i}) < c(T ∪ {i}), we have

(i) E(ω̂S∪{i}) 6= E(G);

(ii) each edge in E(ω̂S∪{i}) is visited exactly twice in the walk ω̂S∪{i}.

Moreover, c(T ) < c(T ∪ {i}) implies

(iii) E(ω̂T ) 6= E(G);

(iv) each edge in E(T ) is visited exactly twice in the walk ω̂T ;

(v) e(i) 6∈ E(ω̂T ).

If E(ω̂S∪{i}) ∪ E(ω̂T ) = E(G),

c(S ∪ {i}) + c(T ) ≥ 2
∑

e∈E(G)

t(e) ≥ c(S) + c(T ∪ {i})

where the last inequality follows because going all around the cycle is both an S-walk and a T ∪{i}-walk.

If E(ω̂S∪{i})∪E(ω̂T ) 6= E(G), then, we can fix ē ∈ E(G) \ (E(ω̂S∪{i})∪E(ω̂T )). Let N̄ = pē(E \ {ē})

and let (N̄ , c̄) be the corresponding tree-cprp game. By definition of p̄, it follows that c̄(S∪{i}) = c(S∪{i}),

c̄(T ) = c(T ), c̄(S) ≥ c(S), and c̄(T ∪ {i}) ≥ c(T ∪ {i}). Then, (Gē, v0, tē, N̄ , prē) is a “linear city” as in

Theorem 4.3 and

c(S ∪ {i})− c(S) = c̄(S ∪ {i})− c̄(S) ≥ c̄(T ∪ {i})− c̄(T ) ≥ c(T ∪ {i})− c(T )

where the first inequality follows by Theorem 4.3. 2

6 Submodular assignment functions for weak cycles

In this section, we analyze cprp games where the underlying graph is a weak cycle (weak cycle-cprp

games). We extend the concept of pairwise tree-admissibility to weak cycles. Just as in Section 4, our

conditions on assignment functions are sufficient for submodularity on weak cycles. The following two

examples point out fundamental reasons for a weak cycle-cprp game not to be submodular.
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Example 6.1. Let (G, v0, t, N, p) be the cprp problem described in Figure 12.

v3

v2

v0 v1 v4

v5

4

0

1
3

2
1

1

2

40
3

2

Cprp problem

v3

v2

v0 v1 v4

v5

4

0

1
3

2
1

1

2

00
3

2

Reduced cprp problem

Figure 12: Cprp problem and reduced cprp problem in Example 6.1.

The associated cprp game is given in Table 1.

S {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} N

c(S) 4 8 4 0 8 4 4 12 8 4 12 8 4 12 12

Table 1: Coalitional values of the cprp game in Example 6.1.

This game has a nonempty core ((0, 8, 4, 0) ∈ Core(c)), but is not submodular since for i = 2, S = {1},

and T = {1, 3}, c({1, 2})− c({1}) = 4 6≥ 8 = c({1, 2, 3})− c({1, 3}). The game is not submodular since

player 1 is visited on his edge {v1, v2} for coalitions {1, 2} and {1, 2, 3}, while he is visited on his edge

{v1, v4} for coalitions {1}, {1, 3}, and {1, 2, 3}. 3

To define admissibility of an assignment function in a cycle-cprp problem, we delete an edge of the

cycle and check pairwise tree admissibility in the corresponding reduced tree-cprp problem. We see that

this is not possible anymore for weak cycle-cprp problems in Example 6.1. The reason is that the cycle in

Figure 12 has only two players according to the reduced cprp problem. If instead of only two players, the

cycle had at least three, we could find an edge which deletion would violate pairwise tree admissibility in

the corresponding reduced tree-cprp problem. A similar problem arises in Example 6.2

Example 6.2. Let (G, v0, t, N, p) be the cprp problem described in Figure 13.
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Figure 13: Cprp problem and reduced cprp problem in Example 6.2.

The associated cprp game is given in Table 2.

S {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} N

c(S) 12 14 17 0 18 23 12 17 14 17 23 18 23 17 23

Table 2: Coalitional values of the cprp game in Example 6.2.

This game has a nonempty core ((12, 0, 11, 0) ∈ Core(c)), but is not submodular since for i = 1,

S = {2}, and T = {2, 3}, c({1, 2})− c({2}) = 4 6≥ 6 = c({1, 2, 3})− c({2, 3}). Notice that the game is not

submodular since player 2 is visited on his edge {v3, v6} for coalitions {2} and {1, 2}, while he is visited

on his edge {v2, v5} for coalitions {2, 3} and {1, 2, 3}. 3

To define admissibility of an assignment function for a weak cycle-cprp, we transform the weak cycle-

cprp problem into a tree-cprp problem and check whether the corresponding assignment function satisfies

pair wise admissibility. For this, we consider two types of operations: deleting an edge (as in Section 5)

and splitting of a node. Let (G, v0, t, N, p) be a weak cycle-cprp problem and let C be a cycle in G. Let

v ∈ V (C) and e = {v, w} ∈ E(C)∩edges(v). The splitting of v through edge e is done by duplicating

v by v̄ and exchanging v by v̄ in e. Let ē = {v̄, w} and Ē = (E \ {e}) ∪ {ē}. We can adapt p and t to

p{v,e} and t{v,e} by defining

p{v,e}(ẽ) =







p(ẽ) if ẽ ∈ Ē \ {ē},

p(e) if ẽ = ē
and t{v,e}(ẽ) =







t(ẽ) if ẽ ∈ Ē \ {ē},

t(e) if ẽ = ē

(see Figure 14).
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Figure 14: Splitting of v1 through {v1, v5} and adaptation of t and p.

We can now define admissibility with respect to the post office. First, we transform a weak cycle into

several trees to which the assignment function is adapted. Second, we check pairwise tree-admissibility

of the adapted assignment functions.

Let (G, v0, t, N, p) be a weak cycle-cprp problem. Let (T ∗
1 , v

∗
1), . . . , (T

∗
s , v

∗
s ) and (C∗

1 , w
∗
1), . . . , (C

∗
r , w

∗
r)

be the rooted trees and rooted cycles, respectively, in the decomposition of G. Assume that C1, . . . , Cu are

the leaves with |pr(E(C1))| ≥ 3, . . . , |pr(E(Cu))| ≥ 3. For every l ∈ {1, . . . , u}, fix el ∈ E(Cl) and for every

l ∈ {u+1, . . . , r}, fix vl ∈ V (Cl) and el ∈ E(Cl)∩edges(vl). Let G{el}u

l=1,{vl,el}r

l=u+1
be the tree obtained

by first deleting the edges e1, . . . , eu and, subsequently, splitting vu+1 through eu+1, . . . , vr through er. Let

p{el}u

l=1,{vl,el}r

l=u+1
and t{el}u

l=1,{vl,el}r

l=u+1
denote the adaptation of p and t to E(G{el}u

l=1
,{vl,el}r

l=u+1
),

respectively. Hence, (G{el}u

l=1
,{vl,el}r

l=u+1
, v0, t{el}u

l=1
,{vl,el}r

l=u+1
, N, p{el}u

l=1
,{vl,el}r

l=u+1
) is a tree-cprp pro-

blem. The assignment function p is admissible with respect to v0 if p{el}u

l=1
,{vl,el}r

l=u+1
is pairwise

tree-admissible with respect to v0 for every selection el ∈ E(Cl), l ∈ {1, . . . , u}, vl ∈ V (Cl) and

el ∈ E(Cl) ∩ edges(vl), l ∈ {u + 1, . . . , r}. For a rooted weak cycle (G, v0), adm(G, v0) denotes the

set of admissible assignment functions with respect to v0.

Example 6.3. Let (G, v0, t, N, p) be the cprp problem described in Example 6.2. Clearly, p is not ad-

missible with respect to v0. Let C1 be the cycle with nodes {v1, v2, v3} and C2 be the cycle with nodes

{v2, v4, v5}. C1 is no leaf and C2 is a leaf with |pr(E(C2))| = 2. For C1, we fix v2 and {v2, v3} = e1, and for

C2, we fix v2 and {v2, v5} = e2. The cprp problems (G{v2,e1},{v2,e2}, v0, t{v2,e1},{v2,e2}, N, p{v2,e1},{v2,e2})

and (G{v2,e1},{v2,e2}, v0, t{v2,e1},{v2,e2}, N, pr{v2,e1},{v2,e2}) are represented in Figure 15.
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Figure 15: Cprp problem and reduced cprp problem in Example 6.3.

We have pr{v2,e1},{v2,e2}(E(v1, e1)) = {2, 3} and pr{v2,e1},{v2,e2}(E(v1, e1)) = {1, 2}, which violates pair-

wise tree-admissibility with respect to v0. 3

Lemma 4.1 and Theorem 4.2 can be extended to weak cycle-cprp problems and admissible assignment

functions with respect to the post office. Lemma 6.1 states that if p is an admissible assignment function

with respect to the post office and a player i in a coalition S is not located at any cycle, then, we can

find an optimal walk for S such that i is visited in exactly one edge. The proof follows the same lines as

the proof of Lemma 4.1, but the technicalities increase considerably. For this reason, we omit the proof.

Lemma 6.1. Let (G, v0, t, N, p) be a weak cycle-cprp problem with p ∈ adm(G, v0). Then, for every

S ⊂ N , there exists an optimal walk ω̂ ∈ W(S) such that |{e ∈ E(ω̂) | pr(e) = i}| = 1 for every i ∈ S

with (pr)−1(i) ∩ (∪r
l=1E(Cl)) = ∅.

Next, we generalize Theorem 4.2 to weak cycle-cprp problems and admissible assignment functions

with respect to the post office. Again, the proof of Theorem 6.2 follows the same lines as the proof of

Theorem 4.2, but the technicalities increase enormously. For this reason, we omit the proof.

Theorem 6.2. Let G be a rooted weak cycle with root v0 and let N be a finite set. If p ∈ adm(G, v0),

then, p is submodular.

7 Concluding remarks

In this paper, we have introduced Chinese postman games with repeated players (cprp games) as a

generalization of Chinese postman games. We have shown that, when the one-to-one relation between

players and edges of the underlying graph is dropped, the equivalence between submodularity and totally
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balancedness is lost. Moreover, it does not hold any longer that weak cycle graphs induce submodular cprp

games. We define submodularity of assignments of players to edges. Given an undirected rooted graph

G, an assignment of players to edges is submodular if the associated cprp game is always submodular,

independently of the travel costs. We give sufficient conditions for an assignment of players to edges to be

submodular for trees, cycles, and weak cycles. Unfortunately, finding also necessary conditions is highly

challenging, since the relative order among the players seems to play a crucial role.

Chinese postman games with a tree as underlying graph are related to fixed tree games. Given a rooted

weighted undirected tree, we can consider both an associated Chinese postman game and an associated

fixed tree game. In a Chinese postman game, the players are located in the edges while in a fixed tree

game, the players are located in the nodes. Reallocating a player in a node to the incident edge that is

used in the path going from the root to the node, the value of a coalition in the Chinese postman game

is twice the value of that same coalition in the fixed tree game. Therefore, both games share the same

properties. Miquel et al. (2006) analyse fixed tree games with multilocated players as a generalization of

fixed tree games. They allow players to be located in more than one node except for players located in

leaf nodes (nodes with no followers). Moreover, each leaf is occupied by a player, that is, it cannot be left

empty. By imposing these restrictions, they ensure that the whole tree will be used by the grand coalition.

They show that fixed tree games with multilocated players are always submodular. Therefore, given a

rooted tree, every assignment function that assigns every edge incident with a leaf to players owning

only one edge are submodular. Reversely, if we drop the restriction in Miquel et al. (2006) about leafs

being owned by players that do not have multiple locations, we can translate the condition on pairwise

tree-admissibility with respect to the post office to fixed tree games with multilocated players.
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